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Abstract. We present a probabilistic non-rigid point set registration
method to deal with large and uneven deformations. The registration is
treated as a density estimation problem. The main ideas of our method
are to add constraints to enforce landmark correspondences and pre-
serving local neighborhood structure. Landmarks represent the salient
points in point sets, which can be computed using feature descriptors
such as scale-invariant feature transform. By enforcing landmark corre-
spondences, we preserve the overall global shape of the point set with
significant deformations. In addition, we incorporate constraints to pre-
serve local neighborhood structure by leveraging Stochastic Neighbor
Embedding (SNE), which penalizes incoherent transformation within a
neighborhood. We evaluate our method with both 2D and 3D datasets
and show that our method outperforms the state-of-the-art methods in a
large degree of deformations. In particular, quantitative results show our
method is 49% better than the second best result (from the state-of-the-
art methods). Finally, we demonstrate the importance of using correct
landmark correspondences in registration by showing good registration
results in large and uneven deformations point sets.

Keywords: Non-rigid registration · Landmark · Large deformation ·
Local neighborhood structure

1 Introduction

Point set registration identifies correspondences between two sets of points, from
which a transformation function is derived to achieve alignment. It is a funda-
mental task in many computer vision applications such as range image-based
human pose tracking and three-dimensional object reconstruction. In such appli-
cations, however, large deformations make point set registration a challenging
task [8].

To address non-rigid deformation, Coherent Point Drift (CPD) was proposed
to regulate the transformations of the points within a neighborhood [12]. This
method assumes that the transformation for points that are in close vicinity is
highly similar. Ge et al. [4] extended the CPD method by adding constraints
to maintain local neighborhood structure. Ma et al. [11] used shape descriptors
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to ensure the local structure of point subsets. Despite the success demonstrated
by the aforementioned methods, obtaining accurate correspondences between
point sets and maintaining the shape and structure in the case of large and
uneven deformation is still an open challenge in non-rigid point set registration.
In the applications of tracking humans in actions, for example, deformation
from movements of limbs is common. As a consequence, the body shape appears
dramatically differently; whereas the local structure of a rigid body part remains
unchanged (as shown in Fig. 1(a) and (b)). Such disparity makes the coherency
assumption incomplete; registration results of CPD, LSP, and our method are
shown in Fig. 1(c), (d), and (e), respectively.

Fig. 1. Registration of human body with large and uneven deformation.

In this paper, we present a non-rigid point set registration method by incor-
porating constraints of corresponding landmarks to register point sets that rep-
resent large deformation. Landmarks represent the salient points in point sets,
which can be identified using methods such as scale-invariant feature trans-
form [10]. The correspondence between landmarks enables us to regulate the
optimization process. In addition, by leveraging Stochastic Neighbor Embedding
(SNE) [6], we aim to penalize incoherent transformation within a neighborhood
and hence preserve the local structure.

The rest of this paper is organized as follows: Sect. 2 reviews the related
methods for non-rigid point set registration. Section 3 presents our proposed
method for non-rigid point set registration. Section 4 discusses our experimental
results and comparisons with state-of-the-art methods. Section 5 concludes this
paper with a summary.

2 Related Work

To register point sets, Chui et al. [3] proposed a general framework based on
robust point matching (RPM) [5]. In this framework, the authors used thin-plate
spline (TPS) as a non-rigid spatial mapping, which performs a soft assignment,
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instead of binary assignment, for point correspondence and employs determin-
istic annealing to favor global rigid transformations at the early stage of the
optimization and local, non-rigid transformations in a later stage using thin-
plate-splines. Tin et al. [16] proposed Kernel Correlation (KC) by extending the
correlation technique to point set registration. This method also used soft corre-
spondence assignment and the correlation of the two kernel density estimates is
the main part of the cost function. A similar strategy was used by Jain et al. [7],
in which the point sets are modeled as Gaussian mixtures, and the registration
problem is formulated as minimizing the L2 distance between the two Gaussian
mixtures.

