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Abstract

Design of experiments (DoE) is a widely used statistical tool for planning
experiments, collecting and analyzing data, and drawing valid conclusions.
This chapter describes the basics of DoE, types of DoE designs, and rationale
for the selection of a design. Applications of DoE in the development of pharma-
ceutical drug products are discussed with emphasis on injectable drug products.
Also, a practical case study of the development of a nanoemulsion product is
discussed in detail.
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5.1 Introduction

The objective of the development of pharmaceutical drug products is to deliver safe
and efficacious medicines to the patients reliably. It is crucial to ensure the desired
drug product quality reproducibly. Failure to achieve the quality of drug products
can lead to severe safety concerns and suboptimal therapeutic benefits for the
patients. In early 2000, Quality by Design (QbD) based drug product development
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was adopted by the United States Food and Drug Administration (US-FDA) and
other regulatory authorities to ensure the quality of the products [1–3].

Pharmaceutical drug products can be administered by various routes such as oral,
topical, and injectable administration. The safety margin is very narrow with
injectable (e.g. intravenous) dosage forms as they bypass the absorption step and
quickly access the systemic circulation. QbD based development of injectable drug
products involves the designing of drug delivery systems such as liposomes, poly-
meric nanoparticles, lyophilized powder, solutions, suspensions, and emulsions,
selection of excipients, and product composition. Also, robust manufacturing pro-
cesses and analytical methods are crucial to develop quality drug products. The
understanding of unit operations such as sterilization is a unique challenge faced
during the development of injectable dosage forms. Various six-sigma tools, includ-
ing design of experiments (DoE), risk assessment, critical to quality (CTQ), affinity
diagram, quality function deployment (QFD), failure mode and effects analysis
(FMEA), statistical analysis, process capability analysis, control strategy, etc. are
useful at different stages of product development. DoE is one of the most widely
used tools for formulation and analytical method development, process optimization,
and process validation [4, 5].

DoE is a systematic statistical approach that allows the evaluation of the impact of
change in multiple input variables, known as factors, within the boundary of
experimental design, on the output variables, known as responses. DoE is a robust
data collection (by designing and conducting experiments) and analytical tool
(by analysis and inferring data). The stochastic models, developed based on specific
factors combination and obtained results, are used for identifying the effects of
factors on responses and help understand the nature of interactions between two or
more factors. DoE is useful for obtaining the “true optimum” (design space) with
minimum possible experiments leading to faster and cost-effective product and
process development. Also, an essential advantage of using DoE is that the
experimenters can quantify the interactions between factors which cannot be deter-
mined with traditional one factor at a time (OFAT) approach [6–9].

5.2 Basics of DoE

This section describes basic concepts used frequently in DoE, which are essential to
understand before discussing various types of experimental designs, the rationale of
design selection, and case studies.

5.2.1 Randomization

R. A. Fisher introduced the concept of randomization in experimental designs in
1925. Randomized experiments are considered as “gold standards” for inferring
unambiguous and valid conclusions from statistical data [10]. Systematic (but not
randomized) experiments lead to judgment bias and inaccurate interpretation of the
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data. Also, non-randomized experiments are vulnerable to confounding or hidden
variables, also known as lurking variables, which vary with time. Examples of
lurking variables include a change in temperature of different shelves in lyophilizer
during series of experiments, the machine heats up, change in experimenter, temper-
ature or humidity changes, etc. Randomization does not mean that experiments to be
performed in any order occur to the experimenter; it must be a physical experimental
process [11]. Methods for randomization include simple randomization (flipping a
coin, throwing dice, and randomly select a card from a shuffled deck), block
randomization (grouping in equal sample size), and stratified randomization (ran-
domization in a way that controls and balances the effect of covariates) [12].

Randomization serves the following purposes [13].

• No selective bias to the results of experiments.
• Accurate and unbiased estimation of error effects.
• Ensures that the error effects are statistically independent.

