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Abstract Magnetic resonance imaging (MRI) is a vital and universally recognized
medium to assess brain neoplasms. This paper presents a study on brain tumor seg-
mentation based on the random walk algorithm which is a graph-based method in
which pixels of a brain MR image are treated as nodes. Segmentation is performed
by interactively labeling certain nodes as foreground and background seeds, fol-
lowed by computing the probability of each unlabeled node to reach all the labeled
nodes using random paths. The method is applied on two different MR modalities
viz. T2-weighted MRI with fluid attenuated inversion recovery (FLAIR), and T2
MRI to segment complete tumor, and tumor core regions, respectively, by utilizing
visual traits of MRI images and identifying local and global brain tissues informa-
tion. Efficacy is validated quantitatively as well as qualitatively through performing
the experiments on publicly available brain tumor segmentation challenge (BRATS-
2013) dataset. Results demonstrate that the proposed method performs favorable as
compared to several existing methods.
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1 Introduction

Automated MRI image analysis plays a significant role in the diagnosis and assess-
ment of various brain tumor types and for sophisticated treatment planning. Glioblas-
tomamultiforme (GBM), amalignant grade-IV tumor type, is one of themost affected
and dangerous brain diseases in the world [3, 17]. Automation, accuracy, and time
efficiency for a method of brain tumor segmentation are the three major needs of the
hour because of the following reasons, (i) manual brain image analysis is quite time
taking and depends upon the expertise of the radiologist, (ii) variable and amorphous
structure of tumor affects the robustness of any tumor segmentationmethod.Except to
the healthy or normal brain tissues, i.e., white matter, gray matter, and cerebro-spinal
fluid (CSF), brain lesion is subdivided into four major components, edema, non-
enhancing solid core, enhancing tumor, and necrosis. MRI in the form of its various
modalities expresses extensive global and local level information of brain’s healthy
and neoplastic tissues. Community of worldwide researchers involved in BRATS
challenge is playing a significant role by creating and maintaining benchmarks spe-
cially in terms of providing a dataset [17] and defining evaluation measures. BRATS
dataset contains MR images in four MRI modalities, i.e., FLAIR, T1-weighted, T2-
weighted, and post-contrast T1-weighted MRI as displayed in Fig. 1. Annotation
of dataset is performed by different experts from various institutions based on the
visual characteristics of MR image modalities. T2-weighted MR modality images
are helpful to extract active tumor also known as tumor core without edema. Sim-
ilarly, FLAIR images are suitable to identify whole tumor region by observing the
hyper-intense lesion [8].

State-of-the-art methods in the literature of brain lesion detection and segmenta-
tion can be categorized in four major ways as follows: atlas-based methods, region-
basedmethods, gradient and edge-basedmethods, clustering and classification-based
methods. Atlas-based methods utilize the anatomical structure of healthy brain tis-
sues followed by registering the same with tumorous brain image in order to capture
and analyze the affected brain region [1, 17, 23]. As the anatomy of human brain
tissues possesses significant variation case by case, atlas-based methods are only
useful for the rough estimation of lesion area, and hence, they are generally used
as a preprocessing step in any lesion segmentation method. Region-based methods

Fig. 1 Axial view of MRI modalities of a selected subject from BRATS dataset [14]. From left
to right: T1-weighted, T2-weighted, T1c, FLAIR followed by the corresponding annotated ground
truth
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perform segmentation by first investigating features of different pixels (or voxels)
and further finding the affinity among them [15, 22]. Feature extraction is the major
step in region-based segmentation followed by a similarity measurement criteria
which often leads to oversegmentation problem. Edges and corner regions are the
group of pixels which represent the significant information whenever there is an
abrupt change in the intensity or appearance in an image. Edges and corners are the
joint gradient information in both horizontal and vertical directions which can be
exploited to recognize salient objects specially abnormal lesion in brain MR images
[11, 20]. However, disadvantages of such approach include user interaction for ini-
tial region selection and appearance of lesion in low contrast images. Combining
the hypo-intense and hyper-intense appearance of multiple MR modalities together
is been a solution of such problems. Moreover, clustering and classification-based
methods are currently the most popular due to the significant growth of machine
learning paradigm. classification-based methods usually rely on certain features of
different MR modalities such as local intensity of pixels, texture information around
the neighborhood, statistical information, and spatial distribution of pixels. Thus,
extracted features are exploited to segment the image using either supervised or
unsupervised (also known as clustering) classification algorithms [2, 3, 12, 13, 18,
24].

