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Shells

Vaishali , Ravi Ranjan Kumar , and Sudip Dey

1 Introduction

Sandwich structures are advance structures mainly consisting of two facesheets (i.e.
upper and lower facesheet) and middle core. The facesheets are generally made up
of thin laminated composites having high strength. These facesheets are respon-
sible for providing high strength and stiffness to structures, while the middle core
is constructed of low-density material responsible for low weight of the structure.
Because of these exclusive properties, they have wide range of applications like in
aerospace, civil construction, marine and automobile industries. Apart from high
structural strength and low weight, these structures are highly recommended for
optimal design, which is nowadays most desirable feature. But these structures have
some shortcomings like low temperature and corrosion resistance because of which
delamination occurs. So forminimizing these shortcomings, the laminated composite
facesheet can be replaced by the functionally graded facesheet (FGF). Functionally
graded (FG) materials are inhomogeneous advance composite materials, generally
metal and ceramic mixture. The construction is in such a way that one surface will
be metal rich providing high strength and stiffness while the other surface will be
ceramic rich providing high temperature and corrosion resistance [20] and throughout
the thickness these metals and ceramics are distributed following various laws like
power law, exponent law and sigmoid law. The final properties obtained in these
FGMs are totally different from the parent materials [46]. By combining the sand-
wich structurewith theFGstructure, the outcome structure knownas hybrid sandwich
FG structure is obtained. These are new and improved structures having exclusive
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properties such as high temperature resistant, corrosion resistant, lowweighted and at
the same time not compromising with the strength and stiffness. In real life, various
kinds of uncertainty such as manufacturing, geometric, material, operational and
environmental exist. During manufacturing of these hybrid structures, some kinds of
unavoidable uncertainties like (uncertainty in material property) are always present.
So, designing and analysing these hybrid structures is quite difficult than that of
conventional materials, because the variation of materials and geometrical proper-
ties of conventional materials from the nominal value is little or well known. But for
safe and economical design of these hybrid FG-sandwich structures, it is very neces-
sary to consider these uncertainties [10, 11, 16, 64–66]. Probabilistic approaches for
predicting uncertainty-based dynamic responses in case of complex structures like
composite plates and shells have gained extreme attention from the researchers [9, 17,
51, 52]. Uncertainty in the field of dynamic stability of composites was studied [15,
26–31]. Furthermore, study on composites considering various service conditions
and analysing uncertainty effect was done [12, 54]; after that, the cut-out effect was
studied [14]. Various works considering sandwich structure have gained immense
popularity [13, 26, 28, 35, 37, 39–41, 48–50, 53]. However, the work in the field of
hybrid is yet to be covered.