5.2.2 Blocking

Blocking is a mathematical technique of removing variations associated with a
known change during the experiment. For example, if two different batches (or lots)
of a surfactant is needed to prepare an emulsion product; the change in manufacturer
batch (or lot) of surfactant might affect the properties of the emulsion. Performing
the experiments with two different blocks (each block of experiments with one batch
of surfactant) normalizes the effect caused by batches of surfactant. Blocking helps
to reduce variability due to known reasons for experiments that may take several
days, may involve different experimenters, and may subject to known changes in
experimental conditions. However, the experimenter should be careful during block
selection. Blocking should not be applied to a factor if the experimenter is interested
in studying the effect of that factor on the response. For example, in the above
emulsion experiments, blocking should not be used on surfactant if the experimenter
is interested in evaluating the effect of different batches of surfactant on emulsion
properties. Blocking can be applied to more than one factor during the experiments
[6, 14].

Blocking serves the following purposes [14].

• Ensures that the blocked variable does not spoil the evaluation of other variables.
• Precise estimation of an experimental error (by removing the effect of a blocked

variable from error calculation).
• In a few cases, it is possible to measure the effect of the blocked variable on the

response.
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5.2.3 Orthogonality

Independent variables (factors) affecting the dependent variable (response) are
orthogonal if they are not correlated. For example, the concentration of the oil
phase and concentration of surfactant are two orthogonal independent variables
affecting the stability of the globule size distribution of an emulsion.

Orthogonality is an indicator of the independence of factors. In the DoE layout,
each column is representative of a factor. It is important to estimate the effect of a
factor (and interactions) independently without the interference of other factors.
Orthogonality ensures independent estimation of the effect of a factor [15, 16].

5.2.4 Replication

Replication can be defined as the repetition of the same set of experimental
conditions more than once. All similar experiments are known as replicates. The
variability in the response for a similar set of experimental conditions indicates that
the source must be something other than the factors controlled during the
experiments. The objectives of replicate experiments are to determine the experi-
mental error and reduce the bias due to uncontrolled variables. It increases the signal
to noise (S/N) ratio if the noise is due to uncontrolled variables. The experimental
error can also be determined if the process is in statistical control for a time. The
standard error of mean (SEM) (standard deviation of the theoretical distribution of
the sample means) can be expressed by √ s=nð ), where s stands for the standard
deviation (measure of dispersion of individual values) and n stands for the number
of samples. It is desirable to have a higher number of samples and a lower standard
deviation to achieve lower SEM. Replicates can increase the number of samples,
whereas blocking helps decrease the standard deviation [17].

5.2.5 Confounding/Aliasing

Confounding or aliasing refers to the inability of clean estimation of effects and
interactions. Effects that cannot be estimated independently of each other are
considered confounded or aliased. It is the price experimenter pays with the fractional
factorial designs because experiments for all combinations of factor levels are not
possible with a reduced number of experiments, i.e., not enough degree of freedom.
For example, if the estimate of effect X4 in four-factor experiment is (X4 + X1X2X3),
then the main effect X4 is aliased with 3-way interaction X1X2X3. It cannot be
concluded whether the significant effect, if any, is due to X4 alone, interaction
X1X2X3, or both [18, 19].

Confounding is undesirable. However, it is not practically possible to perform
experiments for all combinations of factor levels at industrial settings due to time and
cost constraints. Confounding is a decision for an experimenter to make for know-
ingly confound (higher order) interactions with main effects while generating the
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experimental design. The good news for pharmaceutical scientists is that the higher-
order interactions (3 factor interactions (3FI) and above), generally, have been
observed to be insignificant in most cases [18, 19].

