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Abstract The continuous increase in the energy demand has resulted in the gradual
depletion of fossil fuel resources and an increase in greenhouse gas (GHG) emission.
As an alternate, the emphasis has shifted towards green methods, i.e. biofuel gener-
ation using lignocellulosic plant biomass via microorganisms and its biomolecules
(e.g. endo-xylanase). The lignocellulosic plant biomass serves as a suitable alternative
for the fossil fuel resources. They are found abundantly on earth and can be considered
as a renewable source for the suitable biorefinery process. Endo-xylanase is a crucial
enzyme that effectively cleaves glycosidic linkages present in the complex structure of
xylan which carry the most hemicellulosic part of the lignocellulosic plant cell wall.
Using the enzymes individually or in combination with other enzymes or with
multienzyme-producing microorganisms can be a suitable approach for developing
advanced biorefinery processes. The present chapter deals with the involvement of
xylanase in the biorefinery process and its advantages, limitations and future prospect.

Keywords Microorganisms · Enzymes · Endo-xylanase · Lignocellulosic biomass ·
Biorefinery

7.1 Introduction

Biorefining is the sustainable bioconversion of biomass (renewable resources) into a
range of industrial products like chemical, food and feed and, similarly, bioenergy
like electricity, heat and fuel (De Jong et al. 2009). Being a keystone of bioeconomy,
the aim of completely revealing the potential of biomass from lignocellulosic plants
(agricultural and forestry) in the economic method remains undefinable. The con-
tinuous increase in the consumption of energy and the decrease in the supply of fossil
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fuels have increased the researcher’s interest in developing sustainable methodolo-
gies for the production of biofuel (Yang et al. 2015). The biomass obtained from
lignocellulosic plant is abundantly available in the environment and can be consid-
ered as a vital alternative of fossil fuels. The biomass can be found in the environ-
ment throughout the year in the bulk amount without being used in the form of
agricultural and forestry waste/residues (Thomas et al. 2016). Most of the residues,
e.g. rice and sugarcane cultivation, are burnt in the open fields mostly in Asian
countries causing environmental pollution (Thomas et al. 2016).

The composition of lignocellulosic plant biomass consists of three main compo-
nents, i.e. lignin, hemicellulose and cellulose, which together make the recalcitrant
structure of plant biomass (Singh et al. 2017). Due to this, the biorefinery process
involves three major steps such as pretreatment, saccharification and hydrolysis for
the complete bioconversion (Bhardwaj et al. 2020). Other important aspects such as
the type of biomass to be used in the biorefinery process and biomass transportation
are also a matter of concern along with the structure recalcitrance of the biomass to
expose valuable sugars to be utilized in the biorefinery process to fulfil the bioenergy
requirement of the world (Hassan et al. 2019).

The microbial hydrolytic enzymes play an important role in the bioconversion of
biomass by converting it into fermentable sugar (Wei et al. 2012). Therefore, various
strategies have been carried out till date such as isolation of new microbes and
various optimization studies to improve the production of enzymes (Attri and Garg
2014; Haitjema et al. 2014; Nigam 2013). Enzymes are required in all the major
steps of biorefinery processes, e.g. in the biological pretreatment method, using
laccase for the removal of lignin which can help to reduce the recalcitrant nature
of plant cell wall and making inner cellular parts, i.e. hemicellulose and cellulose,
more accessible (Agrawal et al. 2019). Hemicellulases, e.g. xylanases and cellulases,
are required in the hydrolysis and saccharification of plant residues which enhance
the release of sugar molecules (Bala and Singh 2019a). These enzymes can be used
either individually or as a cocktail (Bhardwaj et al. 2019). Although the commer-
cially available enzyme cocktails are costly and affect the economy of the process,
microbial enzyme can be considered as the best alternatives (Vaishnav et al. 2018).
Along with the cost of the enzymes, another important factor to be considered is the
amount/load of enzyme required for the process and futher study has to be done to
identify suitable enzyme preparations to achieve enhanced saccharification rate
(Cunha et al. 2017). Also getting microorganisms which can produce an enzyme
cocktail that can act on multiple agricultural residues is another option to improve
the economic viability of the process (Thomas et al. 2016). With the availability of a
huge range of cellulases, lignocellulases can be utilized to allow the adaptation of
such cocktails (Ang et al. 2015). This can be achieved by xylanase supplementation
as endo-xylanase is known as one of the most suitable enzymes used in the
hydrolysis process by breaking the internal glycosidic linkages present in the
backbone of the complex structure of heteroxylan, resulting in the xylo-
oligosaccharide formation (Thomas et al. 2014a, b). Later these xylo-
oligosaccharides are converted into other fermentable sugars such as trimers
(xylotriose), dimers (xylobiose) and monomers (xylose) (Brienzo et al. 2012).
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Therefore, considering the importance of enzymatic system in the field of
biorefinery, the main focus must be on finding new strains which can produce a
large amount of xylanases along with other hydrolytic enzymes. Along with these,
new methods should be found to enhance the production of fermentable sugar that
can be further converted into biofuel. This chapter includes the brief overview of the
process involved in the biorefinery system via microbial xylanases. A brief overview
of the biorefinery process has been shown in Fig. 7.1.

