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Horizontal Transmission of Civic Capital
and the Emergence of Cooperation: An
Agent-Based Modelling Approach

Roberto Patuelli, Eveline van Leeuwen, Lorenzo Zirulia, and Aura Reggiani

Abstract Scholars in social sciences often refer to “social capital” to explain a wide
list of relevant economic and social phenomena. Taking an economic perspective, as
put forth by Guiso et al. (Social Economics Handbook, 2011), we refer in this
chapter to civic capital, defined as “those persistent and shared beliefs and values
that help a group overcome the free rider problem in the pursuit of socially valuable
activities”. Starting from a first analytical discussion of how civic capital (collabo-
ration between individuals) may emerge through horizontal transmission, we
develop an agent-based model to simulate transmission of civic capital in a spatial
interaction setting. We do so within the context of the so-called threshold models,
which allow us to hypothesize conditional cooperation between agents, based on
observation of societal behaviour. In our simulations, we model horizontal trans-
mission of civic capital as given by social influence determining how behavioural
thresholds evolve over time. We test interactions at both the global and local levels
(in space), and test different ranges of parameters for the transmission mechanism.
Finally, we attempt to find systematic evidence on the effect of model parameters on
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the amount of civic capital and on its level of spatial clustering by means of
regression analyses.

Keywords Civic capital · Horizontal transmission · Agent-based modelling ·
Spatial · Simulations

11.1 Introduction

Scholars in social sciences often refer to “social capital” to explain a wide list of
economic and social phenomena, notably including national and regional economic
performance and growth (Westlund 2006; Fazio and Piacentino 2010; Tabellini
2010), starting from the seminal work such as Putnam (2001). Notwithstanding its
wide use, there is no definition of social capital which is commonly accepted, in
particular across disciplines, and social capital can be easily confused with other
forms of capital (for example, human capital). In this chapter, we will follow the
economic perspective put forth by Guiso et al. (2011), who rephrase social capital in
terms of civic capital, intended as “those persistent and shared beliefs and values that
help a group overcome the free rider problem in the pursuit of socially valuable
activities”.

While the impact of social capital on economic and social outcome is well-
documented, the process driving its accumulation or depreciation is still an active
area of research. Guiso et al. (2011) distinguish civil capital from human capital
because the former is the result of a social process of investment and requires
individual values and beliefs to be shared by other members of the community.
Particular attention has been paid to intergenerational transmission mechanism, in
which values to transmit to children are influenced by the spatial pattern of external
values and beliefs, and the process of cultural transmission evolves slowly over time,
explaining the persistence of the cultural traits of a community even over centuries
(Tabellini 2008). Recent contributions have also highlighted the role of spatial
interaction (see Durlauf and Ioannides 2010; Fazio and Lavecchia 2013). Civic
capital can be transmitted also horizontally (intragenerational transmission,
i.e. among peers), although this form of transmission has received less attention.
Approaches to social/civic capital analysis are very diverse, and analytical solutions
for its transmission mechanisms are possible only for relatively simple hypotheses.

To overcome this obstacle, this chapter develops an agent-based model in which
the emergence of cooperation and the horizontal transmission of civic capital are
jointly considered in a spatial interaction setting. It does this within the context of the
so-called threshold models (Schelling 1973; Granovetter 1978; Watts 2002). Thresh-
old models are a class of models aimed at representing collective actions in which:
(1) individuals have a binary choice (in our case being “cooperative” or “defective”);
(2) the probability that an individual chooses a certain action positively depends on
the fraction of individuals in society (or in a relevant sub-group) choosing the same
action, that is, such a fraction is above an (individual-specific) threshold. These
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models are well-suited to represent individual behaviour in social dilemmas situa-
tions (those at risk of free-riding), since a consolidated experimental literature now
exists showing that conditional cooperation, that is, to be “cooperative” if others are,
often characterizes human behaviour, while at the same time a significant level of
heterogeneity exists across subjects. In our model, the lower is the threshold, the
higher is the “propensity” towards cooperation, this propensity being affected by
those “beliefs and values” constituting the definition of civic capital in Guiso et al. In
other words, at the social level, civic capital is inversely related to the average
threshold level in the population. In addition, a distinctive feature of threshold
models is that not only the average, but also the distribution of thresholds matters
for determining collective behaviour. In our model, the process of horizontal trans-
mission of civic capital is given by social influence determining how thresholds
evolve over time. In other terms, it is not an actual behaviour which diffuses, but
rather beliefs and values which in turn determine, mediated by individual choices,
collective cooperative behaviour. Space matters as well, because interactions can be
global or local, depending on the size of the group affecting both behaviour and the
transmission of civic capital.

