
Chapter 16
Modeling Fracture in Straight Fiber
and Tow-Steered Fiber Laminated
Composites—A Phase Field Approach

Hirshikesh, Ratna Kumar Annabattula, and Sundararajan Natarajan

1 Introduction

The word composite implies a material consisting of at least two distinct constituents
(phases/materials) of entirely different physical/chemical properties. They are also
referred to as engineered materials and some of them are inspired from natural
composites, viz., wood, human teeth, bone,muscle, to name a few. The salient feature
of such engineeredmaterials is that the equivalent property of composite is better than
its individual constituents. Within the composite, however, the constituent elements
can be easily identified as they do not dissolve/blend into each other [1]completely.
This is because, a composite material is manufactured by embedding the matrix
(host) material, with reinforcements, such as filaments or stacking of laminae [2].
A careful choice of constituents can lead to a composite materials that is lighter,
increased fatigue life, improved wear and corrosion resistance [3].

Of these, laminated composites are preferred as they have better mechanical char-
acteristics and are more convenient to manufacture than the particle-reinforced com-
posites; further, the volume fraction of the constituent components is easy to con-
trol [4, 5]. In addition, due to the presence of interface (matrix-fiber interface), the
mechanical properties are improved. The interfaces act as barriers to crack prop-
agation and deflect the cracks at the interface, thus enabling more fracture energy
consumption [6, 7]. The laminated composite can be categorized as: (a) constant stiff-
ness composite laminates (CSCL), and (b) tow-steered composite laminates (TSCL)
based on the stiffness variation within the laminates. The CSCL is considered as a
single domain with uniform staking sequence, fiber density, fiber orientation, and ply
thickness. Whereas, TSCL is regarded as a domain consisting of multiple elements
with different stacking sequence andmodifies the load-carrying directions within the
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laminate, such that the stress distributions are within design tolerances and uniform;
further, it improves the global response of structures in terms of failure stress, critical
buckling load, and stiffness [8]. The flexibility offered by the TSCL, i.e., it allows
the fiber to be placed at any angle, also increases the computational complexity of
adequately predicting their response. Several approaches are presented to predict
their response accurately [9–11].

In spite of the improved material properties that the composites offer, the pres-
ence of different constituents introduces interface macroscopically. The presence of
an interface can lead to stress raisers and potential region for crack initiation; fur-
ther, this can lead to failure of the structure. Typical failure processes in composite
laminates include cracking of fibers, crack formation in the matrix, and debond-
ing of matrix-fiber interface and/or delamination of plies [12, 13]. The catastrophic
collapse of the system is associated to the matrix cracking, while, loss of strength
is associated to stiffness and strength degradation [14]. Experiments have shown
that the free edges or the presence of discontinuities is the prominent region for the
delamination to start [15]. Such diverse damage mechanisms cause the composite to
lose strength gradually and eventually to catastrophic failures [16]. Brittle fracture
is the prominent failure mode of unidirectional composites and the energy release
mechanisms are by the deflection of the crack at the interface, shielding of crack by
interfaces/other discontinuities, and branching of cracks [17, 18]. The crack orien-
tation and propagation is highly influenced by the strength of the interface and the
fracture toughness [19].

Complex fracturemechanisms in composites prohibit theoretical studies and often
numerical approaches combined with experimental tests are employed. There are
various numerical approaches that have been adopted in the literature to model the
fracture characteristics in a composite laminate, some of them are: cohesive zone
models [20], discrete element method [21], the eXtended finite element method [22,
23], and diffuse crack approach [24]. Aforementioned approaches requires a priori
knowledge of the crack path, a criteria for changing crack morphology. This is cir-
cumvented by the introduction of phase field method for fracture by the seminal
work of Francfort and Marigo [25], and Bourdin et al. [26]. The phase field method
(PFM) was originally developed for interface problems and applied to the mate-
rial solidification process [27–30]. Within the PFM framework, sharp interfaces are
approximated by a scalar field variable that is continuous that distinguishes between
multiple phases within the system through a smooth transition. In the last decade, the
PFM is used by the physics andmechanics community to simulate fracture problems.
In the context of fracture, order the parameter (termed as the phase field parameter)
used to represent the fully broken and intact material phase with smooth transition
(see Fig. 1c). The physics community models are generally based on the Landau-
Ginzburg phase transition [31], and the mechanic’s community uses a model based
on Griffith’s theory. Different models used by

• physics community: Aranson et al. model [32], Karma et al. model [33], Henry
and Levine model [34],
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• mechanics community1: Francfort and Marigo model [25], Bourdin model [26],
Kuhn and Müller model [35, 36], Amor, Marigo and Maurini model [37], Miehe
model [38, 39], Borden model [40], Hybrid model [41].