5.2.6 Resolution

The resolution of an experimental design refers to the degree of confounding, i.e., the
degree to which the main effects are confounded with 2 or 3 or higher factor
interactions. The number of resolution of design indicates interactions confounded
with main effects; for example, resolution III means the main effects are confounded
with 2-factor interactions (2FI). Similarly, in resolution IV designs, main effects are
confounded with 3-factor interactions (3FI), and 2FI are confounded with 2FI.
Generally, 2FI has a significant effect on responses. It is advisable to choose designs
with a higher resolution. Resolution V or higher designs are good for characteriza-
tion, and resolution IV designs are adequate for screening purposes. The resolution
III designs should only be used for ruggedness testing and comparisons. The
resolution term is not applicable to full factorial designs as they do not have a
confounding effect [7, 20].

5.2.7 Model

A model is a mathematical relationship such as equations and formula constructed
using statistical methods that relate changes in one or more factors to the changes in
responses. Based on the nature of collected data, different models might be helpful
such as linear models, interaction models, quadratic models with curvature in one or
more variables, cubic models, etc.

Caution: Before we move forward to the types and selection of experimental
designs, it is essential to understand what DoE can give us. The design of
experiments is not the panacea. Statistical modeling works best with a sound
scientific approach. Understanding the scope of experiments, selection of appropri-
ate factors and levels, and suitable DoE design is the key to successful DoE. Factors
and levels (operating ranges within the experimental boundary) should be selected
based on scientific rationale. A few pre-DoE experiments might help to decide the
factors and ranges to use in DoE. Also, tools such as a cause-and-effect relationship
(fishbone diagram) and risk analysis are useful for the selection of factors.
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5.3 Types and Criteria for Selection of an Experimental Design

5.3.1 Types of Experimental Designs

DoE designs include factorial and fractional designs, Placket–Burman, Taguchi
design, response surface methods, etc. Following are the types of DoE designs
categorized according to the objective of the experiments [21].

5.3.1.1 Comparative Objective
If the primary objective is to identify whether a factor, out of several studied factors,
is significant. Randomized block designs are useful for comparative purposes.

5.3.1.2 Screening Objective
If the primary objective is to screen out a few vital factors out of several investigated
factors that affect the responses. The selected important factors can be studied further
for optimization. Fractional factorial designs, Placket–Burman, Taguchi designs, etc.
are useful for screening purposes.

5.3.1.3 Optimization Objective
The optimization objective includes identification and quantification of the main
effects and higher-order interactions, resulting in a design space. Several product and
process development experiments have the goal of optimization to ensure reproduc-
ible quality. Various designs are used for optimization purposes, such as response
surface methods (RSM) designs, including central composite, Box–Behnken, and
optimal designs. Mixture designs such as simplex lattice, simplex centroid, and
optimal designs are useful if the factors are proportions of a mixture. Mixture designs
are used to find out the optimum composition/fraction of factors to achieve desired
responses.

5.3.2 Rationale for Selection of an Experimental Design

The selection of an experimental design depends on parameters such as the objective
of the experiments, number of factors to be investigated, available resources such as
feasibility of maximum number experiments, time, material, cost, etc. A higher
number of experiments provide more information, but in most practical cases, it is
not feasible to invest more resources and a long time. Faster development of quality
drug products is the key.

Full factorial designs are useful if the number of factors to be studied is less than
5. In case of factorial designs, the number of experiments is determined by 2Kwhere
K¼ number of factors. Full factorial design for 3, 4, and 5 factors suggest 8, 16, and
32 experiments, respectively. The number of experiments increases exponentially as
the number of factors increases, for example, 64 (6 factors), 128 (7 factors),
256 (8 factors), and so on, which is cumbersome and time-consuming. Screening
designs are useful to select a few important factors out of many. Fractional factorial,
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minimum run screening, Plackett–Burman, and Taguchi designs are useful for
screening (number of factors 5 or more). Response surface designs are used for
characterization and optimization. These designs can be applied using the selected
important factors, generally but not limited to 2–4, from the screening studies [14].

5.4 Case Study—Screening DoE for a Sterile Nanoemulsion
Product

5.4.1 Introduction

5.4.1.1 Product
ABC (1% w/v) nanoemulsion.

5.4.1.2 Objective
The objective of the screening design was to find out the most important factors
affecting the responses, i.e., selection of a vital few factors from the trivial many.
Selected factors were studied for optimization purposes.

