
Kalman Consensus Filtering Algorithm
Based on Update Scheduling Scheme
for Estimating the Concentrations
of Pollutants

Rui Wang and Yahui Li

Abstract In this paper, a Kalman consensus filtering algorithm is proposed based
on the status updates scheduling scheme (US-KCF) to estimate the concentrations of
pollutants in the cabin. By introducing the concept of age of information (AoI), the
freshness of status updates and the average AoI of wireless sensor network (WSN)
are measured. Under the condition of network energy constraint, this paper designed
a status updates scheduling scheme to minimize the average AoI of the network by
selecting the status updates that need to be transmitted on the cluster head which can
improve the convergence speed and energy saving performance of KCF algorithm.
Simulation results show that compared with other consensus algorithms, this algo-
rithm can get the estimation value of the target state more quickly and capable of
reducing the network energy consumption effectively.

Keywords Average AoI · Schedule model · US-KCF modeling · Distributed
WSN · System simulation

1 Introduction

Distributed estimation algorithms in WSN are focused on the network system with
interferences. Distributed KCF algorithm is widely concerned because of its fast
convergence speed, high fusion precision, and strong robustness. In the case of packet
loss and path loss, Kalman consensus filtering algorithm is used to monitor the state
of the target systemwith a better estimation effect [1]. In practicalWSN applications,
the energy, bandwidth, information computing, storage, and other resources of sensor
nodes are limited. Therefore, how to reduce the system energy consumption becomes
the key to extend the service life of the network. In [2], it introduced the event
triggering mechanism into Kalman consensus filtering calculation and achieved the
goal of reducing the energy consumption of the network by reducing the number of
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consensus calculations during samplings. Although existing studies have solved the
problem of network bandwidth limitation to a certain extent, in the actual monitoring
of the target system (such as monitoring the concentrations of pollutants in the
cabin), the promptness of the estimated results is of great significance. If the current
estimated value cannot reflect the concentrations of pollutants in real time, it may
cause hazards such as delayed alarm. In terms of improving the real-time performance
of the monitoring system, many scholars have carried out the following researches:
In the embedded system, Zhou et al. [3] propose a status update scheduling scheme
to minimize the average AoI of the system, so that the system has the better real-time
performance. Tang et al. [4] built an asymptotic optimal truncated policy that can
satisfy the hard bandwidth constraint under the power limit. This policy realizes the
real-time update of user information by minimizing the average AoI of the system.
Talak et al. [5] study the relationship between the average AoI of the system and
the real-time performance, and simulations show that the smaller the average AoI
of the system, the better the real-time performance. Based on the above research,
in order to ensure that the distributed WSN can timely estimate the concentrations
of pollutants in the cabin under the energy restriction, a Kalman consensus filtering
algorithm based on the status update scheduling scheme is designed by minimizing
the average AoI of the system.

Themain contribution of this paper is to design a status update scheduling scheme
to minimize the average AoI of the system under the constraint of network energy.
Kalman consensus filtering algorithm based on this scheme can timely estimate
the concentrations of pollutants in the cabin and the algorithm is superior to other
consensus filtering algorithms in terms of consensus estimation and energy saving.

2 System Model

When using a distributed WSN to monitor the cabin pollutants concentrations, the
cluster head receives status updates from sensor nodes and fuse measurement values
of pollutants concentrations in a cabin with its neighbor nodes based on Kalman
consensus filter to obtain the consensus-estimated values. Then, the consensus-
estimated values are transmitted to the data center to judgewhether pollutants concen-
trations exceed bid. The topology diagram ofWSN is defined asG= (V,E,A), where
V = {v1, v2, · · · , vn} is the set of sensor nodes within a cluster, and E = V×V is
the set of edges between nodes. Define Ni represents the set of neighbor nodes for
the node i, i.e., Ni = {

v j ∈ V : (vi , v j ) ∈ E
}
. The state model of the target system

and the observation model of the sensor are [1]:

{
xi,k+1 = Akxi,k + Bkwi,k

zi,k = Hi,k xi,k + Fi,kvi,k
(1)
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where xi, k and wi, k represent the state vector and the process noise vector of the
target system, respectively. zi, k is the observation vector, and vi, k is the observed
noise vector of the sensors. Ak and Bk are the system matrices with appropriate
dimensions. Hi, k and Fi, k are the measurement matrix and the fault matrix that are
assumed to be invertible.

3 KCF Algorithm Based on Scheduling Scheme

The main content of this section has two parts: (1) Design a status update scheduling
scheme by determining which status updates (generated by the nodes within the
cluster) will be transmitted in the cluster headwith the goal ofminimizing the average
AoI of distributed WSN. (2) Let the status updates obtained under the above update
scheduling scheme participate in KCF algorithm to obtain the consensus-estimated
value of the concentrations of pollutants in the cabin.

Sensors: The sensors monitor the real-time status of the cabin and it can be assumed
that the sensor sends status updates to the cluster head based on a Poisson process
with rate λ. This assumption satisfies the M/M/1 queue mode [6].

Energy harvesting (EH): It can be assumed that the energy supply process obeys
the Poisson distribution with the parameter of η [7].

Transmit process: It can be assumed that the transmission service rate isμ following
the M/M/1 queueing system [8]. Therefore, the service (i.e., transmission service)
times follow an exponential distribution with μ, and 1/μ is the mean service time.

3.1 Status Updates Scheduling Scheme

Aiming at minimizing the average AoI of the network, a status update scheduling
scheme is designed to make the cluster head select or discard status updates to obtain
the status update sequence, Xi,k = {

. . . , xi,k, . . .
}
that needs to be transmitted.