Due to its attractive features, the PFM is applied to wider range of engineering
problems; some of them include: ductile fracture [42], thermal fracture [43], brittle
fracture in functionally graded materials [44, 45], failure in composites [46, 47] and
ceramics [48], crack growth in rocks [49], strength prediction infiber-reinforced com-
posite [12, 50, 51], and laminated composite [52], to name a few. Some researchers
have used the UEL feature of the commercial software Abaqus [53, 54] to implement
the phase field method, while Hirhikesh et al. [55] implemented the method in the
open source finite element software, FEniCS.

The primary objective of this chapter is to discuss the implementation aspects of
the PFMfor an orthotropicmaterial, and constant and tow-steered stiffness composite
laminates in FEniCS. The effect of different parameters, such as, the inter-matrix
spacing and the angle of the fiber on the load-carrying capacity is discussed with a
few carefully chosen examples. This will enhance the understanding of fracture in
composites.

2 Overview of Phase Field Method

A linear elastic body with a discontinuity (material and crack) occupying the domain
� ⊂ R

d , where d = 2,3, represents the dimension of the problem (See Fig. 1). The
domain is bounded by � with a unit outward normal n, accommodates the follow-
ing disjoint sets, viz., � = �D ∪ �t ∪ �c and �D ∩ �t = ∅, where on �D represents
the region over which Dirichlet boundary conditions are specified and Neumann
conditions are enforced on �t . The discontinuous surface that denotes the crack is
represented by �c, which in this study is denoted by a phase field variable φ ∈ [0, 1]
with φ = 1 represents the completely damaged state (see Fig. 1b, c).

2.1 Governing Balance Equations

The evolution of the fracture topology within PFM is captured by minimizing the
total potential energy [25]. The total potential energy is given by the sum of bulk and
surface energy as:

� = �b + �s =
∫

�

ψ(ε)d�

︸ ︷︷ ︸
bulk energy

+
∫

�

Gcd�

︸ ︷︷ ︸
surface energy

, (2.1)

1The phase-field models used by the mechanics community and further improvements will be
discussed in Sect. 2 in detail.
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Fig. 1 a A discrete representation of the interface � and a sharp crack �c in a domain �, b con-
forming representation of the interface, while a diffuse representation for the crack and c schematic
of the scalar field variable φ, used to represent crack. Note that width of the crack is controlled by
�o

where the small strain tensor is ε = 1
2

(∇euT + ∇eu
)
, Gc is the critical energy release

rate, ψ(ε) = 1
2λ (tr ε)2 + μtr(ε2) is the elastic energy density and Lamé constants

are denoted by μ and λ. where ∇eT is a vector Laplacian which is defined as

∇eT =
[

∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
.

Upon introducing a damage variable to the strain energy, �b is modified as:

�b =
∫

�

[
(1 − φ)2 + k

]
ψ(ε)d�, (2.2)

where k < 0 is introduced for numerical stability. Further, by constructing a crack
density functional ��o using a scalar field variable (φ), �s in Eq. (2.1) can be written
as [56]:
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∫

�

Gcd� ≈
∫

�

Gc

(
1

2�o
φ2 + �o

2
|∇φ|2

)
d�. (2.3)

With these modifications to the surface and the bulk energy, � is rewritten as:

� =
∫

�

[
(1 − φ)2 + k

]
ψ(ε) + Gc

(
1

2�o
φ2 + �o

2
|∇φ|2

)
d�. (2.4)

Governing differential equations are derived by employing the variational principle
that includes the internal and the external work; δWint and δWext. The internal energy
δWint is computed by taking the variation of � as

δWint =
∫

�

[
σ δε − (2 − 2φ)δφ ψ(ε) + Gc

(
1

�o
φδφ + �o∇φ · ∇δφ

)]
d�. (2.5)