One popular method for non-rigid registration is a probabilistic approach
where the registration is mapped into density estimation based on GMM. In
this approach, GMM centroids are represented by one point set (template or
model) and other point set represents the input data. The template points are
transformed with prior constraints so that the point sets are aligned as much
as possible by maximum likelihood fashion. Coherent Point Drift (CPD) is a
robust probabilistic point set registration method based on GMM and the key
idea is moving points coherently to maintain the topological structure of the
point set [12]. Extensions to the CPD have been proposed to preserve point
set structure and the intrinsic geometry of the data [4,11,13,17]. Panaganti
et al. [13] proposed to use proximity weight between the points using shape
context [1] to calculate correspondences and graph-Laplacian regularization term
to preserve the intrinsic geometry of the point set. Ge et al. [4] extended the
CPD method, called Local Structure Preservation (LSP), to handle complex
non-rigid and articulated deformations by adding two regularization terms Local
Linear Embedding (LLE) [14] and Laplacian coordinate (LC) to maintain the
local neighborhood relationship and scale (size) respectively. Instead of using
equal membership probabilities to the mixture model such as that in [4,12],
recent methods have assigned membership probabilities to the mixture model
and show robustness to noises, outliers, occlusions [11,17]. The idea is to match
similar local neighborhood structures between point sets with the help of feature
descriptors [1,9,15]. However, these methods are vulnerable to a local minimum
in case of large and uneven deformations. Also, the assumption of similar local
structure in both point sets is problematic as distortions and stretches are always
present in real data.

3 Method

Our method takes two sets of points as inputs and corresponding landmarks
are used as a strong constraint. The optimization process leverages the Gaus-
sian mixture model that enforces both local coherence using SNE and global
constraint through landmarks. Let X and Y denote two sets of points in a D
dimensional space. We have X = {x1,x2, . . . ,xN} and Y = {y1,y2, . . . ,yM},
where M and N denote the number of points of the respective set. Assume noise
follows the uniform distribution, i.e., p∗

n = 1
N , we have the probability density

function of point xn given Y as follows:
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p(xn) =
M∑

m=1

p(xn|ym)p(ym) + p∗
n (1)

where p(ym) = 1
M . Given a set of landmarks Ẋ ∈ X and Ẏ ∈ Y , we have the

correspondence between each pair of points ẋj ↔ ẏj , where ẋj ∈ Ẋ and ẏj ∈ Ẏ .
Hence, our optimal transformation function must minimize the total distance
between all pairs of the corresponding ẋj and ẏj as follows:

EG =
∑

j

‖ẋj − ẏj‖2. (2)

To avoid possible singularity in the matrix inverting operation, we revise Eq. (2)
as follows:

EG =
M,N∑

m,n

Am,n‖xn − τ(ym)‖2 (3)

where AM×N is landmark coefficient matrix, Am,n = 1 if (xn,ym) ∈ L; other-
wise 0, and L is a set containing all pairs of landmark correspondences.

To keep points within a neighborhood relatively close after transformation
and points far apart remain distant, Stochastic Neighbor Embedding (SNE) [6]
is employed. Let rij be the probability that two points yi and yj are neighbors
before transformation and sij be the probability that these two points become
neighbors after transformation τ . A constraint on local structure is represented
as the minimization of cost function which is the sum of Kullback-Leibler (KL)
divergences between rij and sij distributions over neighbors of each point [6]:

EL =
∑

ij

rij log
rij

sij
=

∑

i

KL (Ri‖Si) , (4)

where

rij =
exp(−β2‖yi − yj‖2)∑

k �=i exp(−β2‖yi − yk‖2) ,

and

sij =
exp(−‖τ(yi) − τ(yj)‖2)∑

k �=i exp(−‖τ(yi) − τ(yk)‖2) .

Following the GMM framework in [12], the objective function of our method
integrates local and global constraints as follows:

Q(θ, σ2) =
1

2σ2

N,M∑

n,m=1

pi−1(ym|xn)‖xn − τ(ym)‖2 +
NP D

2
ln σ2 (5)

+
λ1

2
tr(WTGW) +

λ2

2
EL +

λ3

2
EG
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where

p(i−1)(ym|xn) =
exp

(− 1
2‖ xn−τ(ym)

σ(i−1)
‖2

)

∑M
k=1 exp(− 1

2‖xn−τ(yk)
σ(i−1)

‖2) + C
, (6)

where C = γ(2πσ2
(i−1))

D/2M/((1 − γ)N), τ is a transformation function that
maps a point ym in Y to a new spatial location such that it coincides with a
point xn in X, i.e., xn = τ(ym), γ ∈ [0, 1] denotes the rate of noise and outlier
in the observed dataset X, tr(·) refers to the trace of a matrix, and NP =∑N,M

n,m=1 p(i−1)(zn = m|xn) ≤ N . We use transformation model which moves
neighborhood points coherently and helps in maintaining topological structure
of the point set [12]. GM×M is a kernel matrix with elements gij = G(yi,yj) =

exp(− 1
2‖yi−yj

β )‖2, WM×D = (w1, . . . ,wM )T is a coefficients matrix, λ1, λ2,
and λ3 are regularization weights for motion coherence, local structure, and
correspondence constraints, respectively.

