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Abstract. Object detection is an important and challenging problem in
computer vision. It has been widely applied in many vision tasks, such
as object tracking, image segmentation, action recognition, etc. With
the rapid development of deep learning, more state-of-the-art object
detection methods based on deep learning with some modifications have
effectively improved the detection performance. This paper comprehen-
sively reviews object detection methods in the recent five years based
on deep learning from object detection framework, including significant
advances of the backbone network, multi-scale learning, data augmenta-
tion. Finally, we investigate the performance of typical object detection
algorithms on popular datasets MS-COCO, PASCAL-VOC, and point
out the existing problem for further research.
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1 Introduction

Object detection is one of the most fundamental tasks in computer vision. It
plays an important role in many applications, such as object tracking [1], image
segmentation [2], action recognition [3], etc. In recent years, object detection has
been pushed forward by the success of deep learning techniques to a research
highlight. Numerous research progresses on object detection have endlessly been
achieved. It is necessary to provide researchers with timely reviews to guide
future research on object detection.

Many reviews about object detection have been published. These reviews
sum up all kinds of object detection methods from different research perspec-
tives and under specific application scenarios. Wu [4] systematically reviews
recent advances in object detection with deep learning, including detection com-
ponents, learning strategies, applications, and benchmarks. Zhao [5] pays more
attention to the typical generic architectures of object detection with progress
and useful tricks. Their work also reviews several specific applications, such as
salient object detection, face detection, and pedestrian detection. Li [6] provides
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a comprehensive review of generic object detection from 300 research contri-
butions, from the aspects of detection frameworks, object proposal generation,
feature representation, context modeling, etc. Jiao [7] provides an overview of
the traditional and new applications and some new branches of object detection.

This paper focuses on the new advances of generic object detection in the
recent five years, reviewing the research works of deep learning-based object
detection. The paper aims to give a comprehensive review in various aspects of
object detection, including object detection framework, significant advances of
the backbone network, multi-scale learning, data augmentation. In addition to
this, we investigate datasets and evaluation of classical object detection algo-
rithms in recent years and we thoroughly analyze their performance.

The rest of the paper is organized as follows: The object detection framework
is listed in Sect. 2. Then significant advances in various aspects of object detection
are in Sect. 3. The evaluation method of object detection and the comparison
of various performances are in Sect. 4. Finally, we conclude and discuss future
directions in Sect. 5.

2 Object Detection Framework

Deep learning-based object detection frameworks usually can be divided into two
categories: two-stage detectors and single-stage detectors. Two-stage detectors
first generate a sparse set of proposals locations and then region classifiers as
the next step. Single-stage detectors directly make a categorical prediction of
objects at each location along with cascaded region classification as the same
step.

2.1 Two-Stage Detector

The Two-stage detectors include the following two processes: one is to propose
the candidate boxes, and the other is to make the decision of classifications using
multiple feature maps at the top of the network. The most representative two-
stage object detectors are the R-CNN [8] series, including fast R-CNN [9], faster
R-CNN [10], and Libra R-CNN [11].

R-CNN applies CNNs to bottom-up region proposals in order to localize
objects, generate a rich hierarchy of image features by supervised pre-training
and domain-specific fine-tuning. Fast R-CNN employs a new training algorithm
that fixes the disadvantages of R-CNN and SPPnet to improve training and
testing speed while also increasing detection accuracy. Faster R-CNN presents
Region Proposal Networks (RPNs) for more efficient and accurate region pro-
posal generation, for RPNs can generate higher quality region proposals than
Fast R-CNN for detection. Libra R-CNN integrates IoU-balanced sampling, bal-
anced feature pyramid, and balanced L1 loss. Thanks to its overall balanced
design, Libra R-CNN significantly improves the detection performance.
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2.2 Single-Stage Detector

The single-stage target detection networks are integrating the two tasks of gen-
erating candidate boxes and providing the final classification of the input image
as a whole process. The advantage of this framework is that it greatly improves
the detection speed. The representative networks of single-stage are SSD [12]
and YOLO [13], YOLO9000 [14], YOLOv3 [15], YOLOv4 [16].

