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Abstract

Rising concentration of methane (CH,), nitrous oxide, carbon dioxide, and
chlorofluorocarbons in the atmosphere result in global warming. These green-
house gases (GHGSs) trap the infrared radiations remitted from the Earth. The
global mean temperature is rising more rapidly than ever due to presence of
higher concentration of GHGs in the atmosphere. Anthropogenic activities such
as fossil fuel burning, biomass combustion, industrialization, modern agricultural
system, etc., are the key factors responsible for rising GHGs concentration. After
carbon dioxide, CHy is the major GHG contributing to the global warming. CH,
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is produced by methanogens by complex processes known as methanogenesis.
Methanogens are strictly anaerobic bacteria and they can persist in extreme
environmental conditions. Rice is the stable food for more than 50% of global
population. Rice is generally cultivated in subtropical regions and it is reported
that continuous flooded environment is better for higher production. Flooding
condition of the rice creates favorable environment for methanogenic bacteria.
Under anaerobic environment, methanogens consume soil organic matter as
carbon source and emit CH, gas to atmosphere. CH,4 emission from rice soil is
the net balances of two processes: production by methanogens and oxidation by
methanotrophs. Methanotrophs are obligate aerobic bacteria which consume CH,
as the source of carbon and help oxidation of CH, to carbon dioxide. In rice
ecosystem, population of methanogenic and methanotrophic bacteria depends
upon several biotic and abiotic factors which are discussed in this chapter.
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12.1 Introduction

Methane (CH,) is the simplest hydrocarbon greenhouse gas (GHG) produced by
methanogens (archaea) under anaerobic environment (Liu et al. 2019a; Malyan et al.
2019b). CHy is colorless, odorless, non-toxic gas with tetrahedral structure. The
density of CH, and air at standard temperature and pressure is 0.714 and
1.225 kg/m?, respectively, and it is much lighter than the air. Methane, carbon
dioxide, and nitrous oxides are the major greenhouse which emitted from agriculture
soil including rice and play major role in global warming (2019a; IPCC 2014).
Global atmospheric concentration of CH, was below 800 ppb before industrializa-
tion and its rose above 1850 ppb in 2019 (Fig. 12.1). Higher anthropogenic emission
of CH,4 play significant role in rising atmospheric concentration. Rice field, biomass
burning, fuel production industry, landfill, waste treatment, and livestock are the
major anthropogenic sources of the CH, gas (Kumari et al. 2020; Kumar et al.
2020a; Mukherjee et al. 2018; Kumar et al. 2016a, b; Malyan et al. 20164, b, c;
Pathak et al. 2016) (Fig. 12.2). Saunois et al. (2016) reported that the CH, emission
form rice cultivation emits about 115-243 Tg CH, year ' and it is the leading
contributor to anthropogenic emissions (Table 12.1).

Rice is the grain of the grass species Oryza glaberrima (African rice) and Oryza
sativa (Asian rice). Rice is the stable food for more than half of the world population
(Pramanik and Kim 2017) and its global production was 769.7 million tonnes in
2017 (FAO 2019). China, India, and Indonesia were the three biggest rice producing
countries in the world and they account for 61% of the total production (Fig. 12.3).
All the three greenhouse gases i.e. CHy, CO, and N,O emits from the rice field
(Kumar et al. 2017; Malyan et al. 2019a; Kumar et al. 2020b). Standing water
throughout the cropping period after root establishment is considered favorable
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Fig. 12.1 Trend of CH, concentration in atmosphere (Source: Ed Dlugokencky, NOAA/ESRL
online link https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/)

Landfill

Fig. 12.2 Major sources of anthropogenic methane emission to atmosphere

condition for better rice production (Malyan 2017; Kumar and Malyan 2016;
Malyan et al. 2016a; Gupta et al. 2015; Sethunathan et al. 2002). The standing
water create anaerobic environment in the soil which stimulate the population of
CH; producing bacteria (methanogens) (Mishra et al. 1997; Smartt
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Table 12.1 Major anthropogenic contributor for global atmospheric methane emissions

