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1 Introduction

Layered materials belong to a new class of engineered materials that typically con-
stitutes of two or more different phases separated by an interface. Due to different
chemical and physical properties of the constituent materials, the material properties
can be custom tailored to meet demanding low weight-to-strength ratio, improved
corrosion and wear resistance [1–4]. Of the available composite materials, fiber rein-
forced composites are widely studied. This is because, in fiber laminated composites,
the fiber volume fraction can be controlled when compared to other composites, such
as particle or filament refined composites. Until recently, fiber laminated composites
are made up of straight fibers that are homogeneously distributed within a lamina.
The macroscopic properties are improved by the constituents mechanical properties,
the stacking sequence and thickness of each ply and fiber angle within a lamina. As
the fiber angle is constant within a ply, these are also referred to as constant stiffness
laminated composites. This has led the researchers to focus on improving the effec-
tive property. Thanks to the recent advances in manufacturing, stiffness can now be
varied within a lamina [5, 6]. There are many approaches to achieve stiffness varia-
tion within a lamina. A few among them are by: (a) changing the fiber angle within
a lamina (i.e., use curvilinear fiber) [7–9]; (b) changing the volume fraction of fibers
[10, 11]; (c) addition or dropping of plies to the laminates [12, 13] and (d) attaching
discrete stiffeners to the laminates. Amongst them, lamina with spatially changing
fiber angle is advantageous because, continuous change in fiber orientation avoids
sudden change in the thickness which could be a cause for stress concentrations
[14]. As the angle of the fiber in the lamina depends on the spatial coordinate and the
tow-placement machines control the fiber placement, they are called as tow-steered
composite laminates (TSCL).
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Composite materials with varying stiffness has received considerable interest
amongst researchers and practising engineers, as they may lead to lean design [15–
18]. As early as 1990, Hyer and Lee [15] introduced a novel technique to improve the
structural response of panels with cutouts by changing the stiffness of the panel in
the lamina. Although, the concept of tailored composite was developed two decades
back, only recently there is a surge in interest in understanding the response of two-
steered composites [19–24]. This can be possible, thanks to the recent advances in
manufacturing capability that has made tow-steered composite laminates a reality
[25–27]. For TSCL plates, the stiffness coefficients are functions of spatial coordi-
nates as the angle of the fiber is continuously changing. Apart from this, they also
exhibit variable bending and coupling stiffness. This can be advantages as a varying
fiber angle within a lamina can lead to altered loading paths with improved load car-
rying capacity. Different plate theories, such as classical plate theory and other shear
deformation plate theories to study the response of tow-steered laminated composites.
Honda and Narita [28] studied the natural frequencies of laminates with curvilin-
ear paths using classical plate theory. Coburn et al. [29] used the first order shear
deformation theory numerically studied the influence of varying fiber angle on the
critical buckling load of TSCL panel by generalized Rayleigh-Ritz procedure. The
third order shear deformation theory was adopted in the work of Akhavan and co-
workers [20, 23, 24] to study both the dynamic and the static response of moderately
thick and thin tow-steered composite plates. Their study concluded that the influence
of tow-steered fibers are more pronounced in thin plates than thick plates. Afore-
mentioned studies employed either Lagrange based finite elements and/or meshfree
approaches and studied the global response of tow-steered composite plates.

In this chapter, vibration, mechanical buckling and linear flutter analysis of tow-
steered composite laminates is studied using an iso-geometric analysis framework.
Reissner-Mindlin plate theory is used for describing the displacement field and basis
splines for spatial discretization. The chapter is organized as follows: an overview of
plate theory is presented in Sect. 2, followed by a brief discussion on isogeometric
analysis framework in Sect. 3. The section also discussed a numerical procedure to
alleviate shear locking syndrome. Section4presents numerical results for tow-steered
composite laminates, followed by conclusions.

