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Abstract This paper proposes a conceptual architectural design of Question-
Answering (QA) system that can solve “counting” problem. Counting problem is
the inability of QA system to produce numerical answer based on retrieved rationale
(in text passage) containing list of items. For example, consider “How many items
are on sale?” as question and “Currently shampoo, soap and conditioner are on sale”
as retrieved rationale from text passage. Normally, system will produce “shampoo,
soap and conditioner” as an answer while the ground truth answer is “three”. In other
words, system is simply unable to perform the counting process needed in order to
correctly answer such questions. To solve this problem, QA system architecture with
following components is proposed: (1) A classifier to determine if given question
requires a counting answer, (2) A classifier to determine if current system’s answer is
not numeric, and (3) A counting method to produce numerical answer based on given
rationale. Despite looking like a whole system, the proposed architecture is actually a
modular system whereby each component can operate independently (allowing each
component to be separately implemented by other systems). In essence, this paper
intents to demonstrate a general idea of how the defined problem can be solved using
a modular system, that hopefully also opens up more flexible enhancements in the
future.
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1 Introduction

Within the software engineering field [16, 17], Question-Answering (QA) system
is a computerized algorithm that produces output (answer) based on user’s input
(question) through the usage of Natural Language Processing (NLP). Relatively
similar to chatbot [13—15], QA system will produce answer based on rationale (a span
of text) extracted from a given text passage/corpus. To find a correct rationale, system
must understand the question’s context whether it is direct (no polysemy involved),
or indirect (has some sort of polysemy or hidden meaning). To understand context
in natural human language, the system must first understand the language itself
(primarily the meaning of each word in the sentence). Over the years, NLP researchers
have come up with a system called Language Model that can “understand” human
language by learning word co-occurance patterns.

Mathematically, Language Model (LM) is a probability distribution system that
produces probability values for each word in the text sequence (typically large
sequence such as collection of documents). By predicting occurrence probability
of words-against-words, relationship of semantic emerges (“a word is characterized
by the company it keeps”—I[5]). This relationship is what makes LM “understand”
human language, that is not perceiving word as an atomic item, but as surrounding
words that relate to it. While LM is good at understanding language, it still needs to
be fine-tuned in order to perform well in task specific processes (such as QA). This is
because LM only understands language but not how to use it (like human understand
cars but need to learn how to drive it).

To fine-tune LM for QA system, a specific QA dataset is used. QA dataset gen-
erally is a collection of human answers towards human questions in regard to text
passages (areading comprehension exercise). Three most referred QA datasets to date
are SQuAD (The Stanford Question Answering Dataset) [19], CoQA (A Conversa-
tional Question Answering Challenge) [20] and QuAC (QuAC: Question Answering
in Context) [3]. For all datasets, fine-tuned LMs (with additional components) are
shown to perform well [8, 9]. In general, evaluation is done based on how well
the system performs towards overall data points. With majority correctness as main
target, minor error is not given much attention. One of such error is identified as
“counting” problem [8].

Counting problem in QA system is an error where the produces answer for “How
many” type question is not numerical. As an example, consider the question “How
many items are on sale?”’. With good fine-tune LM, QA system can retrieved follow-
ing rationale from a given passage “Currently shampoo, soap and conditioner are on
sale”. Without solution to counting problem, QA system then will answer “Shampoo,
soap and conditioner” while in fact the ground truth answer is “Three”. Because the
QA system is not able to solve the counting problem, it can only produce answer that
is a list of relevant items based on identified context in the question.
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Following are contributions of this paper:

— A proposal of QA system architecture that can solve the counting problem.
— A proposal of three independent components in modular system setup that can be
assembled in order to solve the counting problem.