Agn et al. [1] proposed an atlas-based lesion segmentationmethod inwhich the ini-
tial lesion area is detected by registering the input brain MR images with the healthy
atlas-based brain tumor prior. Tumor sub-compartments have been further segmented
by implementing aConvolutionalRestrictedBoltzmannMachines classifier (RBMs).
Another generative method is suggested byMenze et al. [17] to segment brain tumor
in multi-modality MR images by deriving a tumor estimation algorithm. However,
atlas-based segmentation methods prone to false segmentation since the segmenta-
tion quality depends on accurate registration procedure. Working toward the similar
objective, Letterboer et al. [15] proposed a region-based method which gives radiol-
ogists an initial estimation of brain abnormality towards providing a better treatment
planning. Recently, Tong et al. [22] presented a method using texture feature extrac-
tion and kernel dictionary learning. Dictionary coding for normal and abnormal brain
voxels is performed which in order to further classify the tumor region using linear
discrimination function. Sachdeva et al. [19] proposed a whole tumor region seg-
mentation method based on statistical and texture features and active contour model.
Content-based active contour is a deformable model which is employed to evolve
a user-initialized curve around the specified object boundary under the influence of
internal and external forces. Exploiting the classification-based method, Bauer et al.
[2] suggested joint architecture of hierarchical conditional random field (CRF) and
support vector machine (SVM) classifiers for efficient segmentation of whole tumor
volume. Corso et al. [3] proposed a method to segment tumor and edema regions
based on Bayesian classification in which weighted aggregation is used to compute
the model-aware affinities. Moreover, advancements of classification-based methods
have been carried out using convolution operation-based machine learning methods
in order to improve the performance of brain lesion segmentation. Havaei et al. [12]
proposed a two-path way convolutional neural network (CNN)-based segmentation
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method which utilizes local as well as global features of brain tissues. Likewise,
Kamnitsas et al. [13] presented a three-dimensional version of CNN architecture
with 11 layers in its pipeline. A three-dimensional CRF is also exploited in the end
to refine the performance of lesion segmentation. Pei et al. [18] suggested another
classification-basedmethod utilizing tumor cell density and textures features of brain
tissues in association with random forest (RF) classifier. The method also imple-
ments joint-label fusion approach with another segmentation method to improve the
performance. In a recent study, Zhao et al. [24] trained the RF classifier by extract-
ing gradient and circular context-sensitive features. The total extracted features are
reduced by using minimum redundancy maximum relevance (MRMR) approach.

We propose a semi-automated tumor segmentation method with following major
contributions:

1. Random walks algorithm is implemented in semi-automated manner to detect
and segment complete tumor and tumor core regions from FLAIR and T2-
weighted MR images, respectively.

2. By utilizing the prior visual constraints of different MR modalities, multiple
seed points representing foreground and background are chosen interactively in
order to significantly improve the segmentation performance.

3. The proposed method segments complete tumor and tumor core regions in 0.2
s for each set of T2-weighted and FLAIR MR images which illustrates the
computational efficiency of the method.

Remaining of the paper is structured in the following way: Sect. 2 describes the
proposed brain lesion segmentation method in detail. Section 3 demonstrates the
experimental setup and results implemented on the benchmark datasets alongwith the
comparison with other existing methods. Lastly, conclusion presents the significant
outcomes of this work with future works in Sect. 4.

2 Proposed Method

In this study, a semi-automated method is proposed to recognize and segment two
different affected regions of brain tumor by exploiting random walks method. The
segmentation procedure of random walks algorithm is shown in Fig. 2 which illus-
trates that how a node (pixel in an image) is labeled based on the interactively selected
foreground and background seed points. Probability shown at each node represents
that how easy or difficult it is to reach a selected seed point starting from that par-
ticular node by following random walks. The proposed method is implemented on
FLAIR and T2MR images to obtain complete tumor and tumor core regions, respec-
tively. Segmentation in various classes can be done based on the chosen seed points.
However, we have chosen seeds corresponding to two labels (for foreground and
background) by utilizing the visual constraints and hyper-intense regions of FLAIR
and T2-weighted MRI modalities.