S. No Source Anthropogenic emissions(in Tg (CHy)/ year
01 Rice cultivation 115-243

02 Landfill 77-133

03 Ruminants

04 Waste treatment

05 Energy

06 Biomass burning 15-53

07 Othe

Source: (Saunois et al. 2016)
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1% 1% 9%

y
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28%
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6%

Fig. 12.3 Global rice production (2017) (Source: FAO 2019)

et al. 2018; Malyan et al. 2016c¢; Ke et al. 2014; Conrad 2007). Neue (1993) quoted
that CH, emission form rice field was first reported by Harrison and Aiyer in the year
1913. The emission of CHy is actually the net balance of two processes, the
production by methanogens and its oxidation by methanotrophs (Malyan et al.
2016¢c). CH,4 emission from rice field is effected by several biotic (methanogens,
methanotrophs, other microorganisms’ population) and abiotic (soil pH,
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temperature, texture, organic carbon matter, water content, etc.) factors (Mona
et al. 2021; Malyan et al. 2019b; Gupta et al. 2016a; Hussain et al. 2015; Bhatia
et al. 2013; Liesack et al. 2000). In the present chapter, we focused on the microbial
diversity, mechanism, and influencing factors for CH, emission from rice soils.

12.2 Methanogens and Methane Production in Rice Field

The process of CH, production by methanogens is known as methanogenesis, it
takes place under anaerobic conditions (Serrano-Silva et al. 2014; Conrad 2007; Le
Mer and Roger 2001). In the biogenic formation of CH, in rice ecosystem, the soil
organic matter is consumed by methanogens as carbon source and they release CHy
gas as by-product (Gupta et al. 2016b; Dubey et al. 2014; Le Mer and Roger 2001).
Plants litter, roots, weed biomass, dead microorganisms, animal waste, and organic
fertilizers are the main source of soil organic matter (Kimura et al. 2004). The soil
organic matter is converted into acetate by three process: hydrolysis, acidogenesis,
and acetogenesis (Dubey 2005). Methanogens prefer to consume acetate as substrate
for the production of CH,4. Generally, methanogens are mesophilic and the optimum
temperature for the CH,4 production is 25 °C (Dunfield et al. 1993). Some of the
genera of methanogens are also found in extreme environmental conditions such as
geothermal sediments, hot springs, and hypersaline sediments (Nazaries et al. 2013;
Dubey 2005). The rate of CH, production in soil by methanogens depends upon
several factors such as environmental conditions, substrate availability, and the
presence of other competing microbial community (Serrano-Silva et al. 2014;
Dubey 2005; Roy and Conrad 1999). Methanogens are divided into five categorized
based on substrate utilization (Table 12.2). About 80% of the methanogens prefer to
utilized acetate as the C source, while 10-30% of methanogens prefer formate and
hydrogen/carbon dioxide as the C source (Conrad 2007).

Methane producing bacteria use NH," as N source, however, there are few
methane producing microbes which are having N-fixing gene (nif):
Methanobacteriales, Methanococcales, and Methanomicrobiales (Serrano-Silva
et al. 2014; Dubey 2005). Methane producing Achaea needs unique coenzymes
such as coenzyme (F4,(), coenzyme M (CoM), coenzyme B (CoB), ferredoxin (Fd),
methanofuran (MFR), and tetrahydromethanopterin (H4MPT), to complete
methanogenesis (Nazaries et al. 2013).