The rest of the chapter is organized as follows. In Sect. 11.2, we briefly review
those streams of literature which are relevant to support our hypotheses and to which
we intend to contribute. Section 11.3 describes the model. Section 11.4 derives a few
analytical results which are used as benchmark for the results from the numerical
simulations reported and discussed in Sect. 11.5. Section 11.6 concludes the chapter.

11.2 Literature Review

In the first part of this section, we review those studies which connect civic capital to
various kinds of economic outcomes, thus supporting the relevance of our work.
Secondly, we look at the mix of experimental evidence and theoretical insights
which identified human regularities behaviour in social dilemma situations and
mechanisms for sustaining cooperation. These streams of research are key to moti-
vate our model assumption. Finally, we introduce the class of threshold models of
collective action, to which our contribution belongs.

11.2.1 Civic Capital and Economic Outcomes

In a review of the debate about the role of social capital in economics, Guiso et al.
(2011) try to overcome the vagueness of the previous literature by relabelling social
capital as civic capital. According to the authors, this definition has several advan-
tages. First, it restricts the above concept to a notion of capital that has a positive and
durable economic payoff. Second, social capital as beliefs and values becomes
measurable through experiments and surveys. Third, as the other notions of capital,
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it attributes importance to the mechanism of accumulation and depreciation of civic
capital.

The literature on civic capital has analysed its antecedents and consequences. As
for antecedents, the cultural transmission of cooperative values is at the core of
Tabellini (2008). In this model, parents choose what values to pass on to their
children, while assessing their children’s welfare in terms of their values. This
creates a complementarity between norms and behaviour: when more people coop-
erate, the payoff from cooperation increases, consequently increasing the scope of
cooperation. Guiso et al. (2008) consider a model in which beliefs are transmitted by
parents to children. It turns out that, in order to protect their children, parents transmit
conservative priors, which could create a “mistrust equilibrium”. Both models
generate a distinctive feature of civic capital, which is persistence (Guiso et al.
2016; Giavazzi et al. 2019).

As for its consequences, civic capital has been shown to impact on both macro
and micro phenomena. Using historical variables as instruments for civic capital,
Tabellini (2010) shows how the latter strongly correlates with current regional
economic development in Europe. Nannicini et al. (2013) show that civic capital
may increase economic wellbeing by improving the functioning of institutions
through political accountability, since the electorate punishes political misbehaviour
more severely in Italian districts with higher civic capital. Using regional back-
ground as proxy for civicness, Ichino and Maggi (2000) show that it can explain
shirking differentials in a large Italian firm. Bürker et al. (2013) argue that civic
capital may also affect the governance of firms, and show, using Italian data, that the
productivity effect of foreign ownership depends on the stock of civic capital in the
area where the firm is located.

11.2.2 Overcoming the Free-Rider Problem: The
Experimental Evidence and the Theoretical Insights

In the definition of Guiso and coauthors, civic capital is inherently seen as a solution
for social dilemmas, that is, those situations in which a conflict exists between
individual and social interests. In social dilemmas, each person has a dominant
strategy which yields the best outcome for all possible circumstances (the
non-cooperative choice), but if all individuals pursue this strategy, a sub-optimal
collective outcome emerges, as everyone would be better off by cooperating. Several
games exhibit these characteristics, in particular the prisoner’s dilemma and public
good games. In one-shot games, or finitely repeated games, if individuals are rational
and self-interested, game theory predicts that they should play their dominant
strategy, that is, they should not cooperate. Experimental evidence on such games
does not (fully) support this view. In a summary of early work on public goods
experiments, Ledyard (1995) identifies as a “stylized fact” that individuals tend to
contribute positive amounts to public goods (while they should not if rational and
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self-interested), although their contributions decline over time across repetitions of
the game. Subsequent work has tried to identify in a more precise way the deviation
of the observed evidence with respect to classical game theory predictions. One
strong regularity that has emerged is that individuals tend to be conditionally
cooperative. In public good games, for instance, this means that contributions to
the public good are positively correlated with expectations about average group
contribution (Fischbacher et al. 2001; Chaudhuri 2011), although a self-serving bias,
for which individuals contribute less than the expected average, is observed
(Fischbacher and Gächter 2010). Heterogeneity across individuals also emerges as
a recurrent fact: while most subjects are conditionally cooperative, unconditionally
cooperative and free-riding agents are also observed (Kurzban and Houser 2005),
with evidence that the distribution of such types may vary across countries (Kocher
et al. 2008). Evidence of conditional cooperation has emerged also in prisoner’s
dilemma games (Grujić et al. 2010; Cimini and Sánchez 2014).