Brain Tumor Segmentation Using Random Walks from MRI Images 33

Fig. 2 Example showing
segmentation using random
walks. a Two seeds points
L1 and L2 as shown in blue
and red colors. b Calculation
of probabilities to reach seed
L1 starting from each node
through random walks. c
Calculation of probabilities
to reach seed L2 starting
from each node through
random walks. d Assigning
labels to each node of the
graph based on the
calculated probabilities
corresponding to initially
selected seed points

2.1 Random Walks Segmentation

Image segmentation using random walks is a graph-based semi-automated method
in which a 2-dim input image represents a graph and each pixel is treated as a node
(vertex) of the graph [10]. A few nodes (seed points) of the graph are interactively
chosen as labels. In our case, seeds points are chosen corresponding to two labels,
i.e., foreground and background for each image. A probability corresponding to each
unmarked node is computed which shows that how easy or how difficult it is to reach
a particular label (background or foreground) starting from each unmarked node
through a randomly chosen walk. Thus, two probabilities are calculated for each
unmarked node based on which the node is segmented in either of the class.

The mathematical formulation and description of the random walks method is
given as follows [10]: Let G = (V, E) be the graphical representation of an image
where V and E represent the set of vertices (pixels) and set of edges between two
vertices, respectively. Each edge e ∈ E between vertices vp and vq has a weightwpq .
Let G be an undirected graph and dp = ∑

q wpq be the degree of a vertex vp for the
edges epq which incident on the vertex vp. Value of the weight wpq is defined based
on the Gaussian function applied over the difference between the local level features
(pixel’s intensity) of the two vertices vp and vq as given below:

wpq = exp(−β( f p − fq)
2) (1)
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where f p and fq represent the local features of pixels vp and vq respectively. β

is the additional parameter whose value can be set empirically depending on the
application and image type. The random walks segmentation method is inspired
by the flow of electrons through random paths in an electrical circuit network. β

indicates the conductance phenomenon over the network by guiding how easy or
difficult it is to reach a marked node from each unmarked node following through
random paths. It becomes very easy to move from one node vp to another node vq
if the value of wpq is very close to 1. Similarly, it is very difficult to move from one
node to another in case the value of wpq is close to 0.

The solution of random walks segmentation problem can be solved through elec-
trical current and voltage laws. However, another alternate solution of the same is
given in [10] by computing the probabilities of randomwalks analytically in order to
improve the efficiency of the method. Computing the probabilities of random walks
can be represented in terms of combinatorial Dirichlet problem which is solved over
a Laplacian equation derived in context of random walks problem. The functional of
combinatorial Dirichlet integral [10] is given as below:

D[μ] = 1

2

∫

Ψ

|∇μ|2dΨ (2)

where μ and Ψ represent field and regions, respectively [4]. The Dirichlet problem
is defined on the basis of a harmonic function with its corresponding boundary con-
straints. A harmonic function compatible to the boundary constraints also optimizes
the value of Dirichlet integral due to the Euler-Lagrange property of the Laplacian
equation [4]. The combinatorial Laplacian matrix [7] is defined as follows:

L pq =

⎧
⎪⎨

⎪⎩

dp ifp = q,

−wpq i f vpandvqare adjacent vertices,

0 Otherwise,

(3)

where L pq is indexed by nodes vp and vq .
Let VM be the set of marked nodes (seed points) corresponding to the foreground

and background and VU be the set of unmarked nodes (except to the chosen seed
points); the probabilities of the set of nodes VU can be calculated by considering
it as a type of Laplacian function which is compatible to the predefined boundary
conditions of the marked nodes VM . Based on this consideration, the probability
estimation of each node of image graph is equivalent to the minimization criterion
of the above stated Dirichlet integral:

D[x] = 1

2
xT Lx = 1

2

∑

epq∈E
wpq(xp − xq)

2 (4)
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where xp and xq represent the probabilities at vertices vp and vq , respectively. The
critical points of Dirichlet integral D[x] become minima due to the semi-definite
and positive property of the Laplacian matrix L . The above stated equation can be
rewritten in terms of set of marked and unmarked node VM and VU as follows:

D[xU ] = 1

2

[
xTM xTU

]
[
LM B
BT LU

] [
xM
xU

]

(5)

where xM and xU represent the potential or the computed probabilities of marked
seed points and unmarked vertices, respectively. The following equation is obtained
by performing differentiation of D[xU ] with respect to xU as the solution of ran-
dom walks problem in order to calculate the potential or probabilities of unmarked
vertices:

LU xU = −BT xM (6)

Practically, number of unmarked nodes in an image graph is much greater than that
of marked seed nodes which makes this solution computationally complex due to the
complex calculation of L−1

U while solving the equation xU = −L−1
U BT xM . However,

user interaction for choosing initial foreground and background seed points makes
this method efficient in terms of producing accurate and fast segmentation results.

