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Abstract

Throughout the globe, nanotechnology has emerged as a segment which produces
a multitrillion-dollar business opportunity that covers a wide range of industries
such as medicine, electronics, and chemistry. Due to the rapid development of
application-oriented nanoparticles, from targeted drug delivery to diagnostics,
in vivo toxicological examinations for assessing the potential hazardous effects of
nanoparticles on natural and human safety are in urgent need. Therefore, it is
essential to assess their toxicity and possible hazards to humans and ecosystem.
Zebrafish is considered as the “gold standard” among animal models for assess-
ment of several metal and metal oxide nanoparticle toxicity due to its cost-
effectiveness, high fecundity, optical transparency, short life cycle, well-
characterized developmental stages, etc. The chapter emphasizes on how
zebrafish (Danio rerio) can be utilized to assess nanotoxicity at different levels,
including genotoxicity, developmental toxicity, immunotoxicity, cardiovascular
toxicity, teratogenicity, neurotoxicity, reproductive toxicity, hepatotoxicity, as
well as change in behavior and disruption of gill, skin, and endocrine system. The
harmful impacts of chosen metal and metal oxide nanoparticles are also reviewed.
The advantages, drawbacks, and future aspects of utilization of zebrafish model in
nanotoxicity studies are also argued. Overall, zebrafish is projected to fulfill as a
high-throughput screening platform for drug delivery assessment and
nanotoxicity, which may help in designing safe and more effective
nanomedicines.
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7.1 Introduction

7.1.1 Overview of Nanoparticles

Nanotechnology is the engineering of functional systems at the atomic, molecular,
and supramolecular scale. In recent times, nanoparticle (NP)-based research
achieved overwhelming attention of scientific community due to its widespread
area of applications. In nanotechnology, a particle is termed as a small entity
which acts as an entire unit due to its unique properties and transportation
capabilities. A particle having reduced dimension (1–100 nm) is described as
nanoparticles (NPs) by agencies like “International Organization for
Standardization,” “American Society of Testing and Materials,” and “National
Institute of Occupational Safety and Health” (Horikoshi and Serpone 2013). Over
the years, exponential growth in preparation, characterization, and innovative appli-
cation of NPs has been observed (De Crozals et al. 2016). Extensive research on NPs
resulted in engineered nanosized particles like various metal and metal oxide NPs,
nanopolymers, fullerenes, carbon nanotubes (CNT), and crystalline materials, which
possess numerous properties and are labeled as multifunctional NPs (Seaton et al.
2010; McNamara and Tofail 2013).

7.1.2 Applications of Nanoparticles

NPs are used, or are being evaluated for usefulness, in many fields due to its
widespread area of applications. NPs possess diverse properties and are useful in
industrial manufacturing as chemically inert additives, anticaking agents, pigments,
and fillers and more prominently to generate functional surfaces/membranes which
exert UV protection, antimicrobial property, catalytic function, filtration, etc. (Stark
et al. 2015). Newer areas like nanomedicine have evolved as a cumulative outcome
of well-known subjects like medicine, physics, and chemistry which are the driving
force behind various biomedical applications. Characteristic electrochemical, piezo-
electric, optical, and photoluminescence properties of NP are the basis of making
biosensors for drugs, proteins, pathogens, nucleic acids, metabolites, cancer cells,
etc. (Stark et al. 2015; Das et al. 2013). Most of the time NPs are designed to act as a
delivery system where containment of surface characteristic and dimension is a
prerequisite for drug-release pattern to exert site-specific action of the drug at an
optimal rate and dose (McNamara and Tofail 2013; Das et al. 2013; McNamara and
Tofail 2015). Site-specific distributions of NPs are possible due to their unique
physicochemical properties when compared with fine particles (FPs). NPs are
available in various forms and compositions like metallic based and carbon-based
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nanomaterials, polymeric particulate materials, and quantum dots (Wang and Tang
2018; Wu and Tang 2018). Among all, metal NPs and metal oxide NPs contribute
majority of them in terms of manufacturing output and application (Djurisic et al.
2015). Specific metal NPs like silver (AgNPs), gold (AuNPs), nickel (NiNPs),
copper oxide (CuNPs), and metal oxide NPs (titanium dioxide [TiO2], zinc oxide
[ZnO], iron oxides [Fe2O3, Fe3O4]) are produced in large quantity and supplied in
various fields of healthcare, medicine, transportation, construction, energy, defense,
etc. along with engineered nanoparticles (ENPs) as major components or as
additives for performance enhancement (Kessler 2011; Rudramurthy and Swamy
2018). Researchers are exploring the possible anticancer activity of biologically
synthesized AgNPs, AuNPs, and platinum NPs (PtNPs) (Bendale et al. 2017; Ning
et al. 2017; Yamada et al. 2015; Zhang et al. 2016), whereas manufacturers of
sunscreen products are using TiO2 and ZnO NPs in the formulation due to their
capability to block ultraviolet radiation. Research on drug delivery uses iron oxide
NPs (IONPs), including Fe3O4 and γ-Fe2O3, and magnetic resonance imaging uses
superparamagnetic IONPs widely (Ding and Guo 2013; Namvar et al. 2014).
However, assessment of adverse impact on the environment and human health has
explored a new area of research.