Table 12.2 Types of methanogens on the basis substrates consumption

Substrates Product formed Trophic group
4H, + CO, CH4 + 2H,0 Hydrogenotrophs
4HCOOH CH, + 3CO, + 2H,O Formatotrophs
Acetate CH4 + CO, Actetotrophs
4CH;0H 3CH4 + CO, + 2H,O Methylotrophs
CH3;CHOHCH; + CO, CH4+ 4CH;CHOHCH; + 2H,0 Alcoholotrophs

Source: Malyan et al. (2016c)
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12.3 Methanotrophs and Methane Oxidation in Rice Soil

Methanotrophs are gram-negative aerobic bacteria which play significant role in
controlling atmospheric CH, levels. Methanotrophs oxidize CH, to CO, via
methanemonooxygenase (MMO) enzyme (Dubey 2005; Hanson and Hanson
1996). Rice cultivation is a main anthropogenic source of CH, emission at global
level. The population of methanotrophs in rice is diverse and it depends upon the
prevailing biotic and abiotic factors at that particular time (Conrad 2007; Liesack
et al. 2000). The commonly reported methanotrophs from rice fields include
Methylobcater, Methylomonas, Methylocystis, Methylococcus, Methylosinus,
Methylocaldum, Methylocystis, Methylomicrobium, etc. (Chen and Murrell 2010;
Mancinelli  1995; Trotsenko and Khmelenina 2005). All the identified
methanotrophs are broadly categorized in two major groups based on their
assimilating compounds (Fig. 12.4): type I and type II (Fazli et al. 2013). The
methanotrophic bacteria which are phylogenetically identified as y-proteobacteria
assimilate one carbon compounds via the ribulose monophosphate cycle are known
as type I methanotrophs (Fazli et al. 2013). The methantrophic bacteria which are
phylogenetically identified as a-proteobacteria assimilate C1 intermediates via ser-
ine pathways are known as type II methanotrophs (Fazli et al. 2013). In rice field, the
population of methanotrophs in rhizosphere is much higher than the bulk soil
(Dubey 2005; Gilbert and Frenzel 1995). The concentration of oxygen and CHy
affect the niches of type I and type II methanotrophs in rice. The aerenchyma assists
the transportation of oxygen from atmosphere to rhizospheric zone. The more the
arenchyma size more oxygen sinks towards rhizospheric zone which deplete the
anaerobic condition and enhance the aerobic environment in rice-rhizosphere. In
aerobic environment the dominance of methanotrophs type I was observed
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Fig. 12.4 Major groups of methanotrophs (Source: Conrad 2007)
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(Bhattacharyya et al. 2019). Methanotrophs type I are active in the environment with
low CH4 and high oxygen concentration (Mayumi et al. 2010). The population of
methanotroph type II organisms is found in anaerobic environment such as bulk soil
in rice ecosystem. Therefore, in continuous flooded bulk soil, methanotrophs type II
organisms are more active while in intermitted rice ecosystem methanotrophs type I
organisms are more active.

Until recently, it was believed that methanotrophs cannot consume carbon-carbon
bond compounds such as acetate as the sole source of energy and therefore
methanotrophs were consider as obligate methylotrophic (Conrad 2007). However,
Dedysh et al. (2005) reported that Methylocella spp. of methanotrophs use acetate as
carbon and energy source and they prefer acetate compound over CH,4. Hence, the
presence of available carbon source also effects the population of methanotrophs in
rice ecosystem. The population of aerobic methanotrophs is measured generally by
most probable number (MPN) counts method (Singh and Pandey 2013). Generally,
MPN count per gram soil ranges from 10* to 107 (Conrad 2007) but the aerobic
methanotrophs population in the rhizosphere zone is much higher than this order. In
the flooded environment methanotrophic bacteria became inactive due to lack to
oxygen.

