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Abstract

There is growing concern about global warming worldwide. Greenhouse gases,
which absorb the heat energy reflected by the earth’s surface, are the main causes
of global warming. Carbon dioxide, methane, nitrous oxide, and ozone are the
main greenhouse gases. Methane is about 23 times more effective as a greenhouse
gas than carbon dioxide. Anthropogenic sources release methane directly or
indirectly into the atmosphere account for up to one-third of the global warming
currently taking place. Methanotrophic bacteria or methanotrophs may serve as a
biofilter and use methane as a source of energy before it is released into the
atmosphere. They have been the only recognized major biological sink for
atmospheric methane and play a key role in reducing the load of methane up to
15% to the total global methane destruction. Because of its physiologically
adaptable nature, methanotrophs exist in diverse habitats and present in a wide
range of pH, temperature, oxygen, salinity, and radiation. In this chapter, role of
methanotrophs as an effective tool in mitigating greenhouse gas emissions
is reported.
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4.1 Introduction

The atmospheric level of greenhouse gases (GHGs) like carbon dioxide (CO2),
nitrous oxide (N2O), nitric oxide (NO), methane (CH4), ozone (O3), and halogenated
hydrocarbons increases considerably with time due to biotic (plants, animals,
microorganisms, etc.) and anthropogenic (mining, industry, transportation, defores-
tation, construction, settlements, etc.) activities. In the future, these gasses will
continue increasing with increasing populations, crop production and changing
shifting patterns of food consumption, along with increased demand for ruminant
meats. Combustion of fossil fuels and industrial procedures are the primary sources
contributing to GHGs. A notable contribution is also made by the agricultural sector
and land use. The emission of various greenhouse gases and their role to worldwide
complete emissions vary with land use. At the global level, N2O, CO2, and CH4

contribute 8%, 77%, and 15% of total emissions, respectively. The agricultural
sector accounts for 32% of total worldwide emissions, of which 6%, 18%, and 8%
are N2O, CO2, and CH4 (De la Chesnaye et al. 2006).

Greenhouse effect is the interaction between incident solar radiation and these
gasses to store heat in the atmosphere and stop infrared radiation from escaping.
Higher amount of these gasses results in a “radiation drive,” which leads to an
increase in temperature. Among them, CO2 and water vapor dominate (some of
which are formed by oxidation of CH4 by OH radicals in the environment), that
together represent approximately 85% of the retention of solar heating (Fig. 4.1).

Fig. 4.1 Different sources of greenhouse gases
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4.2 Methane and its Sources

Methane is produced during food digestion in ruminants (e.g., buffaloes, goats,
camels) through the action of methanogenic archaea and by methanogens in
landfills, anoxic sediments (oceans and lakes), wetlands, termite nests, and soils
(in particular rice fields) as well as anthropogenic coal mines and natural gas.
Methane is the second most prevalent greenhouse gas after CO2, accounts for around
20% of anthropogenic radiation (Nisbet et al. 2014). Methane contributes the most to
the greenhouse effect after CO2 and is about 23 times more effective than CO2 on a
molar basis as a greenhouse gas (IPCC 2007a, b). It is estimated that microbial
production accounts for 70–90% of the atmospheric CH4 flux. Atmospheric levels of
methane increased to 1800 ppb in 2008 from about 715 ppb prior to the industrial
revolution (Montzka et al. 2011). CH4’s potential for global warming is 25 times that
of CO2. Slight alterations in methane levels in atmosphere will therefore make a
significant contribution to future worldwide warming (Bridgham et al. 2013). Global
climate change like enhanced CO2 emissions and warming has changed the
characteristics and functions of terrestrial ecosystems dramatically (Rosenzweig
et al. 2007; Austin et al. 2009; Singh et al. 2010).