7.1.3 Measurement of Nanotoxicity

Nontoxicity is a prerequisite for NPs used in biomedical field. However, environ-
mental exposure of toxic NPs used in manufacturing and other applications is a
major concern (De Crozals et al. 2016; Friedman et al. 2013). Metal and metal oxide
NPs possess good dispersibility and stability in the presence of organic matter
present in water and thus can pollute aquatic environment by means of direct
discharge and waste discharge and during routine use. Metal and metal oxide NPs
entering into the aquatic environment can reach and accumulate in the human body
through food chain while drinking water and eating vegetables, fish, and livestock
and can be a threat to human health (Xing et al. 2016; Nowack and Bucheli 2007;
Wang and Wang 2014). Researchers have been working on developing newer
assessment or evaluation methodologies to check exposure levels and toxicity of
specific nanomaterials. Largely, toxicological assessment of NPs is carried out using
in vitro and in vivo models starting with in vitro cell culture assays to basic model
organisms, such as algae, protozoa, zooplankton, and advanced higher vertebrate
models, such as rodents, rabbits, and nonhuman primates (Li and Chen 2011;
Schrand et al. 2010). Cellular level toxicity and genotoxicity can be assessed using
simple organism and cell lines, whereas complex physiological interactions can be
assessed only on higher vertebrates. However, rodents and rabbits have a drawback
as an animal model due to their ethical concerns, cost, slower and inaccessible
embryo development, and amount of testing material required (as per animal size),
whereas primate model shows similar issues with greater extent (Gad 2006). There-
fore, zebrafish can be used as a compelling alternative model for the evaluation of
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in vivo nanotoxicity due to its efficiency, cost-effectiveness, and smaller size
(Chakraborty et al. 2016).

7.2 Zebrafish: Preclinical Model

7.2.1 Outline

Zebrafish (Danio rerio) has been a well-established vertebrate model since 1960s
(Kalueff et al. 2014) and is being used extensively in preclinical and toxicity studies
due to the number of favorable traits available (Strähle et al. 2012; Chakraborty and
Agoramoorthy 2010). In recent times, zebrafish (Danio rerio) had drawn much
attention as an in vivo model as it carries unique features like lower cost, high
fecundity, embryonic transparency, rapid and well-characterized growth, shorter
reproduction time, and gene manipulation accessibility. Ecotoxicology research
recognizes zebrafish to assess embryo toxicity and it is used as one of the standard
methods for evaluating toxicity due to single chemical entity as per the guidelines of
national standards organizations (Fako and Furgeson 2009). A fully grown adult fish
shown in Fig. 7.1 can be used for studying a large number of testing materials due to
their advantage of having lower size. They possess high fertility rate where a single
female can produce about 300 eggs, which proves the completeness as a model
(Westerfield 1995; Ribas and Piferrer 2014). The genome of zebrafish and humans
shows ~70% resemblance (Howe et al. 2013; Kettleborough et al. 2013). Majority of
investigations using Danio rerio concentrate on teratogenic and developmental
effects of materials on the larvae and on the fry. Danio rerio is commonly used to
assess the potential toxic effects of NPs due to its capability of rapid reproduction,
ease of breeding, availability of embryos round the year, and transparency of the
larva body.

Fig. 7.1 Medium-size adult
zebrafish (Danio rerio)
(De León et al. 2019)
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7.2.2 Advantages of Zebrafish in Nanotoxicity Research

In recent times, utilization of the zebrafish model has become popular in the
screening of toxicants (Chun et al. 2017; Da et al. 2018; Sangabathuni et al. 2017;
Vicario-Pares et al. 2018). Various attributes make zebrafish a substitute model for
toxicological investigations of nanomaterials as follows.

Firstly, as a multicellular entity, zebrafish can provide more comprehensive data
regarding kinetic, passage, and transformation of nanomaterials against in vitro cell
culture analysis, despite the fact that in vitro analysis is mostly used to assess
toxicological impacts of nanomaterials and is recognized as a successful model for
toxicity studies even at the cellular level (Gad 2015).

Secondly, due to the smaller size, ease of cultivation, shorter life cycle, and higher
fecundity compared to rodents, zebrafish became the most accessible model for the
vast majority of research facilities around the world. They achieve mature reproduc-
tive system in laboratories within a short span of time (3–6 months) postfertilization
under optimum temperature, food supply, and rearing densities (Spence et al. 2008).
A fully grown female fish can yield about 100–300 embryos per day, and therefore
may be useful in high-throughput analysis which improves the statistical power of
experiments (Castranova et al. 2011; Spence and Smith 2005).