According to [7], the average AoI (�) of network is determined by

� = η

(
1

μ
E[Y ] + 1

2
E[Y 2]

)
(2)

where Y is the time interval of two sequential transmission of updates (since the
energy arrival rate is fixed to η and the total transmission interval of updates should
be equal to the total arrival interval of energy units, the sum of Yi would be fixed to
n / η where n is the number of harvested energy units).
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According to the Cauchy inequality [9], the minimum value of the average AoI
can be obtained when Yi is close to the mean value of

∑n
i=1 Yi i.e. 1/η. At the same

time, the optimal updates xi can also be obtained by minimizing |Yi − 1/η|.

Algorithm 1 presents the updates scheduling scheme. The input includes the time
intervals {. . . T (xi ) . . .} of all updates {

. . . , xi,k, . . .
}
the time intervals {E1, E2,…,

En} of all the harvested energy units, the energy buffer capacity E and e is used to
indicate the number of harvested energy units in the energy buffer, η is the harvested
energy rate. The output returns the update which will be transmitted. For the arrived
update, it will be transmitted for two cases: (1) when the energy buffer is full; (2)
when energy is available and the current update minimizes |Yi − 1/η| based on the
time interval of the next update (marked as T (xnext)). Besides, if 7 is true, itx and e
are updated. For all the other cases, this update is discarded and itx is updated. Thus,
this scheduling scheme can effectively improve the convergence speed of the KCF
algorithm and reduce the bandwidth pressure.
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3.2 KCF Algorithm Based on the Updates Scheduling
Scheme (US-KCF)

The cluster head brings the state update {x1, x2, . . . , xm} (m < N ), which canmini-
mize the average AoI of the network into the KCF algorithm introduced in [1], which
not only can improve the convergence speed of filtering estimation and ensure the
real-time monitoring of pollutants concentrations in the cabin but reduce the energy
consumption of the network.

In addition, this paperwill consider the packet drop phenomenon. Binary variables
αi,k and βi,k are defined to describe the packet arrival process on cluster head node i at
time k.αi,k = 1 indicates the observed packet successfully received. Similarly, βi,k =
1 indicates that the communication packet was received successfully. Furthermore,
P

{
αi,k = 1

} = �1, P
{
βi,k = 1

} = �2. When considering the path loss of wireless
signal transmission, assume that θi j is the path loss rate between cluster head node i
and cluster head node j. Algorithm 2 introduces the calculation process of US-KCF.
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Input is status updates {xi , x2, · · · , xm} and output is the estimation values of the
pollutants concentrations.

4 Performance Analysis of the US-KCF Algorithm

The Monte Carlo method is used in the simulation process to carry out a large
number of independently repeated experiments. Using the statistical mean value of
each time, the error response of monitoring network is analyzed. By adopting the
following performance indexes given in Wang et al. [10].

Mean estimation error (MEE) and mean consistency error (MCE) are

MEEk =
√∑m

i=1 (eTi,k ei,k )
m ei,k = x̂i,k − xi,k , MCEk =

√∑m
i=1 (δTi,kδi,k )

m δi,k = x̂i,k −
∑m

i=1 x̂i,k
m

where k is the instantaneous time, and m is the number of updates.

In order to compare to the other method, ET-KCF algorithm in Wang et al. [2], the
paper selects the same parameters for US-KCF algorithm proposed in this paper.

The initial value is set as x0 = (10, 8)T and P0 = 8I2. Process noise and observed
noise are independent Gaussian white noise with covariance of 10i and 100i, respec-
tively, where i is the update index. The initial energy of each node is 8 J. The path
loss rate θi j between node i and j is 0.3, and the observed packet loss rate �1 and
communication packet loss rate �2 are 0.4. μ = 0.5, η = 0.4, λ = 0.8 (η < λ, s.t.
energy is not enough).

As shown in Fig. 1, when packet loss and path loss exist, the ET-KCF algo-
rithm is proposed in Wang et al. [2], and the US-KCF algorithm in this paper can
converge stably. Besides, the US-KCF algorithm can converge after about 100 steps
of sampling while the ET-KCF algorithm needs around 300 steps which can be seen
the superiority of the proposed algorithm in convergence speed.
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Fig. 1 Comparison of average estimation errors for different filters under packet loss and path loss
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Fig. 2 Comparison of average consensus error for different filters under packet loss and path loss

According to Fig. 2, the average consensus error performance of US-KCF is supe-
rior to the ET-KCF. At the same time, the US-KCF algorithm can achieve consensus
after about 200 steps of sampling while the ET-KCF algorithm needs around 400
steps which proves the superiority of the proposed algorithm in convergence speed
also.

Figure 3 is a comparison of energy consumptions between US-KCF algorithm
and ET-KCF algorithm. US-KCF consumes network energy after about 750 steps
of sampling, while ET-KCF consumes energy after about 200 steps. The simulation
results demonstrate that the US-KCF algorithm can reduce the bandwidth pressure
while ensuring the promptness and accuracy of the estimation algorithm.
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Fig. 3 Comparison of residual energy between two filtering algorithms
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5 Conclusions

In this paper, a newKalman consensus filter algorithm based on an update scheduling
scheme is proposed to monitor the concentrations of pollutants in the cabin. Update
scheduling scheme is designed to minimize the average AoI of the system to enable
the US-KCF algorithm can obtain the consensus estimation value timely and accu-
rately with the influence of observed packet loss, communication packet loss as well
as the path loss in distributed WSN. Besides, the US-KCF algorithm can converge
quickly and reduce energy consumption to a certain extent because of the scheduling
scheme. Simulation results show that the algorithm has advantages in convergence
speed, consensus estimation performance and energy saving.
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