We obtain the coefficient matrix W by taking derivative of Eq. (5) with
respect to W and set it equal to zero

(diag(P1)G + σ2λ1I + σ2λ2JG + σ2λ3diag(A1)G)W = (7)
(PX − diag(P1)Y − σ2λ2JY − σ2λ3diag(A1)Y + σ2λ3AX)

where J = (diag(R1)−2R+diag(1TR)), 1 refers to column vector of all ones, I
refers to identity matrix, and diag(v) refers to the diagonal matrix created from
the vector v.

We define the transformation function, τ , as the initial position, ym, plus
a displacement function f(ym), τ(ym) = ym + f(ym). We adopt the following
transformation function [12]:

T = τ(Y,W) = Y + GW (8)

Similarly, we obtain σ2 by taking derivative of Eq. (5) with respect to σ2 and
set to zero

σ2 =
1

NP D
(tr(XT diag(PT1)) − 2tr(PXTT) + tr(TT diag(P1)T)) (9)

where NP = 1TP1.

4 Results and Discussion

4.1 Experimental Data and Settings

In our experiments, we use publicly available 2D dataset [2] and 3D human pose
dataset captured by Microsoft Kinect II [18]. The 2D dataset contains point sets
of tools such as scissors, pliers, knives. Each tool has five different shapes. In our
2D tools data experiments, we set the parameters of our method as follows: λ1

= 8.0, λ2 = 1.0, λ3 = 120.0, β1 = 1.0, β2 = 10.0, and maximum iterations of EM
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is 50. The 3D human body dataset includes four human subjects with different
body shapes and sizes. Each point set consists of more than 12 thousands points.
In our experiments on this dataset, the parameters of our proposed method are
as follows: λ1 = 2.0, λ2 = 1.0, λ3 = 150.0, β1 = 1.0, β2 = 15.0, and maximum
iterations of EM is 50.

We compute the registration error with a normalized Euclidean distance
between points of the input point set and corresponding points of the target
point set as follows:

ε =
1
N

∑

i,j

‖xi − yj‖2 (10)

where xi ∈ X and yj ∈ Y is the estimated corresponding point of xi after
registration, and N is the number of points in point set X. We evaluate our
method in the following three aspects: 1) different degrees of deformation, 2) the
different number of landmarks, and 3) the impact of incorrect correspondences
between landmarks.

4.2 Degree of Deformation

Figure 2 shows a qualitative registration results of both Fig. 2(a) 2D tools
and Fig. 2(b) 3D human body datasets of three degrees of deformation (small,
medium, and large) in the top, middle, and bottom rows, respectively. In this
figure, the first two columns are input and template point sets while the rest
of the three columns are the registration results of our method, CPD [12], and
LSP [4]. For the 2D tools dataset, both our method and LSP have good reg-
istration results than CPD in a small degree of deformation. In the medium
degree of deformation, CPD fails to maintain structure in the upper part of the
tool. Our method and LSP exhibit better results than CPD in this case but the
structure of the tip of the tool (upper part) from our method is better than LSP.
Finally, in the large degree of deformation, our method shows good results than
the other two methods where both CPD and LSP completely fail to maintain
the shape of the tool. For the 3D human body dataset, our method and CPD
generate accurate results than LSP in a small degree of deformation. In the
medium degree of deformation, CPD fails to maintain the shape of the head and
has twisted legs, LSP maintains the local structure but inflexible in this case,
and our method generates an accurate result. For a large degree of deformation,
both CPD and LSP fail to maintain human body shape but our method shows
better results (but has some artifacts in the hand regions). In both datasets, our
method shows significantly better results by maintaining both local and global
structures especially in a large degree of deformation showing the importance of
preserving local neighborhood structure and using landmark correspondences.