Third, the rapid embryogenesis and developmental processes in zebrafish com-
pared with other animals make it a superior model for evaluating developmental
toxicity (Haffter et al. 1996; Kimmel et al. 1995; Westerfield 2007; Lin et al. 2013).
Toxicological effects like lethality, reproductive toxicity, and teratogenicity can be
observed easily due to their transparency during embryo stages (Choi et al. 2016; Ma
et al. 2018; Mesquita et al. 2017; Pecoraro et al. 2017).

Fourth, information gathered post-gene sequencing elaborates that zebrafish have
26,206 protein-coding genes and around 85% of these are similar to their human
counterparts, making zebrafish a popular model for investigating genotoxicity and
developmental toxicity (Collins et al. 2012; Howe et al. 2013; Renier et al. 2007;
Garcia et al. 2016; Rizzo et al. 2013; Sarmah and Marrs 2016; Zhu et al. 2014).

7.2.3 Developmental Stages of Zebrafish

Eggs of zebrafish are robust in nature and grow externally, so it is possible to
engineer them easily for high-throughput applications. In addition, optical transpar-
ency of zebrafish permits impeccable visual examination, including fluorescent and
different markers (Stainier and Fishman 1994; Dooley and Zon 2000). The basic
development of zebrafish requires only 24 h postfertilization (hpf), whereas embryo-
genesis completes by 72 hpf, and it takes 96 hpf to develop organs and around
3 months to arrive at adulthood (Stainier and Fishman 1994). There are a number of
screening methods to study the developmental stages of zebrafish to measure
toxicological responses to metal and metal oxide NPs, in terms of developmental
toxicity, neurotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, cardiovascu-
lar toxicity, reproductive toxicity, etc. (Fig. 7.2).
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7.3 Various Methods to Assess Nanotoxicity

7.3.1 Developmental Toxicity

Teratogenicity, mortality, and hatching rate are the developmental toxicity
parameters of nanomaterials in zebrafish. NP assessment on zebrafish used for the
evaluation of developmental toxicity of embryos has been found to be mature than
the toxicity evaluation of target organs or other systems. It is also appropriate for
image-based detection and is capable of recording a range of teratogenic indicators
like cell movement throughout intestinal phase, blood circulation, brain formation,
and heartbeat due to its in vitro fertilization and lucidity during embryo stages.
Embryonic development events are capable of being utilized as endpoints for
toxicological assessment (Fig. 7.3). Additionally, the embryo teratogenic test cycle
in zebrafish is short and appropriate for gene mutant screening and analysis in large
scale.

Fig. 7.3 The scoring spectrum utilized for screening nanoparticle-induced toxicity is portrayed by
representative micrographs of 120 hpf zebrafish embryos that were exposed to different toxicants.
This screening method was used as a semiquantitative analysis for scoring at 4, 24, 48, 96, and
120 hpf time points. Embryos were scored for severity of morphological defects, survival, and toxic
adverse effects. Scores range from 0 to 4, with 0 indicating no visible deleterious effects and
4 signifying death. The intervening numbers correspond to various degrees and quantities of
morphological anomalies (i.e., 1 ¼ one to two minor toxic effects; 2 ¼ one moderate or three to
four minor toxic effects; and 3¼ one (or more) severe or more than four minor toxic effects). Scores
were used to yield a mean cumulative toxicity score for each treatment group at each time point to
evaluate toxicity. Most of the sublethal endpoints included in the studies are depicted in the figure:
bent spine (BS), jaw malformation (JM), opaque yolk (OY), pericardial edema (PE), stunted growth
(SG), small head (SH), tail malformations (TM), and nondepleted yolk (YND). Scale bar¼ 0.5 mm
(Bar-Ilan et al. 2009)
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AgNP-treated embryos showed mortality and hatching delay. Furthermore,
developmental toxicity like pericardial edema, slow blood flow, arrhythmia, twisted
notochord, and body axis abnormality were the outcomes of AgNP treatment
(Asharani et al. 2008; Shaw et al. 2016). Zebrafish embryos, when exposed to
gold nanorods coated with cetyltrimethyl ammonium bromide (CTAB), were
shown to induce delayed embryonic developments such as delayed eye, head and
tail elongation development, pericardial edema, and tail deformities. These embryos
were also found to induce mortality when exposed to CTAB (Mesquita et al. 2017).
It has been observed that metal oxide NPs are also capable of inducing developmen-
tal and acute toxicity in zebrafish. Abnormal phenotypes like delayed epiboly and
smaller head and eyes in zebrafish can be observed as a result of copper oxide NP
exposure (Xu et al. 2017). Another metal oxide, namely ZnONPs, can cause toxic
effects such as skin ulceration, hatching delay, and high mortality in zebrafish (Zhu
et al. 2008). Toxicity to zebrafish embryos due to TiO2NPs was also evaluated and
found to affect the hatching time of embryos (Samaee et al. 2015).