4.2.1 Paddy Fields

Agricultural practices also lead to important emissions of methane with rice
manufacturing and livestock being the two primary sectors. Rice fields are mainly
man-made wetlands and are characterized by elevated concentrations of humidity,
lack of oxygen, and elevated concentrations of organic substrates and nutrients. As
such, they provide perfect circumstances for methanogenic bacteria and trigger
substantial methane emissions of about 40 Mt annually. Populations of
methanotrophic organisms that convert methane to carbon dioxide absorb up to
90% of this methane, but the remaining 10% escape to the environment. One
kilogram of rice production corresponds to 100 g of methane emission. It should
be noted that the precision of methane emission estimates has greatly increased in the
last decade, with current figures accounting for almost half of the previous estimates.
Rice fields (Yan et al. 2009; Liu et al. 2012), representing 5–19% of worldwide CH4

emissions, are one of the main sources of atmospheric CH4 (IPCC 2007a, b). In
reaction to high atmospheric CO2 and high temperatures, an increase in CH4

emissions from these sources has already been identified resulting in positive
feedback from the process of worldwide warming (Allen et al. 2003; Tokida et al.
2010; van Groenigen et al. 2011). Recent proof has shown that high concentrations
of CO2 increased CH4 emissions from rice soils by an average of 43% (van
Groenigen et al. 2011); high soil temperatures (2 �C) resulted in a 42% rise in
CH4 emissions (Tokida et al. 2010). Increased CO2 is usually considered to encour-
age photosynthesis, root biomass, and rice exudates (Pritchard, 2011; Okubo et al.
2014), possibly giving more CH4 substrate (Inubushi et al. 2003).
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4.2.2 Methane Hydrates

Although methane hydrates are neither a source nor a sink at the moment, they are by
far the biggest methane reservoir on Earth, representing 53% of all fossil fuels on
Earth. They are a crystalline solid combination of water and methane (mainly
methane trapped in ice) and occur in seabed sediments and permafrost in the Arctic
(Kvenvolden 1993, 1998; Kvenvolden 1988; Buffett 2004). The methane in the
sediment hydrates of the oceans is trapped deep in the ocean by the high pressure,
but is released above a depth of 400 m when the pressure drops. The energy industry
strives to exploit these benefits and reduce these occurrences. The methane hydrate
melts and releases methane gas into the atmosphere as the temperature increases
(Kvenvolden 1993; Shakhova et al. 2007, 2008; Portnoy et al. 2016). Methane
release from the Siberian Arctic permafrost can create an important contribution to
atmospheric pollution each year (Kvenvolden 1993; Shakhova et al. 2007, 2008;
Portnoy et al. 2016). There is concern that as global temperatures rise due to
anthropogenic climate change that leads to Arctic permafrost melting, large amounts
of methane will be released into the atmosphere, resulting in a catastrophic green-
house effect even higher than the assumed upper estimate of 5.8 �C going
beyond IPCC.

Another unanticipated source of about 4% of overall methane in the atmosphere
appears to be aerobic bacterial activity in oceans and precursors like
methylphosphonate (Karl et al. 2008). The substituted methane, both chlorine and
bromomethane, is also released from marine algae and sources of terrestrial and
aquatic bacteria into the atmosphere, contributing to global warming, which has not
been quantified sufficiently to date.

4.2.3 Coal Mines

By 2008, 826,001 million tons of coal reserves were estimated globally. World coal
consumption reduced in 2008 but continued to rise by 3.1% and stayed for six
successive years the world fastest increasing fuel (BP 2009). Methane emissions
from coal mines, measured approximately 5–30 Tg annually (Breas et al. 2001), are
primarily due to methane desorption during mining, comminution, and inefficient
combustion. Coal mine gas can also trigger heavy explosions in relation to the
greenhouse effect. For 2004, it is estimated that methane from Chinese coal mines
gets into the atmosphere. More than 80% of heavy coal mine accidents in China are
caused by coal mine explosions, accounting for one-third of total national deaths
(Song and Wang 2005). Therefore, the control of mine gas is important for the
reduction of greenhouse gases and for the safe regulation of coal mines for energy
industry (http://www.chinasafety.gov.cn).
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4.3 Methanotrophs Based Mitigation of Methane

