
Chapter 3
Deep Learning

3.1 Introduction

Representation is the most fundamental issue in network analysis. More generically
it affects the performance of any machine learning system. For example weight of
objects alone is adequate to classify objects into lighter andheavier classes. Similarly,
height is adequate to discriminate objects into tall and short classes. Such choices
are simple in real life and are often based on commonsense.

However, in most of the practical applications, it is not possible to come out with
a representation of the data so easily. However, a good representation is essential
for successful machine learning. This may be attributed to the raise in the usage
of deep learning systems. A routine way of appreciating deep learning is that the
underlying learning system is realized using a cascade of systems that successively
process data and pass on the information to subsequent levels; the size of the cascade
is an indication of the depth of the learning system.

A hallmark of a deep learning systems is:

• Representation Learning:
Can the system learn the representation automatically from the given data?
In order to answer this question, we need to pose additional questions like:

1. What is the size of the data required to learn the right representation automat-
ically?

2. What is the type of data that can be processed?
3. Is it required to scale/normalize the data?
4. Will the performance be affected by the order in which the data is processed?
5. Is the model learnt for one application generic enough to be used in other

applications?

Even though it is possible for a variety of realizations to answer one or more of
these questions convincingly, it is the artificial neural network based systems that are
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36 3 Deep Learning

shown to answer most of these questions. So, they are the most popular and perhaps
only systems available for deep learning currently. So, it is convenient to view deep
learning and deep neural networks as synonymous; we take this stand in rest of the
chapter.

3.2 Neural Networks

Artificial neural networks (ANNs) are used by default for deep learning. Before we
go into an exposition of deep neural networks, we will examine the basic building
blocks that are essential in understanding the functionality of deep neural networks
in this section. Historically, there were several developments in the early days but
one of the simplest and important milestones was perceptron. We examine it and
then consider more deeper architectures.

3.2.1 Perceptron

The working of Perceptron may be explained using Fig. 3.1

• Let X be an l-dimensional vector corresponding to a train or a test pattern. Such

a pattern is given by X =

⎛
⎜⎜⎜⎝

x1
x2
...

xl

⎞
⎟⎟⎟⎠.

• Let φi (X), i = 1, . . . , d be features extracted from X . So, φi s are mappings from

�l to �. For example, if X is a 2-dimensional vector given by X =
(
x1
x2

)
, then

φ1(X) = x1, φ2(X) = x2, and φ3(X) = x1x2 is a possible set of 3 features. Here,
l = 2 and d = 3.

Fig. 3.1 Perceptron in the feature space
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• Theweightsw1, w2, . . ., wd indicate the importance ofφ1(X), φ2(X), . . ., φd(X)

respectively. We call the perceptron using such a generic representation as a per-
ceptron in the feature space

• The unit indicated by fa is called the activation unit where fa is the activation
function. The sum of weighted features given by

∑d
i=1 iφi (X) is the input to fa ;

fa is a function from � to �. A simple example of fa is

fa(α) =
{
1 i f α > 0
0 otherwise

(3.1)

Such an activation function fa is called a Linear Threshold Function.
• Note that Output = fa(

∑d
i=1 wiφi (X)) which in general is a nonlinear function

of the weighted sum
∑d

i=1 wiφi (X)).
• Let us consider a simple example to illustrate its working:
Example: Consider the following five 2-dimensional patterns.

Negative Class:
(
1
2

)
,

(
2
3

)

Positive Class:
(
3
1

)
,

(
4
1

)
,

(
4
2

)

– Note that we have l = 2 in this example. Further let us assume that φ1(X) = x1
andφ2(X) = x2. So, in this case l = d = 2 and the input features are the features
used.

– Using some algorithm supposewe learn the weights to bew1 = 1 andw2 = −1.
So the weighted sum is given by

∑2
i=1 wiφi (X) = x1 − x2.

– If we use the linear threshold function fa on the weighted sum, we make the
following decision:

for a pattern X =
(
x1
x2

)
, if x1 − x2 > 0, then classify X as a positive class

pattern and if x1 − x2 < 0 then assign X to the negative class.