7.3.2 Immunotoxicity

Application of zebrafish in the field of immunology has gained momentum in recent
years. It has been observed that the immune system is sensitive to NPs, predomi-
nantly inducing an inflammatory response in addition to accumulation and activation
of neutrophils and macrophages (Johnston et al. 2018). The process in which toxic
substances destroy the function of immune system is known as immunotoxicity
(Giannakou et al. 2016; Selgrade 2007; Xu et al. 2015; Jin et al. 2011) (Fig. 7.4). For
instance, AuNPs have been proved to disrupt inflammatory and immune response
pathways (Truong et al. 2013). In another study, an adult zebrafish was exposed to
AgNPs and subsequently a gene expression study was performed in its liver tissues.
The study proved that AgNP exposure resulted in immunotoxicity in adult zebrafish
because of oxidative stress (Krishnaraj et al. 2016). ZnONP exposure also resulted in
transcriptional changes of pro-inflammatory cytokines, interleukin (IL)-1β, and
tumor necrosis factor-α and a significant upregulation in eleuthero embryos and a
downregulation in zebrafish embryos. Therefore, ZnONPs have been proved to
cause modulation of pro-inflammatory reactions (Brun et al. 2014).

7.3.3 Neurotoxicity

Zebrafish model has emerged as a sensitive and useful animal model for the
assessment of neurotoxicity induced by NPs. The damage of nervous tissue and
subsequent irregular activity of nervous system, when exposed to toxic substances,
is called neurotoxicity and these toxic substances are known as neurotoxins (Segura-
Aguilar and Kostrzewa 2006). A variety of NPs can activate free radical actions at
their surfaces, thus generating oxidative stress at particle deposition and transloca-
tion site (Sato et al. 1998; Dellinger et al. 2001; Li et al. 2003). Specific behavioral
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effects for particular NPs are also seen. The brain tissues of juvenile zebrafish after
5 days of fertilization have been differentiated into telencephalon, diencephalon,
midbrain, hindbrain, and rhomboidal ganglia. Behavioral toxicity of NPs such as
learning, motion, and memory ability can also be evaluated using well-differentiated
brain tissues of juvenile zebrafish. Furthermore, neurotoxicity of NPs to zebrafish
embryos can also be evaluated using apoptosis of neurons, necrosis, morphological
changes, and biochemical indicators. Neurotoxicity can be seen commonly in NPs
that are capable of reaching brain and causing neurodegeneration (Win-Shwe and
Fujimaki 2011; Chakraborty et al. 2009). Combustion-derived NPs have been
proved urotoxic from in vivo and in vitro studies, due to the incidence of NP
aggregation (Morimoto et al. 2010). For instance, silicon dioxide NPs resulted in
altered color preferences (Li et al. 2014), whereas cadmium telluride quantum dots
affected locomotor activity (Zhang et al. 2012). A size-dependent effect was
observed on zebrafish due to polyvinyl pyrrolidone-coated AgNPs-PVP. The smaller
AgNP-PVP sized 10 nm resulted in decreased locomotor activity, while hyperactiv-
ity was caused by the larger one (50 nm) under specific light conditions (Powers
et al. 2011). Earlier studies have shown that TiO2NP activates expression of genes
like BDNF C-fos and C-jun. On the contrary, these NPs suppress the expression of
genes such as NGF, p38, and CRE causing brain damage of zebrafish (Sheng et al.
2016). Alteration of neurotransmission and subsequent increase in brain acetylcho-
line esterase activity were caused by AuNP exposure (Dedeh et al. 2015). A delay in
retinal neurodifferentiation with subsequent reduced locomotor activity was caused
by CuONP exposure at high doses (�12.5 mg/L) (Sun et al. 2016). Exposure of
FeONPs coated with dextran was also found to be neurotoxic to zebrafish. The toxic
effects included higher levels of ferric iron in the brain, reduction in the exploratory
performance, decreased acetylcholine esterase activity, and induction of casp8,
casp9, and jun genes (De Oliveira et al. 2014).

7.3.4 Genotoxicity

Genotoxicity is the damage of genetic information inside a cell because of chemical
agents which cause DNA damage, gene mutation, and chromosomal alteration
(Bolognesi 2003). Genotoxicity is a major risk factor for carcinogenesis. Zebrafish
model can be used to study various chemical-induced genotoxicities with the help of
different techniques. Genotoxicity can be evaluated in embryos, larvae, or adult
tissues and various techniques such as quantitative RAPD-PCR methodology for
demonstrating dose-dependent genotoxicity of TiO2NPs (Rocco et al. 2015) and
comet assays for checking the effect of ferric oxide (Fe2O3) NPs can be used
(Villacis et al. 2017). Moreover, RAPD-based methodology was used to assess
genotoxic effects of gold NP on zebrafish (Dedeh et al. 2015; Geffroy et al. 2012).
However, only fewer studies have been reported on the assessment of genotoxicity
of NPs on zebrafish; hence, this area has to be studied extensively.
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7.3.5 Cardiovascular Toxicity