The variation of the external work δWext is obtained as

δWext =
∫

�

t̄ · δu d�, (2.6)

where t̄ is the external traction imposed on�t . In the above equation, it is assumed that
there are no body forces and inertial forces. Imposing the constraint δWint − δWext =
0, results, find (u, φ) : � → R

d such that:

∇ · σ = 0 in �, (2.7a)

−Gc�o∇2φ +
[Gc

�o
+ 2H

]
φ = 2H in �, (2.7b)

σ · n =t on �t, (2.7c)

u =u on �D, (2.7d)

∇φ · n =0 on �, (2.7e)

where H is the history variable that depends on the strain energy, ψ(ε) and is given
by:

H =
{

ψ(ε), if ψ(ε) > Hn,

Hn, otherwise,
(2.8)

where n denotes the load step and σ = [
(1 − φ)2 + k

]
∂ψ(ε)

∂ε
is the modified Cauchy

stress tensor. This model is known as an isotropic model in the literature [41]. The
shortcoming of this model is that if fails to distinguish between the crack propagation
in the tensile and compressive regions. Table 1 presents the various approaches that
been postulated in the literature to alleviate someof the difficulties associatedwith the
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Table 1 Difficulties associated with the phase field method and proposed advances

Area of concern Solution scheme

Convergence of solutions (non-convex
problem)

Staggered scheme [39]

Arc-length control method [58]

Line search assisted with monolithic approach
[59]

Unphysical crack propagation in compressive
region [41, 60]

Decomposition of strain tensor into deviatoric
and volumetric part [37]

Spectral decomposition of the strain tensor [39]

The hybrid approach [41]

Improved volumetric and deviatoric
decomposition of the strain tensor [61]

Decomposition of stress tensor [62]

Irreversible constraints Introduction of history-field variable H+ [39]

Unphysical crack propagation at the boundary Fourth order phase-field model [63, 64]

�-convergence
The scaled fracture energy [60]

Computationally expensive Adaptive PFM [63, 65–67]

Length scale sensitivity Scale insensitive phase-field damage model
[62]

Crack widening on the boundary [57] Still open to solve

Mixed mode fracture in rock Modify crack driving force [68, 69]

conventional PFM, such as: (a) prevent crack propagation in the compressive region,
(b) non-physical crack propagation at the boundary and (c) length scale sensitivity.
Readers are referred to [41, 57] that gives a comprehensive overview of different
phase field approaches.

In this chapter, we employ the hybrid formulation that has the advantages of an
isotropic model (i.e., the elastic equilibrium equation remains linear) and anisotropic
model, that ensures that the crack propagates only by the tensile elastic energy, ψ+.

−Gc�o∇2φ +
[Gc

�o
+ 2H+

]
φ = 2H+ in �, (2.9)

∀x : �+ < �− ⇒ φ :=0 (2.10)

H+ in Eq. (2.10) is give by: H+ := maxτ∈[0,t]�+(ε(x, τ )) and second constrain in
Eq. (2.10) ensures that the crack faces do not inter penetrate. and

�±(ε) = 1

2
λ〈tr(ε)〉2± + μtr(ε2

±), (2.11)

with 〈·〉± := 1
2 (· ± | · |), ε± :=

3∑
I=1

〈εI 〉±nI ⊗ nI and ε = ∑3
I=1〈εI 〉nI ⊗ nI , where

εI and nI are the principal strains and the principal strain directions, respectively.



16 Modeling Fracture in Straight Fiber and Tow-Steered Fiber … 393

2.2 Numerical Implementation

A Bubnov-Galerkin procedure is adopted to develop the weak form for the coupled
Eq. (2.7). The domain is decomposed into non-overlapping regions called elements
and a polynomial representation is adopted for the unknownfield and the geometry. In
this chapter, the unknownfields (u, φ) is represented byLagrange basis functions as:

u = {u, v} =
n∑
I

NI {uI , vI } (2.12a)

φ =
n∑
I

NIφI (2.12b)

whereNI are the hat functions, n is the total number of nodes in the domain and uI , φI

denotes nodal variables. The corresponding weak form is given by: Find (u, φ) such
that:

∫

�

σ (u) : ε(v) d� =
∫

�t

t̂ · v d�, (2.13a)