Although the predictions based on rationality and self-interest are not fully
confirmed in the experimental evidence, the observed decay in cooperative behav-
iour has nevertheless reinforced the interest towards those mechanisms which are
able to sustain cooperation, which we indeed observe in human interactions and,
more generally, in the biological world (Nowak and Highfield 2011). Some mech-
anisms are known. If interaction is repeated within the same group of players, the
folk theorems for repeated games (Mailath and Samuelson 2006) show that cooper-
ative behaviour may indeed be the equilibrium outcome in the supergame. Experi-
mental evidence also shows that cooperation may be favoured by mechanisms such
as altruistic punishment (Fehr and Gächter 2000), in which cooperators bear a cost to
punish defectors, or rewards (Rand et al. 2009). Finally, in an evolutionary perspec-
tive, where the frequency of individuals playing a certain strategy increases with
their “fitness”, local interaction has been identified as an important channel towards
the emergence of cooperation (Nowak and May 1992). While with global interaction
cooperators, who played a dominated strategy, tend to disappear, local interaction
may lead to the emergence of clusters of cooperators which can succeed in invading
the population.

11.2.3 Threshold Models of Collective Action

Threshold models of collective action find their origins in the work of Schelling
(1973) and Granovetter (1978). In abstract terms, they represent binary decision
problems with externalities, in which agents choose a certain action if the fraction of
other agents choosing that action is above a certain threshold. The existence of such
a threshold may be explicitly microfounded (Schelling 1973) or not (Granovetter
1978). Threshold models belong to a more general class of models that analytical
sociologists define as the class of conditional choice models (Rolfe 2009).

Due to their generality, threshold models have been applied to various social
phenomena, such as crowd behaviour, participation to social movements, voting or

11 Horizontal Transmission of Civic Capital and the Emergence of Cooperation: An. . . 203



adoption of innovations (Watts and Dodds 2009). Most models are interested in
determining the conditions for certain collective behaviour to be observed, such as a
riot or the diffusion of an innovation. In this case, individuals are initially “inactive”,
and the probability of a cascade of active behaviour is investigated, as a function of
the threshold distribution and the nature of interaction (Watts 2002). In a very simple
example, Granovetter considers the case of 100 individuals considering if partici-
pating or not to a riot. He notices that if the thresholds are uniformly distributed, then
the riot will be observed with probability equal to 1. However, if no agent has a
threshold of 2, while two agents have a threshold of 3 (and the rest of the distribution
is as before), then the riot will be observed with zero probability. This suggests that
the outcome of the collective action may be very sensitive to the threshold
distribution.