Cardiac toxicological evaluation of NPs can be successfully performed using
zebrafish embryos. Resemblance of zebrafish heart to human embryonic heart and
direct observation of shape and rhythm of heart like heartbeats, cell activity in blood
vessels, and blood vessel morphology using a microscope have greatly enabled
efficient toxicity evaluation and toxicological research of NPs. Regular heartbeats
in zebrafish commence at 36 h after fertilization. Monitoring and quantitative
evaluation of cardiovascular damage on exposure to specific NPs have been effec-
tively established using transgenic zebrafish lines. A study using transgenic zebrafish
Tg (nacre/fli1: EGFP) revealed that CuONPs inhibit vasculogenesis through induc-
tion of apoptosis and reduction of vascular endothelial growth factor expression
(Chang et al. 2015). The hematopoietic system of zebrafish is regulated by molecular
pathways that are quite conventional. Particularly, the early development of cardio-
vascular system resembles that of humans. Therefore, AgNP toxicity in hematopoi-
esis was studied using a zebrafish model. Transcriptional responses of zebrafish
embryos to AgNPs were revealed using microarray analysis. This analysis was
performed at 24 h after fertilization. Gene ontology analysis revealed that AgNPs
were responsible for downregulation of hemoglobin genes. It was also studied that
erythrogenesis inhibition caused by AgNPs was cell specific and developmental
stage specific. Further, it was found that this inhibition was caused mostly by AgNPs
compared to their releasing ions (Cui et al. 2016).

7.3.6 Hepatotoxicity

The liver performs many important functions of body as it is the main metabolic
organ of human body. Toxic effects of various chemicals can cause functional
damage to liver and this may affect the normal functioning of body. The way in
which the liver of zebrafish in its early developmental stages responds to toxic
chemicals is similar to that of humans. Therefore, zebrafish model is ideal for
studying NP-induced hepatotoxicity. Earlier studies have shown that when zebrafish
embryos and larvae are exposed to CuONPs at high doses for a short period of time,
hepatotoxicity and neurotoxicity, displaying as hepatic hypoplasia and delayed
retinal neurodifferentiation coupled with decreased locomotor capacity, can be
observed (Sun et al. 2016). Another study on the effects of oxidative stress and
ZnOP damage on intestine, gill, and liver of zebrafish revealed that liver tissues were
mainly targeted by oxidative damage. It was shown in the further study that ZnOPs
produced higher OH radicals. The malondialdehyde, which is one of the biomarkers
of oxidative stress, was increased in gills and liver of zebrafish (Xiong et al. 2011).
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7.3.7 Reproductive Toxicity

Partial or whole life cycle tests of zebrafish can be used for testing reproductive
toxicity of NPs. For instance, AgNP exposure resulted in oxidative stress, followed
by germ cell apoptosis through mitochondrial dependent pathway. This finally led to
damage of reproductive ability of zebrafish (Ma et al. 2018). In another study, AuNP
(10–50 nm) exposure to adult female zebrafish gave rise to strand breaks in ovarian
cells due to the ability of AuNPs to enter zebrafish ovaries (Dayal et al. 2016).
Reproductive toxicity to zebrafish testis on exposure to TiO2NPs was also studied.
TiO2NPs in higher doses were found to induce autophagy and necrosis in Sertoli
cells and thus had a negative impact on testicular morphology and spermatogenic
cells of zebrafish. It gave rise to mitochondrial degeneration with swelling and crista
loss (Kotil et al. 2017).

7.3.8 Disruption of Gill, Skin, and Endocrine System

NP-induced toxicity also interrupts gills, skin, and endocrine system. Waterborne
NPs mainly target gills of zebrafish. Silver ions (Ag+) produced by AgNPs show
acute toxicity as they interact with the gills. Osmoregulation is affected in the gills,
due to inhibition of Na+/K+-ATPase action and enzymes related to Na+ and Cl�

uptake by Ag+ ions (Bury et al. 1999; Wood et al. 1999). Insoluble forms of CuNPs
were also found to be very toxic and their suspensions may cause damage to gill
lamellae (Griffitt et al. 2007). Moreover, NPs such as Ag-BSA enter embryo skin via
diffusion or endocytosis, get deposited on the epidermis layer of larvae, and lead to
skin abnormalities through apoptosis (Asharani et al. 2008). It was also suggested
that TiO2NPs cause an increase in the bioconcentration of lead, and lead to interrup-
tion of thyroid endocrine system in zebrafish larvae (Miao et al. 2015).

7.4 Nanotoxicology in Zebrafish

Nanotechnology has emerged as an interdisciplinary field which is linked to various
subjects like physics, chemistry, biology, medicine, and toxicology (Weiss and
Diabate 2011; Donaldson et al. 2004). Nanotechnology research primarily requires
animal models to check nanotoxicity and zebrafish has the potential for the same as
notable advancement has been made in the mentioned field using zebrafish (Jang
et al. 2014). This section emphasizes on some recent studies and available data
related to toxicity of NPs using zebrafish model.
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7.4.1 Metal Nanoparticles