Table 1 lists the quantitative registration errors with respect to different
degrees of deformation and a comparison with CPD [12] and LSP [4] meth-
ods for both 2D tools and 3D human body datasets. We have three degrees of
deformation: small, medium, and large (an example of each case is shown in
Fig. 2). For each degree of deformation, the best and the second best results are
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Input Template Our CPD LSP
(a) Results of a pair of tool point sets

Input Template Our CPD LSP
(b) Results of a pair of 3D human point sets

Fig. 2. Exemplar registration results with three degrees of deformation. The left two
columns of each figure are the inputs and the following three columns are results of
our method, CPD, and LSP, respectively.

highlighted in bold and italic fonts, respectively. Each experiment was repeated
five times. Our method exhibits the smallest registration error (and stds.) in
almost all cases except the case of small deformation in 2D. In this one case,
our method’s registration error is slightly higher than LSP’s registration error
by 0.21. The average registration errors, by combining both 2D and 3D defor-
mation results for each method, of our method, CPD, and LSP are 7.64, 15.18,
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and 83.76, respectively. Our method has the lowest average registration error
and is 49% better than the second best result. It is evident that our method
has a small registration error (std) than the other methods as the deformation
degree increases.

Table 1. Average registration error with respect to three degrees of deformation.

Data Method Small Medium Large

Tools dataset Our 2.54 (0.78) 3.11 (1.18) 3.49 (1.61)

CPD 4.78 (2.65) 6.13 (2.89) 7.18 (3.10)

LSP 2.33 (0.41) 4.71 (3.68) 12.98 (17.87)

Human body dataset Our 11.36 (0.29) 12.09 (0.85) 13.28 (1.47)

CPD 12.15 (0.66) 30.47 (2.44) 30.39 (1.97)

LSP 70.14 (73.09) 215.92 (22.09) 196.51 (7.90)

4.3 Number of Landmarks

We test our method and compare registration accuracy with other methods to
see the effect of the different number of corresponding landmark points in the
point sets during registration. In each point set, we marked five landmarks and
conducted experiments using x, x ∈ {1, 2, . . . , 5}, number of corresponding pairs
of landmarks. In this experiment, we have selected the point sets with large
deformations between them (Fig. 3) and the order of corresponding landmark
pairs are fixed. For example in human body point sets, we fixed the order of fol-
lowing five pairs of corresponding landmarks between two point sets: heads, right
foot, left foot, right hands, and left hands, respectively. For each x, we selected
the first x pairs of corresponding landmarks from the fixed order of landmark
pairs and repeated the experiment five times. Figure 3 illustrates the registra-
tion results using different numbers of landmarks in our method. Figure 3(a)
shows the registration results of human body dataset, and Fig. 3(b) shows the
registration results of tools dataset. The template and input point sets depict
large deformations. Each row depicts a case with the left two columns showing
the input and the template point sets. The rest columns in a row show the reg-
istration results using an increasing number of landmark pairs from left to right.
Figure 3(a) illustrates a challenging case with large and uneven deformations
between the input and template point sets. When the number of landmark pairs
is less than five, the method resulted in poor registration. In human cases, arms
and head were fuzzy or ‘vaporized’. As the number of landmark pairs reaches
five, the results gained significant improvement due to more precise shape con-
straints. This trend is also demonstrated in the registration of the Tools case
as shown in Fig. 3(b) but shows good registration results even in less than five
landmark pairs. In particular, Fig. 3(b) show improved registration results when
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the number of landmark pairs is four or more. Therefore, it is fair to say the min-
imum number of landmarks needed depends on the degree of disparity between
the point sets.

Table 2 presents the average registration errors and standard deviations of
our method using a different number of corresponding landmarks for both 2D
tools and 3D human body datasets. As the landmark correspondences increases,
the registration accuracy of our method also increases. In particular, registration
errors start to decrease sharply after adding four or more landmark correspon-
dences, especially in the case of the 3D human body dataset.

Input Template LM #: 1 LM #: 2 LM #: 3 LM #: 4 LM #: 5

(a)

(b)

Fig. 3. Registration results of our method using different number of landmarks. The
first two left columns show the input and template point sets, respectively. Columns
three to seven show the results using different number of landmarks. Row (a) shows
the results of human body dataset, and row (b) shows the results of tools dataset.