2 Background

The pioneering work on FGM [58] is conducted by Japanese scientist (1984)
promoting it as thermal barrier coating. A large number of research work have been
carried out on FGM [22–24, 43, 44] subsequently. Due to vast application range of
FGM, it is very important to perform the static and dynamic analysis. A plenty of
research has been conducted to determine the impact analysis of FGM, sandwich
and composites. For attaining more superior properties, FGM core was introduced
in sandwich structures which eliminated the chance of deformation. Because of
the wide range of application of these structures, it is necessary to investigate the
static and dynamic behaviour of these hybrid FG-sandwich structures for attaining
a reliable structure. For achieving accuracy, a proper and accurate computational
method should be adopted. For performing static and dynamic analysis of these
hybrid FG-sandwich structures, various computational models have been developed
by various researchers. The different plate theories are employed for static response
of the FG-sandwich plate exposed to sinusoidal load [68]. Furthermore, for natural
frequency analysis and for buckling load analysis on a simply supported hybrid
FG-sandwich plate, sinusoidal shear deformation plate theory was used [69]. Appli-
cation of thermo-mechanical load on sandwich structure whose core may or may
not be made up of FG materials was studied [8]. Later unified shear deformation
theory was developed which was used for analysing thermo-elastic bending in case
of FG-sandwich plate [70]. A free vibration analysis using Ritz method for a simply
supported hybrid FG-sandwich plate having rectangular geometry was studied [42].
A static analysis using three dimensional solutions for hybrid sandwich structure
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having FG core was proposed [32]. The result shows that by using FG material for
core, the discontinuity of the in-plane normal stress across the facesheet and core
interface is minimized and also there is a reduction in the magnitude of stresses in the
facesheets and deflection of the panel. Later on, use of advanced equivalent single
layer and layer-wise models having expansion up to fourth order was done for static
analysis of these hybrid structures [4]. According to the result, it is observed that
advance computational methods are essentially required for analysing these hybrid
FG-sandwich structures and it was also confirmed that these hybrid FG-sandwich
structures are better than the conventional sandwich structures or conventional FGM
structures. Under the influence of mechanical and thermal loads, the bending anal-
ysis on hybrid FG-sandwich plates was also studied [71, 72]. Later on, refined shear
displacement models were used for carrying out the deflection and stress analysis
in case of these hybrid FG-sandwich plate structures [47]. This shear displacement
model showed consistent parabolic variation of shear stress in transverse direction
without considering shear correction factor. The effect of thickness in functionally
graded structures having various geometries like plates and shells using Carrera’s
unified formulation was studied [5]. After that, variable refined theories were used
for analysing the thermo-elastic bending of hybrid FG-sandwich structures, taking
into account parabolic variation of shear stress throughout the thickness [1]. There-
after, a hyperbolic shear deformation theory was introduced for analysing buck-
ling and natural frequency considering the effect of transverse shear deformation
in case of these hybrid FG-sandwich plate structures [18]. Later on, a model of
order-n was developed for carrying out natural frequency analysis for these hybrid
FG-sandwich plates [67]. However, a suitable refined plate theory was used for
carrying out vibration analysis of these FG-based sandwich plates [21]. A plenty
of work related to static, buckling and natural frequency analysis of these hybrid
FG-sandwich plates were performed using shear deformation theory of higher order
[55–57]. An improved higher-order plate theory was introduced for free vibration of
hybrid plates having FG facesheets so as to increase the endurance limit in case of
facing varying thermal condition [33].

In recent years, various researches related to the analysis of impact on bare
functionally graded structures and similarly on bare sandwich structures have been
performed. A dynamic investigation of FG-based aluminium and foam core having
varying density throughout the thickness, when subjected to impact loading, was
found to have high energy absorption capacity [75]. Later on, a study was conducted
for analysing the energy absorption capacity of FG-based polymer foams and it was
observed that FG foams show superior properties related to uniform energy absorp-
tions but this was limited to low impact load [7]. A study related to low-velocity
impact, considering sandwich beam having multilayer, was conducted analytically,
experimentally and numerically. It was observed that with the decrease in number
of layers of facesheet and increase in the core strength, there is an increase in load
carrying and energy absorption capacity of these sandwich structures [73, 74, 76].
A comparative study of low-velocity impact behaviour of simple sandwich structure
and of FG-core-based sandwich was conducted, and it was observed that FG core
causes maximum contact force and maximum strain compared to simple sandwich
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structure [19]. Similarly, the low-velocity impact behaviour of sandwich structure
with three-layer grading in core was conducted and it was observed that the grading
in core increases the performance of structure [77]. In addition to it, some more
studies were conducted for finding the efficient way for increasing the impact perfor-
mance and for minimizing the damage caused by these impact loads [2]. From the
earlier discussions, it can be concluded that a lot of works show that by adding FGM
core to the sandwich structure, its performance becomes superior but some contra-
dictory findings are also present in some of the literatures. For example, a study
was conducted on FG core-based sandwich panel and it showed that these FG-based
sandwiches had inferior performance as compared to those of ungraded cores [25].

It is observed that the impact behaviour of hybrid FG-sandwich structures has
not been completely illustrated. Furthermore, instead of grading core, studies can
also be conducted by replacing the facesheet material with FG materials. It is also
observed that most of the work follows deterministic approach; very little study is
conducted using uncertainty approach. These uncertainty approach should be taken
into account while dealing with practical problems so as to minimizing the chances
of structure failure making it reliable and safe.