7.4.1.1 Gold
Unique properties AuNPs make it a preferred choice for various fields like cellular
labeling, drug delivery, imaging and diagnostics for cancer, diabetes, and
Alzheimer’s disease (Li and Chen 2011). However, AuNPs may cause cytotoxicity
in humans (Goodman et al. 2004; Gerber et al. 2013). Therefore, zebrafish has
become a popular in vivo model for the assessment of toxicity caused by most
commonly studied NPs (AuNPs) at present. Among all the engineered
nanomaterials, AuNPs have the least empiric proof of adverse impacts on organisms,
yet fewer number of investigations have been carried out to assess in vivo toxicity
(Caballero-Diaz and Valcarcel 2014). In vitro assessment postulates some
mechanisms such as genotoxicity, apoptosis, generation of ROS, leakage of toxic
materials, interactions with lipids and proteins, mitochondrial damage, endocrine
disruption, cellular morphology changes, and altered gene expression (Caballero-
Diaz and Valcarcel 2014). There are a number of reported studies where embryos are
exposed to 100 μL/mL of gold nanoclusters, but none showed toxic impact on
mortality, gene expression, heart rate, hatching rate, and malformations
(Chandirasekar et al. 2016). However, toxic impact was observed at relatively higher
concentration, which does not have environmental importance. At 300 mg/mL,
AuNPs showed 100% embryo mortality as an anticancer agent (Ramachandran
et al. 2017). AuNPs were turned out to be less toxic toward embryos or adult
zebrafish compared to other NPs such as Ag, Pt, and Cu (Ramachandran et al.
2018; Browning et al. 2019; Bar-Ilan et al. 2009; Asharani et al. 2010). But some
studies reported toxic effect of AuNPs on zebrafish which may end up with embry-
onic lethality, neurotoxicity, developmental toxicity, and immunotoxicity (Truong
et al. 2012; Kim et al. 2013). Presence of AuNPs (12 and 50 nm) in food leads to a
variety of cellular malfunctions and genome modifications in adult zebrafish
depending on size, exposure time, and concentration (Geffroy et al. 2012). Genome
alteration in various adult tissues was observed when zebrafish was exposed to
sediment containing 14 nm AuNPs for a longer period of time, which may be due
to increase in oxidative stress (Dedeh et al. 2015). AuNPs were found to have more
potential toxic effects than ionic Au if accumulated in tissues. Another work
confirmed that 0–50 nm AuNPs could induce strand breaks in zebrafish ovaries
(Dayal et al. 2017).

7.4.1.2 Silver
AgNPs are one of the most extensively studied NPs used as therapeutic agents,
antimicrobials, and biosensors, in various cosmetic products and drug delivery
systems (Czupryna and Tsourkas 2006; Yoon et al. 2007; Jin and Ye 2007; Prow
et al. 2006; Perugini et al. 2002). AgNPs exert size-based toxicity which indicates
that the dimension of NPs plays a crucial role in their toxicity profiling. A previous
study established this fact by performing in vivo quantitative study in zebrafish to
verify size-dependent transport and toxicity of AgNPs (Lee et al. 2012). In the
abovementioned study, it was found that AgNPs having 30–72 nm diameter were
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capable to diffuse into the zebrafish embryos through chorionic pores due to random
Brownian motion and may produce more potent toxic effect. However, different size
(3, 10, 50, and 200 nm) of AgNPs (synthesized) showed 100% mortality rate after
120 hpf when administered to zebrafish embryos irrespective of size (Bar-Ilan et al.
2009). Hence, size-dependent toxicity profile of AgNPs is conclusive. A number of
toxicities were observed including damage to neuromast hair cells, reduction in heart
rate, teratogenicity, and mortality when AgNPs were exposed to zebrafish during
early development (Yoo et al. 2016). But another study concluded that low
concentrations of 10–20 nm AgNPs (<5 mg/L) do not have much impact on normal
embryonic development, but higher concentrations showed significant impact on the
growth of ectodermal and mesodermal tissues, probably due to delayed or inhibited
cell division (Xia et al. 2016). Immunotoxicity and oxidative stress were observed
due to the localization of AgNPs in the gills and liver when an adult zebrafish was
exposed to it (Krishnaraj et al. 2016). A number of AgNPs possess different shapes
and are known to induce oxidative stress, but plate-shaped AgNPs were more prone
to show toxic effect than spherical and wire-shaped forms (George et al. 2012;
Abramenko et al. 2018). Interestingly, these effects were associated with the pres-
ence of surface defects rather than Ag shedding (George et al. 2012). However,
reductions in oxidative stress in embryos or adults were observed when AgNPs were
coated with cysteine (George et al. 2012) or sulfidation (Devi et al. 2015). Increase in
embryonic toxicity of AgNPs was detected after exposure to simulated solar light
(George et al. 2014). Collectively, this suggests complex interplay of factors, where
a range of physiochemical properties underpin biocompatibility.