Microbial community manipulation provides a possibly efficient means of
mitigating global climate change. It is essential to know their ecology and function
in order to deal with useful microbial communities. Methane biocycle is more
apparent than other GHG cycles because methane pathway is easy and involves
advanced microorganisms. The role of methylotrophic groups in mitigating climate
change recognized and their position in the global carbon cycle and in decreasing
greenhouse gas environmental impacts like methane and indirect carbon dioxide is
identified. Methylotrophs are a functional group of microbes that use reduced
substrates of carbon comprising of no carbon–carbon bonding. Methylotrophic
bacteria include methanotrophs (consuming CH4) and methylotrophs other than
methanotrophs (consuming other substrates of reduced carbon than methane). This
functional group can use methanol, methylamine, dimethylamine, formaldehyde,
formate, alongside methane as the sole carbon and energy source, and is often
involved in the global carbon cycle (Iguchi et al. 2015; Kolb and Stacheter 2013).
Methanotrophic biological oxidation of CH4 accounts for only about 5% of the
worldwide sink of atmospheric methane (Hanson and Hanson 1996). Methanotrophs
can oxidize as much as 90% of the CH4 produced in the soil prior it enters into the
atmosphere (Oremland and Culbertson 1992). Previously a number of
methylotrophic strains are identified as engaging effectively in climate change and
reducing greenhouse gas emissions (Kappler and Nouwens 2013; Jhala et al. 2014,
2015; Oshkin et al. 2014; Baesman et al. 2015).

4.3.1 Methanotrophs

It is thought that microorganisms control global methane emissions more directly
than CO2 emissions. Microbial methanogenesis is performed by anaerobic archaea
community in oceans, wetlands, rumens, and termite intestines, dominates natural
emissions (~250 million tons CH4 per year). Such biotic sources, however, are
surpassed by emissions from human actions (primarily rice farming, fossil fuel
extraction, landfilling, and livestock farming) (~320 million tons of methane annu-
ally), that, in addition to fossil fuel emissions, also account for emissions primarily
from microorganisms.

Methanotrophic bacteria play important role in controlling high levels of methane
in some of these environments. Methanotrophs are broadly categorized into two
types: Type I methanotrophs or low-affinity methanotrophs primarily belong to
gammaproteobacteria class, usually consume large percentage of CH4 produced in
soils prior it escapes in atmosphere. The Type I methanotrophs are present in the
Methylococcaceae family that includes the genera Methylococcus, Methylobacter,
Methylomonas, Methylosphaera,Methylothermus,Methylosarcina,Methylocaldum,
Methylosoma, and Methylohalobius. Methanotrophs can also act as a net CH4 sink
for CH4, which is already in the atmosphere. Type II methanotrophs or “high-
affinity” methanotrophs belong primarily to Alphaproteobacteria class. They make
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an important contribution to the annual reduction of about 30 million tons of CH4

from the atmosphere. Type II methanotrophs of the genera Methylosinus and
Methylocystis are included in Methylocystaceae family. Other Type II genera
(in the family Beijerinckiaceae) are Methylocella and Methylocapsa. Methylocella
silvestris is the first studied facultative methanotroph, which can use either methane
or multi-carbon compounds (Dedysh et al. 2005; Theisen et al. 2005).
Thermotolerant species of Methylococcus and Methylocaldum are frequently called
as Type X methanotrophs because their biochemical, physiological, and phyloge-
netic features are different from other Type I methanotrophs.