∫

�

{
∇θ Gc�o∇φ + θ

[
Gc

�o
+ 2H+

]
φ

}
d� =

∫

�

2H+θ d� +
∫

�

∇φ · n θ d�

(2.13b)

The unknown field variables (u, φ) are computed by solving the coupled equations
(Eq. 2.13). Typical choices are Newton-Raphson and staggered approach. Due to the
different nature of the equations, the Newton-Raphson approach has been known to
yield converged results, and hence, the staggered approach is employed. Algorithm 1
shows the pseudo code for the staggered approach, where the unknown variables are
solved sequentially within each time step until the convergence. For convergence, a
user defined tolerance is specified and the convergence for the displacement and the
phase field variable between successive staggered iteration steps is checked using

max {
||{uhi+1−uhi }||

||{uhi+1}|| , ||{φi+1−φi}||
||{φi+1}|| } ≤ tolerance. Once the convergence is achieved, φ, H

and u is updated and then the next load increment is applied. In this work, we use
FEniCS, an open source finite element package is used to solve.

2.3 Implementation Aspects in FEniCS

The nice feature of FEniCS is that it is independent of the dimension of the problem
and takes weak form directly as an input (see Listings 16.1 and 16.2). By using the
unified form language embedded in Python, the weak from and the required finite
element discretization is specified. Upon invoking V = FunctionSpace(mesh,‘P’,m),
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Algorithm 1: Algorithm for the PFM

Initialize at step (i): {uhi }, {φh
i } and {H+

i }, ũ = �u
for ũ=�u, 2�u, ...., ntotal�u do

while max
(||{uhi+1 − uhi }||/||{uhi+1}|| & ||{φh

i+1 − φh
i ||}/||{φh

i+1}||
) ≥ tolerance do

compute phase-field variable {φh
i+1} from Eq. (16.2.13b)

compute displacement field {uhi+1} from Eq. (16.2.13a)
compute {ψ+} and {ψ−}, and {H+} from Eq. (16.2.11)

update uh and φh and history variable {H+}

the domain is discretized with 3-noded triangular or 4-noded tetrahedra elements in
two and three dimensions, respectively, ‘P’ defines the family of Lagrange elements
and ‘m’ the order of polynomial that needs to employed to represent the unknown
field variables. Listings 16.1 to 16.3 depicts the Python code for the staggered scheme
adopted in FEniCS.

Listing 16.1 FEniCS implementation for modified elasticity, Eq. (16.2.13a)
def epsilon(v):

return sym(grad(v))
def sigma(u):

return 2.0*mu*epsilon(u) + lmbda*tr(epsilon(u))* Identity(ndim)
# The weak form
W_du = (pow ((1.0 - phi_old ),2) + k)* inner(grad(v),sigma(u))*dx
u = Function(W)
# bc_disp = boundary conditions for the elasticity
problem_disp = LinearVariationalProblem (lhs(W_du),rhs(W_du),u,bc_disp)
solver_disp = LinearVariationalSolver (problem_disp)
solver_disp .solve ()

Listing 16.2 FEniCS implementation for phase-field, Eq. (16.2.13b)
# without energy decomposition
def hist(u):

str_ele = 0.5*( grad(u) + grad(u).T)
IC = tr(str_ele)
ICC = tr(str_ele * str_ele)
return (0.5* lmbda*IC**2) + mu*ICC

# The weak form
E_phi = ( Gc*lo*inner(grad(p),grad(q))+\

((Gc/lo) + 2.* hist(unew ))* inner(p,q)-\
2.* hist(unew)*q)*dx

p = Function(V)
# bc_phi = boundary conditions for the phase -field (if any)
problem_phi = LinearVariationalProblem (lhs(E_phi),rhs(E_phi),p,bc_phi)
solver_phi = LinearVariationalSolver (problem_phi )
solver_phi.solve ()