– Note that for pattern

(
1
2

)
, x1 − x2 = −1 < 0; So, it is classified as a member

of the negative class. Similarly, for

(
3
1

)
, x1 − x2 = 2 > 0; So, it is assigned

to the positive class. Further, x1 − x2 = 0 characterizes the boundary to decide
between the two classes.

– We depict the example using Fig. 3.2. In the figure, the two patterns of the
negative class and the three patterns of the positive class are shown. Further,
the dotted line x1 = x2 or equivalently x1 − x2 = 0 is the decision boundary
between the two classes characterized by w1 = 1 and w2 = −1.

– There is another line, a broken line, which is parallel to the earlier line and is
described by x1 = x2 + 1. Note that even this line also is a decision boundary
between the two classes. It is possible to see that if there exists one decision
boundary, there can be infinite decision boundaries between the two classes.
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Fig. 3.2 Decision
boundaries

– The decision boundary x1 = x2 + 1 or equivalently x1 − x2 − 1 = 0 may be
explained by a different choice of φi s andwi s. If we define φ0(X) = 1 andw0 =
−1 and retain the earlier predicates and weights, then the decision boundary is
described by

∑2
i=0 wiφi (X) = −1 + x1 − x2 = 0. This is a more generic form

that relaxes the constraint that the decision boundary goes through the origin.

• In the two-dimensional example we have considered the decision boundary to be
a line and its generic form is

∑2
i=0 wiφi = 0. These ideas can be extended to

deal with binary classification (two-class) problems in any l dimensions by using∑d
i=0 wiφi as the weighted sum or input to the activation function fa . In such a

case, the decision boundary is a hyperplane.
• A popular choice for the features is φ0(X) = 1 and φi (X) = xi for i = 1, 2, . . . , l.
The advantage of this representation is that it requires d + 1 features (including
φ0) where d = l. So, the complexity is linear in the input dimension l. Let us call a
perceptron using such a representation as a perceptron in the input spaceHowever,
the resulting decision boundary cannot deal with two classes of patterns that are
not linearly separable.

• An important point is that by considering a larger value of d, it is possible to deal
with nonlinear classification problems. Specifically, when the patterns are l-bit
binary strings, it is possible to represent any boolean function on l bits using all
possible subsets (minterms of different sizes) as features.

• For example, the function odd − pari ty(x1, x2, x3) returns a 1 if x1 + x2 + x3
is odd and returns a value 0 otherwise. It is not linear in terms of the four fea-
tures φ0(X) = 1 and φi (X) = xi for i = 1, 2, 3 where X is a 3-bit binary pattern.
However by using additional features, or minterms, it is possible to represent
the odd-parity function using the form x1 + x2 + x3 − 2(x1x2 + x1x3 + x2x3) +
4x1x2x3.. Note that such a representation involves features that are nonlinear in
x1, x2, and x3 like x1x2, x1x3, x2x3, and x1x2x3.

• Any vector can be represented as a binary string of some length l on a boolean
computer. So, any classification problem based on training patterns can be dealt
with a perceptron in the feature space that employs 2l features. However, in most
of the practical problems the value of l, the number of bits could be very large and
training a perceptron using 2l features could be computationally prohibitive. That
is the reason for employing a perceptron in the input space.
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3.2.2 Characteristics of Neural Networks

Some of the important characteristics of ANNs which are related to the discussion
so far are:

• They may be viewed as linear classifiers. They can handle even non-linear classi-
fication problems using an appropriate representation.

• If the classes are linearly separable in the input (l-dimensional) space, then the
learning algorithms behind units like perceptron in the input space can find one
out of the infinite possible linear decision boundaries in the (l + 1)-dimensional
space. Popularly, perceptron in the input space is called perceptron and henceforth
we too will follow this popular terminology.

• There are other linear Classifiers including the ones based on support vector
machines (SV Ms). An SV M constrains the search space for the decision bound-
ary by specifying an appropriate objective function. It is possible to view an SVM
also as an ANN .

• It is possible to choose an appropriate activation function to realize the associated/
pre-specified nonlinearity.

• The notion of weighted sum that is used as the input of an activation function
naturally imposes a constraint on the type of data that can be processed. ANNs are
intrinsically capable of processing only numeric data unlike some other classifiers
including the ones based on decision trees and Bayes decision theory.