7.2 Raw Material for Biorefinery

Residues obtained from agricultural industries such as wheat straw and bran, rice
straw and husk, sugarcane bagasse, cotton stalk some of the most abundant ligno-
cellulosic biomass. Lignocellulosic plant biomass have been recognized as an
efficient raw material for the biorefinery processes which can replace huge sections
of fossil resources (Maiti et al. 2018). The biorefinery process can produce three
main end-products, i.e. biofuels, bioenergy and biochemicals. As compared to other
renewable resources such as sun, wind and water, use of lignocellulosic biomass has
some advantages as it contains carbon materials in addition to fossils (Pachapur et al.
2019). Biorefinery processes comprises of a broad range of methods which can
separate plant biomass (cellulose, hemicellulose) resources, such as rice, wheat,
wood, grass, corn, etc., into carbohydrates, triglycerides, proteins, etc, which can
further be converted into value-added end-products such as biofuels and biochem-
icals (De Jong et al. 2009; Saba et al. 2015) via various physical, chemical or
biological processes (Juodeikiene et al. 2011).

7.3 Structure of Lignocellulosic Plant Biomass

In the complete structure of the plant cell wall, cellulose is the principal component
which is present in a complex but systematic framework fibrous structure (Kumar
et al. 2009). This fibrous structure is made up of approximately 500–15,000 anhy-
drous glucose units linked with β-1,4-glycosidic linkages which form a linear homo-
polysaccharide with the series of small cellobiose units. Extremely crystalline
structure of cellulose comprises inter- and intra-molecular H-bonds that are formed
by β-1,4 arrangement of the glucoside bonds (Saini et al. 2015). Hemicellulose
which is found in the upper layer of cellulose and below the lignin in the plant cell
wall (Saini et al. 2015) contains a short polypeptide chain with 50–200 units of
pentose and hexose sugar which is highly branched such as D-xylose, L-arabinose
and D-mannose-galactose-glucose, respectively. The hemicellulose part also has an
acetate group which is arranged randomly to the hydroxyl groups of the pentose
sugar ring with ester linkages (Saini et al. 2015). Lignin is the third important
component of the plant cell wall which is a highly crosslinked aromatic amorphous
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and heterogeneous polymer comprising trans-coniferyl, trans-sinapyl and
trans-coumaryl alcohols. It forms a complex matrix arranged covalently linked to
side groups of other diverse hemicelluloses and covers the cellulose microfibril. It
occupies 2–40% of the plant cell wall in which C–C and C–O–C provide stability by
protecting them from microbial attack (Mooney et al. 1998).