7.4.2 Metal Oxide Nanoparticles

7.4.2.1 Titanium Dioxide
Among all, TiO2NPs are one of the most extensively manufactured and commer-
cially applied nanomaterials due to its area of application from colorants in
sunscreens to excipients of toothpastes, shampoos, soaps, etc. which projects enor-
mous growth potential; presently global annual production stands at around 10,000
Tm (Noman et al. 2018; Drobne 2018). Low-dose TiO2NP does not show major
developmental abnormalities in zebrafish when embryos are exposed to it (Wang
et al. 2014). But various studies have reported their capability to trigger premature
hatching in a dose-dependent manner (Samaee et al. 2015; Clemente et al. 2014). As
per some studies, higher dose of TiO2NPs may trigger embryonic malformation and
death (Chakraborty et al. 2009). Another study reveals that the capability of
TiO2NPs to absorb photons may trigger production of electron-hole pairs which
can interact with water and oxygen molecules to produce reactive oxygen species
that are poisonous to zebrafish larvae (Bar-Ilan et al. 2012). Prolonged exposure of
adult zebrafish to TiO2NPs for 6 months at low concentrations (<4 mg/L) was also
linked with low toxicity, judged by mortality rate. However, higher concentration
leads to accumulation of NPs in various parts of the fish, including the heart, liver,
gill, and brain (Chen et al. 2011a, b) and exhibits genotoxic effects (Rocco et al.
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2015). Exposure of zebrafish embryos to TiO2NPs starting from fertilization to the
free-swimming phase does affect hatchability, survival, and malformation rate.
However, larval swimming parameters such as average velocity and maximum
velocity were considerably altered, indicating that the behavioral endpoints were
far more sensitive than other parameters like hatchability and survival (Bar-Ilan et al.
2012; Chen et al. 2011a, b). However, the foremost consequence of TiO2NP
exposure is neurotoxicity. Even low level of TiO2NPs may damage brain by crossing
the blood-brain barrier, causing neuronal differentiation and neurogenesis (Wang
et al. 2014; Chakraborty et al. 2009). Long-term low-dose exposure of TiO2NPs to
adult zebrafish for 45 days showed alteration in behavior and histopathological
variations in the zebrafish brain due to the reduction in neurotransmitter level
which were linked to dose-dependent elevation in nitric oxide levels (Sheng et al.
2016).

7.4.2.2 Copper and Copper Oxide
Utilization of copper has seen an upward trend over the years due to its considerable
demand in various sectors like electronics, petroleum lubricants, catalysis, sintering
active agents, consumer products of the pharmaceutical industry, adsorbents for
water purification, and biomedical industries (Adeleye et al. 2016; Dankovich and
Smith 2014; Lee et al. 2016; Liu and Astruc 2018; Goel et al. 2014). Copper and its
oxides have been utilized in many areas including biosensing (Mao et al. 2015),
energy storage (Dar et al. 2015), and development of antibacterial agents (Chatterjee
et al. 2014). However, these materials can simply discharge copper particles which
are exhibited to initiate cellular damage by prompting oxidative stress. Assessment
of toxic impacts of Cu-based nanomaterials is far more difficult, as the toxicity is not
only caused by the dissolved copper ions. One examination uncovered that CuNP
introduction on zebrafish embryos indicated that CuNP creates ROS in a
concentration-dependent manner (Denluck et al. 2018). CuNPs deferred embryo
hatching time and produced teratogenicity of larvae. Dose-dependent mortality in
zebrafish embryos was observed when CuNPs were exposed to it, whereas higher
concentration leads to death of gastrula-stage zebrafish embryos (Bai et al. 2010). A
previous study revealed that CuNPs cause acute toxicity to zebrafish embryos
followed by gill injury (Griffitt et al. 2007). A new work reported on earlier report
further disclosed that CuNPs (25 nm, 1 mg/L) might induce significant transcrip-
tional changes in the pro-inflammatory linked genes in the skin and intestine and
raise the movement of neutrophils in the tail of zebrafish embryos (Brun et al. 2018).
Mentioned statement revealed CuNP-induced dermal and intestinal inborn immune
responses, which may indicate the possible adverse events of CuNPs at higher levels
of biological organization. CuONPs are vastly used in numerous fields like batteries,
gas sensors, high-temperature superconductors, agricultural biocides,
photocatalysts, energy transfer fluids, and antimicrobial agents (Batley et al. 2013;
Hou et al. 2017; Kim et al. 2012; Llorens et al. 2012). Therefore, extensive use and
its production may cause possible threats to individual organisms and ecosystem too.
The outcome of the potential toxicity assessment of CuONPs in zebrafish embryos
and larvae (Bai et al. 2010) exposed that CuONPs have the capability to interfere in
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embryo hatching in a dose-oriented way and produced amplified expression of the
heat-shock protein 70 in zebrafish larvae when a higher dose was given (Lin et al.
2011). Additionally, administration of CuONPs in zebrafish embryos was discov-
ered as a source of oxidative stress-mediated teratogenicity and this observation was
primarily attributed to the particles themselves rather than dissolved Cu. Reactive
oxygen species (ROS) may be generated due to the accumulation of CuONPs in
embryos, which may further lead to cell apoptosis followed by production of
deformed embryos (Ganesan et al. 2016).