Our knowledge of the greenhouse gas cycle for CH4 is more comprehensive than
for CO2 or N2O because it involves an easy pathway and advanced microorganisms.
Since large amount of methane in atmosphere is produced by microorganisms, a
large share of CH4 emissions from terrestrial ecosystems can be regulated techni-
cally by the management of microbial community’s structure and process.
Methanotrophic microbial oxidation of methane is just about 5% of the worldwide
sink of atmospheric methane (approximately 30 million tons annually) and thus
appears to be less significant. Methanotrophs, however, also oxidize about 90% of
methane produced in the soil prior escaping into atmosphere. Transformation of
farmland or grassland into forests leads to a significant decrease in CH4 flux and it is
obvious that both the type and frequency of methanotrophs are predictive of CH4

flux. Future study therefore needs to concentrate on including these information and
relationships to enhance CH4 fluxes in different ecosystems. This understanding can
also be used to reduce methane emissions through land use and management
modifications. Methanotrophs, for instance, performed a major role in absorbing
portion of the generated methane in rice cultivation. This would strengthen the
control of flood frequency and duration by increasing the availability of soil oxygen.
There is also considerable prospective for using methanogenesis inhibitors, like
ammonium sulfate fertilizers, in controlled systems for promoting sulfate reducers
growth at the cost of methanogens. Reducing methane emissions from ruminants
includes approaches to improve feed quality and inhibit rumen methanogens by
employing antibiotics, vaccines, etc.

Microbial use of CH4 occurs both aerobically and anaerobically. Aerobic
methanotrophs can be distinguished in three main groups: Group I
(Gammaproteobacteria; also denoted as Type I and Type X) (Anthony 1982; Semrau
et al. 2010), Group II (Alphaproteobacteria, also known as Type II and Type III)
(Dedysh et al. 2001), and Group III (Verrucomicrobia, frequently known as Type
IV) (Murrell and Jetten 2009). They occur in diverse environments and play a
significant role in methane oxidation in nature. All recognized aerobic
methanotrophs employ methane monooxygenase (MMO) which catalyzes first oxi-
dation step which transforms methane into methanol (Semrau et al. 2010). Methanol
is then oxidized to formaldehyde and can then be transformed to biomass or further
oxidized to CO2. Two iso-enzymes of MMO are recognized: cytoplasmic soluble
MMO (sMMO), present in only a subset of methanotrophs, and membrane bound
(or particulate) MMO (pMMO), that is nearly present in all known methanotrophs.
Because of their distinctive microbiological and metabolic characteristics,
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methanotrophs are of excellent concern for their industrial application. Research on
methanotrophs has enhanced considerably with the fast growth of science and
technology since the first methanotroph was isolated in 1906.

4.3.2 Biodiversity of Methanotrophs

In the environment, methanotrophs tend to be ubiquitous and may be isolated from
different environments where methane and oxygen are present. Methanotrophs are
widely distributed in the environment, including different extreme environments,
and can grow at temperatures up to 4 �C (Bowman et al. 1997) or up to 72 �C
(Bodrossy et al. 1999). While the first Methanotroph, Bacillus methanicum was
isolated back in 1906, the basis for the existing classification of these bacteria was
not established until Whittenbury et al. (1970) isolated and described over 100 new
methane using bacteria. Since 1990s, several extremophilic methanotrophs were
discovered from extreme environments, including alkaliphiles (Khmelenina et al.
1997; Sorokin et al. 2000; Kaluzhnaya et al. 2001), acidophiles (Dedysh et al. 2000,
2002, 2005; Dunfield et al. 2007; Pol et al. 2007; Islam et al. 2008), thermophiles
(Bodrossy et al. 1999; Whittenbury et al. 1970; Malashenko et al. 1975; Bodrossy
et al. 1995, 1997; Tsubota et al. 2005), psychrophiles (Omelchenko et al. 1993,
1996; Bowman et al. 1997), and halophiles (Lidstrom 1988; Fuse et al. 1998; Heyer
et al. 2005).