2 Theoretical Formulation

Reissner and Mindlin theory (RMT), an improvement of the CLT to model mod-
erately thick and relatively thin plate. The salient feature of this theory when com-
pared to CLPT is that the through thickness distribution is assumed to be linear.
In this section, we present an overview of the RMT and develop the corresponding
weak form based on a Galerkin procedure. Figure 1 shows a representation of a
three layered plate with a, b as in-plane dimensions and h representing the total plate

thickness. The plate aspect ratio is
a

b
and

a

h
defines the thickness ratio. Here, only
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Fig. 1 Composite Laminate plate, a, b and h represents the in-plane dimensions and the total
thickness of the plate, respectively

the midplane of the plate occupying an open domain � ⊂ R
2, with boundary � and

unit outward normal, n is considered. The boundary of plate is assumed to accom-
modate the decompositions over which Dirichlet and Neumann boundary conditions
are specified. Any point, P on the plate is represented by a triplet (x, y, z).

Let uo, vo, wo represent the midplane displacements of the plate and βx and βy the
rotations along x and y axis. The global displacements u, v, w are written in terms
of the midplane displacements and rotations as:

⎛
⎝

u(x, t)
v(x, t)
w(x, t)

⎞
⎠ =

⎛
⎝

uo(x, y, t)
vo(x, y, t)
wo(x, y, t)

⎞
⎠+ z

⎛
⎝

βx(x, y, t)
βy(x, y, t)

0

⎞
⎠ (1)

where x = (x, y, z). The small strain tensor in vector form is expressed in terms of
the displacements by:

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx
εyy
2εxy
2εxz
2εyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uo
∂x
∂vo

∂y
∂uo
∂y

+ ∂vo

∂x
∂wo

∂x
+ βx

∂wo

∂y
+ βy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂βx

∂x
∂βy

∂y
∂βx

∂y
+ ∂βy

∂x
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)
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The above strain-displacement relation in terms of the mid-plane strain εp, bending
strain εb and shear strain εs as:

ε =
{
εp

0

}
+
{
zεb

εs

}
(3)

where

εp =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂uo
∂x
∂vo

∂y
∂uo
∂y

+ ∂vo

∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, εb =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂β

∂x
∂β

∂y
∂β

∂y
+ ∂β

∂x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, εs =

⎧⎪⎨
⎪⎩

βx + ∂w

∂x

βy + ∂w

∂y

⎫⎪⎬
⎪⎭

(4)

The membrane stress resultants N and the bending stress resultants M can be
related to themembrane strain εp and bending strain εb through the following relation
[30]:

N =
⎧⎨
⎩
Nxx

Nyy

Nxy

⎫⎬
⎭ = Aεp + Bεb

M =
⎧⎨
⎩
Mxx

Myy

Mxy

⎫⎬
⎭ = Bεp + Dbεb (5)

where the extensional coefficientsA = Aij, bending-extensional coefficientsB = Bij

and bending coefficient Db = Dij (i, j = 1, 2, 6) are given by:

{Aij,Bij,Dij} =
h/2∫

−h/2

Qij{1, z, z2}dz (6)

The transverse shear force, {Qxz,Qyz} and the transverse shear strain, ε are related
by:

Qxz = Ks

h/2∫

−h/2

σxzdz = KsQ55(βx + w0,x)

Qyz = Ks

h/2∫

−h/2

σyzdz = KsQ44(βy + w0,y) (7)
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with Ks the shear correction factor,Qij in the above equations are called as the global
stiffness coefficients that depend on the local stiffness coefficients, which in turn
depends on the fiber orientation within the ply. The first element of Q, i.e., Q11 is
given by:

Q11 = Q11 cos(T (x))4 + Q12 sin(T (x))4 + 2(Q12 + 2Q33)
[
cos(T (x))2 sin(T (x))

]2
(8)

T (x) is the fiber angle in a lamina. In present study, angle within the fiber is a
continuous function of the position and is given by:

T (x) = T0 − (T1 − T0)

a/2
abs(x), x = ±a/2 (9)

where T0 is the angle of the fiber at the center of the plate and T1 at the edge. The
orientation of the fiber for the k th layer is then represented as < T0k |T1k > (see
Fig. 2). Theoretically, the fiber can take any value between −90◦ and 90◦, however,
manufacturing difficulties dictate that certain orientations lead to larger curvature
that can cause fiber breakage during tow placement [31]. To ensure that the local
curvature does not exceed a critical value and that is feasible from a manufacturing
guidelines, the following relation is employed:

κ(x) = − (T0 − T1)

a/2
cos

(
T0 − (T0 − T1)

x

a/2

)
<

82

25
(10)

Fig. 2 Geometry of the
plate and a representation of
tow-steered fibers. The angle
is measured in the
anti-clockwise direction
from the positive x-axis
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The local stiffness coefficients, Qij are given by:

⎡
⎣
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤
⎦ =

⎡
⎢⎢⎢⎣

E1

1 − ν12ν21

ν12E2

1 − ν12ν21
0

ν12E2

1 − ν12ν21

E2

1 − ν12ν21
0

0 0 G12

⎤
⎥⎥⎥⎦ (11)

andQ44 = G23 andQ55 = G13. The local fiber direction and the direction perpendic-
ular to it is denoted by subscripts ‘1’ and ‘2’, respectively. This is measured within
the plane of the lamina. The local stiffness coefficients, defined at the ply (or lamina)
level are transformed to global coordinates by a simple coordinate transformation. In
the present study, due to the curvilinear fibers, the coefficient matrices are functions
of spatial direction, x. With the above definitions, the strain energy U , the kinetic
energy T , externally applied forces V of the composite plate can be written as:
Strain energy:

U (δ) = 1

2

∫

�

{εT
pN + εT

bM + εT
s Q} d�

= 1

2

∫

�

{εT
pAεp + εT

pBεb + εT
bBεp + εT

bDεb + εT
s Eεs}d� (12)

Kinetic energy:

T (δ) = 1

2

∫

�

{I0(u̇20 + v̇2
0 + ẇ2

0) + I1(θ̇
2
x + θ̇2

y )}d� (13)

Work done due to externally applied forces

V (δ) =
∫

�

Nx

(
∂uz
∂x

)2

+ Ny

(
∂uz
∂y

)2

+ 2Nxy

(
∂uz
∂x

)(
∂uz
∂y

)
d� (14)

where δ = {uo, vo, wo, βx, βy} is the nodal degrees of freedom associated to the dis-

placement field in finite element discretization, I0 = ∫ h/2
−h/2 ρdz and I1 = ∫ h/2

−h/2 z
2ρdz,

ρ is the mass density. In addition, in the case of plate immersed in a supersonic flow,
the work done by the fluid (non-conservative) should be accounted for, which is
given by:

W (δ) =
∫

�

�pw d� (15)

where �p is the aerodynamic pressure, which in this study is based on first-order
piston theory:
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�p = ρaU 2
a√

M 2∞ − 1

[
∂w

∂x
cos + ∂w

∂y
sin

]
(16)

where ρa,Ua,M∞ and are the free stream air density, velocity of air,Mach number
and flowangle, respectively. The governing equations ofmotion for: (a) free vibration
and (b) mechanical buckling are obtained by writing the Lagrange equations of
motion given by:

[
∂(−V −U + T )

∂δ̇i

]

,t

−
[
∂(−V −U + T )

∂δi

]
= 0, i = 1, 2, · · · , n (17)

Free vibration To get the finite element equation, we substitute Eqs. (12) and (13)
in Eq. (17) and follow standard Galerkin procedure to get:

Kδ + Mδ̈ = 0 (18)

where M is the consistent mass matrix and the following algebraic equation is
obtained upon replacing δ̈ = ω2δ

(−ω2M + K)δ = 0 (19)

where ω is the eigenvalue of the system, also known as the frequency.
Buckling In case of buckling, the discretized equations are obtained upon substituting
Eqs. (12) and (14) into Eq. (17):