• Even though some of the ANNs including SV Ms normalize the data as a process-
ing step, in theory normalization is not required in using ANNs. For example, if
a component φi (X) is more important than another component φ j (X), then the
associated weight wi can be chosen to be larger than w j .

3.2.3 Multilayer Perceptron Networks

A perceptron cannot handle classes that are not linearly separable. Further, to get the
right representation is difficult. A Multilayer perceptron (MLP) is a feedforward
network that combines multiple layers, where each layer may have multiple percep-
trons. A major advantage of such a network is that it has the potential to learn the
required representation from the input data. As an example, consider the exclusive
or (XOR) function given in Table 3.1:

Table 3.1 is the truth table of the boolean function exclusive or (XOR). The
output is 1 when exactly one of the inputs is 1, but not both. The first three columns
characterize the truth table. The fourth and fifth columns in the table show equivalent
representations of the XOR function.
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Table 3.1 Exclusive or representations

x1 x2 x1 ⊕ x2 x1 + x2 − 2x1x2 x1x2 + x1x2

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

A perceptron cannot represent it in terms of inputs x1 and x2 alone as it is not a
linear function in these inputs. However the fourth column suggests that if we use
an additional feature x1x2 then it can be realized. Similarly the fifth column gives an
equivalent representation using the features x1x2 and x1x2. These two representations
can be represented using the following MLPs.

1. Representing XOR as x1 + x2 − 2x1x2: The corresponding MLP is shown in
Fig. 3.3.

• Note that in the figure there are three layers.
• The input layer receives the inputs x1 and x2; note that each pattern is a two-
dimensional vector here. The input layer is indicated by the presence of small
circles.

• There are two additional layers. In the output there is a perceptron whose
output is the exclusive or of x1 and x2 shown as x1 ⊕ x2. It is equivalent to
x1 + x2 − 2x1x2.

• There is a perceptron in the middle layer; it is also called the hidden layer.
• The hidden layer perceptron outputs the AND of the inputs x1 and x2, that is
x1 ∧ x2. It is characterized by the equivalent form x1 + x2 > 1; so it outputs 1
only when both x1 and x2 are 1, else a 0 (zero) exactly like an AND gate.

• The perceptron in the output layer has 3 inputs; they are x1, x2 and −2x1x2. It
outputs the sum of the three inputs giving the equivalent x1 + x2 − 2x1x2 of
the Exclusive OR of x1 and x2 and is represented by x1 ⊕ x2

2. Considering the other representation of XOR using x1x2 + x1x2, the correspond-
ing MLP is depicted in Fig. 3.4.

• Note that there are 3 layers in this case also. The inputs are x1 and x2.
• In the hidden layer there are two perceptrons. The top one outputs x1x2; it is rep-
resented by the equivalent form x1 − x2 > 0. Similarly, the second perceptron
in the layer outputs x1x2; its equivalent representation is x2 − x1 > 0.

• The output layer has a single perceptron which is an I nclusive OR gate; it has
two inputs. So, its output is x1x2 + x1x2 that is equivalent to the XOR function.

• Even though these two ANNs are very simple, early work on MLPs exploited the
results on these networks to highlight the fact it is possible to learn the weights
connecting perceptrons (or neurons as they are called) in successive layers.
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Fig. 3.3 Exclusive or represented as x1 + x2 − 2x1x2

Fig. 3.4 Exclusive or represented as x1x2 + x1x2

• MLPs are called feedforward networks as can be illustrated by using Fig. 3.4.
The outputs of the neurons in layer i become the inputs to neurons in the (i + 1)th
layer.

• If we observe Fig. 3.3, we see that the (i + 1)th layer gets inputs not only from
the i th layer but also from the earlier layers. Typically, in an MLP , the weights
connect neurons in two successive layers only.

• Learning in MLP networks amounts to starting with a set of initial weights and
keep changing or updating the weights based on some criterion.

3.2.4 Training MLP Networks

The earliest and still the most popular algorithm for training MLPs is backpropa-
gation. Before we consider the backpropagation algorithm, let us consider a related
problem of training a single perceptron using the so called delta rule.