2 Related Work

Current trend in NLP is pretrained Language Model (pLM), that is a generalization
of LM. pLM is an LM that can independently be trained to relatively understand any
textual human language. After being trained, pLM can be fine-tuned in order to make
it perform well on specific downstream Natural Language Understanding (NLU)
tasks. Example of such task are single and pair sentence classification, sentence
tagging, reading comprehension, and so on [21]. Among currently famous pLM are
GPT-3 [2], BERT (and it’s variations) [4, 7, 10-12], XLNET [25] and ELMo [18].
For QA systems, “reading comprehension” is the core NLU downstream task that
needs to be addressed. To make pLM able to perform well on this task, fine-tuning is
done using QA datasets such as SQuAD [19], CoQA [20] or QuAC [3]. In general,
those datasets contain three interrelated data: (1) A text passage about a particular
subject, (2) A factual question related to the passage (multiple questions per passage),
and (3) An answer to each question (to be noted that each dataset has its own quirks
but basic data structure is fairly similar).

Fine-tuning pLM might address basic QA system requirement but there is still
more to be improved. The basic two steps approach for QA system in answering
question is: (1) Looks for factual information (a rationale) in text passage based on
semantic information in the question (using learned QA relationship patterns), and
(2) Produce answer based on retrieved rationale (rationale is a span of text from
the referred passage). Because each dataset/domain has its own quirks and features,
researchers augment pLM with various modules to make it perform better in regards
to each dataset. Following are some of those augmented implementation: Wen et al.
augment pLM with specific module to address why-question in clinical domain QA
system [23], Banarjee et al. augment abductive information retrieval method to pLM
in order to address open book QA reasoning [1], Wang et al. augment pLM with
scoring mechanism for multi-passage answer retrieval in attempt to improve open
domain QA system [22], Yang et al. augment specific information retrieval toolkit
called Anserini to address QA system with large passage sequence [24], and Godbole
et al. augment IR technique that able to address multi-hop QA requirement [6].

Among those augmented modules, none has addressed “the counting problem”
issue. Although not presented much in those datasets (only 5.1% in CoQA [20]
dataset and even smaller percentage in others), the counting problem is everywhere in
everyday human conversation. One such conversation domain is buying-and-selling
where “how many” question type/style is used a lot when dealing with items on sale, in
stock, in packaging and so on. With this realization, this paper intents to demonstrate
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a general idea of how the counting problem can be solved using a modular system.
With modularization architecture, proposes system’s modules can be augmented into
current system as to improve SoTA results on “how many” type questions. Proposes
system is also unbiased towards knowledge domain, that is because its targeted
on non-contextual word for question type classification (further explanation is in
subsection 3.2 “Question type classifier (C1)”).

3 Architecture

This paper proposes a QA system architecture that is designed upon two main objec-
tives: (1) To solve the counting problem in system’s answer, and (2) To become
reusable in other systems. While objective one is very clear (the main objective),
objective two requires some elaboration. To make a system that is reusable for other
systems, it’s components need to be modular (independent units). To achieve this, the
propose system must maintain the fundamental process of how QA system produce
an answer, that is by retrieving rationale from the given passage. By maintaining this
process, answers that do not suffer from the counting problem can produce similarly
as before. Following Fig. 1 depicts the proposed architecture (the whole system) in
data flow format.

Referring to Fig. 1, general input-output process for proposed architecture is
fundamentally similar to other QA system where system accepts two input texts
(question and passage) and produce one output text (answer). Following the data
flow, input will go through four system components: (1) Fine-tune language model
(ftLM), (2) Question type classifier (Classifier 1 or C1), (3) Answer type classifier
(Classifier 2 or C2), and (4) Counting method (Method 1 or M1). Apart from normal
flow (going through all four components), data can also flow directly to the last stage
from CI1 or C2 component. These are cases where system can bypass subsequent
component if it has been identified that the inputs did not suffer from the counting
problem (further explanation is in subsection 3.4 “Counting method (M1)”). To be
noted that ftL.M is a required component for C1 and C2 (required for language and
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Fig. 1 General architecture
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sentence comprehension task). As such, if C1 or C2 is to be used independently, ftLM
is needed to be included as preprocessing module. Next subsection will elaborate
more on each component.