5.4.1.3 Factors
Factors were selected based on domain knowledge and a risk assessment (Table 5.1).

5.4.1.4 Responses
Responses are the critical quality attributes of the drug product.

• Globule size distribution (Z-average and PDI).
• In vitro drug release (IVR) at 1 h, 6 h, and 12 h.

Table 5.1 Factors for screening DoE

Factors Factor names Units Type Subtype Minimum Maximum

A Particle size of
drug (D50)

μ Numeric Continuous 10 30

B Viscosity of oil
phasea

N s/m2 Numeric Continuous 0.550 0.750

C Homogenization
temperature

0C Numeric Continuous 30 60

D Homogenization
pressure

Bar Numeric Continuous 200 1000

E Homogenization
time

Minutes Numeric Continuous 5 25

F Preservative Wt. % Numeric Continuous 0.1 2
aOil phase refers to the mixture of mineral oil, drug, and surfactant
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5.4.2 Experimental Design

5.4.2.1 Selection of Design
A fractional factorial design (26–2, resolution IV; software—Design-Expert®Version
12.0.9.0, Stat-Ease Inc.) was selected. Resolution IV design allows clean estimation
of main effects. The 2FI confound with other 2FI, which might not be a concern for
screening purpose. Table 5.2 shows the confounded terms of the designs, which
show that the main effects are confounded with 3FI (insignificant in most cases).
Minimum run screening design (a set of two-level designs) can be used if it is
necessary to reduce the experimental runs. However, minimum run designs are
extremely sensitive to missing data. Even one missing data reduce the resolution
of design to III, which means the main effects will be confounded with 2FI [22].

The power of the design (the ability of the design to detect the significant effects)
should be more than 80% for practical purposes. It is advisable to decide the S/N ratio
based on desirable difference to detect (signal) and the variability in the
measurements of responses (noise).

5.4.2.2 Design Layout
Table 5.3 shows the design layout with factors combination and responses obtained
after the experiments. Experiments were performed in a randomized manner to avoid
bias.

5.4.2.3 Design Summary
Two-level factorial design with reduced 3FI without center points or blocks was
built. Tables 5.4 and 5.5 show the summary and descriptive statistics of factors and
responses, respectively.

Table 5.2 Estimated and
confounded terms of
screening DoE design

Estimated term Confounded terms

A A + BCE + DEF

B B + ACE + CDF

C C + ABE + BDF

D D + AEF + BCF

E E + ABC + ADF

F F + ADE + BCD

AB AB + CE

AC AC + BE

AD AD + EF

AE AE + BC + DF

AF AF + DE

BD BD + CF

BF BF + CD

ABD ABD + ACF + BEF + CDE

ABF ABF + ACD + BDE + CEF
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5.4.3 Effects Analysis

5.4.3.1 Response 1: Z-average
Half-normal plot: It assesses the relative significance of factors or interaction terms.
It is a scale to determine the impact of factors or interaction terms on response. The
terms that have more significant estimated effects appear away from the line in the
right corner [23, 24]. Half-normal plot for a response (Fig. 5.1) shows that the main
effects homogenization temperature (factor C), homogenization pressure (factor D),
and homogenization time (factor E) have the larger effects. Also, interactions terms
BF, AB, AF, and ABD are significant as they are away from the line. We can identify
and focus on three main effects (C, D, and E) for further evaluation.

Normal plot: Normal probability plot of estimated effects is another tool to assess
the relative impact/significance of factors or terms on response. The terms on the line
have minimal effect, whereas terms on either side of the line represent the higher
impact (greater the distance from the line, higher the impact) [25]. Figure 5.2 shows
similar results as of the half-normal plot. Half-normal plot is another way of
representing the normal plot with only positive values (conversion of estimated
effects in absolute numbers).
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Pareto chart: Pareto chart is a graphical way to present the selected model terms
and their significance [26]. It contains two different t-limits (Bonferroni and standard
t-limit). The values for both limits change based on the selected model terms
(Fig. 5.3).