3 Governing Equations

In the current chapter, the hybrid FG-sandwich cylindrical shell is subjected to low-
velocity impact loads as shown in Fig. 1.

In this chapter,
−→
V a is the volume fraction of an element of materials ‘a’, whereas

the function indicating material properties of hybrid FG-sandwich structure ‘ fimpact’
can be represented as

fimpact =
z∑

a=1

fa
⇀

V
a

(1)

where fa represents the material property of an element of materials ‘a’. The
temperature-dependent material properties of hybrid FG-sandwich structure were
proposed [63] and can be expressed as

f = f0 + f−1T
−1 + 1 + f1T + f2T

2 + f3T
3 (2)

where f0, f−1, f1, f2 and f 3 are coefficients of temperature and T represents the
temperature in Kelvin.

In hybrid FG-sandwich structures, it is observed that there is a material property
variation [45] throughout the depth which is smooth and continuous. These varia-
tions can be given by various laws. In this chapter, the effective material property is
obtained by using power law as shown below
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Fig. 1 aHybrid FG-sandwich cylindrical shell structure and b impact loading (normal and oblique)
on hybrid FG-sandwich plate

E(ψ) = EM + (EC − EM)
[x/t + 0.5

]n
(3)

μ(ψ) = μM + (μC − μM)
[x/t + 0.5

]n
(4)

ρ(ψ) = ρM + (ρC − ρM)
[x/t + 0.5

]n
(5)

where E represents the elastic modulus, μ represents Poisson’s ratio and ρ repre-
sents the mass density, while ‘C’ shows top surface (ceramic rich) and ‘M’ shows
the bottom surface (metal rich) of FG facesheet. ‘t’ denotes the thickness and x =
(t/2), while ‘n’ indicates the power law index. The dynamic equilibrium equation is
represented as

[M(ψ)]
{
δ̈
} + [K (ψ)]{δ} = [

Fimpact
]

(6)

where (ψ) represents degree of stochasticity and {δ} represents the displacement,
whereas [M(ψ)] represents the mass matrix and [K (ψ)] represents the stiffness
matrix.

In the present case, i.e. low-velocity impact condition, the external force
[
Fimpact

]

can be expressed as
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[
Fimpact

] = {
0 0 0 . . . Fcontact . . . 0 0 0

}T
(7)

In the present case, as the impact is rigid then the equation can transformed as

mimpactRaimpact + Fcontact = 0 (8)

wherem impact represents the mass of the impactor while
..
aimpact represents the impact

due to acceleration. In this chapter, the contact law given by Hertzian is used for
determining the force exerted by impactor (here spherical geometry is considered).
Thus, the contact force (Fcontact) can be shown as [6]

Fcontact=Kα1.50 < α ≤ αmax (9)

K = 16
3π

1

KM + K impact

√
d
χ

M

(10)

where aftermodification, the contact stiffness is represented by KM and themaximum
indentation is represented by αmax. [60]. α is the local indentation and χ is a constant
which is dependent on the structure of target and impactor. The constant d can be
shown as

1
d

= 1
r impactor

+ 1
r shel l

(11)

where rimpactor and rshell represent the radius of curvature of the impactor and the
cylindrical shell. The local indentation (α(t)) can be shown as

α(t) = dimpactor(t)cosθ − δ
(
xc, yc, t

)
cosϕ (12)

where dimpactor represents the displacement because of impactor, δ represents the
displacement where impact (xc, yc) takes place in the z-direction, while θ represents
the impact angle and ϕ represents the twist angle. Globally, the force component can
be expressed as

Fimpact,x= 0, Fimpact, y=Fcontactsinϕ, Fimpact,z=Fcontactcosϕ (13)

In the present chapter, Newmark’s integration method is considered for calcu-
lating time-dependent equations [3]. The governing equation (Eq. 14) indicates that
transient properties are exhibited by the structure under impact loading,

{
Fimpact

}t+
t = {
Fimpact

} + {Fcontact}t+
t + [
M

(
�

)](
c0{δ}t + c1{δ̇}t + c2{ δ̈}t)

(14)
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wi = Ft+
t
impact

M(i)
(15)

where Ft+
t
impact = M(i)

(
c0wt

i + c1ẇt
i + c2ẅt

i

) − Ft
contact.