12.4 Methane Oxidation in Rice Ecosystem

Methane oxidation in rice ecosystem is a biological process carried out by aerobic
and anaerobic methanotrophs. CH,/methanol serves as an energy source for the
growth of methanotrophs (Hanson and Hanson 1996; Semrau et al. 2010). Aerobic
methanotrophs are obligate (use only CH, as C and energy source) and facultative
(utilize multi-carbon substrates) in nature (Dedysh and Dunfield 2011) having
mesophilic characteristics (optimum growth range 20 °C—40 °C) and neutrophilic
characteristics (optimum growth range pH 6-8) (Whittenbury et al. 1970). Oxygen
availability plays important role for aerobic methanotrophy (Bodegom et al. 2001).
Aerobic methanotrophs can be low-affinity methanotrophs (oxidize high CH,4
concentrations(>100 ppm)) and high-affinity methanotrophs (oxidize low CH,4
concentrations (1.8 ppm) (Malyan et al. 2016¢; Alam and Jia 2012).

The aerobic methane oxidation is completed through the sequential conversion of
methane into carbon dioxide utilizing different enzymes. Firstly, CH, is converted
into methyl aldehyde (CH3;CHO) by methane monooxygenase enzymes. The
CH;CHO is subsequently converted into formaldehyde by methanol dehydrogenase
and formaldehyde is further converted into formate by the activity of formaldehyde
dehydrogenase and this formate finally converts into carbon dioxide through dehy-
drogenase activity. Methane monooxygenase is of two types, i.e. particulate or
membrane-bound form (pMMO) and soluble cytoplasmic form (sMMO) (Semrau
et al. 2010) and serves as the process initiation catalysts and rate limiting enzyme.
MMOs is multi-substrate enzyme that can oxidize propylene (PP) (Inubushi et al.
2002) and is inhibited by acetylene (C,H;) (Hanson and Hanson 1996). MMO can
also be inhibited by NH4" due to competitive nature of ammonia with methane
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(Dunfield and Knowles 1995) as MMO is also able to convert ammonia into nitrite
through hydroxylamine intermediate which are further toxic to methanotrophs and
lead to inhibition of methane oxidation ability in rice soil (Eller and Frenzel 2000).

The anaerobic methane oxidation is completed by Achaea, sulfate-reducing
bacteria and starts by physical association of anaerobic methanotrophs (Serrano-
Silva et al. 2014; Chowdhary and Dick 2013; Nazaries et al. 2013). The sulfate
reducing bacteria oxidize CH,4 to CO, and sulfate acts as an electron acceptor. Nitrite
is also one of the electron acceptors in rice flooded soil as sulfate (Beal et al. 2009)
and Fe and Mn in marine environment for anaerobic methane oxidation (Malyan
et al. 2016¢).

Nitrogen fertilization through synthetic fertilizers and organic fertilizers increases
the NH*; and NO™ 3 concentration in rice soils which inhibits the CH, oxidation.
This inhibition promotes the chance of carbon reduction in form of CH, emission
(Fagodiya et al. 2017). The ammonium-based fertilization stimulates growth and
activity of methanotrophs in the rice-rhizosphere (Bodelier et al. 2000a, b). Nitrate
inhibit only in very high concentrations due to osmotic effects (Bodelier and
Laanbroek 2004a). Kriiger and Frenzel (2003) reported that with decrease in mineral
nitrogen in rice field, methane oxidation decreased up to zero. Bodelier and
Laanbroek (2004b) concluded that mineral nitrogen can function as limiting factors
for growth of methanotrophic bacteria and ultimately regulated methane oxidation.

12.5 Factors Affecting Methane Emission in Rice Ecosystems
12.5.1 Soil Temperature

For the best activity of mesophilic microorganism usually temperature range of
20-35 °C is considered as ideal. The microbial community of CH, oxidation bacteria
is highly sensitive to temperature change (He et al. 2012). He et al. (2012) conducted
sediment incubation study with three temperatures (4 °C, 10 °C, and 21 °C) to
identify methanotrophs activity and CH,4 oxidation. The CH, oxidation at 21 °C was
highest (37.4pmol g~ ' day ') in the uppermost sediment layer (0—1 cm) (He et al.
2012). The rate of CH, oxidation increased with increasing temperature from 5 °C to
20 °C were also reported by Whalen et al. (1990). But some of the contrasting
findings were also reported by Bender and Conrad (1995), they observed the
maximum CH,4 oxidation at 0 °C.