3 Experimental Results

Efficacy of the method is validated qualitatively as well as quantitatively through
performing the experiments on real glioma images from publicly available bench-
mark dataset1 (BRATS-2013) as shown in Fig. 3 and Table 1. Experimental work has
been carried out on the Dell desktop having 64-bit Windows 10 OS, with Intel(R)
i-7 processor and 8GB of random access memory (RAM).

3.1 Dataset

BRATS-2013 dataset contains numerous real Glioma images of low-grade (LG) and
high-grade (HG) brain tumor type. Each 2-dim slice of dataset is skull stripped
in order to maintain the anonymity of patients and available in the form of four
different modalities such as T1-weighted images, T1c images, T-2 weighted images,
and FLAIR images. However, only T2-weighted and FLAIR MR image are utilized
in this work. Real image data consists of the images of 20 HG and 10 LG Glioma
subjects.

1https://www.smir.ch/BRATS/Start2013.

https://www.smir.ch/BRATS/Start2013
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Fig. 3 Segmented complete tumor and tumor core regions on the selected subjects of BRATS2013
high-grade (HG) dataset. Each row delineates the subject id slice sequence number. a FLAIR MR
image, b T2 MR image, c segmented complete tumor region, d ground truth corresponding to
complete tumor region, e segmented tumor core region, f ground truth corresponding to tumor core
region
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Table 1 Results obtained on BRATS-2013 real image dataset for the prediction of complete tumor
and tumor core regions and comparison with other existing methods

Methods Complete tumor Tumor core

DSC
(HG/LG)

Sensitivity
(HG/LG)

PPV
(HG/LG)

DSC
(HG/LG)

Sensitivity
(HG/LG)

PPV
(HG/LG)

Demirhan et
al. [5]

0.64/0.62 0.69/0.72 0.74/0.69 0.48/0.50 0.63/0.67 0.58/0.62

Geremia et
al. [9]

0.65/0.53 0.73/0.55 0.68/0.53 0.52/0.26 0.51/0.28 0.79/0.32

Taylor et al.
[21]

0.74/0.40 0.28/0.23 0.71/0.51 0.44/0.05 0.25/0.57 0.67/0.92

Proposed 0.67/0.66 0.73/0.75 0.79/0.78 0.49/0.52 0.69/0.76 0.61/0.60

As per the BRATS challenge guidelines, Glioma brain tumor type can be clas-
sified into edema, non-enhanced solid core, enhancing tumor, and necrosis [16].
Edema can be identified as the swelling around other brain tumor tissues. Therefore,
edema tissues are predominantly curable as compared to other tumor tissue types.
Performance of a method is evaluated by effective segmentation of the following
regions:

1. Complete tumor region as the fusion of edema, non-enhanced solid core, enhanc-
ing tumor, and necrotic core.

2. Tumor core region also known as complete tumor region without edema as the
fusion of non-enhanced solid core, enhancing tumor, and necrotic core.

3.2 Qualitative Evaluation

Segmented complete tumor region as well as tumor core region from few of the
selected 2-dim slices of HG subjects is shown in Fig. 3. Identification of subject and
its corresponding slice is shown at the extreme left of each row. Each row shows
the input MR images as well as the segmented brain tumor region along with the
ground truth. The visual appearance of the shown images illustrates that the proposed
approach produces favorable results for brain tumor segmentation. Moreover, the
method lags while detecting tumor core regions as it produces many false positive
cases due to the similar range of intensity local feature of lesion and CSF.

3.3 Quantitative Evaluation

The segmentation performance is also validated quantitatively with the available
ground truth using the relevant evaluationmeasures such as dice similarity coefficient
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(DSC), sensitivity or true positive rate, and positive predictive value (PPV). DSC [6]
also known as the dice score represents an overall agreement between the predicted
result (output) and the actual result (ground truth) by measuring the overlapped
region. Sensitivity represents the rate with which our prediction is true positive (TP)
means the predicted result is positive (for tumorous brain tissues) and actual result
is also positive. Positive predictive value (PPV) refers to the number of true positive
predictions over all the positive predictions (either positive or negative) predicted by
the proposed method.