Research has shown a diverse variety of methanotrophs are found in rice fields,
comprising Methylomonas, Methylococcus, Methylobacter, Methylocaldum,
Methylomicrobium, Methylocystis, and Methylosinus. Several factors, like supply
of oxygen and rice growth time, influence the diversity of methanotrophs in rice
fields (Eller and Frenzel 2001). Several methanotrophs are present in landfills, like
Methylobacter, Methylomicrobium, Methylocystis, Methylosarcina, and
Methylosinus. Factors like temperature, oxygen, pH, earthworms, moisture affect
the diversity of methanotrophs in landfills (Gebert et al. 2003). A number of
methanotrophs have been detected in freshwaters and sediments, mainly Type I
methanotrophs like Methylobacter, Methylomonas, Methylosarcina, Methylosoma,
and Methylococcus.

4.3.3 Catalytic Properties of MMOs

Methane monooxygenases (MMOs) catalyze the first oxidation step, i.e., oxidation
of methane to methanol, in methanotroph metabolism. While the methane C–H bond
is strong and extremely stable, under favorable conditions MMO can break this bond
(Dalton 2005). Two genetically unrelated MMOs are produced by Methanotrophs:
soluble MMO (sMMO) is expressed by a subset of methanotrophs and membrane
bound, particulate MMO (pMMO) is expressed in all methanotrophs with the
exception of the genus Methylocella (Theisen et al. 2005). Indeed, cultures
expressing pMMO usually display greater affinity toward methane in comparison
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to cells expressing sMMO. In addition, it is known that cells that use pMMO for
growth show higher growth yield, indicating more effectiveness of pMMO for
methane oxidation (Leak and Dalton 1986). pMMO is found in complex internal
membrane structures, referred as intracytoplasmic membranes (Anthony 1982;
Semrau et al. 2010). Both types of enzymes exhibit wide substrate specificities,
particularly sMMO, that can oxidize alkanes, alkenes, aromatics, alicyclics, ethers,
heterocycles, and ammonia. Several methanotrophs like Methylomicrobium album
BG8 and Methylomonas methanica have only the pMMO, Methylococcus
capsulatus Bath, Methylosinus trichosporium OB3b and some others can express
both forms (Hanson and Hanson 1996) depending on the amount of copper in the
medium. Expression levels are associated with intracellular concentrations of copper
in species that have genes for both sMMO as well as pMMO, a mechanism called the
“copper switch” where sMMO is produced at low levels of copper while pMMO
expression is slightly upregulated when copper is available, sMMO expression is
downregulated (Nielsen et al. 1997; Murrell et al. 2000; Kenney et al. 2016). Active
sites of the enzymes reveal this metalloregulation: sMMO includes a non-heme
diiron active site and pMMO contains a copper active site (Rosenzweig et al.
1993; Lieberman and Rosenzweig 2005; Balasubramanian et al. 2010). While
several characteristics of the role of sMMO are known, the current knowledge of
pMMO is less known.

4.4 Role of Methanotrophs in Mitigating Methane Emission

Combined with a comparatively brief atmospheric lifetime (about 10 years) com-
pared to CO2 (50–200 years), the elevated global warming potential of methane
demonstrates that mitigation impacts can be accomplished comparatively rapidly
(Lelieveld et al. 1998; Breas et al. 2001). Furthermore, the disparity between
methane sources and sinks in the worldwide budget accounts for <6% of total
global methane sources, that indicates that a slight reduction in methane emissions
could stabilize atmospheric methane or possibly lead to substantial stabilization or
reduction of concentration of methane in the atmosphere (Lelieveld et al. 1998).
Unfortunately, due attention has not yet been paid to control methane emissions, and
after nearly a decade of modest changes in atmospheric methane, global atmospheric
methane regained growth relative to the mole fraction from early 2007 (Rigby et al.
2008). This will be an important issue for climate change, and this field of research
must be given greater attention. The maximum CH4 released into the atmosphere is
around 520 Tg�1 of which 90% oxidizes by photochemical processes in the tropo-
sphere and 10% is removed biologically from soil and water, primarily by
methanotrophs (Hanson and Hanson 1996; Breas et al. 2001). Approximately 70%
of the world’s methane emissions are believed to be anthropogenic (IPCC 1996).
Landfill gas and coal mine fuel are two major sources of methane emissions from
human activities and therefore considered as significant targets for methane
mitigation.
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Methanotrophs possess considerable ability for applied microbiology and
bioprocess engineering, along with bioremediation of pollutants like halogenated
hydrocarbons by co-metabolization by MMOs, biotransformation of various organic
substrates, methane assimilation for mitigating greenhouse effects, and production of
commercially important compounds (e.g., unicellular protein, astaxanthin, and
poly-β-hydroxybutyrate). Therefore, for their industrial applications, engineering
on methanotrophs is very essential. Methanotrophs have significant role in the global
carbon cycle as they are the only biological methane sink. Methanotrophs can also
use several different toxic organic compounds. Such characteristics illustrate that
methanotrophs are useful in environmental biotechnology.