3.1 Fine-Tune Language Model (ftLM)

ftLM is the first component that system’s inputs need to go through. ftLM main
objective is to retrieve rationale from input passage given input question’s context.
In details, ftLM needs to perform two interrelated processes which are: (1) Read-
ing comprehension and (2) Rationale retrieval. Referring back to Fig. 1, ftLM (big
dashed-line box) contains LM (small solid-line box) surrounded by “Task specific
fine-tune” process f7. In correlation, LM is reading comprehension (process 1) mod-
ule, and ft is rationale retrieval (process 2) module.

In QA system context, ft is a process of fine-tuning LM using QA dataset such as
SQuAD, CoQA and QuAC. Conclusively, LM is used for system to comprehend pre-
trained language (e.g. English language) and ft is used for system to guess semantic
relation between question text and passage text. As overall architecture is designed
to be modular, rationale extraction can be improved by embedding more component
towards base ftLM module.

3.2 Question Type Classifier (C1)

C1 is a component that takes question and passage text as inputs, and classify it into
one of two question types: (1) Question that does not requires numeric answer, and (2)
Question that requires numeric answer (a binary classification problem). Following
Fig. 2 depicted the propose C1 component design.

Figure 2 denoted ftL.M as fine-tune Language Model (as in Fig. 1), Q as question
text, R as ftLM’s resulting rationale, Al as preprocessor, A2 as Neural Network
(NN), and A3 as Sigmoid function. As explained in the previous section, ftML will
retrieve rationale from input passage given input question’s context. From ftML, A1
will receive rationale and also the original question text as its inputs. A1 objective is
to remove all context-related words from question input in order to get not-in-context

Q
/_\ Neural Network Type 0

Question —>i iR
P ftLM —>| A1 |—>| A2 |—>| A3 /
Passage ——>:

Preprocessor Sigmoid Type 1

Fig. 2 Question type classifier
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words which is the question words (e.g. “What”, “Where”, “How many” and so on).
Following is the proposed algorithm for A1 subcomponent:

Get question text Q and rationale R as inputs

Get each word embedding for Q and R

. Calculate cosine similarity cos(9) between each word in Q, towards each word in R
Remove word in Q that cos(8) value is within threshold t

Pass remaining Q words embedding to the next process.

o

Upon completion, Al subcomponent module will pass embeddings of not-in-
context question words into A2. A2 is a multilayer neural network with Sigmoid
neuron (A3) at the end. Standard logistic function (where k=1, L = 1, x° = 0) will
be used for Sigmoid as C1 needs to predict binary class for question type which are:
Type 0 - Question that does not requires numeric answer, and Type 1 - Question
that requires numeric answer. Sigmoid calculation will produce a value within O to
1 range, that is a classification of Type O for O to 0.49 range value, and classification
of Type 1 for 0.5 to 1 range value. For Cl1 training purpose, QA dataset will needs
a label value where Type O is labeled 0, and Type 1 is labeled 1 (supervised ML
model).

3.3 Answer Type Classifier (C2)

The purpose of C2 component is to classify whether ftL.M (that has been fine-tune
for QA system) produce a numeric answer or not. Similar to C1, C2 needs to solve
binary classification problem with natural language text as its inputs. Following Fig.
3 depicted the propose C2 component design.

Figure 3 denote ftLM as fine-tune Language Model (as in Figs. 1 and 2), B1 as
Neural Network (NN), and B2 as Sigmoid function. From ftML, B1 will receive
rationale text embeddings as input. Similar to A2 (Fig. 2), B1 is a multilayer neural
network with standard logistic function Sigmoid neuron (B2) at the end. Binary
classes to be classified by B1 are: Type O—Answer that is semantically not numeric,
and Type 1—Answer that is semantically numeric. To be a “semantically numeric”
answer, rationale text must contains numerical-valued text, be it in actual number (e.g.
1,2, 3) or text representing number (e.g. one, two, three). As for training process, C2

Sigmoid Type 0

fiLtM i—>| B1 |—>| B2

Question —> '
Passage —> :

Neural Network Type 1

Fig. 3 Answer type classifier
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will use standard QA dataset with additional label value that is similar to C1 training
requirement where Type 0 is labeled 0, and Type 1 is labeled 1 (also a supervised
ML model).