12.5.2 Soil Organic Matter

Soil organic matter affect the cumulative microbial community and the functions of
the ecosystem (Tveit et al. 2013). Several findings reported that addition of organic
matter such as straw, farm yard manure, residues of other crops, etc., increases the
CH, emissions (Gupta et al. 2016b; Hussain et al. 2015; Bhatia et al. 2013a). In fact,
there are few studies which reported that the addition of organic matter in the form of
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biochar help in CH,4 mitigation in rice (Purakayastha et al. 2019; Panwar et al. 2019;
Xiao et al. 2018; Pandey et al. 2014). In one recent study, Wu et al. (2019b) reported
that biochar application increased the CH, oxidation potential of methanotrophic
bacteria. Nitrate and ammonium promoted the methanotrophs type II and type I
respectively, which enhanced the CH, oxidation potential for prolonged duration on
biochar application (Wu et al. 2019b; Feng et al. 2012).

12.5.3 Soil Texture

Soil texture directly influences the population of microbes. Soil porosity changes
with the soil texture and its effects the CH4 oxidation process (Shukla et al. 2013).
Soil with greater porosity (such as sandy) is the favorable environment for CH,
oxidation by methanotrophs type L.

12.5.4 Application of Fertilizers

Fertilizer type, method, and dose are the critical component affecting for microbial
community dynamics in rice soil. Fertilizer applied to soil is not completely utilized
by crop (Ranjan and Yadav 2019). The activity of methanotrophs is affected by the
type of fertilizer applied. The period of ammonium ion in the soil affect the CH,
oxidation. In short term, ammonium ion has no effect on CH, oxidation potential of
methanotrophs. Ammonium ions in long term act as inhibitors of CH, oxidation
potential of methanotrophs in rice soil (Shukla et al. 2013; Banger et al. 2012). Role
of ammonium ions is different in different CH, environmental conditions.
Un-saturated soil such as in upland rice have low soil CH, and under such environ-
ment increased in ammonium ions deceased the rate of CH4 oxidations (Shukla et al.
2013; Hiitsch et al. 1994; Steudler et al. 1989). The role of ammonium ions in rice
soils was not conclusive as different studies concluded positive as well as negative
control (Shukla et al. 2013; Bodelier et al. 2000a, b) especially in case of flooded and
non-flooded rice soils (Table 12.3).

12.6 Mitigation of Methane Emission from Rice Ecosystem

Methane emission from rice soil can be mitigated by modifying water content,
fertilizer application, tillage practice, by selecting suitable rice cultivars, organic
matter management, etc. (Malyan et al. 2020; Samoy-Pascual et al. 2019; Setyanto
et al. 2018; Tariq et al. 2017). Some of the significant tools of CH4 mitigation from
rice are discussed below:
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Table 12.3 Factors affecting methane emission from rice field