Listing 16.3 FEniCS implementation for updating history variable
def History(uold ,u_conv , Histold ):

history = conditional(lt(hist(u_old),hist(u_conv)), hist(u_conv),
Histold)
return history
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A three-dimensional domain with three holes subjected to far field tension (see
Fig. 2a is solved first to show the capability of FEniCS to handle three dimensional
problems and can also do parallel processing. The crack trajectory computed through
the phase field framework is compared against the solution available in the litera-
ture [70]. The material properties used for the analysis: Young’s modulus E = 210
×103 N/mm2, Poisson’s ratio ν = 0.3 and strain energy release rate Gc = 1.0 N/m.
Four noded tetrahedra elements are used to discretized the domain, this is done using
Gmsh. The mesh is then converted to FEniCS readable format by using the fol-
lowing command: dolfin-convert inputmesh.msh outputmesh.xml. The simulation is
performed on an Intel Core i5-4590 CPU@3.30GHz × 4 using 3 cores. Figure 2c
shows the corresponding splitting of the domain in the three parallel cores.

Figure 3 shows the crack trajectory. The crack trajectory is compared with the
work of [70] and the results showvery good agreement. The crack is initially attracted
toward the first hole and then resumes to propagate between the holes. Hence, larger
size problems can be solved using the parallel computation in FEniCS with the
same accuracy. In the following, the implementation is verified for the orthotropic
materials. For an orthotropic material, the Cauchy stress tensor in Eq. (2.13a) is
defined as: σ = [

(1 − φ)2 + k
]
Dε, where

D =
⎡
⎣cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎢⎢⎢⎣

E1

1 − ν12ν21

ν12E2

1 − ν12ν21
0

ν12E2

1 − ν12ν21

E2

1 − ν12ν21
0

0 0 G12

⎤
⎥⎥⎥⎦

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ ,

(2.14)

where ν21 = E2

E1
ν12, theYoung’smodulus along the transverse and longitudinal direc-

tion is represented by E2 and E1, Shear modulus is represented by G12, ν21 and ν12
are the minor and the major Poisson’s ratio, respectively. To account for the material
orientation, we introduce A = I + β [I − n ⊗ n] with n = {cos θ, sin θ}T into Eq.
(2.10) to give:

−Gc�o∇φA∇φ +
[Gc

�o
+ 2H+

]
φ = 2H+ in �, (2.15)

The parameterβ ensures that the crack propagates perpendicular to the cleavage plane
orientation. For the current study,β = 20 is used for anisotropic case and for isotropic
case, Eq. (2.10) is employed. The domain and the boundary conditions for a plate
with circular hole subjected to tension is considered (see, Fig. 4a). Unidirectional
fibers are embedded in the plate with an angle θ with the vertical axis (see Fig.
4). The material properties are chosen as, (E1,E2,G12, ν12) = (114.8, 11.7, 9.66,
0.21GPa). Figures 4b–d show the crack propagation trajectory for different material
orientations. The crack path depends on the material orientations which agrees well
with results presented in [71, 72].
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Fig. 2 Three-dimensional edge crack specimen with holes: a domain description with boundary
conditions, b domain discretization, and c domain discretization using parallel core
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Fig. 3 Crack propagation trajectory from a final crack trajectory as reported in Msekh [70], b
FEniCS implementation

3 Laminated Composite Fracture

In this section, we study the fracture processes in a two-dimensional CSCL/TSCL
using the presented framework (see Fig. 5). The influence of the matrix thickness,
tm and fiber orientations on the crack propagation path and the maximum load for
fracture is systematically studied. In all the examples, the domain is subjected to
a far field tension, with a = 0.25mm as the initial crack length, �o = 2h (where h
denotes the diameter of the smallest element in the domain) is employed, unless
mentioned otherwise. The displacement increment is set to �u = 1×10−5 until
complete fracture. Further, a no-slip condition is assumed between the fiber-matrix
interface and the fibers inclined at an angle ϑ(x). In case of TSCL, the fiber angle is
dictated by the angle at the center of the plate, θO and angle at the free edge, θ1. The
variation of the fiber angle within the laminae is then given by [73–75]:

ϑ(x) = 2(θ1 − θ0)

2W
abs(x) + θ0, (3.1)

where W is half-width of the plate. For the present study, we assume 2W = 3mm
and 2L = 6mm.

TheTSCLwith different fiber orientations is represented as 〈θ1, θ0〉, and theCSCL
fiber orientation is represented for a particular choice of the TSCL with θ1 ≡ θ0 (see
Fig. 5a). The material properties for the individual layered constituents are given in
Table 2. In the model considered, alternate layers of fiber and matrix are arranged
and assumes absence of the interface cracking and the micro-cracking mechanisms.