The above equation is an ordinary differential equation (ODE) with constant
coefficients, with a time interval of 
t which is discrete in nature. At time interval
t + 
t , we get

[K ]{δ}t+�t = {
Fimpact

}t+�t
(16)

[
K

]{ai }t+�t = {Fcontact}t+�t (17)

where [K ] and [ −
K ] are active stiffness matrices for impactor and cylindrical shell,

respectively. It can be further expressed as Eqs. (18) and (19)

[K ] =
[
K

(
�

)]
+ [Kσ ] + c0

[
M

(
�

)]
(18)

[
K

]
= c0m(i) (19)

where
(
�

)
represents the stochasticity present in the function.

The velocity of the impactor and cylindrical shell can be expressed as

{
δ̈
}t+
t = c0

({δ}t+
t − {δ}t) − c1
{
δ̇
}t − c2

{
δ̈
}t

(20)

{
δ̇
}t+
t = {

δ̇
}t + c3

{
δ̈
}t + c4

{
δ̈
}t+
t

(21)

The acceleration of the impactor and cylindrical shell can be expressed as

ẅt+
t
i = c0

(
wt+
t

i − wt
i

) − c1ẇ
t
i − c2ẅ

t
i (22)

ẇt+
t
i = ẇt
t

i + c3ẅ
t
i + c4ẅ

t+
t
i (23)

The initial boundary condition is expressed as

{δ} = {
δ̇
} = {

δ̈
} = 0 (24)

wi = ẅi = 0 and ẇi = V (25)

The constants can be formulated as follows
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c0 = 1

A
t2
, c1 = 1

A
t
, c2 = 1

2A
− 1, c3 = (1 − B)
t, c4 = B
t (26)

The value ofA is taken as 0.5 andB as 0.25. For the FEmodelling, an isoparametric
element which is quadratic in nature is considered with eight nodes. For every node,
there are three translational and two rotational degrees of freedom.The shape function
Si for the same can be determined as

Si = 1

4
(1 + ςςi )(1 + ϕϕi )(ςςi + ϕϕi − 1) (for i = 1, 2, 3, 4) (27)

Si = 1

2

(
1 − ς2

)
(1 + ϕϕi ) (for i = 5, 7) (28)

Si = 1

2

(
1 − ϕ2

)
(1 + ςςi ) (for i = 6, 8) (29)

where ς and ϕ signify the local natural coordinates of the element. Here, ςi= +1
for nodes 2, 3 and 6, ςi= −1 for nodes 1, 4 and 8, ϕi= +1 for nodes 3, 4 and 7 and
ϕi= −1 for nodes 1, 2 and 5. The efficiency of the shape function is determined by
Eq. (30)

8∑

i=1

Si = 1,
8∑

i=1

∂S
∂ϕ

= 0,
8∑

i=1

∂S
∂ς

= 0 (30)

The coordinates (x, y) of any particular point for the eight-noded element are

x =
8∑

i=1

Si xi , y =
8∑

i=1

Si yi (31)

The relation between the nodal degree of freedom and displacement with respect
to the coordinates (ς, ϕ) can be derived as

u =
8∑

i=1

Si ui ,=
8∑

i=1

Siv i ,w =
8∑

i=1

Siwi (32)

θ x =
8∑

i=1

Siθ xi , θ y =
8∑

i=1

Siθ yi (33)

The relation between the shape functions in terms of the Jacobian matrix ([J]) is
given as