5.4.3.2 Response 2: PDI
Half-normal and normal plots: The half-normal and normal plots for the response
PDI show that homogenization temperature (factor C) has a significant effect on PDI
as compared to any other factor (Figs. 5.4 and 5.5).

Pareto chart: Fig. 5.6 shows that only homogenization temperature (factor C)
exceeds the Bonferroni limit, which is more conservative than the standard t-critical.
No other factor was found significant.

5.4.3.3 Response 3: IVR 1 h
Based on the effect’s analysis by half-normal plot, normal plot, and pareto chart
(data not shown), main effects homogenization temperature (factor C) and homoge-
nization time (factor E) and the interaction term BF observed to be significant.
Homogenization temperature (factor C) crossed the Bonferroni limit, whereas
homogenization time (factor E) and BF crossed t-limit.
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5.4.3.4 Response 4: IVR 6 h
Based on the effect’s analysis by half-normal plot, normal plot, and pareto chart
(data not shown), only homogenization temperature (factor C) significantly affected
(crossed the Bonferroni limit) the IVR at 6 h.

5.4.3.5 Response 5: IVR 12 h
Only homogenization temperature (factor C), like response 4, significantly affected
(crossed the Bonferroni limit) the IVR at 12 h.

5.4.4 Analysis of Variance (ANOVA)

5.4.4.1 Response 1: Z-average
Table 5.6 shows the ANOVA for the selected model for the response Z-average.
Based on such a high F-value (1694.27) and low p-value (<0.0001), it can be
inferred that the selected model was significant. Model terms C, D, E, AB, AF,
BF, and ABD were significant. R2 of the model was 0.9999. Also, a good agreement
between adjusted R2 (0.9993) and predicted R2 (0.9958) was observed (difference
less than 0.2 between adjusted and predicted R2).
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5.4.4.2 Response 2: PDI
ANOVA for response PDI shows that homogenization temperature (factor C) is
significant. High F-value (7.69) and low p-value (0.0033) indicate that the model is
significant (Table 5.7). The R2 of the model was 0.7367. Also, a good agreement
between adjusted R2 (0.6409) and predicted R2 (0.4429) was observed.

5.4.4.3 Response 3: IVR 1 h
Table 5.8 shows the ANOVA for the selected model for the response IVR 1 h. Based
on F-value (14.86) and p-value (0.0002), the selected model was significant. Model
terms C, E, and BF were significant. The R2 of the model was 0.8814. Also, a good
agreement between adjusted R2 (0.8221) and predicted R2 (0.6964) was observed.

5.4.4.4 Response 4: IVR 6 h
Homogenization temperature (factor C) was a significant term in the selected model
(Table 5.9). The R2 of the model was 0.5932. A good agreement between adjusted
R2 (0.5641) and predicted R2 (0.4687) was observed.
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5.4.4.5 Response 5: IVR 12 h
Like response 4, homogenization temperature (factor C) was a significant term in the
selected model (Table 5.10). The R2 of the model was 0.5780. A good agreement
between adjusted R2 (0.5479) and predicted R2 (0.4488) was observed.

5.4.5 Diagnostics

Diagnostics play a vital role in verification, whether the selected regression model
fits the data suitably and meet various assumptions. Various residual diagnostics and
influence diagnostics are frequently used to test the appropriateness of the model.
We will discuss the residual and influence diagnostics of the model selected for
response 1 (Z-average) to avoid repetition. However, the diagnostic analysis should
be performed for the models developed for all responses for practical purposes.

5.4.5.1 Residual Diagnostics
Analysis of residuals is an essential verification before concluding from the regres-
sion analysis. Diagnostics plots and residual analysis are used to detect problems
associated with model analysis. The selected model, primarily linear, is reasonable if
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residuals have a normal distribution, constant variance, and independent of each
other over time.

