
Chapter 14
Three-Loop Heavy Quark Form Factors
and Their Asymptotic Behavior

J. Ablinger, J. Blümlein, P. Marquard, N. Rana, and C. Schneider

Abstract A summary of the calculation of the color-planar and complete light quark
contributions to the massive three-loop form factors is presented. Here a novel cal-
culation method for the Feynman integrals is used, solving general uni-variate first-
order factorizable systems of differential equations. We also present predictions for
the asymptotic structure of these form factors.

14.1 Introduction

The detailed description of top quark pair production to high perturbative order is of
importance in various respects, including precision studies ofQCD, themeasurement
of the top-quark mass, and its other properties, and in the search for effects from
potential physics beyond the Standard Model. The heavy quark form factors act as
the basic building block of the related observables. In a series of publications [1–4],
two-loop QCD contributions of these form factors for vector, axial-vector, scalar,
and pseudo-scalar currents were first computed. In an independent calculation in [5],
theO(ε) terms were included for the vector form factors, where ε is the dimensional
regularization parameter in D = 4 − 2ε space–time dimensions. Later in [6], two-
loop QCD contributions up to O(ε2) for all these form factors were obtained.

At the three-loop level, the color-planar contributions to the vector form factors
were obtained in [7, 8] and the complete light quark contributions in [9]. We have
computed both the color-planar and complete light quark contributions to the three-
loop form factors for the axial-vector, scalar, and pseudo-scalar currents in [10] and
for the vector current in [11], which are the subject of the first part of this article.

J. Ablinger · C. Schneider
RISC, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

J. Blümlein · P. Marquard · N. Rana (B)
DESY, Platanenallee 6, 15738 Zeuthen, Germany
e-mail: Narayan.Rana@mi.infn.it; narayan.rana@desy.de

N. Rana
INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

© Springer Nature Singapore Pte Ltd. 2021
P. K. Behera et al. (eds.), XXIII DAE High Energy Physics Symposium,
Springer Proceedings in Physics 261,
https://doi.org/10.1007/978-981-33-4408-2_14

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4408-2_14&domain=pdf
mailto:Narayan.Rana@mi.infn.it
mailto:narayan.rana@desy.de
https://doi.org/10.1007/978-981-33-4408-2_14


92 J. Ablinger et al.

In [11], we have presented a detailed description of the method which we have used
to obtain the master integrals in this case. The method is generic to compute any
first-order factorizable and uni-variate system of differential equations. In a parallel
calculation, the same results have been obtained in [12].

Amplitudes for hard scattering processes in QCD provide a clear insight into
underlying principles such as factorization or the universality of infrared (IR) sin-
gularities. In the case of massless QCD amplitudes, a plethora of work [13–16] has
been performed to understand the structure of IR divergences which is due to the
interplay of the soft- and collinear dynamics. In the case of two parton amplitudes,
i.e., the form factors, the IR structure is more prominent. The interplay of the soft and
collinear anomalous dimensions building up the singular structure of the massless
form factors has first been noticed in [17] at two-loop order and has been later estab-
lished at the three-loop order in [18]. The generalization of this universal structure to
the case of massive form factors is also of interest. First steps were taken in [19] in
the asymptotic limit, i.e., in the limit where the quark mass is small compared to the
center ofmass energy, followed by the proposition of a factorization theorem [20–22]
in the asymptotic limit. Finally, in [23], a general solution was presented following
a soft-collinear effective theory approach. While, the solution in [23] provides the
structure of IR poles for the exact computation, the study of the Sudakov behavior
in the asymptotic limit also elucidates the logarithmic behavior for the finite contri-
butions. Following the method proposed for massless form factors in [24, 25], we
have performed a rigorous study in [26] in the asymptotic limit to obtain all the poles
and also all logarithmic contributions to finite pieces of the three-loop heavy quark
form factors for vector, axial-vector, scalar, and pseudo-scalar currents. A similar
study has been performed in [27] obtaining the poles for the vector form factor. In
the second part of this article, we summarize the contents of [26].