3.2.4.1 Delta Rule

Let us consider training a single perceptron.
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• Let yiobt be the output obtained by the perceptron for input Xi .
• Let the target or expected output for the pattern Xi be yitar .
• Let there be n training patterns given by {(X1, y1tar ), (X2, y2tar ), . . . , (Xn, yntar )}.
• The idea is to start with some initial weight vector and update the weight vector
so that error between the target outputs and obtained outputs is minimized.

• The error, Error(W ) is defined as

Error(W ) = 1

2

n∑
i=1

(yitar − yiobt )
2 (3.2)

Here, 1
2 is used for the convenience of calculus.

• We know that yiobt = fa(Wt Xi + b) = fa(W Aug.Xaug
i ) where W Aug =

(b, w1, . . . , wd)
t and Xaug

i = (1, xi1, xi2, . . . , xid)t are the augmented vectors that
subsume the bias b into W .

• So, the process of learning W and b is converted into learning Waug . Henceforth,
we use W instead of Waug for the sake of simplicity in notation. Correspondingly
Xaug
i is called Xi .

• We assume that fa is a linear function defined as fa(wsum) = wsum. So, yiobt =
fa(Wt Xi ) = Wt Xi where W and Xi are augmented respectively.

• Finding the optimal W is done in the case of the delta rule by using gradient
descent. The partial derivatives involved in computing the gradient of Error(W )

with respect to W are calculated by using the chain rule:

δError(W )

δw j
= δError(W )

δyiobt
.
δyiobt
δw j

(3.3)

• Note that
δError(W )

δyiobt
= −(yitar − yiobt ) (3.4)

and
δyiobt
δw j

= xi j , f or j = 0, 1, . . . , d (3.5)

by assuming that w0 = b and xi0 = 1 for i = 1, 2, . . . , n.

• So,
δError(W )

δw j
= δError(W )

δyiobt
.
δyiobt
δw j

= −(yitar − yiobt ).xi j (3.6)

• So, the gradient descent that employs the negation of the gradient will mean

W (k + 1) = W (k) − η(−(yitar − yiobt )Xi ) = W (k) + η(yitar − yiobt )Xi . (3.7)



3.2 Neural Networks 43

Table 3.2 Training data for
the delta rule

Pattern Value ytar

X1 0 0

X2 1 3

X3 2 6

X4 3 9

where the updated weight vector, W (k + 1) is obtained by updating the current
weight vector, W (k) and η is the learning parameter.

• It is called the delta rule or the delta learning rule because the difference (delta)
between the target output and the obtained output is involved in the computation
of the update.

• Note that the linear activation function is used instead of the linear threshold
function, popularly used by Perceptron, to ensure that δyiobt

δw j
can be computed; this

is not possible when we use the linear threshold function.
• Algorithm for Learning W :

1. Choose k = 1 and initialize W (k) with small values, and η with a small value.
2. Consider each pattern Xi in the training set and update to get W (k + 1) =

W (k) + η(yitar − yiobt )Xi . Set k = k + 1. Update till all the patterns are consid-
ered; this is called an epoch.

3. Stop if there is no change in the weight vector for an entire epoch, else iterate
by going to step 2.

• Example:

– Let us consider a function g : � → � given by g(X) = 3X . Let the training
data be as shown in the Table 3.2.

– We consider a simple perceptron with no bias that is shown in Fig. 3.5.
– Let us initialize the value of weight W (1) to 0.1 and η to 1.
– The first pattern in Table 3.2 is input to the perceptron in Fig. 3.5, It is correctly
classified as X1 = 0 ⇒ y1obt = W.X1 = 0 = y1tar . So, W (1) is not updated.

– We consider X2 = 1. The value of y2obt = W.X2 = 0.2 .1 = 0.2 and y2tar = 3.
So, W (2) = W (1) + η(y2tar − y2obt ).X2 = 0.2 + 1(3 − 0.2).1 = 3.

– Using the value of W (2) all the patterns will be correctly classified. So, the
algorithm stops and the weight value is 3.

• The example considered is very simple and it is primarily used to illustrate the delta
rule based learning of the weight W . Also, it is a simple curve fitting/regression
problem that may be viewed as a generalized version of the classification problem.
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Fig. 3.5 Example
perceptron with bias, b = 0

3.2.4.2 Backpropagation

Let us consider a multi-layer network (MLP).