SSD is a fast single-stage object detector for multiple categories, which dis-
cretizes the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales, and uses multiple feature maps at the top of
the network to achieve improved performance. YOLO [13] takes object detec-
tion as a regression problem to predict bounding boxes and class probabilities
directly from input images in one evaluation. YOLO pushes the application of
object detection in real-time. But the first Yolo has poor position accuracy in
small object detection. The later YOLO [14–16] make improvements on YOLO
in positioning accuracy and detection speed, not only to general goals but also
to small object detection. YOLOv4 [16] develops the previous object detection
model and summarizes the influence of state-of-the-art Bag-of-Freebies and Bag-
of-Specials methods of object detection during the detector training. So it is
faster and more accurate than other detectors.

3 Review of Significant Advances

3.1 Backbone Networks

Deep learning networks bring a revolutionary breakthrough in object detection
rather than just obvious improvements in performance on large databases. Their
success results from training an effective backbone network on large labeled
images. The most representative backbone networks used in object detection
tasks are as follows.

VGG [17] modifies some parameters of the ConvNet architecture and
increases the depth of the network by adding more convolutional layers with
using very small (3 × 3) convolution filters in all layers. With the emergence of
the convolutional neural network, image recognition has developed rapidly.

ResNet [18] uses a residual learning framework to lighten the training net-
works, which rebuilds the layers as learning residual functions with reference to
the layer inputs, instead of learning unreferenced functions. These residual net-
works are easier to optimize and can gain accuracy from considerably increased
depth. ResNet has lower complexity even if it has deeper layers, compared with
VGG.

SpineNet [19] is the scale-permuted model instead of the scale decreased
model, which provide two major improvements on backbone architecture: One
is that SpineNet can retain spatial information as it grows deeper, the other,
the connections between feature maps should be able to go across feature scales
to facilitate multi-scale feature fusion. It is a good backbone architecture design
for tasks requiring simultaneous recognition and localization.
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EfficientNets [20] is a family of models with a new baseline, obtained by
neural architecture search. This model firstly uses a simple and effective coeffi-
cient to quantify the relationship among all three dimensions of network width,
depth, and resolution. Benefited from this balancing network depth, width, and
resolution, EfficientNets achieve much better accuracy and efficiency than the
previous backbone network.

CSPNet (Cross Stage Partial Network) [21] splits the gradient flow to make
propagated gradient information through different network paths have a large
correlation difference. CSPNet can greatly reduce the amount of computation,
and improve inference speed as well as accuracy, so it can relieve the problem that
previous networks require heavy computations, help people with cheap devices
to enjoy the result of the backbone networks.

3.2 Multi-scale Learning

Neck refers to the fusion of features of the above different scales, with the pur-
pose of generating multi-scale features with both high semantic information and
accurate location information, and improving the ability of the model to detect
targets of different scales.

FPN Network. The traditional method of extracting multi-layer features is
the image pyramid, which is an effective but conceptually simple structure to
interpret images with multi-resolution. By changing the scale of the image, the
image layer by layer is compared to a pyramid. The higher the level, the smaller
the image, and the lower the resolution. We can also extract features from the
feature pyramid by using the convolutional network, but this will greatly increase
the operation time and require more memory for operation. Therefore FPN in
2017 was put forward, the author through the bottom-up, namely network to
process before, top-down, upsampling is used, the results of the sampling on the
transverse connection is will and bottom-up generation feature of the same size
of the map to merge, and the characteristics of different resolutions is a figure,
FPN today is still used in many networks, such as Faster RCNN, Mask RCNN,
DSSD [22], etc.

There are also some problems with the classical FPN network. For exam-
ple, multi-scale characterization improves the detection effect of the deMulti-
scale learning network, but at the same time makes it impossible for the multi-
scale features to be fully utilized by the network. Therefore, AugFPN [23] is an
improvement on the classical FPN structure. AugFPN innovation lies in three
of the components, respectively is Consistent Supervision: narrow the features
before fusion of different scale, the semantic gap between Residual Feature Aug-
mentation: analysis on the characteristics of Residual enhance extraction rate
constant of context information, reduce the information loss Feature map is
on the highest pyramid level, Soft ROI Selection: adaptively learn better ROI.
AugFPN’s innovations make up for FPN’s shortcomings. At present, a new fea-
ture pyramid structure called NAS-FPNnas [24] is proposed. The author makes
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full use of Neural architecture search with reinforcement learning and trains a
controller to select the best model structure in a given search space through
intensive learning.