S. No | Factors References

01 Soil temperature (Centeno et al. 2017; Gaihre et al. 2016; He et al. 2012;
Schiitz et al. 1990)

02 Soil organic matter (Dhanuja et al. 2019; Wu et al. 2019a; Bhattacharyya and
Barman 2018)

03 Soil texture (Singh et al. 2018)

04 Rice cultivar (Malyan et al. 2019b; Zheng et al. 2018)

05 Fertilizers (Kong et al. 2019; Liu et al. 2019b; Sun et al. 2019;
Buragohain et al. 2018; Hussain et al. 2015)

06 Method of transplanting | (Li et al. 2019; Wang et al. 2018a; Simmonds et al. 2015;)

07 Water management (Fertitta-Roberts et al. 2019; Jiang et al. 2019)

12.6.1 Irrigation Management

Methane is produced by methanogenic bacteria in anaerobic environment when soil
redox potential is less than —150 mV (Khosa et al. 2011). Water is one of the
important natural resource, which needs immediate attention to enhance the water
use efficiency under changing environment (Pathak et al. 2014). At the same time
water management also reduces the methane emission from the rice soil. Irrigation
significantly affects the field pore space and soil oxygen concentration. Water
management practices such as intermittent drainage, midseason drainage, alternate
wetting and drying, controlled irrigation, etc. have been documented globally for
reducing CH, emissions as compared to continuous flooding (Table 12.4).
Intermitted drainage enhanced the oxygen diffusion in the soil and therefore rose
the soil redox potential which result in CH4 emissions reduction (Haque et al. 2017).
Kim et al. (2014) and Kudo et al. (2014) stated that intermitted drainage reduced
cumulative CH4 emission by 43.52% and 47%, respectively, as compared to contin-
uous flooding (Table 12.4). Haque et al. (2017) also reported 54-58% reduction in
CH, emissions as compared to continuous flooding (Table 12.4). Alternate wetting
and drying (AWD) is novel water and environment saving technology. AWD
reduced CH, emissions (Table 12.4) with decreasing the economical yield. In
AWD, irrigation water is given after the standing water disappearance in the crop.
The number of days between irrigation and non-flooding varied from 1 to 10 days in
AWD and it depended upon soil type, environmental conditions, and crop growth.
Samoy-Pascual et al. (2019) observed that AWD can minimize cumulative CH,
emissions by 20-73% as compared to traditional flooding system in Philippines
(Table 12.4). Oo et al. (2018) conducted field experiment at Tamil Nadu Rice
Research Institute, India, and reported that AWD can reduce 24—41% CH,4 emission
as compared to traditional irrigation method (Table 12.4). In recent studies, 26% and
49% CH, mitigation by AWD were also demonstrated by Tran et al. (2018) and
Chidthaisong et al. (2018), respectively (Table 12.4). Tariq et al. (2017) stated that
early drainage is also effective irrigation methodology for CHy4 reduction as com-
pared to continuous flooding (Table 12.4).
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Table 12.4 Methane mitigation through several water management practices as compared to
continuous flooding in rice

References

Samoy-
Pascual et al.
(2019)

Wu et al.
(2019a)

Setyanto et al.

(2018)

Oo et al.
(2018)

Tran et al.
(2018)
Chidthaisong
et al. (2018)
Haque et al.
(2017)
Tariq et al.
(2017)
Peyron et al.
(2016)
Kudo et al.
(2014)

Kim et al.
(2014)
Lietal.
(2014)

Ma et al.
(2013)

Practice name

Alternate wetting
& drying (AWD)

Midseason
drying-flooding
AWD

AWD
AWD
AWD

Intermitted
drainage
Early drainage

Dry seeding with
delay flooding
Intermittent
drainage
Intermittent
drainage
Midseason
aeration
Midseason
drainage

12.6.2 Rice Cultivar

Mitigation
(%)
20-73
52.26
35
24-41
26

49
54-58
89-92
59

47
43.52
12-27

37-51

Remarks

Experiment was carried out at Philippine
Rice research institute, Philippines

Study was conducted at Taoyuan, China

Study was carried out in Central Java,
Indonesia

Study was conducted at Tamil Nadu Rice
research institute, India

Study was conducted at Huong Tra district,
Central Vietnam

Experiment was carried out in Prachin
Buri, Thailand

Experiment was conducted in Gyeongsang
National University, Jinju, South Korea
Experiment was carried out at University of
Copenhagen, Denmark

Experiment was carried out at Italian Rice
research Center, Castello d’ Agogna, Italy