[
K − N crKG

]
δ = 0 (20)

where N cr is the buckling load andKG is the geometric stiffness matrix that depends
on the residual stress. The residual stress state in turn depends on the ply lay-up.
To estimate the stress state, for an assumed mechanical load, a pre-buckling dis-
placement field is obtained by solving a static bending problem. Then the geometric
stiffness matrix is computed using this stress state. The critical buckling load, N cr is
then obtained by solving Eq. (20) using standard eigen routines.
Linear flutter For linear flutter analysis, the Lagrange equations of motion is rewrit-
ten after introducing the contribution due to the non-conservative load as:

[
∂(−U + W + T )

∂δ̇i

]

,t

−
[
∂(−U + W + T )

∂δi

]
= 0, i ∈ (1, n) (21)

Similar to free vibration and buckling, the finite element equations are obtained by
following the Galerkin procedure and is given by:

(K + λKaero) δ + Mδ̈ = 0 (22)
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The characteristic of the time function, δ̈ = −ω2δ is substituted to yield the following
equation: [

−ω2M +
(
K + ρaU 2

a√
M 2∞ − 1

Kaero

)]
δ = 0 (23)

where Kaero represents the contribution due to the aerodynamic force, When
ρaU 2

a√
M 2∞ − 1

= λ = 0, the system is positive definite and hence ω ∈ R. The addi-

tion of the aerodynamic matrix to the stiffness matrix, makes the resulting matrix
unsymmetric and leads to complex eigenvalue problem when λ > 0. This is because
Kareo is unsymmetric. As λ is increased monotonically, for a particular pressure,
two eigenmodes coalesce and the corresponding eigenvalue becomes complex con-
jugates. The critical value of the pressure at which the eigenvalue becomes complex
conjugates is called the critical aerodynamic pressure, λcr and upon further increase,
the system is unstable.

3 Overview of Iso-Geometric Analysis

This study employs the non-uniform rational basis spline (NURBS) as trial and test
functions to represents the geometry and to approximate the unknown field variables
within a finite element framework. This is in contrast to the conventional Lagrange
type finite elements, where Lagrange polynomials represent the unknown fields and
the domain. Introduced and coined as Iso-geometric analysis (IGA) by Hughes and
co-workers [32, 33], the IGA has been applied to wider problems. Some of the salient
features include: (a) higher continuity of the basis functions (b) exact representation
of the geometry within the FE model and (c) seamless link between the CAD and
the FEA.

The following information is required to define a B-spline basis functions:

– control points, Pi;
– knot vector, �, a set of parametric values arranged in ascending sequence, ξi ≤

ξi+1, i = 0, 1, . . . ,m − 1;
– the degree of the curve p.

With this information, the B-spline basis function, Ni,p of degree p is given by a
recurrence relation:

Ni,0(ξ) =
{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (24)
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Fig. 3 B-splines for order of the curve, p = 3

If each of the control point has an associated weight defined, then the B-splines are
termed as non-uniform rational B-splines. A pth degree NURBS curve is written as:

C(ξ) =
∑m

i=0 Ni,p(ξ)wiPi∑m
i=0 Ni,p(ξ)wi

(25)

Figure 3 shows the fourth order B-splines with a knot vector,

� = {0, 0, 0, 0, 0.2, 0.4, 0.4, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}

.
The important characteristics of NURBS basis functions is that it has all the

necessary properties that a Galerkin framework requires, i.e., (i) the basis functions
are positive everywhere within the span, (ii) sum of the basis functions is unity; (iii)
interpolatory at the end points. Further the key advantage is that the geometry is
exactly represented, as the same function is used to describe the geometry. One of
the attractive features of these functions is that the continuity can be adapted to the
specific needs of the problem. Typically, these are one-dimensional functions and
a surface is presented by a tensor product of such one-dimensional functions with
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separate knot vectors in each of the parametric dimensions (similar to the case of
Lagrange type finite elements) given by:

C(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (26)

where Pi,j represents the coordinates of the control net and Ni,p andMj,q are the uni-
directional B-spline basis functions defined on the knot vectors. With this definition,
a NURBS surface can be written as:

C(ξ, η) =
∑n

i=1

∑m
j=1 Ni,p(ξ)Mj,q(η)Pi,jwiwj

w(ξ, η)
(27)

where w(ξ, η) represents the weighting function. The vector of nodal unknowns δ

within the control mesh is approximated by:

δ =
∑
J

Cδ (28)

Figure 4 shows a representative geometry of the plate and a control net. As seen
earlier, the Mindlin theory includes transverse shear deformations and the following
condition must be satisfied if Mindlin plate theory is employed to study thin plates:

∇w + θ = 0 (29)

which states that the shear strain vanishes as the plate becomes thinner. However,
when applied to thin plates the NURBS basis functions suffer from shear locking. In
this chapter, we employ an artificial shear correction factor introduced by Kikuchi
and Ishii [34] originally for 4-noded bilinear element to alleviate the shear locking
syndrome, given by:

Fig. 4 a Plate represented using the NURBS basis functions p = 3, with the knot vector, � =
{0, 0, 0, 0, 1, 1, 1, 1} in both the spatial directions. b Red dots indicate the control points and the
black dashed lines represent the control mesh
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Ke
s = Ks

(
h

βle

)2

(
1 +

(
h

βle

)2n)1/n , n, β ∈ Z
+ (30)

where le is the diameter of the element.

4 Results

In this section, using the IGA framework, we numerically study the free vibration,
mechanical buckling and flutter analysis of tow-steered laminated composites. The
effect of the following parameters are considered on the output characteristics whilst
discussing the results: plate thickness, number of plies and angle of the fiber within
the lamina. For all the examples, it is assumed that all layers are of equal thickness and
the angle of the fiber ismeasurewith respect to x− axis. In all the cases, cubicNURBS
are employed, unless mentioned otherwise. The following Dirichlet conditions are
considered for the present study:
Clamped edges:

uo = vo = wo = βx = βy = 0 on x = 0, a & y = 0, b

Simply supported edges:

uo = wo = βy = 0 on x = 0, a; vo = wo = βx = 0 on y = 0, b

4.1 Free Vibration

Before presenting the results from the present framework, the results from the devel-
oped formulation is compared against results in the literature. For this study, 4-
layered cross-ply laminated compositeswithh =0.2 and straight fibers, i.e.,T1 ≡ T0
are considered. The material properties are: E1/E2 = 10, 40, G12 = G13 = 0.6E2,
G23 = 0.5E2, ν12 = 0.25, ρ = 1 and E2 = E3. Table1 compares the normalized fre-

quency, ω = ω
a2

h

√
ρ

E2
from the present framework with that of results in [35, 36].

It is inferred that with mesh refinement the solution converges and yield comparable
results. For subsequent discussions, a control mesh of 20×20 with cubic NURBS is
employed.
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Table 1 First non-dimensionalized frequency ω for a 4-layered cross-ply laminates with h = 0.2

Method Mesh size
E1

E2
10 40

IGA 3× 3 8.1286 10.4800

5 × 5 8.2355 10.7140

10 ×10 8.2823 10.8184

20 ×20 8.2942 10.8450

Ref. [36] 8.2924 10.8490

Ref. [35] 8.2982 10.8540

Table 2 First five fundamental frequency, ω (rad/s) for TSCL. The edges are simply supported

Ref. [14] IGA

10 × 10 20 × 20 30 × 30 %�30×30

309.1 315.0 309.9 309.1 0.0136

503.3 530.5 509.3 505.9 0.5245

852.1 954.0 867.4 854.3 0.2627

1143.5 1203.4 1144.0 1134.3 0.8053

1297.3 1416.1 1324.8 1296.2 0.0805

Next, the results from the present framework are compared for tow-steered com-
posite laminates. In this case, the laminated plate is consists of three layers with ply
configuration:

〈30◦, 0◦〉, 〈45◦, 90◦〉, 〈30◦, 0◦〉

The plate thickness, h = 0.01 and the material properties are: (E1, E2, G12, G13,
G23, ν12, ν13, ν23) = (173GPa, 7.2GPa, 7.2GPa, 3.76GPa, 3.76GPa, 3.76GPa, 0.29,
0.29, 0.29) and ρ = 1540 kg/m3 are used for the study. The numerical convergence
of the first five fundamental frequencies are presented in Table2.