7.4 The Concept of Biorefinery

Biorefinery is classified into three different generations based on the use of different
feedstock and the products (Azad et al. 2015). The raw materials used for first-
generation biorefinery are corn, barley, sunflower, etc. Bio-based ethanol, diesel,
biogas, methanol and vegetable oils come under this generation (Cherubini 2010).
Due to the presence of high oil and sugar content, the bioconversion into biofuel is
easy with this generation. Based on the previous reports of life cycle assessment
analysis by Reinhardt et al. (2007) and Gasol et al. (2007), a remarkable decrease in
the (GHG) emission has been observed as the consumption of bioethanol and
biodiesel has efficiently replaced gasoline and diesel obtained from fossil resources.
Apart from various benefits, this generation have a drawback of facing difficulties in
feed and food industries as they use food resources and agricultural land (Cherubini
2010; Dutta et al. 2014).

In contrast to this, the second-generation biorefinery uses leftover residues from
the food crops and cereals which are known as lignocellulosic plant biomass such as
husks, bagasse, straws, animal fat and municipal solid wastes which can be used for
biofuel production along with other value-added products (Azad et al. 2015; Geddes
et al. 2011; Zanuso et al. 2017). Based on various literature of life cycle assessment
analysis, it was concluded that the second generation is more advantageous than the
first as it is more eco-friendly, economic and more socially feasible as compared to
food-based resources and requirement of agricultural land (Dutta et al. 2014).

Whereas, in third generation of biorefinery, aquatic biomass, e.g. algae, rice in
proteins, oil and carbohydrates has been used for biofuel production (Martín and
Grossmann 2012). Aquatic biomass consists of three groups: microalgae,
cyanobacteria, and macroalgae. Although it is not a seasonal feedstock, with high
oil productivity and high tolerance rate, its processing cost is very high due to the
high cultivation cost and energy input which eventually affects the economic
viability of the process (Cervantes-Cisneros et al. 2017). Among all the three
generations, the second generation has been considered more efficient, because the
whole process can be considered economic from the use of waste products as
resources till the production of value-added end-products.
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7.5 Role of Enzymes in Biorefinery

7.5.1 In Biological Pretreatment

As discussed above, the biorefinery process involves three main steps, of which
pretreatment of biomass is one of the important steps to enhance the production of
fermentable sugar. Although pretreatment could be of three types, physical, chem-
ical or biological, the biological pretreatment is more preferred as it is eco-friendly,
easy, safe to use and involves the use of microbial enzymes and several microor-
ganisms itself, e.g. white rot (Myrothecium verrucaria) and brown rot fungi
(Trametes versicolor, Pleurotus ostreatus). It can be efficiently used in the
delignification process without much requirement of energy (Kumar et al. 2009).
Various enzymes, such as laccases, lignin peroxidases, manganese-dependent per-
oxidases, etc., have been employed for the delignification process (Agrawal et al.
2019). This process makes inner hemicellulose and cellulose part more accessible for
the other hydrolytic enzymes such as endo-xylanases and cellulases, respectively, for
the hydrolysis process (Bhardwaj et al. 2019). After this step, the accessibility of
cellulose (carbon source) increases for efficient fermentation by microorganisms
leading to the cost-effective enzyme production followed by hydrolysis of the same
pretreated biomass. Therefore, it can be inferred that the rate of hydrolysis can be
increased up to 90% after the pretreatment (Saini et al. 2015).