Normal Probability of Residuals
Figure 5.7 shows the normal distribution of the externally studentized residuals
indicating that the selected model makes sense. Externally studentized residuals
are used because of the higher sensitivity for the detection of problems. Moreover,
each raw residual belongs to different populations and makes the interpretation
difficult in both conditions (constant or variable variance). Studentized residuals
calculation involves the deletion of an observation at a time and re-fitting the
regression model on the remaining (n-1) observations followed by a comparison of
observed and fitted values on the new model. Studentized residuals consider the
standard deviation estimate and are thus more effective in detecting outliers. Nor-
mally distributed residuals follow a straight line. Any patterns in the normal proba-
bility plot of residuals suggest the superiority of alternative analysis, such as the
transformation of the responses [27–30] and [35].
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Residual Vs. Predicted
Residual vs. predicted plot is used to test the assumption of the constant variance of
residuals. The random scatter of the residuals indicates the constant range of
residuals, whereas patterns such as megaphone suggest a transformation of the
data. Figure 5.8 shows a random scatter pattern of the residuals, indicating a constant
variance [31].

Table 5.6 ANOVA for response 1 (Z-average)

Source Sum of 
Squares 

df Mean 
Square 

F-value p-value  

Model 6.654E+05 12 55452.10 1694.27 < 0.0001 significa

nt 

A-Particle size of drug 

(D50) 

22.56 1 22.56 0.6894 0.4673  

B-Viscosity of oil phase 105.06 1 105.06 3.21 0.1711  

C-Homogenization 

temperature 

4.183E+05 1 4.183E+05 12780.21 < 0.0001  

D-Homogenization 

pressure 

80230.56 1 80230.56 2451.35 < 0.0001  

E-Homogenization time 30189.06 1 30189.06 922.39 < 0.0001  

F-Preservative 27.56 1 27.56 0.8421 0.4265  

AB 10764.06 1 10764.06 328.88 0.0004  

AD 27.56 1 27.56 0.8421 0.4265  

AF 6930.56 1 6930.56 211.75 0.0007  

BD 76.56 1 76.56 2.34 0.2236  

BF 1.134E+05 1 1.134E+05 3464.82 < 0.0001  

ABD 5365.56 1 5365.56 163.94 0.0010  

Residual 98.19 3 32.73    

Cor Total 6.655E+05 15     

Table 5.7 ANOVA for response 2 (PDI)

Source Sum of 
Squares 

df Mean 
Square 

F-value p-
value 

 

Model 0.0442 4 0.0110 7.69 0.0033 significant 

A-Particle size of drug 

(D50) 

0.0001 1 0.0001 0.0696 0.7968  

B-Viscosity of oil phase 1.388E-17 1 1.388E-17 9.662E-

15 

1.0000  

C-Homogenization 

temperature 

0.0441 1 0.0441 30.70 0.0002  

F-Preservative 0.0000 1 0.0000 0.0000 1.0000  

Residual 0.0158 11 0.0014    

Cor Total 0.0600 15     
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Residual Vs. Run
Residual vs. run is a plot of residuals with run order of experiments. It checks for the
effect of lurking variables on the outcomes. The lurking variable is an extraneous
variable that can have a positive or negative correlation with both the dependent
variable and the independent variable. A specific trend in the plot indicates the
existence of a lurking variable over time. Figure 5.9 shows a random scatter that
means no interference of the lurking variable [31].

Predicted Vs. Actual
The plot of predicted vs. actual responses tests the ability of the model to predict the
responses accurately. A good correlation is an indication of the ability of a model to
predict close to the actual values (Fig. 5.10).