• It will have p(> 2) layers with the input layer (first layer), output layer (pth
layer), and p − 2 hidden layers. For example, in Fig. 3.4 the value of p is 3 with
one hidden layer.

• There will be nq neurons in the qth layer for q = 1, 2, . . . , p. In Fig. 3.4, there
are 2 (nq = 2) neurons in each of the input and hidden layers.

• Every neuron in layer q is connected to every neuron in layer q + 1 for q =
1, . . . , p − 1. The connections in Fig. 3.4 exemplify this.

• The weight specified by w
q
rs is the weight associated with the connection between

r th (r = 1, 2, . . . , nq) neuron in the qth layer and sth neuron in the (q + 1)th
layer.

Some important properties of backpropagation may be summarized as follows:

• Let there be n training patterns given by {(Xi , y
ip
t ), i = 1, 2, . . . , n}, where yipt

stands for the target output at the pth layer (output layer) when Xi is input. Further,
Xi is a vector of dimension n1 and yipt is a vector of dimension np.

• Let wsumq+1
is be the weighted sum input to the activation function at node s in the

(q + 1)th layer for input Xi , where

wsumq+1
is =

nq∑
j=1

w
q
js y

iq j
o , (3.8)

where yiq jo is the output obtained at the j th node of the qth layer for input Xi .
• We assume that the same activation function, fa , is used at all the neurons in the
entire MLP network.

• Note that wq
js affects the final error through wsumq+1

s .
• It is a feedforward neural network. So, when training vector Xi is presented at the
input layer of the network, then yi1 jo (= Xi j ) is the output of the j th node in the
first layer (input layer).

• The output of the j th node in layer q is given by yiq jo (= fa(wsumq−1
i j )).

• Let the obtained output at the j th node in the output layer be yipjo .
• We need to learn all the weights w

q
rs , q = 1, . . . , p, r = 0, 1, . . . , nq , and s =

1, . . . , nq+1. Let W be the collection of these weights.
• Training the MLP is achieved by getting W that minimizes squared error across
all the n patterns. It is given by
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Error(W ) =
n∑

i=1

1

2

np∑
j=1

(yipjt − yipjo )2. (3.9)

• We use gradient descent and the update rule is given by

wq
rs(k + 1) = wq

rs(k) − η
δError(W )

δw
q
rs

(3.10)

• We can compute δError(W )

δw
q
rs

, using the chain rule similar to the one used by the delta
rule as

δError(W )

δw
q
rs

= δError(W )

δwsumq+1
is

.
δwsumq+1

is

δw
q
rs

(3.11)

• Note that δwsumq+1
is

δw
q
rs

= yiqro .

• Let errorq+1
is = δError(W )

δwsumq+1
is

. It is possible to view it as backpropagated error at node

s in layer q + 1 when Xi is input to the MLP .
• The process of backpropagation of error is initiated at the output layer; once we
know error p

i j for node j in the output layer, we propagate it back to nodes in layer
p − 1, then to nodes in layer p − 2, and so on till the nodes in the input layer.

• The error propagation is characterized by

errorqi j =
nq+1∑
s=1

errorq+1
is Wq

js f
′
a(wsumq

i j ) (3.12)

• The previous error computation is a result of the following chain rule:

errorqi j =
nq+1∑
s=1

errorq+1
is .

δwsumq+1
is

δyiq jo

.
δyiq jo

δwsump
i j

(3.13)

• In propagating the error back, we first start with the output layer (layer p)

error p
i j = δError(W )

δwsump
i j

= δError(W )

δyipjo

.
δyipjo

δwsump
i j

= (yipjo − yipjt ). f ′
a(wsumq

i j )

(3.14)
• This is easy to compute because for input Xi we go through the forward pass to
compute yiq jo f or j = 1, 2, . . . , nq and q = 1, 2, . . . , p. Once we have yipjo , we
can compute (yipjo − yipjt ).

• The quantity f ′
a(wsumq

i j ) can be computed because the form of f ′
a is known in

advance based on the functional form of fa .
• Once we compute error p

i j , for all the nodes in the pth layer (output layer), then we
can propagate back, using the earlier equation, to get error of nodes in the previous
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layer, and iteratively till we get error at every node in the MLP . We can use these
errors to update the weights across the network for pattern Xi .