7.4.2.3 Zinc Oxide
ZnONPs are considered as one of the most promising nanomaterials with widespread
biomedical applications (e.g., anticancer and antibacterial therapy) (Mishra et al.
2017; Sirelkhatim et al. 2015) and possess characteristic properties like transpar-
ency, biocompatibility, high isoelectric point, and photocatalytic efficiency; they are
frequently used in cosmetics, sunscreens, ceramics, photonics, and electrical
appliances (Mirzaei and Darroudi 2017). Unfortunately, ZnONPs are categorized
as “extremely toxic” and may cause severe threat to the environment and ecosystem
(Kahru and Dubourguier 2010). Usually, the ZnONP-caused toxicity is primarily
due to the dissolution of Zn2+ which can trigger various biological effects starting
from lysosomal damage, mitochondrial perturbation, generation of ROS, initiation
of pro-inflammatory responses, and lastly cell death (George et al. 2010; Xia et al.
2008, 2011). Zebrafish embryos and larvae show toxic effects such as retarded
hatching, tail malformations, reduction in body length of the larvae, and tissue
damage when they are exposed to ZnONPs at lower concentrations, but higher
concentrations may lead to embryonic mortality (Zhu et al. 2008, 2009; Kteeba
et al. 2017). Shape of the particle and surface coating play a significant role in
experiencing ZnONP toxicity. Polymer-coated ZnONPs were considered to be more
biocompatible compared to spherical ZnO, whereas leaf-shaped ZnONPs show
extreme influence on hatching (Ong et al. 2014). Another research work on shape-
based toxicity study of ZnONPs showed that nanospheres and cuboidal submicron
particles were found to be less toxic than nanosticks in terms of hatching and overall
mortality (Hua et al. 2014). Zhao et al. (2013) predicted the fundamental mechanism
of ZnONP exposure-induced developmental toxicity which is linked to cellular
oxidative stress, DNA damage, and altered actions of several critical defense
enzymes (i.e., catalase, glutathione peroxidase, and superoxide dismutase).

7.4.2.4 Magnesium Oxide
MgONPs are commonly utilized in medicine, manufacturing, and anticancer therapy
and as an antibacterial agent in the food industries. Extensive use of these NPs in our
everyday lives results in unavoidable discharge and environmental exposure. Many
researches have revealed variable toxicity of other metal oxide NPs. Exposure of
MgONPs initiated increased mortality in zebrafish (Kovrižnych et al. 2013). Many
researches evidenced concentration-dependent MgONP-induced cellular apoptosis
and ROS. Dose-dependent alteration in hatching rate, malformations, and survival of
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zebrafish embryos were observed due to the exposure of MgONPs (20 nm)
(Ghobadian et al. 2015).

7.4.2.5 Aluminum and Aluminum Oxide
Other NPs like aluminum nanoparticles (AlNPs) and Al2O3NPs have been broadly
utilized in the drug delivery systems, optoelectronics industry, electronics, and
biomedical products. Al2O3NPs and Al2O3 bulk showed very little acute toxicity
to zebrafish embryos and larvae (Griffitt et al. 2008, 2011).

7.5 Limitations of Zebrafish Model for Nanotoxicity Study

Zebrafish as an in vivo model for toxicity profile of nanomaterials is a well-accepted
phenomenon. The extent of toxicity of these NPs was evaluated by noticing the
functional defects and malformations in zebrafish. However, literature survey
reveals numerous lacunae in assaying nanomaterial-based immunotoxicity. More-
over, it is very challenging to assess embryo-based nanotoxicity assays systemati-
cally due to the fast developmental stages witnessed in zebrafish. However,
advanced technologies along with automation help in screening nanotoxicity using
zebrafish embryos. A number of nanomaterials are used for the purpose of therapeu-
tic intervention in the area of antimicrobial therapy and drug delivery. Therefore, it is
necessary to figure out the pharmacokinetic profiling of these nanomaterials. How-
ever, it is a bit challenging to perform ADME assay in zebrafish model after nano-
drug delivery.

7.6 Future Prospects

Zebrafish as an in vivo model for toxicity profiling of nanomaterials has shown
enormous potential. At present, several advance molecular biology techniques and
zebrafish model transgenic lines are available for this purpose. Several zebrafish
microarrays along with huge genomic resources are currently accessible for the
purpose of nanotoxicity evaluation. These extremely advance resources make
zebrafish a flexible system for toxicogenomic studies of nanomaterial in the coming
days. Evaluation of nanomaterial toxicity on zebrafish development with the help of
proteins and gene expression studies has enormous potential. Although zebrafish as
a high-throughput screening system utilizing larval stages was previously explored
for the purpose of evaluating nanomaterial toxicity, still huge scope persists for
nanomaterial toxicity assays.
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7.7 Conclusion

At present, zebrafish presents itself as a smart vertebrate model for testing NP
toxicity and biocompatibility. Furthermore, this animal model has been much
cheaper, faster, easy to conserve, and able to test agents efficiently via various routes
for more than a decade. Additionally, definite physiological influences can be
evaluated at multiple developmental stages. With the help of advance and up-to-
date technology, zebrafish can become a meaningful alternative than other mamma-
lian models for evaluating toxicity of nanomaterial in the coming days.
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