Table 2. Average registration error of our method with different number of landmarks.

Number of landmarks Tools dataset Human body dataset

1 6.06 (2.30) 24.2 (2.05)

2 5.61 (2.81) 24.2 (1.38)

3 5.11 (2.42) 23.48 (0.75)

4 3.85 (1.96) 20.3 (3.14)

5 3.49 (1.61) 13.28 (1.47)

4.4 Incorrect Landmark Correspondence

To evaluate the impact of incorrect landmark correspondence, we create three
incorrect correspondence cases for each dataset and repeated each registration
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five times. Figure 4 shows the results of using incorrect correspondences in our
registration method. Figure 4(a) shows registration results of 2D tools point sets
and Figure 4(b) shows the registration results of 3D human point sets. The first
two columns show the inputs and the corresponding landmarks are shown in
the same color. Third and fourth columns are the registration results of using
correct and incorrect landmark correspondences respectively.

For the 2D tools dataset, the registration result of the first row shows the
thin shape of the tool and is twisted in the middle part of the tool. This is
because the left and right landmark correspondences at the top and bottom
regions are swapped between input and template point sets. In particular, the
left tip landmark (yellow) and right tip landmark (black) of the input point set
correspond to the right tip landmark (yellow) and left tip landmark (black) of
the template point set. Similar incorrect left and right correspondences between
the landmarks at the bottom regions of the tool point set are used. In the second
case (middle row), the registration result is similar to the result of the first row,
i.e., twisted at the middle part of the tool and thin shape of the tool as a result
of incorrect landmark correspondences. In the last case (bottom row), not only
left and right landmark correspondences at the top regions but also landmark
correspondences at the middle and lower right handle regions between input and
template point sets are swapped. In this case, the registration result shows an
inaccurate shape of the tool where points from different parts of the tool are
mixed together.

Similarly, for the 3D human body dataset, head region points are fused with
the right shoulder and the upper body is twisted in the top row. In the middle
row, the upper body part is twisted and points from the head are mixed with
the left shoulder. The last row is even highly inaccurate with twisted and fusion
of the different parts of the body regions.

Table 3 lists the quantitative registration results of using incorrect landmark
correspondences in the three different cases. For the 2D tools dataset, all three
cases have similar registration errors (and stds.). For the 3D human body dataset,
the first two cases have better results than the last case. The average registration
errors, when all three cases are combined for each dataset, are 6.78 (2.4) for the
2D tools dataset and 19.74 mm (1.5) for the 3D human body dataset.

Table 3. Registration results (stds.) of our method with different combinations of
incorrect landmark correspondences in 2D and 3D datasets.

Incorrect landmark
correspondences pair #

Tools
dataset

Human
body
dataset

1 6.47 (3.06) 16.63 (0.85)

2 7.06 (2.07) 18.35 (1.89)

3 6.83 (2.06) 24.24 (1.99)
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(a) Results of a pair of tool point sets

(b) Results of a pair of 3D human point sets

Fig. 4. Exemplar registration results using incorrect landmark correspondences. The
left two columns of each figure are the inputs (and corresponding landmarks have the
same color). The third column shows the registration results using correct landmark
correspondences and the last column shows the registration results. (Color figure online)

5 Conclusion

In this paper, we present a probabilistic non-rigid point set registration method
to register point sets that represent large and uneven deformation. Keys to our
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method are constraints for enforcing landmark correspondences and preserving
local neighborhood structure. Landmarks represent the salient points in point
sets, which can be computed using methods such as scale-invariant feature trans-
form. The correspondence between landmarks enables us to regulate the opti-
mization process. In addition, by leveraging Stochastic Neighbor Embedding, we
preserve the local structure of the point set by penalizing incoherent transfor-
mation within a neighborhood.

We evaluate our method with three different aspects: different degrees of
deformation, the number of landmarks in registration, and the impact of incor-
rect landmark correspondences in registration. Our method shows significantly
better results in a large degree of deformation in both 2D and 3D datasets.
Quantitative results show our method is 49% better than the second best result
in deformation experiments. Our evaluation results show that as the number
of landmark correspondences increases, the registration accuracy of our method
also increases, highlighting the importance of landmark correspondences in a
large degree of deformation. Also, using incorrect landmark correspondences in
registration results in a significant degrade in registration accuracy based on our
experiments.
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