In Sect. 11.5, we present both analytical results on civic capital horizontal
transmission and, for more complex solutions that cannot be solved analytically,
an agent-based version of our model. Agent-Based Models (ABMs) are usually
based on a set of autonomous agents, capable of interacting with each other, as well
as with the environment, according to given behavioural rules. Such rules can be
simple or complex, deterministic or stochastic, fixed or adaptive. Adaptive agents
have the ability to learn, and they evolve in a learning cycle (Billari et al. 2006).
Rules are typically derived from published literature (van Leeuwen and Lijesen
2016), expert knowledge, data analysis or numerical work, and are the foundation of
an agent’s behaviour (Crooks and Heppenstall 2012). ABMs allow one to simulate
the individual actions of a diverse number of agents, assessing the resulting system
behaviour and outcomes over time, and they are models that generally deal with
systems that are complex, open-ended, hence emergent and thus exhibit novelty and
surprise (Crooks et al. 2008). They have their roots in an interdisciplinary computing
movement and in the field of artificial intelligence. Today, ABMs are often used to
investigate the interplay occurring at the micro and macro structures of a given
system, in which the interaction structure itself plays an important role. Furthermore,
ABMs allow a flexible design of how individual entities behave and interact, since
the results are computed and need not to be solved analytically (Leombruni and
Richiardi 2005). They have been applied to a diverse range of subject areas, such as:
archaeological reconstruction of ancient civilizations; understanding theories of
political identity and stability; biological models of infectious diseases; modelling
economic processes as dynamic systems of interacting agents; geographical retail
markets and so on (see Crooks and Heppenstall 2012 for a more extensive
overview).

11.3 The Model

We will now describe the model in its most general formulation, while for both the
analytical solution and the numerical experiments we will consider specific versions
of the same. Our model is dynamic in discrete time. Consider a fixed population of
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N agents. At each moment of time, each agent i faces a binary choice, represented by
function αti: being cooperative (αti ¼ 1) or not (αti ¼ 0). Each agent is characterized
by a threshold αt in the unit interval, affecting her choice, with αi being the vector of
thresholds in the population. From agent i’s viewpoint, the rest of the individuals
differ in their influence on his behaviour. The behaviour-influencing network gb is a
(possibly directed) graph over N such that, for each agent i, a weighting func-
tion wi(g

b) assigns a weight w j
i > 0 to agent j 6¼ i, with

P
j 6¼iw

j
i ¼ 1. This leads

to define αt�i ¼
P

j 6¼iw
j
i α

t
j . If all agents are assigned the same weight, that is, the

case of global interaction, then αt�i denotes the actual fraction of agents (excluding i)
who are cooperative at time t (therefore αt�i ¼

P
j 6¼i

1
N�1 α

t
j). This is a case for which

analytical results can be easily obtained. Alternatively, we will consider individuals
located on a bounded two-dimensional grid. In this case, agents are only (equally)
influenced by others in their “neighbourhood”, whose characteristics will be spec-
ified in the following. Denoting with Ei(αt�i ) the expectation for the behaviour of
agent i, he cooperates if Ei αtð Þ > αti, and he does not cooperate otherwise. We shall

assume adaptive expectations, that is, Ei(αt�i ) ¼ αt�i , therefore leading to the
following (deterministic) choice rule:

αti ¼
(
0 if αt�i < αti

1 if αt�i � αti

: ð11:1Þ

Agents are heterogeneous in αti, and this captures the extent to which an individual

is a conditional cooperator. Notice that, for αti ! 0, agent i (almost) always coop-

erates, that is, he is an unconditional cooperator. For αti ! 1, agent i (almost) never

cooperates, that is, he is a free-rider. Social capital (defined as civic capital) is then
inversely related to the average value of αti , but its overall distribution is also

relevant, and a parameter we will control in our numerical experiment.
As mentioned earlier, αti evolves over time as the outcome of a process of social

transmission. In order to model such a process, we introduce the notion of value-
influencing network gv, where gv is a (possibly directed) graph over population N.
For each agent i, we then introduce a weighting function θi(g

v) which assigns a
weight θ j

i > 0 to agent j 6¼ i, with
P

j 6¼iθ
j
i ¼ 1. In general terms, the law of motion

of αti can be written as αti ¼ αti α
t�1; θi gvð Þ½ �. In our simulation experiments, we will

consider the process given by:

αti ¼ ραt�1
i þ 1� ρð Þ

X

j6¼i

θ j
i α

t�1
j , ð11:2Þ

with 0 < ρ < 1. This in an example of assimilative social influence model (Degroot
1974; Flache et al. 2017). In particular, we will consider the case of global
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interaction (θ j
i ¼ 1

N�1 for each i,j) and cases where weights are determined by the
agents’ location on the grid. From this last perspective, the matrix containing all the
weights θ j

i may be compared to the spatial weights matrices used in spatial
econometrics.