14.2 Heavy Quark Form Factors

We consider a virtual massive boson of momentum q, which can be a vector (V ), an
axial-vector (A), a scalar (S), or a pseudo-scalar (P), decaying into a pair of heavy
quarks of mass m, color c and d, and momenta q1 and q2, at a vertex Xcd , where
Xcd = �

μ

V,cd , �
μ

A,cd , �S,cd and �P,cd . The general forms of the amplitudes are

ūc(q1)�
μ

V,cdvd(q2) ≡ −i ūc(q1)
[
δcdvQ

(
γ μ FV,1 + i

2m
σμνqν FV,2

)]
vd(q2),

ūc(q1)�
μ

A,cdvd(q2) ≡ −i ūc(q1)
[
δcdaQ

(
γ μγ5 FA,1 + 1

2m
qμγ5 FA,2

)]
vd(q2),

ūc(q1)�S,cdvd(q2) ≡ −i ūc(q1)
[
δcdsQ

(m
v

(−i) FS

)]
vd(q2),

ūc(q1)�P,cdvd(q2) ≡ −i ūc(q1)
[
δcd pQ

(m
v

(γ5) FP

)]
vd(q2) . (14.1)
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Here ūc(q1) and vd(q2) are the bi-spinors of the quark and the anti-quark, respec-
tively, with σμν = i

2 [γ μ, γ ν]. vQ, aQ, sQ , and pQ are the Standard Model (SM) cou-
pling constants for the vector, axial-vector, scalar, and pseudo-scalar, respectively.
v = (

√
2GF )−1/2 denotes the SM vacuum expectation value of the Higgs field, with

the Fermi constant GF . For more details, see [6]. The form factors can be obtained
from the amplitudes by multiplying appropriate projectors [6] and performing the
trace over the color and spinor indices.

14.2.1 Details of the Computation

The computational procedure is described in detail in [6]. The Feynman diagrams are
generated using QGRAF [28]. The packages Q2e/Exp [29, 30], FORM [31, 32], and
Color [33] are used in the computation. By decomposing the dot products among
the loop and external momenta into the combination of inverse propagators, each
Feynman diagram can be expressed in terms of a linear combination of a large set of
scalar integrals. These integrals are related to each other through integration-by-parts
identities (IBPs) [34, 35], and are reduced to 109 master integrals (MIs) by using the
package Crusher [36].

We apply the method of differential equations [37–40] to calculate the master
integrals. Themethod and the corresponding algorithm is presented in detail in [11].1

The principal idea of this method is to obtain a set of differential equations of theMIs
by performing differentiation with respect to the variable x , with q2/m2 = −(1 −
x)2/x and then to use the IBP relations on the output to obtain a linear combination
of MIs for each differentiated integral for general bases. One obtains a n × n system
of coupled linear differential equations for n master integrals I

d

dx
I = MI + R. (14.2)

Here the n × n matrix M consists out of entries from the rational function field
K(D, x) (or equivalently from K(ε, x)), where K is a field of characteristic 0. The
inhomogeneous part R contains MIs which are already known. In simple cases, R
turns out to be just the null vector. The first step to solve such a coupled system of
differential equations is to find out whether the system factorizes to first order or not.
Using the package Oresys [42], based on Zürcher’s algorithm [43] and applying
a corresponding solver [11, 44] we have first confirmed that the present system is
indeed first-order factorizable in x-space.