The pretreatment process via enzymes utilizes crude or purified enzymes or
partially purified ligninolytic or hydrolytic enzymes. This may help to remove lignin
via fungal pretreatment within less time period (Plácido and Capareda 2015).
Although the complete efficiency of enzymatic pretreatment process is not yet
studied properly as compared to thermal and chemical pretreatment process, treat-
ment of sugarcane using alkaline (NaOH) and crude Anthracophyllum discolor
enzyme extracts for the production of bioethanol resulted in 48.7% and 33.6% lignin
removal by NaOH enzymatic methods, i.e. 31% lower than the enzymatic process
alone (Asgher et al. 2013). However, in the study by Asgher et al. (2013) when
sugarcane bagasse was treated enzymatically with the increased cellulose load,
hydrolysis yeild of about 79% was obtained suggesting effectve treatmnet of the
lignocellulosic biomass (Asgher et al. 2013). Hence, these results can be the
examples of continuing new researches on the use of both ligninolytic and cellulo-
lytic enzymes to disrupt the structure of lignocellulosic plant biomass for a better
saccharification and hydrolysis process (Asgher et al. 2013). There are various
reports in the enzymatic hydrolysis process such as a microalgal pretreatment for
the biomethane gas production (Vanegas et al. 2015), production of biohydrogen
(Mahdy et al. 2014), extraction of lipids for biodiesel generation (Fu et al. 2010) and
production of bioethanol (Kim et al. 2014). Similarly, manganese peroxidase in the
crude extract of Anthracophyllum discolor was used for the pretreatment of
Botryococcus braunii for the production of biogas (Ciudad et al. 2014). Enzymatic
pretreatment can be performed by using individual or cocktails of enzymes. Cock-
tails of enzymes are made by using either crude or partially purified enzymes.
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However, use of single enzymatic system has been reported with higher yield for the
downstream processing of microalgal biomass (Vanegas et al. 2015); cocktails could
be more hopeful for the hydrolysis of different biopolymers of plant biomass
(Ehimen et al. 2013).

7.5.2 In Enzymatic Hydrolysis

For the economic generation of ethanol from cellulosic plant biomass, enzyme-based
hydrolysis is an advantageous process as it is a very cost-effective method, with a
probably vast yield when compared to chemical treatment. Long chain of carbohy-
drate present in the plant cell wall can be deconstructed by hydrolysis method with
the help of enzyme catalysis process. By forming a physical barrier, hemicellulose
restricts the cellulase accessibility to cellulose (Zhang et al. 2012). Hence, supplying
enzymes such as xylanases which can degrade them can be the most suitable method
to enhance the release of overall fermentable sugar from various pretreated ligno-
cellulosic plant biomass (Kumar et al. 2009; Öhgren et al. 2007). Xylanases,
e.g. endo-β-1,4-xylanases (EC 3.2.1.8) and β-xylosidase (EC 3.2.1.37), can act in
the main chains along with the side chain residues of the complex structure of xylan.
Endo-β-1,4-xylanase disrupts the long chain of xylan into smaller ones (Aditiya et al.
2016); similarly, xylopyranose is produced by β-xylosidase which is a pyranose unit
made up of xylose monomers which are formed by continuous cleaving of oligo-
saccharide. Other xylanolytic accessory enzymes such as feruloyl esterase
(EC 3.1.139) and acetyl xylan esterase (EC 3.1.1.72) cleave the outer chains (Aditiya
et al. 2016). Due to their more amorphous nature, hemicelluloses are quite different
from celluloses, and also hemicellulolytic enzymes are more complicated but with
very particular actions. Hence, it can be confirmed that destruction of xylan by
enzymatic hydrolysis may remove the cellulose covering and also it can help in the
improvement of cellulase performance (Zhang et al. 2012).

7.6 Enzyme Synergy: A Conceptual Strategy

Synergistic action of enzymes can be stated as the combination of pretreatment and
hydrolysis steps to convert most of the polymeric components to fermentable sugar
(Ang et al. 2015). In this process, some attention must be taken that the process
should not degrade or irreversibly transform the sugars, which will eventually lead to
the loss in fermentable sugar. Further, the slurries generated after the pretreatment
may have some unwanted physical and chemical characteristics which may hinder
the catalysis process of enzymatic proteins. Thus, to avoid the extent of degradation,
less severe pretreatment methodologies must be selected, e.g. biological
pretreatment via enzymes and microorganisms like fungi (Teter et al. 2014; Zhang
et al. 2012).
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In order to avoid the loss of fermentable sugar, all the three major steps,
i.e. pretreatment, hydrolysis and fermentation, of biomass conversion can be incor-
porated together which will lead to the reduction in multistep process. Hence,
different enzymes can be mixed together in sufficient ratio to prepare the suitable
enzyme cocktail (Bhardwaj et al. 2019). These enzymes will work synergistically
and will lead to the enhanced biomass conversion and release of maximum sugar as
compared to other physical and chemical methods (Chaturvedi and Verma 2013).
Later the released sugar in the slurry can further be converted into bioethanol by the
use of ethanologenic microorganisms such as Saccharomyces cerevisiae (Bhardwaj
et al. 2019). Although bio-based methods have various advantages such as high
specificity, no formation of toxic and inhibitory chemicals and expensive and
sophisticated instruments are not required, they have some limitations also like
high enzyme cost, limited temperature and pH stability (Bala and Singh 2019a).