4.4.1 Mitigation of Methane Emissions from Landfills

Landfills around the world discharge almost 10% of CH4 into the atmosphere (Breas
et al. 2001) and are considered significant anthropogenic methane sources. In general
landfill gas composition involves 30–70% (v/v) methane, 20–50% (v/v) CO2,
nitrogen, oxygen, ammonia, sulfur compounds, hydrogen, carbon monoxide, and
trace quantities of various volatile organic compounds like dichloromethane, vinyl
chloride, tetrachloroethylene, toluene, benzene, and xylene (Nikiema et al. 2007).
Landfills have several advantages, like the ability to oxidize different concentrations
of methane and toxic contaminants. Different biological systems are created to
decrease methane emissions to landfills by offering optimal circumstances for
microbial procedures and effective transport of landfill gas to locations where it is
to be produced. Huber-Humer et al. (2008) studied the different bio-based process
designs for daily use, comprising transient or long-term biocovers, passively or
actively aerated biofilters, biowindows, and biotarps. Biofilters can be more practical
owing to their small footprint and elevated removing capability for gases due to the
growing use of gas collection systems. Latest IPCC evaluation report identifies
biocovers and biofilters as important mitigation techniques that should be
commercialized before 2030 (IPCC 2007a, b). Nikiema et al. (2007) reviewed effect
of various parameters like different filter beds, operating conditions, inlet loads,
elimination capacities, and conversions on methane biofiltration.

There are important variations in methanotrophic reaction to varying levels of
methane. Some methanotrophs in upland and forest soils possess strong affinity to
methane as they start uptaking methane at low levels and thus consuming methane
from the atmosphere (Henckel et al. 2000; Horz et al. 2005). Some low-affinity
methanotrophs do not work until the methane amount reaches 0.8–66μmol l�1

(Huber-Humer et al. 2008). Nitrifying bacteria also capable of oxidizing methane,
but the removal rates are<5% of that of methanotrophs (Bodelier and Frenzel 1999).
Some methanol oxidizing bacterial consortia are also capable of oxidizing methane
only when concentration of methane is below 10% (Hughes et al. 2002).

In addition to the biological system configurations and the landfills
characteristics, their waste, environmental, and operational parameters also have a
major impact on the microbial methane mitigation rates. These parameters are
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nutrients (Nikiema et al. 2005; Albanna et al. 2007), filter bed type (Dobbie and
Smith 1996; Humer and Lechner 1999; Wilshusen et al. 2004; Haubrichs and
Widmann 2006), temperature (Whalen et al. 1990; Cai and Yan 1999; Visvanathan
et al. 1999; Borjesson et al. 2004; Kettunen et al. 2006), moisture content (Borjesson
et al. 1998; Visvanathan et al. 1999; Albanna et al. 2007), and pH (Bender and
Conrad 1994; Syamsul Arif et al. 1996). Therefore, for controlling landfill methane
emissions, engineering and standardization of the methanotrophic bioprocess is
essential.