Without the need to choose a special basis, we solve the system in terms of iterated
integrals over whatsoever alphabet, cf. [11] for details. To proceed, we first arrange
the differential equations in such a manner that it appears in upper block-triangular
form. Then, we compute the integrals block-by-block starting from the last in the

1For a review on the computational methods of loop integrals in quantum field theory, see [41].
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arrangement. While solving for each block, say of order m × m, the differential
equations are solved order by order in ε successively, starting at the leading pole
terms, ∝ 1/ε3 for our case. The successive solutions in ε also contribute to the
inhomogeneities in the next order. We use the package Oresys [42], based on
Zürcher’s algorithm [43] to uncouple the differential equations. At each order in ε, l
inhomogeneous ordinary differential equations are obtained, where 1 ≤ l ≤ m. The
orders of these differential equations are m1, . . . ,ml such that m1 + · · · + ml = m.
We have solved these differential equations using themethod of variation of constant.
In our case, the spanning alphabet is

1

x
,

1

1 − x
,

1

1 + x
,

1

1 − x + x2
,

x

1 − x + x2
, (14.3)

i.e., the usual harmonic polylogarithms (HPLs) [45] and their cyclotomic extension
(CHPL) [46]. While integration over a letter is a straightforward algebraic manipu-
lation, often k-th power of a letter, k ∈ N, appears which needs to be transformed to
the letters of (14.3) by partial integration. The otherm − l solutions are immediately
obtained from the former solutions. The constants of integration are determined using
boundary conditions in the low energy limit, i.e., at x = 1. The boundary values for
the HPLs and CHPLs give rise to the respective constants in the limit x → 1, i.e., the
multiple zeta values (MZVs) [47] and the cyclotomic constants [46]. The computa-
tion is performed by intense use of HarmonicSums [46, 48–54], which uses the
package Sigma [55, 56]. Finally, all the MIs have been checked numerically using
FIESTA [57–59].

14.2.2 Ultraviolet Renormalization and Universal Infrared
Structure

We perform the ultraviolet (UV) renormalization of the form factors in a mixed
scheme. The heavy quark mass and wave function have been renormalized in the on-
shell (OS) renormalization scheme. The strong coupling constant has been renormal-
ized using theMS scheme, by setting the universal factor Sε = exp(−ε(γE − ln(4π))

for each loop order to one at the end of the calculation.
The required renormalization constants are already well-known and are denoted

by Zm,OS [60–64], Z2,OS [60–62, 65], and Zas [66, 67], with as = αs/(4π), for
the heavy quark mass, wave function, and strong coupling constant, respectively.
Z2,OS and Zas are multiplicative, while the renormalization of massive fermion lines
has been taken care of by properly considering the counter terms. For the scalar
and pseudo-scalar currents, the presence of the heavy quark mass in the Yukawa
coupling employs another overall mass renormalization constant, which also has
been performed in the OS renormalization scheme.

The universal behavior of IR singularities of the massive form factors was first
investigated in [21] considering the high energy limit. Later in [23], a general argu-
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mentwas provided to factorize the IR singularities as amultiplicative renormalization
constant as

FI = Z(μ) Ffin
I (μ) , (14.4)

where Ffin
I is finite as ε → 0. The renormalization group equation (RGE) for Z(μ)

is constrained by the massive cusp anomalous dimension [68, 69].

14.2.3 Checks of the Results

To perform checks, we have maintained the gauge parameter ξ to first order and
have thus obtained a partial check on gauge invariance. Fulfillment of the chiral
Ward identity gives another strong check on our calculation.

Considering αs-decoupling appropriately, we obtain the universal IR structure for
all the UV renormalized results, confirming again the universality of IR poles. Also,
in the low energy limit, the magnetic vector form factor produces the anomalous
magnetic moment of a heavy quark which we cross check with [70] in this limit.
Finally, we have compared our results with those of [7, 9, 12], which have been
computed using partly different methods. Both results agree.

14.3 Asymptotic Behavior of Massive Form Factors

We consider from now on only the renormalized electric form factor (FV ) for the
vector current and the renormalized scalar form factor (FS), in the asymptotic limit.
All other massive form factors either agree to one of them or vanish in this limit. To
start with, we write down a Sudakov type integro-differential equation [71, 78] for

a function F̂I

(
as(μ), Q2

μ2 , m2

μ2 , ε
)
in the asymptotic limit as follows:

μ2 ∂

∂μ2
ln F̂I

(
Q2

μ2
,
m2

μ2
, as, ε

)
= 1

2

[
KI

(
m2

μ2
, as, ε

)
+ GI

(
Q2

μ2
, as, ε

)]
,

(14.5)
where I = V, S only. Here F̂I contains all logarithmic behavior and singular contri-
butions of the respective form factor. As evident from the functional dependence, KI

incorporates the contributions from the quark mass m and does not depend on the
kinematic invariants, while GI contains the information of the process. Along with
the evolution of the strong coupling constant, (14.5), and the renormalization group
(RG) invariance of F̂ , individual solutions for KI and GI are provided as follows:
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KI = KI

(
as(m

2), 1, ε
)

−
∫ 1

m2

μ2

dλ

λ
Aq

(
as(λμ2)

)
,

GI = GI

(
as(Q

2), 1, ε
)

+
∫ 1

Q2

μ2

dλ

λ
Aq

(
as(λμ2)

)
. (14.6)

Here Aq denotes the quark cusp anomalous dimension. KI (as(m2), 1, ε) and
GI (as(Q2), 1, ε) are initial conditions arising while solving the RG equations. Using
(14.6), one can solve (14.5) to obtain F̂I , fromwhich the form factors can be obtained
through the following matching relation

FI

(
as,

Q2

μ2
,
m2

μ2
, ε

)
= CI (as, ε)F̂I

(
as,

Q2

μ2
,
m2

μ2
, ε

)
. (14.7)

The solutions for F̂I up to four-loop are presented in [26]. At each order in as ,
say n, the solution consists of A(n)

I , K (n)
I , and G(n)

I , the expansion coefficients of AI ,
KI (as(m2), 1, ε), and GI (as(Q2), 1, ε), respectively, and lower order terms.

In the massless quark form factor, the soft ( fq ) and collinear (Bq ) anomalous
dimensions govern the infrared structure in the form γq = Bq + fq

2 . Intuitively, in
the massive case, γq , along with similar contributions (γQ) from the heavy quark
anomalous dimension, will control the singular structure. Hence, it is suggestive to
write

K (n)
I = −2(γ (n)

q + γ
(n)
Q − γ

(n−1)
I ) . (14.8)

The anomalous dimension γ
(n−1)
I [60–62, 72–75] arises due to renormalization of

the current. Note that the power of each term γ n indicates the series expansion in as .
For γI , the contribution is of the same order also, however, we denote it by (n − 1)
to match with general notation of [72]. The other finite functions G(n)

I contain the
information on the process through its dependence on Q2. Hence, it is similar to the
one in case of massless form factors [76, 77]

G(n)
I = 2(B(n)

q − γ
(n−1)
I ) + f (n)

q + C (n)
I +

∞∑
k=1

εkgn,k
I . (14.9)

Given the structural similarities, C (n)
I and gn,k

I are the same as in the massless
cases. All the required anomalous dimensions, except γQ , are known from different
computations. On the other hand, γQ can be obtained from the non-logarithmic con-
tribution of the massive cusp anomalous dimension in the asymptotic limit. With all
the ingredients, we obtain the full singular contributions and all logarithmic contri-
butions to the finite part for vector and scalar form factors in the asymptotic limit.
The non-logarithmic part of the finite piece gets contributions from the matching
function CI which can only be obtained by an exact computation. Using our results
of [11], we obtain the color-planar and complete light quark contributions for C3,0

I .
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14.4 Conclusion

In the first part, we have summarized the computational details to obtain the color-
planar and complete light quark contributions to the three-loop heavy quark form
factors along with a new method to solve uni-variate first-order factorizable systems
of differential equations. The system is solved in terms of iterative integrals over a
finite alphabet of letters. Finally, we have computed all the corresponding contri-
butions to the massive three-loop form factors for vector, axial-vector, scalar, and
pseudo-scalar currents, which play an important role in the phenomenological study
of the top quark. We then have studied the asymptotic behavior of these form factors.
A Sudakov type integro-differential equation can be written down for the massive
form factors and along with the study of RGE, we have obtained all the logarithmic
contributions of the finite part of the vector and scalar form factors.
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