Study was conducted at Kanagawa, Japan
Study was conducted at Suwon, Korea

Study was conducted at Jurong city of
China

Study was conducted at Jiangxi Province,
China

Selection of appropriate cultivar is most important for achieving the goal of sustain-
able agricultural. There is variation in the rate of CH, production, oxidation, and
transportation among different rice cultivar (Aulakh et al. 2000; Hussain et al. 2015).
Generally cumulative CH, emissions of long duration cultivar are higher than the
short or medium duration rice cultivar (Malyan et al. 2019b). Soil redox potential
affects the activity of both CH, production by methanogens and oxidation by
methanotrophic bacteria. Size of aerenchyma varied among the rice cultivar and it
affects the rate of methane emission and uptake through methanogens and
methanotrophs under prevailing anaerobic/aerobic environment in rice soil
(Nishiuchi et al. 2012).
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12.6.3 Methane Mitigation Through Azolla

Azolla is nitrogen fixation aquatic fern and its importance for CH, emission reduc-
tion is explored in several studies globally (Table 12.5). Biologically nitrogen
fixation, control of weed, and source of organic matter are other significant role of
Azolla in rice ecosystem (Singh et al. 2016). Bharati et al. (2000) and Malyan et al.
(2019b) reported that Azolla application in rice with optimum dose of nitrogen
fertilizer reduced CH, emissions in the range of 15-42% (Table 12.5). Azolla is
photosynthetic fern and it liberates oxygen in flooded water and it results in higher
dissolved oxygen concentration in flooded water. The higher dissolved oxygen
suppress the activity of methanogens bacteria and enhances the CH, oxidation
simultaneously which result in CH, emissions reduction. Yang et al. (2019); Xu
etal. (2017), and Liu et al. (2017) demonstrated the CHyreduction by Azolla in China
(Table 12.5).

12.6.4 Other Interventions for Methane Mitigation in Rice

Industrial by-products such as fly ash, phosphogypsum, steel slag have been reported
to reducing the methane emission from rice fields (Kumar et al. 2020a). Steel slag is
having high content of iron oxides and free (Fe®*) form. Fe** contributes in mitiga-
tion of methane from rice soil as it competes with H,/acetate for electrons during the
degradation of soil organic matter (Wang et al. 2018b; Alpana et al. 2017; Wang
et al. 2015). Silica present in steel slag supports aerenchyma enlargement and make
more diffusion of oxygen towards the rhizosphere and hence reducing the anaerobic
condition, further reducing methanogenesis and enhancing rhizospheric methane
oxidation (Ali et al. 2012b, 2015). The phosphogypsum increases the sulfur-
reducing bacteria in paddy soil as sulfate is the important constituent in it. These
sulfur-reducing bacteria will compete with methanogens for organic matters, thus
reducing the methane emission (Sun et al. 2018; Ozuolmez et al. 2015; Ali et al.
2007). The intermittent-irrigation, alternate drying and wetting, direct seeded rice,
single aeration, etc. are the important agronomic practices to manage the
methanogens and methanotrophs population for mitigating methane emission
(Kumar et al. 2016a; Bhatia et al. 2013).

Table 12.5 Methane mitigation by Azolla as compared to full dose of chemical nitrogen fertilizers
Mitigation (%) as compared to dose

Country (references) chemically N dose

India (Bharati et al. 2000; Malyan et al. 2019b) | 15-42

China (Liu et al. 2017; Xu et al. 2017; Yang 11-33
et al. 2019)

Japan (Kimani et al. 2018) 34
Bangladesh (Ali et al. 2012a) 11-13
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12.7 Conclusion

Methane is one of the major greenhouse gases emitted from the rice fields and play a
significant role in global warming. Methanogens are basically responsible for meth-
ane production, while methanotrophs are responsible for methane oxidation.
Enhancing methane oxidations or reducing productions are the two important
aspects to curtail the methane emission from the rice soils. The population of
methanogens is highly influenced by various factors such as organic matter, popula-
tion of the substrate competitor microbes, pH, temperature, plant thizosphere envi-
ronment, rice cultivar, irrigation, etc. Thus, these managements are highly important
to control the methane emission from rice fields. Besides this, applications of some
industrial by-products are also found suitable for methane mitigation from rice fields.
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