DSC = 2 ∗ TP

(TP + FP) + (TP + FN)
(7)

Sensitivity = TP

TP + FN
(8)

PPV = TP

TP + FN
(9)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and
false negative, respectively. Average quantitative results for all 20 HG as well as 10
LG subjects in terms of aforementioned performance measures are given in Table 1.
Each subject’s 3-dim data size is 216 × 176 × 176 which means total 176, 2-dim
slices are available of 216 × 176 size each. Out of the total 176 slices, tumorous
brain tissues information is present only in few of the slices only. Typically, most
of the brain tissues information is present in the slices which belong to the middle
position. Due to the same fact, 20 middle slices of each subject’s brain slices are
considered for our experiments.

The segmentation results of the proposed method are also compared with the
works of Demirhan et al. [5], Geremia et al. [9], and Taylor et al. [21] after reproduc-
ing the segmentation results on the same settings. Segmentation results of Demirhan
et al. [5] are obtained by training the corresponding model on BRATS-2013 train-
ing dataset. As BRATS dataset provides us the real Glioma images which are skull
stripped and registered with T1c MRI, these preprocessing steps were skipped while
implementing thismodel.While reproducing the results of Taylor et al. [21], aHidden
Markov Model (HMM) is trained on 80% of BRATS 2013 training dataset. Pixel-
wise classification is performed for both low-grade and high-grade Glioma dataset
images. As the dataset is highly unbalanced, down-sampling is done for pixels rep-
resenting healthy brain tissues before training the model. The detailed segmentation
scores corresponding to the selected performance measures are shown in Table1.We
achieved the DSC of 0.67 for HG subjects and 0.66 for LG subjects for segmenting
complete tumor region. The DSC for tumor core region is achieved as 0.49 and 0.52
for HG and LG subjects, respectively. Performance in segmenting tumor core region
is due to the complex appearance of T2-weighted MR images where not only abnor-
mal brain tissues but also CSF appear hyper-intensive. Still the result of tumor core
segmentation is competitive as reported in Table1. The performance of our method
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in terms of sensitivity and PPV is also favorable with the compared methods for both
complete tumor and tumor core regions. However, our method outperforms in all the
measures for segmenting LG subjects data for both complete tumor and tumor core
regions. The performance score obtained indicates than the proposed brain tumor
segmentation approach gives significant contribution.

3.4 Discussion

The quantitative and qualitative results shown above suggest that the proposed brain
tumor segmentation approach is suitable and efficient for real time brain tumor seg-
mentation. The proposed approach detects and segments the most significant tumor
regions, i.e., complete tumor and tumor core regions in order to assist radiologists
and provide better treatment planning. However, enhancing brain tumor region can-
not be detected separately due to the visual constrains of FLAIR and T2-weighted
MRI. All the experiments are conducted on the middle axial slices of each subject
of the dataset to ensure that the significant amount of tumorous and healthy tissues
present in each slice. Pixels were marked for both background and foreground inter-
actively based on which probability of all unmarked pixels was computed in order
to segment each node in the specified labels. The proposed segmentation approach
is based on random walks algorithm in which β is the only free parameter in Eq.1 in
order to perform accurate segmentation. For all the experiments, value of parameter
β is kept constant as 350. The proposed method is also time efficient as it segments
both complete tumor and tumor core regions for each set of T2-weighted and FLAIR
MR images in 0.2 s only.

4 Conclusion

In this paper, an efficient segmentation approach is proposed to detect and segment
tumor in two significant complete tumor and tumor core regions. A probability-
based random walks segmentation approach is exploited slice-by-slice manner to
divide each MR image in two segments based on the pre-selected (marked nodes)
foreground and background seed points interactively. Each MR image is treated
as a graph in which probability of each unmarked node is computed by finding
its accessibility against marked nodes through considering random walks in its four-
connected neighborhood. All four tumor labels, i.e., edema, non-enhanced solid core,
enhancing tumor, and necrotic core are extracted and combined as complete tumor
region by implementing the proposed method in FLAIR MR image slices of each
subject. Similarly, tumor core region (all tumor labels without edema) is extracted
from T2-weighted MR image slices. The evaluation results demonstrated the high
performance of the proposed brain tumor segmentation approach when compared to
other existing methods. The proposed approach can assist radiologists because of its
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computational efficiency. In future, the proposed brain tumor segmentation approach
can be extended by selecting foreground and background seed points automatically
using feature descriptors like scale invariant feature transform (SIFT) and Harris
edge and corner detector.
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