Table 5.8 ANOVA for response 3 (IVR 1 h)

Source Sum of 
Squares

df Mean 
Square

F-
value

p-value

Model 359.60 5 71.92 14.86 0.0002 significant

B-Viscosity of oil phase 1.0000 1 1.0000 0.2067 0.6591

C-Homogenization 

temperature

292.41 1 292.41 60.44 < 

0.0001

E-Homogenization time 31.92 1 31.92 6.60 0.0280

F-Preservative 0.0400 1 0.0400 0.0083 0.9293

BF 34.22 1 34.22 7.07 0.0239

Residual 48.38 10 4.84

Cor Total 407.98 15

Table 5.9 ANOVA for response 4 (IVR 6 h)

Source Sum of 
Squares

df Mean 
Square

F-
value

p-
value

Model 444.16 1 444.16 20.41 0.0005 significant

C-Homogenization 

temperature

444.16 1 444.16 20.41 0.0005

Residual 304.59 14 21.76

Cor Total 748.74 15

Table 5.10 ANOVA for response 5 (IVR 12 h)

Source Sum of 
Squares

df Mean 
Square

F-
value

p-
value

Model 638.83 1 638.83 19.17 0.0006 significant

C-Homogenization 

temperature

638.83 1 638.83 19.17 0.0006

Residual 466.42 14 33.32

Cor Total 1105.24 15
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Box–Cox Plot
A power transformation helps in reducing the anomalies such as non-normality and
heteroscedasticity. Box–Cox transformation is a technique used for power
transformations. Generally, statistical analysis and inference follow the assumption
that data are normally distributed, have a common variance, and error structure is
additive. However, if these assumptions are seriously violated, one may perform a
power transformation and rebuild the model that has all essential aspects of the
original model. Also, the new model satisfies all the assumptions. Box–Cox plot is a
curve of the natural log of the sum of squares of residuals in which the minimum
value indicates the lambda value. Power transformation is suggested based on
lambda value. Lambda value of 1 (or any value for which 95% CI includes 1)
does not require any transformation (Fig. 5.11). Other values of lambda such as 0.5
(square root), 0 (natural log), �0.5 (inverse square root), �1 (inverse), etc. suggest
transformations [31, 32].

5.4.5.2 Influence Diagnostics
The identification of influential points is a critical aspect of regression diagnostics. It
is essential to identify runs (observations) that have a high influence on the model
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and the responses. Influence plots such as Cook’s distance, leverage, DFFITS, and
DFBETAS, provide a graphical measure of the influence of individual runs.

Cook’s Distance or Cook’s D (Di)
Cook’s distance (Di) is used to identify the most influential run (or outlier) in
regression analysis. A higher value of Di indicates a strong influence or a potential
outlier. Generally, Di value more than one should be investigated, and value more
than three represents an outlier. Di calculation includes rebuilding the regression
model after removing ith data point from the existing model and check for differences
in predictions. Cook’s distance within the limit indicates that no run is highly
influential (Fig. 5.12) [33].

Leverage
Leverage is used to identify influential points and outliers by the distance of an
observation point from the average predictor values. An observation point having a
leverage of more than twice than the average is generally considered as high
leverage. A high leverage point potentially has an impact on model fit; however, it
does not necessarily mean that the point has a strong influence on the regression
coefficient estimates. A higher distance from the predictor average for a point as
compared to the other points can be situated in the same regression line. Therefore,
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the evaluation of the discrepancy of the observation from other data might be helpful
in addition to leverage value [34]. Figure 5.13 shows no high leverage run.

DFFITS, MDFFITS, and DFBETAS
In addition to the Cook’s distance, several case-deletion diagnostics such as
DFFITS, MDFFITS, and DFBETAS, are used in regression modeling. DFFITS
measures the change in prediction value after removing the ith point (ith point not
included in the model). MDFFITS is used when multiple points are removed.
DFBETAS measures the change in coefficient estimate after removing the ith point
(ith point not included in the model) [34].

Based on various residual and influence diagnostics, we can infer that the selected
model is appropriate as residuals showed normal distribution, a constant variance, no
transformation is required, and no high influence runs observed. Similar outcomes
were observed for all the remaining models created for the other responses.