Remark 1 The mode mixity at the crack tip is discussed through the fringe pattern,
which is the given: σ1 − σ2 = n fσ

t , where h is the plate thickness, fσ is the fringe
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Fig. 4 Plate with circular hole in tension: a problem description and boundary conditions, crack
trajectory for b 45◦, c 0◦, and d −45◦ fiber orientation

constant and the maximum and the minimum principal stresses are given by σ1 and
σ2, respectively. The orientation of the fringes ahead of the crack tip is an indicator
of the crack propagation direction and the fringes can be used to identify the fracture
modes [76].

The fracture characteristics of CSCL is discussed first. After the application of the
load, when G = Gc of the domain, the crack starts to propagate. For a pure far field
tension, in case of an isotropic material, the direction of the crack is perpendicular to
the loading direction. However, in case of laminates, due the presence of the matrix
and the fiber with different material properties, the crack path deviates. This depends
on the relative fracture toughness of the matrix and the fiber. In this present study,
as the fracture toughness of the fiber is less than that of the matrix, the crack easily
propagates in the fiber than the matrix. Figure 6 shows the crack path for CSCL with
different fiber orientations, 30◦, 45◦ and 60◦. In all the different cases, the crack
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Fig. 5 Schematic representation boundary value problem for: a CSCL, b TSCL

Table 2 Material parameters for the fiber and the matrix [12]

Material Young’s modulus
(N/mm2)

ν Fracture toughness
(N/mm)

Matrix Em = 70 × 103 νm = 0.34 Gm = 0.025

Fiber Ef = 300 × 103 νf = 0.14 Gf = 0.005

growth is along the interface. It is seen that for fiber orientations 45◦ and 60◦, as
the initial crack tip is inside the matrix, the crack propagates in the matrix, until it
reaches the interface and upon further increase in the load, the propagation is along
the interface. Figures 8 and 9 shows the fringe pattern for fiber orientations 45◦ and
60◦. A symmetric pattern is an indicator of mode I fracture whilst an anti-symmetric
indicates mixed mode. This is seen in Fig. 8a. It is seen that the crack growth in
the matrix is because the influence of the mode-mixity is greater than the fracture
toughness of the matrix (see Fig. 6b). Similar behavior has been observed in Fig.
6c, e, f.

Figures 7a, b shows the load-carrying capacity of CSCL for different fiber orien-
tations, viz., 30◦, 45◦ and 60◦ and for different matrix thickness, tm = 0.25, 0.5 and
0.75. The stress state experienced by the crack tip is strongly influenced by the fiber
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Fig. 6 Phase field variable
evolution for CSCL with
different fiber orientation
and for a–c tm = 0.25, d–f
tm = 0.5, g–i tm = 0.75, the
interface between the matrix
and the fiber is represented
by white line
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Fig. 7 CSCL subjected to tension: load-displacement for the various fiber orientations for different
matrix thickness: a tm = 0.25 ([the symbols (a–d) are the instances at which σmax − σmin are plotted
in Figs. 8 and 9), b tm = 0.5, c tm = 0.75

orientation. Fiber angle with θ = 60◦ experiences higher mode-mixity than other
orientations. Thus, a laminate with fiber orientation 60◦ offers higher resistance to
crack propagation for a constant matrix thickness. However, the peak load at which
the propagation starts is almost independent of the matrix thickness. This is because,
as the matrix thickness increases, the inter-matrix spacing increases and the crack
grows without the influence of the interface. The evolution of the damage variable,
an indicator of the crack propagation, is shown in Fig. 6 for different fiber orien-
tations and for different matrix thicknesses. The while line in Fig. 6 represents the
fiber-matrix interface. As seen from Fig. 6 that as the matrix thickness increases,
the crack tip is mostly in the matrix, an isotropic material. Hence, the crack grows
perpendicular to the direction of the load and independent of the fiber orientation.
The presence of the fiber offers less resistance to the crack path.
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Fig. 8 Fringe pattern for CSCLwith fibers at 45◦ at selected points on the load-displacement curve
(c.f. Fig. 7a) for the matrix thickness, tm = 0.25

As seen earlier, for particular fiber orientations andmatrix thickness, the growth of
the crack is along the matrix-fiber interface. The influence of the fiber orientation on
this is depicted in Fig. 10. From the numerical study, it is observed that the greater the
matrix thickness and fiber orientation, the longer the crack length along the interface.
The mode mixity experienced by the crack tip in case of fiber oriented at 60◦ is less
when compared to the fiber oriented at 45◦ (see Figs. 8b and 9b). It is also seen that
for a particular matrix thickness and fiber orientation 30◦, the crack first propagates
along the matrix-fiber interface before propagating further in the fiber and this is
because, Gfiber

c < Gmatrix
c .