[
Si,x

Si, y

]
= [J]−1

[
Si,ς

Si,ϕ

]
(34)
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where

[J ]−1 = [ x, ς x, ϕ
y, ς y, ϕ

]

In this chapter, the framework for the stochastic low-velocity impact analysis
is depicted in Fig. 2. Initially, the input parameters are identified like Young’s
modulus, shear modulus, Poisson’s ratio, density, etc., to incorporate in the model
to be designed. After that, a finite element method (FEM)-based approach is imple-
mented to estimate the deterministic output. The next step is to evaluate the input
and output data which are used to fit in the metamodel or surrogate model. In the
present study, polynomial chaos expansion (PCE) is used as a metamodel and its
predictability is verified by portraying percentage error and scatter plot with respect
to Monte Carlo simulation (MCS).

Fig. 2 Flow chart for probabilistic analysis of transient low-velocity impact response
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4 Polynomial Chaos Expansion (PCE)

The uncertainty of each input parameter in the random variable approach is modelled
by describing a probability density function (PDF) (refer to Fig. 3, f x(a)). The aim of
UQ is then to obtain the statisticalmoments of the random input response as presented
in this section. In its least complex structure, the PCE of a stochastic response [62]

f

(
⇀
a
(

⇀

ζ

))
depends on the randomness of the input variables

Fig. 3 Flow chart for moment-independent sensitivity analysis using PCE surrogate model
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f

(
⇀
a
(

⇀

ζ

))
=

p∑

n=0

bnϕn

(
⇀

ζ

)
(35)

where bn is the PCE coefficients, ϕn is the multidimensional orthogonal polynomials

which form the orthonormal basis in Hilbert space and
⇀

ζ = {ζ1, ζ2, . . . , ζd} shows
the basic random variable vector. On the basis of PDF of random input variables,
selection of multidimensional orthogonal polynomials in Eq. 35 is performed using
theAskey scheme. After extending the random response, the next step is to determine
the expansion coefficients, bn . On obtaining the PCE coefficient, random response
statistical moments can easily be obtained as shown below:

κy = b0 σ 2
y =

p∑

n=1

b2n‖ϕn‖2 (36)

The accompanying advances are engaged with getting PCE coefficients as per the
following:

a. Random responses and random input parameters are expressed with the help of
Eq. (35) by the selection of chaos order, m. For random input variables having a
moment χ f 1. The PCE can be shown as:

p∑

n=0

bnϕn

(
⇀

ζ

)
= f

⎛

⎝
t∑

j=0

χ f 1ϕ1(ζ1), . . . ,

t∑

j=0

χ f dϕ1(ζd)

⎞

⎠ (37)

b. On differentiating both sides of Eq. (37) w.r.t. basis random variables, ζ1 by using

multi-indices j (n) =
(
j (n)
1 , j (n)

2 , . . . , j (n)
d

)
which depicts the differentiation order

of the response w.r.t. basis random input variables. On summing up these multi-
indices, all the potential estimation of chaos order greater than zero and less than
its maximum order, n can be portrayed. On differentiating a linear system Ax =
bwhere matrix A represents analytical sensitivities, the unknown PC coefficients
are stored in x and the sensitivities of the higher order of the responses are stored
in b.

c. From step b, the linear system obtained can be evaluated both sides at ζ1 = ζ ∗
1 ,

where ζ ∗
1 represents any random value taken from the standard domain.

d. Using the finite difference method, sensitivities of the higher order of the
responses can be obtained.

e. To obtain PCE coefficients, put the sensitivities got in step d.
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5 Results and Discussion