A study has been reported on the use of thermo-alkali-stable ligno-
hemicellulolytic enzyme laccase from Myrothecium verrucaria (Agrawal et al.
2019), xylanase from Aspergillus oryzae (Bhardwaj et al. 2017) and cellulase from
Schizophyllum commune (Kumar et al. 2018) cocktails (crude, partially purified) in
combination with Saccharomyces cerevisiae MTCC-173, by using simultaneous
delignification, saccharification and fermentation (SDSF) in combination with Sac-
charomyces cerevisiae MTCC-173 (Bhardwaj et al. 2019). Various forms of
xylanase were produced by some thermophilic fungi such as Malbranchea
cinnamomea (Mahajan et al. 2014), Pyrenophora phaeocomes (Rastogi et al.
2016) and Trametes versicolor, Pleurotus ostreatus and Piptoporus betulinus
(Valášková and Baldrian 2006). Similarly, thermophilic mould such as
T. aurantiacus was found capable of producing xylanase and cellulases by using
agricultural biomass (Jain et al. 2015).

Similarly, in coculturing method, combination of enzyme produced by Aspergil-
lus niger and Trichoderma reesei resulted in a three-fold higher hydrolysis rate of
unwashed pretreated sugarcane bagasse with only 0.7 FPU activity/g glucan enzyme
load when compared to 5–15 times enzyme loading (Florencio et al. 2016). There-
fore, it can be stated that cocktails of various enzymes and coculture of microorgan-
isms could be a better approach to enhance the fermentable sugar production (Kolasa
et al. 2014).

7.7 Factors Affecting Biological Pretreatment

In order to get highest yield via enzymatic pretreatment, it is required to understand
the factor affecting the microbial growth and metabolism (Wan and Li 2012). The
factors which may affect the process are nature, moisture content and particle size of
the biomass or substrates, microorganism type and inoculum concentration, enzyme
type and conditions like time, pH and temperature. Biomass surface contains internal
and external area where the particle size and shape is important for the maintenance
of biomass component capillary structure (Maurya et al. 2015). Further, particles
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with small sizes are more preferred due to increased digestibility and total yield,
although the use of small-size particles is difficult in the downstream processing
(Bolado-Rodríguez et al. 2016). On the other hand, the small size of particles affects
the efficiency of the pretreatment as it affects the proper microbial growth and
metabolism by reducing the aeration rate (Sharma et al. 2019), whereas larger
particle size affects the pretreatment process by reducing the penetration of micro-
organisms into the substrates and reducing the uniform air diffusion. Similarly, time
is another important factor which varies according to the microorganism and micro-
bial enzymes. Taniguchi et al. (2005) reported highest sugar yield with rice straw
after hydrolysis using P. ostreatus when pretreated for 60 days (Taniguchi et al.
2005) whereas Salvachúa et al. (2011) reported less sugar concentration in wheat
bran pre-treated with P. chrysosporium-after 14 days. Further, an increased sugar
yield was reported for wood chips pretreatment by T. versicolor (Hwang et al. 2008).
Another important factor required for the treatment of the biomass is moisture
content as it is required in specific amount for proper microbial growth and biodeg-
radation (Gervais and Molin 2003), although this also varies on the basis of type of
strain and biomass (Mustafa et al. 2016). Physical parameter such as temperature has
also been found to be another important parameter in enzymatic pretreatment
process which is necessary for the optimum microbial growth and cells’ metabolic
activities. Based on various microorganisms, the temperature optima also varied
from 25 to 30 �C. Fungi from ascomycetes group can grow at a higher temperature
nearly up to 39 �C, whereas, in the case of basidiomycetes, the required temperature
optima is 15 and 35 �C (Sindhu et al. 2016). This is because of the difference in the
physiology of fungus substrate type and microbial strains (Isroi et al. 2011). The
WRF metabolism in solid-state system generates heat, which eventually enhances
the bioreactors’ gradient temperature (Wan and Li 2012), and plays as an important
challenge for the researchers while designing the bioreactor for the solid-state
pretreatment application in large scale. Similarly, pH in culture medium also affects
the microbial growth, enzyme secretion and hydrolysis (Sharma et al. 2019).