• The process is repeated for all the patterns; such an iteration over all the patterns
is called an epoch. This process is repeated over several such epochs till some
termination criterion on the error at the output layer is met.

• During the early days of MLP research, there was more effort on

– Why linear threshold activation is inadequate? Therewas a need for an activation
function fa that is differentiable for the backpropagation of error. One of the
most popular is the sigmoid function given by fa(x) = 1

1+e−x .
– How many hidden layers are required to learn a required function on an MLP?
The universal function approximation theorem showed that one hidden layer is
adequate to approximate any function. The radial basis function networks were
based on this.

– What happens ifwe usemore hidden layers? The number ofweights in theMLP
network contribute to the dimensionality of the problem. So, more hidden layers
mean more weights and a higher dimensional problem. With smaller training
sets, the learnt MLP can overfit.

3.3 Convolutional Neural Networks

In the previous section, we have examined the MLP network. Some of the problems
associated with it are:

1. The sigmoid activation function can have vanishing or exploding gradient; so, it
is not the right activation function. This is also linked with how the initial weights
are chosen.

2. Overfitting the training data can occur if the number of hidden layers/neurons is
large; this happens if the training data is small.

3. Most of the backpropagation training scenarios used software simulations on
slower machines; in the early days people were even restricting the weights to
have integer values to run the simulations faster.

There are better and efficient processing platforms available now. We will consider
the details associated with the activation functions and weight initialization in the
next two subsections.

3.3.1 Activation Function

• Earlier Activation Functions:
In the case of delta rule, we have seen the use of the linear activation function.
It is not useful in dealing with any required nonlinearity across multiple layers
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as it collapses multiple layers in the network into one; this is because the relation
between the input and the final output will be through another linear function. This
is similar to multiplication of several matrices giving rise to another matrix. This
prompts the use of a nonlinear activation function. A popularly used nonlinear
activation function is the sigmoid function. Some of its properties are:

– It is given by fs(x) = 1
1+e−x . So, it maps any real number to a value in [0, 1].

Further, values of the input x above 5 will take the output close to 1 and values
below −5 make the output close to 0.

– It needs to compute the exponential of the argument which could be time con-
suming.

– Its derivative is f ′
s (x) = fs(x)(1 − fs(x)). As x tends to a large value, (1 −

fs(x)) tends to 0 (zero) and if it tends to a small value fs(x) tends to zero. So,
in either case the derivative tends to 0. Thus the gradient can vanish.

– It is not zero centered. It assumes only positive values. This can affect the
resulting output badly when there are many hidden layers in the MLP .

– If the wsum is small as the initial weights are small, then the derivative of the
sigmoid function will be close to 0 and may even vanish. So, if there are more
layers to be trained, then backpropagation may fail to update the weights in
the earlier (closer to the input) layers as weights in such layers are considered
for updation towards the end of error backpropagation. This is because of the
vanishing gradient problem.

– On the contrary, if theweights are initializedwith larger values, then it is possible
to have the exploding gradient problem where the gradient can assume a value
that is prohibitively large.

– A solution offered, to handle the zero-center problem, is in the form of the tanh
function, ft , that may be defined as

ft (x) = 2 fs(2x) − 1. (3.15)

It is easy to see that ft maps any real number to a value in the rang [−1,+1].
– Both sigmoid and tanh functions are still used, even though they are not as
popular as earlier as both may have difficulty with their gradients. It may lead to
vanishing or exploding gradient problemwhich can impact the training accuracy
and time.

• Activation Functions Popular with Deep Neural Networks (DNNs)

– Rectified Linear Unit (ReLU): It is a popular activation function. It has the
following characteristics:

· It is defined as

fr (x) =
{
0 x ≤ 0
x x > 0

(3.16)

· It is popular because it is computationally simpler.
· It is used only in the hidden layers.
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· It works well when x is positive. Its gradient vanishes when x is 0 or negative;
so not useful for backpropagation when its input falls in this range. This is
called the Dying ReLU problem.