5.4.6 Summary of the Screening Design

The objective of the screening design of experiment was to identify critical factors
affecting the critical quality attributes (CQA’s) (responses) of the nanoemulsion. Six
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factors, namely, particle size of the drug, viscosity of oil phase, homogenization
temperature, homogenization pressure, homogenization time, and preservative con-
tent were selected based on initial risk assessment. A fractional factorial design
(26–2) of resolution IV was selected. Resolution IV design allows clean estimation of
main effects. The two factors interactions confound with the other two factors
interactions, but it might not be a concern for screening purpose. The factors can
be prioritized for the optimization experiments based on the relative impact of the
factors on responses. Globule size distribution (Z-average and PDI) and In vitro drug
release (IVR) at 1 h, 6 h, and 12 h were selected as responses.

Based on the effects analysis and ANOVA for all responses, homogenization
temperature (factor C) was found to be the most significant factor followed by
homogenization time (factor E) and homogenization pressure (factor D). Also, a
few interaction terms were significant. However, interaction terms were not given a
due focus because the goal of screening design was to identify main factors affecting
the CQA’s of the nanoemulsion. Also, various residual and influence diagnostics
showed that a reasonable regression model was built for all responses. Factors C, D,
and E were selected for optimization studies. Optimization designs help define the
design space (sweet spot), i.e., ranges of all factors that are suitable for achieving the
desired qualities of the product.
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5.4.7 Connecting the Dots: The Science of Emulsion and Statistical
Modeling

As we discussed earlier in the chapter, statistical modeling works best if
complemented with sound scientific knowledge. Nanoemulsion can be defined as
a kinetically stable system composed of oil and water, macroscopically homoge-
neous but heterogeneous at the microscopic scale. Based on type, oil (or water)
droplets are distributed in the water (or oil) phase in o/w (or w/o) emulsion. The
droplets of nanoemulsion, generally, have a submicron particle size (<1000 nm).
The reduction and stabilization of particle size in the submicron size range require
energy. The immiscibility of two phases is a result of high interfacial tension.
Surfactants are used to reduce the interfacial tension and improve the stability of
the emulsion. A negative change in Gibbs free energy upon mixing of two immisci-
ble phases results in a stable emulsion. Gibbs free energy (ΔG) depends on enthalpy
(ΔH), entropy (ΔS), temperature (T), interfacial tension (γ), and surface area (ΔA),
given by the equation ΔG ¼ ΔH � TΔS + γΔA. Enthalpy change during the oil and
water mixing is negligible. The entropy of mixing increases significantly with a
decrease in particle size, i.e., TΔS term dominates [35]. Higher temperature and
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pressure during the homogenization process increase the energy input in the system
and reduce the emulsion particle size. Moreover, the viscosity of the oil phase and
surfactant decreases with an increase in temperature resulting in an efficient coating
of surfactant on oil globules, making a stable emulsion. The screening design
finds that parameters of the homogenization process significantly affected the quality
of the nanoemulsion, which resonates with the theory of emulsion formation and
stabilization.

5.5 Conclusion

DoE is an effective statistical tool to design the experiments in such a way that it
ensures collecting the maximum information while minimizing the number of
experiments. It helps in the analysis of the collected data and draws logical
conclusions. DoE is used for screening and optimization purposes in various focus
groups during injectable drug product development, including formulation, analyti-
cal, process scale-up, etc. DoE can detect and quantify interactions between factors.
The traditional OFAT approach cannot detect interactions even with unlimited
experiments. Interestingly, it has been observed many times during pharmaceutical
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drug product development that interactions play a crucial role, sometimes exerting
a more significant effect on responses than main effects. This chapter describes a few
basic terminology and concepts which are used frequently in DoE. In addition, an
outline of types of designs and criteria for selection of design were discussed. A case
study of fractional factorial screening design for the development of a nanoemulsion
product was discussed. Three out of six studied factors were found to be significant
and considered for optimization studies.
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