7.8 Advantages of Xylanases from Thermophilic
Microorganisms in Biorefinery

Various thermophilic microorganisms have been reported for the production of
different enzymes such as hemicellulases, amylases, cellulases, phosphatases, pro-
teases, laccases, lipases, etc., which have various applications in different industries
like food, textile and detergent, dairy, pharmaceutical and others (Singh 2016). The
similarity of thermophilic microorganisms in their phylogenetic analysis and their
enzymes showed common origin with other mesophiles (Zeldes et al. 2015). Thus,
cellulases and xylanases were obtained from thermophilic origin, and their mode of
action was found to be similar except only with some specific features which indicate
their advantage at various industries. Thermophiles are found to be a good source of
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different enzymes as they can produce thermostable enzymes. As compared to
mesophilic enzymes, thermophiles have high resistance for denaturing agents and
high-pressure tolerance. Hence, they may be considered as the valuable domain for
the production of biofuels at higher temperatures (Haki and Rakshit 2003), because
high temperature may enhance the penetration of enzymes via cell wall of lignocel-
lulosic plant biomass and can behave as a physical factor for the disorganization of
the cell wall of lignocellulosic biomass (Paës and O’Donohue 2006). Among various
pretreatment methods, enzymatic degradation of lignocellulosic biomass using cel-
lulase and xylanase is found to be the most suitable and specific with no other toxic
effects or product formation and no loss of substrate. Thermostable xylanases and
cellulases play a very important role in the pharmaceutical, chemical, food and paper
and pulp industries. Xylanases have been found to be an alternative of chlorine in
paper and pulp industry due to their involvement in the leaching of xylan from
carbohydrate-lignin complex. This way xylanase can be useful in the replacement of
chlorine and in pulp bleaching process and can reduce the environmental pollution
caused by them. A thermostable xylanase obtained from Myceliophthora
thermophila was found suitable as compared to a thermolabile xylanase obtained
from Trichoderma reesei in paper and pulp industry. A thermostable xylanase from
Bacillus sp. NCIM5 was utilized in the bagasse pulp pre-bleaching by simulta-
neously reducing the demand of chlorine (Kulkarni and Rao 1996). Various bacterial
strains such as Bacillus sp. and Dictyoglomus sp. were successful at commercial
scale (Rani and Nand 2000). Although, for many xylanolytic and cellulolytic
enzymes, the temperature and pH optima were found to be below 50 �C and acidic
or neutral pH (Gessesse 1998), various thermophilic fungi are found to be the good
producers of xylanases and cellulases which were successfully used in the lignocel-
lulosic biomass saccharification (Kaur and Satyanarayana 2004).

7.9 The Products of Biorefinery

A list of some recent xylanases involved in the biorefinery process has been shown
in Table 7.1 and discussed as follows.