– Leaky ReLU: It offers a solution to the dying ReLU problem. Its properties are:

· It is defined as fl(x) = max(0.01x, x). So, it is a variant of ReLU function.
· It permits backpropagation for input values that are less than or equal to zero

also. However, in this range predictions based on fl(x) may be inconsistent.
· It trains faster then ReLU.

– Softmax: It permits us to convert a vector of values to another vector of same
size that has normalized values adding upto 1. Its characteristics are:

· It is a mapping from �np to (0, 1)np . It is specified as

fsmax (y
ipj
o ) = e(yipjo )

∑np

j=1 e
(yipjo )

(3.17)

· It is used at the output layer of a DNN to convert a vector of real numbers
into vector of probabilities; the sum of the values of its outputs is 1.

3.3.2 Initialization of Weights

Different schemes have been used to initialize weights in the past.

• Zero Weights: Typically in perceptron training based on fixed increment rule, it is
convenient to start with a zero weight vector and still guarantee convergence of
the update algorithm when the classes are linearly separable. However, in the case
of a DNN , initializing all the weights to 0 or in general any constant value can
lead to highly symmetric behaviour across the network leading every weight to be
the same across the iterations.

• Random weights: It is possible to view a deep neural network (DNN) as a device
that transforms the input, to match with the desired output, through successive
layers. It is a lossy transformation. So, if we select the weights randomly, then
the information loss in the initial layers may be so bad that the backpropagation
algorithmmay not be able to abstract the desired overall mapping even over a good
number of iterations/epochs.

• Smaller or larger weights: In the previous subsection we have considered how
initialization with smaller or larger weights can lead to vanishing or exploding
gradient problems.

These issues associated with initialization were responsible for an appropriately nor-
malized scheme to work. Some important normalization schemes that try to maintain
zero mean and specified variance of the weights in the DNN are:
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• Xavier initialization and variants:

– Here the weights in layer q, q = 1, . . . , p are initialized by

wq
rs ∼

[
−

√
6√

nq + nq+1
,

√
6√

nq + nq+1

]
(3.18)

whereweights are randomlydrawn fromauniformdistribution in the normalized
range specified.

– The bias for each neuron is initialized to 0 (zero).
– This normalization is to ensure that the weights are chosen with a zero mean
and a standard deviation that is a normalized version of 1.

– It is a replacement of earlier normalization schemes that took into account only
nq .

– This modification helps in ensuring that the activation outputs and gradients
encountered in the backpropagation runs have variances that are neither too
small nor too large.

• Kaiming Initialization:

– A variant is proposed by Kaiming He et al. where values of weights w
q
rs are

randomly chosen from the standard normal distribution and are multiplied by√
2√
nq

in this initialization.
– This works better than Xavier initialization when ReLU activation is used.
– It was observed that both training and testing errors converged to be requiring
a smaller number of iterations/epochs to converge; 20 epochs appeared to be
adequate in practice for a good performance.

• Typically these schemes conduct analysis based on looking at the variance of the
product of weights and outputs of the neurons.

3.3.3 Deep Feedforward Neural Network

Before the year 2000, it was strongly believed that one or two hidden layers are
adequate to deal with most of the machine learning tasks. One major observation
was that backpropagation is based on gradient descent and it can only guarantee
to reach a locally optimal value of the criterion function. This was the reason for
support vectors machines (SV Ms) to flourish, for more than two decades, as the
machine learning benchmark tool as it guarantees globally optimal margin based
learning in theory. However, in the past decade the earlier views ware significantly
altered due to some important contributions in the area of deep learning. It became so
important that every problem in the area of artificial intelligence (AI ) is invariably
solved using deep learning. Convolutional neural network is the popular feed forward
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deep learning architecture. Some of the contributions related to convolutional neural
networks are discussed below:

• Convolution: It is a well-known operation in signal processing with applications
to speech signals (one-dimensional) and images (two-dimensional).

• Let I be a two-dimensional image input which is represented as an array of size
r × s; So, I has r rows and s columns.

• Let the convolution template (or kernel) T be a smaller size pattern of sizeM × N .
• The convolution output, O , that is an array of size (r − M + 1) × (s − N + 1) is
given by

O(i, j) = f (
M∑

m=1

N∑
n=1

I (i + m − 1, j + n − 1)T 1(m, n). (3.19)

The role of template T in convolution is to locate parts of the input image I that
match with the pattern present in T .