3.1 Tow-Steered Composite Laminates (TSCL)

Next, the crack propagation in the TSCL is analyzed. The domain, the initial crack
location, and the essential conditions are shown in Fig. 11. For the analysis, two
cases are considered: the initial crack is in the matrix (see, Fig. 11a) and the initial
crack is in the fiber (see, Fig. 11b). These are referred to as case I and case II whilst
discussing the results. The aim of this is to study the influence of the initial location
on the crack trajectory and the load-carrying capacity.

For both cases, the crack growth is in the direction that minimizes mode-II stress
intensity factor, until it reaches the fiber-matrix interface (see Fig. 12. However, in
case of Case I, the crack kinks into the soft compliant material (fiber) (see, Fig. 12a).
This is because the fracture toughness of the fiber is less when compared to thematrix
and so it offers less resistance, while it propagates along the interface for case II (see
Fig. 12b). This can be attributed to the relatively higher fracture toughness of the
matrix. It is further opined that the angle of the fiber does not have a strong influence
on the crack propagation path for both cases as seen in Fig. 12.
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(a)

(b)

Fig. 9 Fringe pattern for CSCLwith fibers at 60◦ at selected points on the load-displacement curve
(c.f.Fig. 7a) for the matrix thickness, tm = 0.25

The influence of the applied displacement on the reaction force for TSCL (both
cases) with fiber orientations 〈−30◦, 0◦〉 and 〈−45◦, 0◦〉 are shown in Fig. 13. The
results for CSCL with fiber orientations 30◦ and 45◦ is also shown for comparison.
In both cases, the peak load-carrying capacity is higher and this is due to the stiffer
matrix material that resists crack propagation. It is inferred that the peak load for
TSCL is independent of the cases considered here and significantly higher than the
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Fig. 10 Dependence of the fiber orientation on the crack length (on the interface) for different
matrix thickness, tm

Fig. 11 Representation of an initial crack in TSCL, a initial crack in matrix and b initial crack tip
in the fiber
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Fig. 12 Crack propagation
in TSCL with different fiber
orientations ( 〈−30◦, 0◦〉,
〈−45◦, 0◦〉, 〈−60◦, 0◦〉)
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Fig. 13 Load-displacement for CSCL and the TSCL: a 〈−30◦, 0◦〉 and b 〈−45◦, 0◦〉. In case of
TSCL, both the cases are considered

Fig. 14 a–c evolution of damage for different fiber orientations: 〈0◦, 30◦〉, 〈15◦, 45◦〉 〈30◦, 60◦〉,
respectively, and d load-displacement curve for TSCL

CSCL. Figure 14 shows the effect of the combination of center angle θ0 and θ1 on the
damage evolution and shows that the fiber orientation strongly influences the crack
path. The corresponding load-displacement is shown in Fig. 14d.
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4 Concluding Remarks

In this chapter, using the phase field method, the fracture characteristics of laminated
composites (both straight fibers and tow-steered) are studied. The open source finite
element software, FEniCS was used to solve the coupled phase field-elasticity equa-
tions. Fracture processes in the homogeneous and orthotropic material are compared
against the available results in the literature. The influence of the fiber orientation,
tow angle, inter-matrix spacing on the peak load at which the crack starts to propa-
gate and the crack morphology are systematically studied. It can be inferred that for
the cases considered, mode-mixity and the matrix material properties significantly
influence the crack propagation. The maximum load at which the fracture happens
for the CSCL is strongly influenced by the fiber angle for small fiber thickness and is
relatively less sensitive for higher inter-fiber spacing. Further, the inter-matrix spac-
ing and the fiber angle directly influences the crack length along the matrix-fiber
interface.
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