7.9.1 Bioethanol

Bioethanol produced from lignocellulosic plant biomass is ecological process that
can be enhanced by using suitable enzymes and microorganisms. Previous studies
have reported that thermophilic microorganism can produce more amount of
bioethanol via simultaneous delignification, saccharification and fermentation pro-
cess. Thermal stability has been found to be an important and desirable property for
cellulolytic and xylanolytic enzymes required for successful saccharification. The
hydrolysis rate of Trichoderma is low as it has less β-glucosidase level (Mohanram
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et al. 2013). Hence, thermophilic fungi can serve as a suitable alternative of this.
Various moulds, e.g. Sporotrichum thermophile, Thermoascus aurantiacus and
Scytalidium thermophilum (Berka et al. 2011; Kaur et al. 2004), which are thermo-
philic in nature have shown sufficient enzymatic system for the lignocellulosic plant
biomass bioconversion process for enhanced bioethanol production. Saccharomyces
cerevisiae and Pichia stipites have been used for the production of bioethanol with
high yield at 30 �C after 72 h (Bala and Singh 2019b). Similar reports with the rice
straw and waste tea cup paper hydrolysis are there in the literature using partially
purified cellulases and xylanase obtained from S. thermophile BJAMDU5, resulting
in the high yield of reducing sugars (Bala and Singh 2016). Various thermophilic
bacteria, such as Clostridium, Caldanaerobacter and Thermoanaerobacter, were
reported for high ethanol production (Taylor et al. 2009).

Table 7.1 Role of xylanases in the field of biorefinery

Microorganisms Agroresidues
Biorefinery
product References

Thermomyces
lanuginosus
Trichoderma reesei

Rye
Wheat

Bioethanol Juodeikiene et al.
(2011)

Aspergillus sp. Rice straw Bioethanol Thomas et al.
(2016)

Rhizopus oryzae Sorghum Stover Bioethanol Pandey et al. (2016)

Streptomyces variabilis
(MAB3)

Rice straw Bioethanol Sanjivkumar et al.
(2018)

Streptomyces
thermovulgaris

Corn cob Bioethanol Boonchuay et al.
(2018)

Aspergillus oryzae LC1 Rice straw Bioethanol Bhardwaj et al.
(2019)

Penicillium chrysogenum Sugarcane bagasse Bioethanol Terrone et al.
(2018)

Aspergillus fumigatus Kenaf (Hibiscus
cannabinus)

Bioethanol Damis et al. (2019)

Aspergillus terreus Sugarcane bagasse Bioethanol Kamat et al. (2013)

Thermomyces
lanuginosus

Wheat bran Bioethanol Wood et al. (2016)

Trichoderma atroviride
SS2

Sunflower oil sludge Biobutanol Sakthiselvan et al.
(2015)

Trichoderma
longibrachiatum

Barley straw Acetone-butanol-
ethanol

Yang et al. (2015)

Kluyvera species OM3
Clostridium sp. strain
BOH3

Xylan Biobutanol Xin and He (2013)

Methanocaldococcus sp.
Clostridium sp.

Palm oil mill effluent Biomethane Prasertsan et al.
(2017)

Acinetobacter johnsonii Xylan Ethanol Xue et al. (2019)

Candida tropicalis
MK-160

Xylan Ethanol Shariq and Sohail
(2019)
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7.9.2 Biobutanol

Another product obtained from biorefinery and has attracted the attention of scien-
tists as an efficient alternative for gasoline (Bhandiwad et al. 2014) (Fig. 7.2) is
biobutanol. Microorganisms, such as Clostridium spp.,
C. saccharoperbutylacetonicum, Clostridium acetobutylicum and C. beijerinckii,
are example of microorganims capabable of produding biobutanol by using sugars
from agricultural residues (Bhandiwad et al. 2014; Nakayama et al. 2011). Similarly,
Thermoanaerobacterium thermosaccharolyticum showed 1.8–5.1 mM n-butanol
production from the overexpression of thl, hbd, crt, bcd, etfA and etfB genes of
bcs operon required for butyryl-CoA formation (Bhandiwad et al. 2014). 7.9 g/L of
n-butanol was produced by coculture of Clostridium thermocellum and Clostridium
saccharoperbutylacetonicum (Nakayama et al. 2011). 7.7 g/L of acetoin and 14.5 g/
L of 2,3-butanediol were reported from Geobacillus strain XT15 from corn steep
liquor at 55 �C (Yang et al. 2015).