SPP and ASPP Networks. The traditional neural network requires the input
of a fixed size of the image, which requires the resize of the image before it is
introduced into the network. As a result, the image information changes. To
solve this problem, SPP [25] and ASPP [26] are proposed.

SPP extracts features from blocks of different sizes, respectively 4× 4, 2× 2,
and 1 × 1. Put these three grids on the following feature map, and you can get
21 different Spatial bins. From these 21 blocks, each block extracts a feature, so
as to extract the 21-dimensional feature vector. The entire process is completely
independent of the size of the input, so you can handle candidate boxes of any
size.

The ASPP parallel samples a given input by atrous convolution at differ-
ent sampling rates. Compared to the conventional convolution operator, atrous
convolution can obtain a larger size of the receiving field without increasing the
number of kernel parameters. ASPP proposed to connect the feature maps gen-
erated by atrous convolution under different expansion rates in series, so that
the neurons in the output feature map contain multiple accepting field sizes,
encoding the multi-scale information, and finally improving the performance.

3.3 Data Augmentation

Training for a neural network often requires the support of thousands of pictures,
and the more data, the better the experimental effect. However, this often does
not occur in large data sets, which leads to a new field of data enhancement.
MixUp [27] multiplies and superimposes two images at different coefficient ratios,
and then adjusts the label using those superimposed ratios. With CutMix [28],
it is to overlay the cropped image onto a rectangular area of other images and
resize the label according to the size of the mixed area. The random erase [29] and
CutOut [30] can randomly select rectangular areas in the image and populate
them with a random or complementary value of zero. In addition, style transfer
GAN [31] is often used for data enhancement, which can effectively reduce the
texture deviation of CNN learning.

4 Evaluation and Databases

Average Precision (AP) is the common metric to evaluate the detection preci-
sion, defined as the average detection precision under different recalls, usually
evaluated in one class. The mean Average Precision (mAP) refers to the average
score of AP across all classes, which is used as an evaluation metric for many
object detection datasets.
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A number of well-known datasets for object detection have been provided in
the past years [32] MS-COCO and PASCAL-VOC [32] are the most represen-
tative datasets for generic object detection. We investigate the performance of
typical object detection algorithms with different backbone network on popular
datasets MS-COCO, PASCAL-VOC. The results are shown Table 1 and Table 2.

Table 1. Detection results on the VOC 2007 test-dev dataset of some typical methods

Model Backbone mAP (%) # of stage Detection speed (fps)

RCNN [8] VGG16 66 Two 0.5

Fast RCNN [9] VGG16 70 Two 7

Faster RCNN [10] VGG16 73.2 Two 7

Faster RCNN [10] Resnet101 76.4 Two 5

YOLO [13] Darcknet19 66.4 One 45

SSD [12] VGG16 77.1 One 46

YOLOv2 [14] Darcknet19 78.6 One 40

YOLOv3 [15] Darcknet53 33 One 51

DSSD321 [22] Resnet169 78.6 One 9.5

DSSD513 [22] Resnet169 81.5 One 5.5

Soft Sampling [33] VGG16 79.3 Two –

R-FCN-3000 [34] Resnet101 80.5 Two 30

Table 2. Detection results on the MS-COCO test-dev dataset of some typical methods

Model Backbone mAP (%) # of stage Detection speed (fps)

Mask RCNN [11] Resnet101 33.1 Two 4.8

YOLO9000 [14] Darcknet19 78.6 One 40

FPN [35] Resnet50 35.8 Two 5.8

NAS-FPN [23] Resnet50 44.2 Two 92.1

Cascade RCNN [23] Resnet101 42.8 Two –

D-RFCN + SNIP [36] DPN-98 48.3 Two 2

TridentNet [37] Resnet101 48.4 One –

5 Conclusion

In recent years, deep learning-based object detection has developed rapidly.
Detection accuracy and high precision in real-time systems are the ultimate goals
of object detection. This paper provides a detailed review of object detection in
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recent five years, covering object detection framework, significant advances of the
backbone network, multi-scale learning, activation function, data augmentation.
Although significant advances in this domain have been achieved recently, there
is still much room for further development. Finally, we propose several promising
future directions, such as the interpretability of convolution, the combination of
the actual mobile terminal, the balance of accuracy and speed.
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