11.4 Analytical Results

A model which can be easily studied analytically (and graphically), being
substantially equivalent to Granovetter (1978), is the one of global interaction with
time-invariant—but heterogenous—thresholds. In this case, the threshold of one
individual is compared to the average cooperative behaviour of all the remaining
agents. For tractability, let us assume that the set of individuals in the society is given
by a continuum of agents of mass 1, and that αi is distributed across individuals with
a cumulative (density) function F(∙) ( f(∙)).

At time t, the fraction of cooperating individuals is given by αt �
Pr αi < αt�1
� � � F αt�1ð Þ (notice that by considering a continuum of agents, includ-

ing individual i does not affect the fraction of cooperating agents in society).
Therefore, the evolution of the system is described by the difference equation
αt ¼ F(αt � 1). As usual, the equilibrium is identified by αt ¼ αt � 1.

Standard graphical analysis (through staircase diagrams) can help analysing the
stability properties of such equilibria. In Fig. 11.1, we represent a case of a distri-
bution function for which a unique interior stable equilibrium is observed.

In terms of interpretation, the distribution function represented in Fig. 11.1
corresponds to a case where both (almost) unconditional cooperators and free-
riders are common in the population. As a result, both cooperative and
non-cooperative behaviours coexist in equilibrium.

1

(∙)

1

Fig. 11.1 Case with a
unique interior stable
equilibrium
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Consider now the case of a uniform distribution between αmin > 0 and αmax < 1.
As shown in Fig. 11.2, we have one unstable interior equilibrium and two stable
corner equilibria, where all agents cooperate or all agents do not.

In this case, initial conditions will determine which equilibrium prevails, while
the min and max values will determine the basin of attractions of the equilibria (with
lower values, i.e. higher values of civic capital, leading to full cooperation for a
larger set of initial conditions). Notice that this case corresponds to a relatively
homogenous society (in terms of types of individuals). Interestingly, social homo-
geneity leads to less predictable outcomes in terms of social behaviour.

11.5 Simulation Results

In this section, we report on simulation results for the different configurations of
model parameters we consider, varying the value of ρ in Eq. (11.2), the global/local
nature of interaction in the diffusion of values and behaviour, and the initial
distribution of civic capital (distribution of α ). In particular, we analyse five
scenarios, in which the distribution of α at t ¼ 0 is uniform:

• Scenario 1: ρ ¼ 1, with global influence for both behaviour and values. This
scenario illustrates numerically the conclusion we reached analytically in the
previous section.

• Scenario 2: ρ ¼ 1, with local influence for behaviour.
• Scenario 3: ρ < 1, with global influence for both behaviour and values.
• Scenario 4: ρ < 1, with local influence for values and global influence for

behaviour.
• Scenario 5: ρ < 1, with local influence on both behaviour and values.

1

1

(∙)

Fig. 11.2 Case with one unstable interior equilibrium and two stable corner equilibria
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Then, we briefly comment on what happens when the distribution of α at t ¼ 0 is
normal. In our simulations, “equilibria” take two forms: i) a stationary state in which
αt ¼ αt � 1; ii) a 2-cycle, in which very few agents (in most cases a single one)
alternate between cooperative and non-cooperative behaviour.

11.5.1 Scenario 1

Focusing on the uniform distribution, we tested different values for αmin and αmax.
αmin ranges between 0.05 and 0.5 (in 0.05 increments), while αmax ranges between
0.6 and 0.95 (with increments of 0.05). We run 100 replications for each parameter
pair (αmin, αmax).

Results for the equilibrium values of the average levels of cooperation (that is, the
fraction of agents being cooperative in the population) are reported in Table 11.1.
The effects of the initial random distribution of α are clear: when αmin þ αmax < 1,
the model always ends with a fully cooperating society; when αmin þ αmax > 1, the
model always ends with a fully non-cooperating society. If αmin þ αmax ¼ 1, such
that the expected value of α at t ¼ 0 is 0.5, each corner solution is almost equally
likely.