4.4.2 Mitigation of Methane Emissions from Coal Mines

Methane is released from operational and inactive underground and surface mines
due to post-mining practices such as coal processing, storage, and transport. It has
been measured that in the year 2010 global methane emissions from coal mines were
approx. 584 MMTCO2, representing 8% of overall global methane emissions. Coal
mine gas is a complex mixture having higher methane concentrations. In addition to
the greenhouse effect, coal mine gas may also cause heavy explosions. In China,
more than 80% of heavy coal mine accidents are due to coal mine explosions, which
account for one-third of total national deaths (Song and Wang 2005). Therefore, the
control of mine gas is necessary for the mitigation of greenhouse gases and for the
safe coal mining management for the energy sector (http://www.chinasafety.gov.cn).

The biological process employing methanotrophs can be more economical and
effective in comparison to seam gas drainage and air ventilation that are presently the
main efficient approaches for controlling coal mine gas. Biofiltration is a safe and
less expensive technology because it uses microorganisms for oxidation of methane
at ambient temperature to carbon dioxide and biomass. In the last decade, methane
biofiltration approach is considered for treatment of effluent gases produced during
landfill and animal husbandry activities, where gas flow levels are relatively low
(Cloirec et al. 2001; Nikiema et al. 2005; Gebert and Gröngröft 2006; Dever et al.
2007). Methane removal studies with packaging materials like polypropylene
Raschig rings (Apel 1991), glass tubes (Sly et al. 1993), mature compost (Nikiema
et al. 2005), gravel (Nikiema et al. 2007; Girard et al. 2011) have shown compara-
tively slow conversion. A bench-scale bioreactor has been employed to study the
ability of Methylomonas methanica for removing methane from coal mines, and
90.4% of methane was removed in a 35% methanol-air mix in 24 h (Apel 1991). At
flow rates of between 0.2 and 2.4 L min�1 at 30 �C, a laboratory-based coal-packed
biofilter has been developed and moderately methane is removed from humidified
air. Oxidation of methane was catalyzed by a diverse microbial community, the most
prevailing of which was recognized as Methylocystis by the 16S rRNA sequencing.
Furthermore, Methylosinus sporium was also tested in parallel. The results indicate
that low-cost coal packaging has a favorable potential as an effective growth surface
and contains methanotrophs for methane removal (Limbri et al. 2014).

Detecting the methanotrophs source in the environment is important for basic and
applied research. Using culture-independent molecular biological methods, the
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diversity of methanotrophs present in alkaline soil of a Chinese coal mine was
investigated. A wide variety of methanotrophs along with several uncultivated
methanotrophs were reported (Han et al. 2009). The occurrence of viable aerobic
methanotrophs in geological coal- and lignite-bearing formations at substantial
depths has been proved (Mills et al. 2010; Stępniewska et al. 2013). Such results
are significant to the mining industry in particular. Methanotrophs are exceptionally
efficient in removal of methane under optimal conditions, for instance, the removal
of the methane released in the Gulf of Mexico during the 2010 Deepwater Horizon
oil spill (Kessler et al. 2011). A strict control of global emissions of greenhouse gas
and further progress in research into methanotrophs can allow these microorganisms
to be used in the near future to control coal-gas emissions and explosions.

4.5 Engineered Strategies for Methane Removal

Various strategies may be used, taking into account the stimulation of
methanotrophic activity for methane reduction in the atmosphere. The renowned
engineered method engaged in this operation is “Biofilters or biocovers,” Biocovers
are usually organic substances in which the permeable materials, like compost,
sewage sludge, or wood chips, cover the landfill surface. These materials are
characterized by effective gas transport for methane coming out from landfills and
atmospheric oxygen, as well as the ability to retain water for methanotrophic activity
(Huber-Humer et al. 2008; Scheutz et al. 2009).