First, the free vibration characteristics of TSCL is studied. Two-layered anti-
symmetric (〈T0,T1〉, 〈−T0,−T1〉) and three-layered symmetric (〈T0,T1〉, 〈−T0,
−T1〉, 〈T0,T1〉) TSCL is considered. In both cases, T0 ∈ [0, 90]◦ and T1 ∈
[−90, 90]◦. It is noted that, some of these angles may not be feasible due to manufac-
turing constraints discussed earlier. However, they are presented here for qualitative
discussions. The non-dimensionalized first fundamental frequency for two and three
layered composites is depicted in Fig. 5. Following observations can be made for the
two layered anti-symmetric laminate (see Fig. 5a):

→ the plate has maximum fundamental frequency when the fiber angle is in the
range T1 = −60◦ and −45◦;
→ the plate has minimum frequency when T1 > 0, irrespective of the angle at the
center T0;
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Fig. 5 Non-dimensional fundamental frequency as a function of tow-angles: a 2-layered anti-
symmetric and b 3-layered symmetric tow-steered composite laminate
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→ with increasing T0 from zero, the variation of fundamental frequency losses
its symmetric with respect to T1 = 0;
→ the dotted lines represent the range of angles for which the constraint condition
is violated.

Variation of non-dimensionalized first fundamental frequency with T1 for con-
stant T0 for a three-layered symmetric laminate is shown in Fig. 5b. It is seen that for
a particular choice of T0, the response of three-layered and two-layered are qualita-
tively similar. In this case, the maximum frequency occurs when T1 is−45◦ and 60◦
for all choices of T0. Of all the combinations, the plate has the highest first mode
frequency 〈T0,T1〉 = 〈30◦, 45◦〉. Similar to the two-layered composites, the dotted
lines represent the combination of center and edge angle for which themanufacturing
constraint on the curvature of the fiber is violated. It is noted that the value of the
edge angle T1 at which the extremum frequency occurs is reversed between two and
three layered composite laminates considered here.

4.2 Buckling

Next, for the two- and three- layered tow-steered composite laminate, themechanical
buckling characteristics is studied. In case of two-layered system, the layer configu-
ration is represented by: (〈T0,T1〉, 〈−T0,−T1〉) and for three-layered symmetric
the ply arrangement is as follows: (〈T0,T1〉, 〈−T0,−T1〉, 〈T0,T1〉). In this case,
T1 is assumed to be between −90◦ and 90◦ and T0 is varied between 0◦ and 90◦.
Figure 6a shows theN cr

xx due to mechanical forces. It is inferred thatN cr
xx is symmetric

with respect to fiber edge angle (T2 = 0), when T1 = 0◦, however, the symmetry is
lost for other values of T1. The critical buckling load is maximumwhen center angle
is 15◦ and end angle is −60◦ and the minimum when T1 > 0◦. Similarly,the influ-
ence of the spatial variation of the fiber angle (T0/T1) on the N cr

xx for a 3-layered
composite is studied. Critical buckling load numerically computed is depicted in
Fig. 6b. From Fig. 6b, it is inferred that for a particular T0, the variation of buckling
load is similar to two-layered composite. For 3-layered, the max(N cr

xx ) occurs when
T1 = ±60◦ and T0 = 0◦. The angles for which the manufacturing constraint is vio-
lated in shown with dashed lines in Fig. 6. For the three-layered composite laminate,
the range of negatively tow-steered fiber angle T1, without violating the manufac-
turing constraint is limited, similar to the two-layered case. It is concluded that the
T1 strongly influences the critical buckling load of the composite, irrespective of the
number of layers.
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Fig. 6 Critical buckling load as a function of T1 for: a 2-layered and b 3-layered tow-steered
composite laminates. Note that T0 ∈ [0, 90]◦
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4.3 Linear Flutter