11.5.2 Scenario 2

In our second experiment, the focus is on the extent to which neighbourhood effects
happen. This time, the agents do not compare their personal values with the observed
behaviour of society as a whole, but with the one of their neighbours. We compare
the difference of being affected by the 4 nearest neighbours (rook contiguity order
1), the 8 nearest neighbours (queen contiguity order 1), 24 neighbours (queen

Table 11.1 Average levels of cooperation for different ranges of personal values

αmin

αmax

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 1 1 1 1 1 1 1 0.49

0.10 1 1 1 1 1 1 0.54 0

0.15 1 1 1 1 1 0.55 0 0

0.20 1 1 1 1 0.54 0 0 0

0.25 1 1 1 0.45 0 0 0 0

0.30 1 1 0.49 0 0 0 0 0

0.35 1 0.47 0 0 0 0 0 0

0.40 0.52 0 0 0 0 0 0 0

0.45 0 0 0 0 0 0 0 0

0.50 0 0 0 0 0 0 0 0
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contiguity order 2) or 48 neighbours (queen contiguity order 3). Based on the
literature, we expect clusters of cooperation to emerge, especially when the influence
is very local, as is the case when the rook contiguity is used.

The model results, provided in Table 11.2, indicate that the more local the
interaction, the larger the deviation from the results of Scenario 1. Now, simulation
results are mixed also for initial personal values that are drawn from ranges that sum
up to 0.9 or 1.05. In these cases, generally, no corner solutions are found, but patches
of cooperating and non-cooperating agents coexist next to each other (as shown in
Fig. 11.3). The number of iterations needed to reach an equilibrium lies between
5 and 54, with an average of 16.

Table 11.2 Average level of cooperation of society as a whole with different levels of
neighbourhood effects and different minimum ranges for the random personal value of each
agent (αmax ¼ 0.6)

αmin Global interaction

Neighbourhood effects

Rook-1 Queen-1 Queen-2 Queen-3

0.25 1 1 1 1 1

0.30 1 0.9 1 1 1

0.35 1 0.7 0.9 0.9 1

0.40 0.5 0.5 0.5 0.5 0.5

0.45 0 0.1 0.1 0.0 0

0.50 0 0 0 0 0

Fig. 11.3 Example of a
final outcome of Scenario 2
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11.5.3 Scenarios 3–4

In Scenario 3, not only behaviour, but also personal values are influenced by society
as a whole. Allowing different values of ρ, values in society affect the ones of the
individual agent. It means that, in each period, each agent becomes more similar to
society as a whole. The results show that the outcomes are very similar to the first
experiment. Again, all model runs result in corner solutions of either fully
cooperating or non-cooperating society.

In Scenario 4, it is neighbouring agents that influence each other’s personal
values. However, the final choice to cooperate or not is still based on the average
behaviour of society as a whole. Again, all model runs result in a corner solution, and
only when αmin þ αmax ¼ 1 , the outcome whether everyone cooperates or not
depends on the (spatial distribution of the) initial values.

11.5.4 Scenario 5

In this final basic scenario, we combine the insights from all the previous ones. We
combine different levels of neighbourhood effects with different combinations of
values for ρ and different levels of the initial random variables. This means that
neighbours influence both the choice to cooperate or not, as well as the personal
values of the agent.

For this scenario, we report, in Table 11.3, the share of model runs that find an
equilibrium (each configuration is repeated 100 times, with the maximum number of
iterations equal to 600). The main conclusion that can be drawn here is that smaller
values of ρ (that is, social influence) result in fewer model runs that reach an
equilibrium: the model becomes more unstable. Furthermore, the range from
which the initial values of α are drawn appears to matter, since if αmin þ αmax 6¼
1, our simulations result much more often in an equilibrium. The average number of
iterations required to reach an equilibrium lays around 20. The range of the neigh-
bours’ sphere of influence is important as well: when only the four nearest neigh-
bours are taken into account (rook contiguity of order 1), the probability of reaching
an equilibrium is higher when αmin þ αmax ¼ 1, and lower otherwise. This setting is
the one needing on average the most iterations to find a solution (more than 200).
Furthermore, when taking eight neighbours into account (queen contiguity of order
1), the share of models that reach an equilibrium is the lowest. Similarly to Scenario
2, this scenario generates coexisting patches of collaborating and non-collaborating
agents, more clearly defined than before (see Fig. 11.4).
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11.5.5 Normal Distribution

In a further simulation exercise, we hypothesized a normal distribution for α at t¼ 0,
with a mean of 0.5 and a standard deviation of 0.1. When running 1600 simulations,
only 79 resulted in corner solutions (of which 47 for ρ ¼ 0.95, and neighbourhood
radius at Queen-2 or 3). Table 11.4 shows the share of models that reach an
equilibrium when the maximum number of runs is set to 600. Again, queen conti-
guity of order 1 results in the lowest share of models with a solution, and rook
contiguity in the highest one. The average number of iterations was 142, but for
ρ ¼ 1, the average number of steps was 19.