Knief and Dunfield (2005) isolated two methanotrophic strains, which
contributes to the reduction of CH4 over a 3-month period. However, in the
atmospheric concentration of CH4, these strains are unable to grow and require
unique conditions. Surprisingly, a new strain of Methylocystis that can grow at
10 p.p.m.v. CH4 has been found. Further studies of this strain indicate that this
cell has two pMMO isozymes, pMMO1 and pMMO2, resulting in the finding that
pMMO2 oxidation of CH4 is more efficient than pMMO1. twenty-first century
scientists are now using biotechnology to effectively improve methanotrophic bac-
teria, i.e., to control methane emissions, bioremediation, biobleaching, and known
methanotrophic biofilters for reducing methane in landfills (Scheutz et al. 2009;
Semrau et al. 2011).

Important biotechnological factors, like growth rate, yield, and genetic tractabil-
ity, were reported for limited methanotrophs. Therefore, today majority of metabolic
engineering attempts are focusing on well-known species like Methylococcus
capsulatus Bath, M. trichosporium OB3b, and Methylocystis spp. Nevertheless,
recent attempts in the cultivation and characterization of new methanotrophic
organisms have led to the isolation of a number of strains, which can give a wider
variety of biotechnology potential applications. Several number of extremely psy-
chrophilic, thermophilic, alkaliphilic, acidophilic, and halophilic methanotrophs
have been identified, thereby increasing the physiological range of aerobic
methanotrophy (Kalyuzhnaya et al. 1999; Trotsenko and Khmelenina 2008; Murrell
2010). Growth factors of methanotrophs differ considerably, covering a wide range
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of pH (1–10), temperature (4–65 �C), and salinity (0–10%) (Trotsenko and
Khmelenina 2008).

While methanotrophs have shown promising potential in methane mitigation and
biodegradation of hazardous contaminants, but from a biochemical engineering
point of view, still several significant limiting factors remain, like unavailability of
desirable methanotrophic strains with better controlled metabolic activity, complex-
ity in the design and control of microbial consortia, low methane and oxygen
solubility in aqueous phases resulting in slow growth, competitive inhibition
among growth substrate (methane) and co-metabolites. Molecular ecology research
indicated that there are far more methanotrophs exist in the ecosystem than
documented in culture collections. Enrichment and isolation of novel
methanotrophics, especially from more extreme environments, require considerable
efforts. It is also necessary to address the nature of non-cultivated methanotrophs
that grow in atmospheric methane concentrations. Extremophilic methanotrophs
capable of growing at very high or very low pH levels give a means to investigate
the mechanisms through which such methanotrophs sustain at extremes.

In technical applications, a microorganism’s big biodiversity and exploitability
often demonstrate its excellent potential. The earlier results show that for their
industrial application we have plenty of methanotrophs available though their
diversity is overlooked. New methods are required for better understanding the
molecular mechanisms of their adaptation to different stresses such as pH, tempera-
ture, salinity, and diverse chemicals. Comparative genomics and proteomics will
give insights about their adaptation to extreme situations and on the growth and
phylogeny of methanotrophs. However, recent developments in methanotrophic
physiology lead to new possibilities for exploiting their machinery. Still there are
significant gaps in the fundamental knowledge of methanotrophy. With the develop-
ment of new approaches several significant breakthroughs in this field will be
achieved in the coming years.

4.6 Conclusions

Global warming is seen as a major environmental issue. The increase in the con-
sumption of fossil fuels and deforestation leads to the anthropogenic greenhouse gas
emissions contributing to global warming. Methane accounts for approximately 16%
of the greenhouse effect among these gases. Methanotrophs possess the remarkable
potential to use methane as their only carbon and energy source. Methanotrophs are
found in diverse environments and have significant role in methane mitigation. The
resources are available for manipulating methanotrophs and new methanotrophic
strains are now available to extend the metabolic features for industrial biotechnol-
ogy. Hence, it is necessary to adopt various strategies that may have practical
importance in stimulating the methane sink activities by methanotrophs to mitigate
the problem of global warming due to methane.
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