In the present chapter, hybrid functionally graded (FG)-sandwich is considered of
cylindrical shell geometry having Rx = R and Ry = ∞ where, Rx and Ry are radii
of curvature in x- and y-direction, respectively (refer to Fig. 1a). The present hybrid
structure consists of three layers. First layer is the FG-based upper facesheet, and this
FG-based facesheet constitutes metal and ceramic mixture (here, considered mate-
rials are aluminium as metal and zirconia as ceramic) [61]. Then, the second layer
is the core made up of low-density foam material and the last layer is the laminated
facesheet [59] (refer to Table 1). The deterministic FE code is validated with respect
to the available scientific literature [34] (refer to Fig. 4). For finding the relative
effect of individual material properties like Young’s modulus (E), shear modulus
(G), Poisson’s ratio (μ) and mass density (ρ), moment-independent sensitivity anal-
ysis is carried out in conjunction with polynomial chaos expansion (PCE) surrogate
model. The probabilistic analysis for the impact analysis is obtained using PCE
approach (the model is constructed using different sample sizes) and is compared
with the results obtained from direct MCS. In the present study, the various sample
sizes considered for carrying PCE are 64, 128 and 256 while for direct MCS, sample
size considered is 10,000. Figure 5 shows the scatter plot, while Fig. 6 shows the
percentage errors for the maximum contact force, maximum plate displacement and

Table 1 Material properties of the constituents of hybrid FG-sandwich cylindrical shell

Material properties E (GPa) ν ρ (kg/m3)

FG
Facesheet

Ceramic 151 0.3 3000

Metal 70 0.25 2707

Core 0.85 0.42 1000

Lower facesheet 19.3 0.25 2600

Fig. 4 Time versus contact
force plot for functionally
graded beam (made up of
Si3N4 and SS) having both
ends clamped [length (Lo) =
135 mm, thickness (t) =
10 mm, width (b) = 15 mm,
time step (
t1) = 1.0 µ s,
impactor mass (mi) =
0.01 kg, impactor radius (ri)
= 12.7 mm, impactor
velocity = 1.0 m/s]
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Fig. 5 Scatter plots for the
original FE model and the
metamodel having
non-identical sample size for
a maximum contact force,
b maximum plate
displacement and
c maximum impactor
displacement
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Fig. 6 PDF plots of the
percentage error of
metamodel having
non-identical sample size for
a maximum contact force,
b maximum plate
displacement and
c maximum impactor
displacement
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maximum impactor displacement in case of low-velocity impact for cylindrical shell
geometry obtained using PCE. From these two figures, it can be clearly observed that
for sample size of 256, better results are obtained as the percentage error value is least
in case of 256 sample size compared to sample size of 64 and 128. So, for carrying out
further sensitivity analysis, sample size of 256 will be considered. Figure 7 shows the
sensitivity plot of various random input material properties for hybrid functionally
graded sandwich cylindrical shell. It is observed that mass density (ρ) is the most
sensitive parameter followed by shear modulus (G23) and the remaining parameters
like Young’s modulus (E1, E2), shear modulus (G12), Poisson’s ratio (ν) and ply
orientation angle (θ ) have insignificant influence on global response of the structure.
Furthermore, it can be observed that these material properties are varying throughout
the thickness of the shell and in most cases, the upper FG-based facesheet is the most
sensitive compared to the middle core and bottom laminated facesheet.

6 Conclusion

In the present chapter, moment-independent sensitivity analysis is carried out for
hybrid functionally graded (FG) sandwich structures having cylindrical shell geom-
etry subjected to impact loading. For appropriate quality control, it is of prime
importance to know the relative effect or importance of various input parameters
on the overall dynamic response of the FGM shell and to fulfil the purpose moment-
independent sensitivity analysis is carried out. Polynomial chaos expansion (PCE)-
based surrogate model is used for carrying out the present sensitivity analysis. The
surrogate model is applied to acquire computational proficiency without compro-
mising the precision of the results. The present study is carried out on aiming the
sensitivity analysis of material and geometrical properties of hybrid FG-sandwich
shell for impact responses (mainly peak value of contact force, maximum displace-
ment in the plate and maximum displacement due to impactor). The results illus-
trate the most significant parameters which affect the impact responses. The present
approach is comprehensive which can be further extended for any structural design.
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Fig. 7 SI of various material properties for a maximum contact force, b maximum plate
displacement and c maximum impactor displacement
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