Table 11.3 The share of
model runs finding an equi-
librium for Scenario 5

αmax�αmin Queen-3 Queen-2 Queen-1 Rook-1

ρ ¼ 1.00

0.60–0.30 100 100 100 100

0.60–0.40 100 100 100 100

0.65–0.30 100 100 100 100

0.65–0.35 100 100 100 100

0.70–0.30 100 100 100 100

0.70–0.35 100 100 100 100

ρ ¼ 0.95

0.60–0.30 100 100 100 96

0.60–0.40 30 51 7 56

0.65–0.30 100 99 89 73

0.65–0.35 38 58 8 57

0.70–0.30 46 77 6 59

0.70–0.35 100 100 90 64

ρ ¼ 0.90

0.60–0.30 100 100 100 92

0.60–0.40 15 5 1 55

0.65–0.30 97 90 59 69

0.65–0.35 11 3 1 56

0.70–0.30 15 90 1 42

0.70–0.35 99 85 66 54

ρ ¼ 0.85

0.60–0.30 100 100 100 66

0.60–0.40 4 1 2 38

0.65–0.30 97 67 49 40

0.65–0.35 7 2 3 38

0.70–0.30 7 3 2 33

0.70–0.35 96 74 52 38
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11.5.6 Statistical Analysis

The above simulation findings depict pictures of the average performance of the
system when certain population and behavioural parameters are used. However, it is
difficult, within this framework, to assess the role played by each single model
parameter in shaping the final population outcome. We can go more in-depth in our
analysis from this viewpoint by analysing single simulation outcomes in a regression
framework, by considering their related simulation parameters. In particular, it is
worth examining two types of information in this regard: (1) the share of collabo-
rating agents in the final population (behaviour of society), that is, at time t ¼ T; and
(2) the related level of clustering found.

While fully cooperating or non-cooperating societies show no clustering, it is
interesting to understand what are the parameters that lead to local pockets of
collaborating individuals, a dichotomic population (split 50–50 either horizontally
or vertically on the grid) being the strongest possible clustering. Such clustering can
be measured, given the binary nature of the simulations’ outcome variable, by join

Fig. 11.4 Example of a
final outcome of Scenario 5

Table 11.4 The share of
model runs finding an equi-
librium with a normal
distribution

ρ Queen-3 Queen-2 Queen-1 Rook-1

1.00 100 100 100 100

0.95 37 64 8 60

0.90 11 2 1 54

0.85 8 2 2 35
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count statistics. Similarly to standard spatial autocorrelation indices like Moran’s I,
join count statistics can signal positive or negative clustering, as well as no statis-
tically significant clustering. Given a binary variable classified as 1 s and 0 s, and a
spatial weights matrix W (in our case, a rook contiguity matrix), the number of
“joins” of grid cells of the same type (1–1, or 0–0) is counted, and compared against
the theoretically expected number of joins. A simple test for significance of the
difference between the two can be used to detect clustering (Cliff and Ord 1981).

We then focus on Scenario 5, which has local influence on both behaviour and
values, and estimate simple regression models as follows:

αT ¼ constþ β1αmin þ β2ρþ neighouring, ð11:3Þ
JCT ¼ constþ β1αmin þ β2ρþ neighouringþ β3JC

0, ð11:4Þ

where, in addition to what was defined above, neighbouring is a set of indicator
variables—and related coefficients—for the type of neighbours influence simulated
(between Rook-1, Queen-1, Queen-2, Queen-3), while JCT and JC0 are the join
count statistics measured (for the collaborating agents) at the final iteration and at
t ¼ 0, respectively.