3.4 Counting Method (M1)

To perform a counting process, C1 and C2 components need to satisfy following two
conditions: (1) Input question is a type that requires numeric answer (Type 1 for C1
classifier), and (2) ftLM outputted rationale is not semantically numeric (Type O for
C2 classifier). By basic logic, condition one is prerequisite to condition two. This
is because the counting process is only needed for question that requires a numeric
answer. Following Fig. 4 depict path that needs to be satisfied by the data flow in
order for M1 to be activated.

M1 component objective is to receive natural language text as input (in a list
of items format), and produce the summation of items as output. As powerful as
ML is, it is still bound to basic probability principle which is “predicting a value”. In
mathematical calculation, the produced answer is definite therefore no amount of data
can be feed into ML to predicts every possible outcome of mathematical calculation
(because real numbers are infinite). As such, M1 requires traditional computing
method in calculating summation of items in a list. Following is proposed algorithm
for M1 component:

Get answer text A as input

Segment A text into item array Ar through lexical analysis
Loop Ar to count items presented in A (count++)

Output final count value.

el

When complete, M1 will produce a count value (the summation of items) in
number format. As QA system usually uses text format, a conversion is needed. In
usual formal writing, number 1 to 10 is written in text format while number 11 and
above is written in number format. On that account, count value only needed to be
converted into text when its value is under 10. Maintaining this scope will make it
simpler for conversion process as real numbers are infinite.

@enrrerrenannrn s @ nnes > Normal
answer

-

—> M i—>| ¢t |——>| c2 |———>| m1 aCountmg
: Type 1 Type 0 answer

Fig.4 MI activated path
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4 Discussion and Future Work

This paper proposes a QA system general architecture to solve the counting problem
using modular four parts components. This proposed system differs from previous
works in two regards: (1) A QA system that specifically intended to solve the counting
problem while previous works focused on achieving SoTA result on whole datasets,
(2) A modular system component that can also be implemented in other case study
(such as binary question/answer text classification), while previous works proposed
a close architecture system for specific QA dataset only.

Similar to other conceptual proposal, proof of concept implementation is crucial.
For presented architecture, first task is to independently test and verify the three
proposed components (C1, C2 and M1). Other than to make sure each component
works as intended, this task is also to justify the modular design proposal. After
all components are throughly validated, next task is to ensemble all components to
become one functional QA system. With this ensemble system, standard QA system
benchmark data can be used to test and evaluate the whole architecture. Keep in
mind that this system might not achieve SoTA result since its main focus is to solve
counting problem. It is however possible for other components to be incorporated
later (in order to achieve new SoTA) as the system is modular in design. In addition
to standard research datasets, this system can also be validated using real world
human conversational datasets as to further justify the needed modules for solving
the counting problem in QA domain.

5 Conclusion

This paper proposes a conceptual architecture for QA system that intend to solve
counting problem in system’s generated answer. Proposed architecture is designed
to be modular in a sense that each component can work independently. This is to allow
other systems to able to embed just the needed component (without the whole system)
effortlessly. To solve the counting problem, three components (excluding generalized
language model) are proposed within one ensemble system. Those components are
(1) Question type classifier, (2) Answer type classifier and (3) Counting method.
Component one and two are machine learning based, while component three is
traditional programming method. Collectively, all components can be used to solve
counting problem while independently, each component can be used to solve its
predefined purpose (binary classification for component one and two, and syntactic
mathematical addition problem for component three).
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