7.9.3 Hydrogen

It is a carrier of energy having a high potential of being considered as an alternative
for fossil fuel. As it is a clean fuel, it can be used as an internal fuel for combustion
engines in combination with oxygen (Koskinen et al. 2008). Thermophilic microor-
ganisms, e.g. Pyrococcus furiosus, Thermococcus kodakarensis and all Thermotoga
and Caldicellulosiruptor species, have been found to be the good producers of
hydrogen with only the water vapour emission (Verhaart et al. 2010). adhE and
aldH genes are not present in these microorganisms; therefore, they do not produce
ethanol; hence due to hydrogenase, hydrogen production increases. However, Clos-
tridium uzonii strain AK15 and Thermoanaerobacterium aciditolerans AK17 iso-
lated from Iceland during geothermal springs showed good hydrogen production
along with bioethanol (Koskinen et al. 2008).

7.10 Molecular Aspects of Enzymes in Biorefinery

The advances of effective hydrolysis enzymes with advanced properties, e.g. better
interaction with cheap substrates, higher specific activity and higher stability, are
important factors for the industrial production of biofuel. As discussed above,
lignocellulosic plant biomass degradation into their monomeric sugars comprises
two important constituents, i.e. hemicellulose and cellulose (Balat 2011; Pareek et al.
2013; Ulaganathan et al. 2017), and the composite hemicellulose structure needs the
synergistic action of different enzymes, and endo-1,4-β-xylanase plays an important
role to degrade the complex polymer of xylan into oligosaccharides and other
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monomeric sugars (Madadi et al. 2017). Naturally hemicellulolytic enzymes are not
sufficient for the complete hydrolysis of recalcitrance lignocellulosic biomass
(Himmel et al. 2007). Hence, there is a requirement of enzymes, and they are
commercially expensive which will eventually lead to the product loss (Visser
et al. 2015). The only solution for this problem is the efficiency of the enzymes
should be increased (Morone and Pandey 2014) along with the exploitation of
accessory enzymes, e.g. xylanase and β-glucosidase, which can be synergistically
act with cellulases (Berlin et al. 2005). Recently, various reports are found in the
literature based on the improvements of hydrolytic enzymes which has only consid-
ered the cellulase and their synergy with hemicellulases (Diogo et al. 2015;
Quiñones et al. 2015; Yang et al. 2018), but very few reports are there focusing on
xylanases individually. Molecular biology aspects which include directed evolution,
library construction strategies, mutagenesis and gene recombination have gained
researchers’ interest to improve the genetic variations on enzymes (McLachlan et al.
2009). The increased hydrolysis of pretreated sugarcane bagasse was reported with
xylanase (Ribeiro et al. 2014). Two xylanase genes (GH10 and GH11) from
Malbranchea cinnamomea, i.e. XYN10A_MALCI and XYN11A_MALCI, respec-
tively, that were expressed in P. pastoris X33 showed improved hydrolysis of
substituted arabinoxylan and unsubstituted xylan. The synergistic action of recom-
binant xylanase with commercial cellulase resulted in the better hydrolysis of acid-
and alkali-treated rice straw (Basotra et al. 2018). Similarly, Geobacillus
thermodenitrificans JK1 showed the production of isoforms of xylanase,
i.e. XynA1 and XynA2, acting synergistically with β-xylosidases and
arabinofuranosidase for the improved birchwood xylan hydrolysis (Huang et al.
2017).

7.11 Conclusion

Advancement in the enzyme efficiency and effective hydrolysis is highly required in
the world of biorefinery; for that, scientists must focus on the economic and
eco-friendly processes. Xylanase plays a key role in the biorefinery process;
hence, its production and hydrolytic efficiency must be enhanced by finding new
microorganisms which can produce isoforms of xylanases. Overexpression of new
genes from novel xylanases from different microorganisms can be explored for
future applications. Hence, using the advantage of gene editing and synthetic
biological techniques in the future, with improved characteristics like thermostabil-
ity, can be a fruitful contribution towards the high demand of biorefinery.
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