Next, the aerodynamic response of tow-steered composite laminate is studied using
the iso-geometric analysis framework. The plate is immersed in a supersonic flow.
Although, the developed framework is general, the results are presented only for a
square plate. The plate is assumed to consist of three layers with following three
different ply configurations:

〈30◦, 0◦〉; 〈45◦, 90◦〉; 〈30◦, 0◦〉

〈45◦,−45◦〉, 〈−45◦,−60◦〉, 〈0◦, 45◦〉

〈90◦, 45◦〉, 〈60◦, 30◦〉, 〈90◦, 45◦〉

The influence of h and the edge conditions on the critical aerodynamic pressure
is also studied. Table3 presents the effect of orientation of the fiber, plate thickness
and the boundary condition on the critical aerodynamic pressure at which the plate
experiences flutter and the corresponding frequency. It can be inferred that decreasing
the plate thickness, the critical aerodynamic pressure increases and it is greater in
case of clamped when compared to all edges simply supported, as expected. The

Table 3 Frequency—critical aerodynamic pressure for a tow-steered composite laminated for
different boundary conditions and plate aspect ratios

Fiber
orientation

h

a
SSSS CCCC

λcr ωcr (×104) λcr ωcr (×104)

〈30◦, 0◦〉,
〈45◦, 90◦〉,
〈30◦, 0◦〉

0.01 2937.69 0.6960 4145.51 1.8503

0.02 2890.04 0.6931 3993.95 1.7842

0.10 1931.45 0.5855 2200.98 0.9994

〈45◦,−45◦〉,
〈−45◦,−60◦〉,
〈0◦, 45◦〉

0.01 3097.85 0.8779 4865.04 1.7863

0.02 3045.51 0.8699 4655.66 1.7331

0.10 2078.32 0.6986 2191.60 0.9599

〈90◦, 45◦〉,
〈60◦, 30◦〉,
〈90◦, 45◦〉

0.01 961.91 0.5692 1454.88 1.7307

0.02 947.07 0.5601 1386.91 1.6345

0.10 683.01 0.3941 515.82 1.5001
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Fig. 7 First two mode shapes for: a–b simply supported and c–d fully clamped square plate with
fiber orientation: 〈45◦,−45◦〉, 〈−45◦,−60◦〉, 〈0◦, 45◦〉 with a

h = 100

above observation is valid for the three different ply configurations considered. The
free vibration and the flutter mode shapes for the first two fundamental frequency
is shown in Figs. 7 and 8 for h = 0.01 and for clamped and simply supported edge
conditions. The flutter mode shape is supported with the variation of frequency and
critical aerodynamic pressure, depicted in Fig. 9. From Fig. 9 it is seen that with
increasing pressure, the frequency increases and for a particular pressure, which is
referred to as the critical aerodynamic pressure, the mode shape coalesce and the
frequencies becomes complex conjugate.
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Fig. 8 Square plate immersed in a supersonic flow—mode shape for a–b all edges simply supported
and c–d fully clamped plate. Plate thickness h = 0.01 and has three layers with fiber orientation:
〈45◦,−45◦〉, 〈−45◦,−60◦〉, 〈0◦, 45◦〉 with a

h = 100

5 Concluding Remarks

In this chapter, the free vibration, mechanical buckling and linear flutter characteris-
tics of tow-steered composite laminate is numerically studied using an iso-geometric
analysis. It is opined that the systematic parametric study donewill be useful for prac-
tising designers who are interested in the design and the optimization of tow-steered
laminates. Some observations are: the first fundamental frequency, buckling and flut-
ter characteristics are strongly influenced by the spatial variation of the orientation
of the fiber. The influence of increasing aspect/thickness ratio increases the funda-
mental frequency whilst it reduces the critical buckling load. Similar observations
can be derived for the case when the plate is immersed in a supersonic flow. Due
to manufacturing constraint, the practically feasible range of orientation of the fiber
depends on angle at the center.
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Fig. 9 Frequency-aerodynamic pressure plot for a–b full simply supported and c–d clamped square
plate immersed in a supersonic flow
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