The model in Eq. (11.3) explains the final share of collaborating agents, while in
Eq. (11.4) we model its level of spatial clustering. Both models employ, as explan-
atory variables, the lower bound of the uniform distribution of thresholds αmin (αmax
is fixed in Scenario 5), the inertia parameter ρ and the type of neighbours influence.
In addition, Eq. (11.4) includes the level of clustering at t ¼ 0. We estimate OLS
regression models and present our empirical estimates in Table 11.5.

Regression results highlight the different roles played by simulation parameters in
shaping the final population behaviour. Extending (downward) the range of possible
individual thresholds logically increases the share of collaborating agents, but it
leads to more homogeneous behaviour (less clustering). Instead, behavioural inertia
(ρ) appears to have a limited effect in terms of decreasing the share of collaborating
agents, as well as, to a greater degree, clustering. Coefficients for the different types

Table 11.5 Regression results for Eqs. (11.3) and (11.4)

Regressors

Coeff. Std error Sign. Coeff. Std error Sign.

Dep. var.: αt Dep. var.: JCT

αmin �4.7886 0.0291 *** 43.6555 2.9890 ***

ρ �0.1002 0.0444 ** �52.8988 2.7968 ***

Queen-1 0.0106 0.0070 16.3274 0.3995 ***

Queen-2 0.0083 0.0070 17.4224 0.3953 ***

Queen-3 0.0142 0.0070 ** 21.6599 0.5496 ***

JC0 0.3931 0.1722 **

Res. DoF 4794 1869

Adj. R2 0.85 0.70

A constant is included in both models
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of spatial influence (Rook-1 being the benchmark) suggest that the more spatially
extended the observation, the higher the chances of collaborating, and the higher the
clustering. As expected, the initial level of clustering has a positive correlation with
the final clustering.

11.6 Conclusions

This chapter addressed the issue of civic capital development (emergence of coop-
eration) from a spatial viewpoint, using agent-based modelling (ABM). We first
developed a simple analytical model for the most general case of a threshold model
in which single individuals choose to collaborate based on a set of personal values
and a minimum share of society following the same behaviour. In order to look
deeper into this issue, we set up five scenarios and ran a high number of simulations
to inspect regularities in the aggregate (population-level) outcomes of collaboration.
We found that the most interesting cases are the ones in which interaction between
agents, in terms of both reciprocal influence on values and observation of others
behaviour, happens at the local (instead of global) level, that is, between nearby
individuals. Finally, we conducted a preliminary regression analysis to relate aggre-
gate behavioural outcomes (also in terms of spatial clustering) to the simulation
parameters used.

Our results provide a number of insights.

• When individual behaviour responds to the aggregate behaviour, society quickly
converges to homogenous choices, where all individuals behave cooperatively, or
none does. Which outcome is observed depends on the initial distribution of civic
capital, but it is not affected by the social process of influence in values.

• When individual behaviour responds instead to the behaviour of neighbours only,
spatial clusters of cooperating and non-cooperating agents are often observed. In
addition, when the propensity towards cooperation is socially affected, the system
becomes less stable, and is less likely to find a stable equilibrium in the observed
time horizon of our simulations. We believe this issue to be due to expectable
feedback effects happening between individuals over space.

• When focussing on local mechanisms of influence, we observe, through regres-
sion models, that a behavioural inertia and the extent of the range of individual
threshold for cooperation matter in shaping societal outcomes and the level of
spatial clustering.

• The latter further depends on the spatial extent of observation and influence. The
larger this is, the higher the level of spatial clustering observed. This finding
suggests that, while neighbourhood effects matter in setting the condition for the
development of pockets of heterogeneous behaviour, there is most likely an
“optimal” extent of spatial influence that leads to the strongest spatial clustering
and, therefore, in real-life settings, to possible issues of segregation and isolation.
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The above findings represent a first exploration of how horizontal transmission of
civic capital may be modelled, explored and analysed. Further experiments are of
course needed in this regard. For instance, the role played by urban infrastructure
(positioned on the urban grid), like highways, in causing isolation and clustering of
homogeneous behaviour by interrupting proximity relations may be fruitfully
explored in an ABM simulation framework. At the same time, recent advancements
in urban transportation, which facilitate cross-neighbourhood mobility, could have
the opposite effect, and favour interaction between more distant individuals. We
leave this and other model expansions for future developments.
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