• Function f may be defined as f (x) = 1 if x > θ else f (x) = 0 where θ is a
threshold.

• Let us illustrate the convolution operation in two dimensions using the example
in Fig. 3.6.

– There are two parts labeled (a) (upper part) and (b) (lower part) in the figure.
The input image in both the parts is the same. It is a 9 × 9 binary image array
I N PUT , of character 7, consisting of 81 pixels labeled I N PUT (1, 1) to
I N PUT (9, 9). Note that r = s = 9 in this example.

– It has a horizontal line segment in the top part against I N PUT (2, 1) to
I N PUT (3, 9) (rows 2 and 3) and a vertical line segment in columns 7 to 9
across rows 2 to 9.

Fig. 3.6 Example
convolution operation on
input image of character 7
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– In part (a), T emplate1 is used for convolution. It is a 5 × 5 binary pattern,
T emplate1 of 25 binary pixels addressed by T emplate1(1, 1) to T emplate1
(5, 5). So, M = N = 5 here.

– Further, Note that in (a) T emplate1 is aligned with the top left part in I N PUT
such that T emplate1(1, 1) is aligned with I N PUT (1, 1) and T emplate1
(5, 5) is aligned with I N PUT (5, 5).

– The pixel wise multiplication and addition as indicated in the equation for O
gives us OUT PUT 1(1, 1) = f (5). If θ = 3, then f (5) = 1. This value 1 is
indicated in OUT PUT (1, 1) in (a). If f is not used then we get the value
O(1, 1) = 5.

– By shifting one position horizontally and multiplying and adding we get
OUT PUT 1(1, 2). Further, while computing OUT PUT 1(1, 5),
T EMPLAT E1 will be aligned completely with the top 5 rows and rightmost 5
columns of I N PUT . So, moving right further is not done which will make only
a part of T EMPLAT E1 align with a part of I N PUT . Under these conditions,
the other option is to create virtual columns filled with 0s. However, we consider
alignment of the N th column of the template with the sth column of the input
and move no further.

– In order to compute OUT PUT 1(i, j) for i = 2, . . . , r − M + 1 and j =
1, . . . , s − N + 1 we need to align the top row of T EMPLAT E1 with the
i th row of I N PUT .

– This results in the output image given by OUT PUT 1 shown in (a). Note that
this template has captured the horizontal lines in the input. It is popularly called
as mask in image processing and kernel/filter is the popularly used term in
CNNs.

– Similarly T EMPLAT E2 in part (b) captures the vertical lines present in the
character image in I N PUT .

– This example is meant to illustrate the notion of convolution more than being a
real mask for use in image convolution. Further, the threshold based function f
is used here to get a binary output; such a function is not used in practice.

• Feature Maps: In a CNN , we will have multiple convolution layers. For example
in Fig. 3.6 we have seen two different templates working on the same input image.
T EMPLAT E1 looks for horizontal lines in the input; this may be viewed as
extracting one kind of feature. Similarly T EMPLAT E2 looks for vertical lines;
so extracts a different kind of feature. Each of the resulting outputs may be viewed
as a feature map. In a more generic setting, we will have

– Multiple templates/kernels each looking for a different kind of feature.
– It is possible to have more than one occurrence of a feature in the same input
image. For example, instead of character 7, if we consider the character 0 (zero)
shown in Fig. 3.7 that has two horizontal (leftmost and rightmost) and two
vertical (top and bottom) segments, then the same templates, T EMPLAT E1
and T EMPLAT E2 will each extract the respective features twice.

– In practice, we may have images that are much larger in size compared to the
small 9 × 9 input images shown in Figs. 3.6 and 3.7.
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Fig. 3.7 Example of character zero with two horizontal and two vertical segments

– Also there can be a good number of templates each looking for one or more
occurrences of the feature embedded in it. Correspondingly, there can be several
feature maps one for each template.

– Each hidden layer may be viewed as made up of such multiple feature maps as
many as the number of templates used in convolutions.

– The output of convolution is generally defined as

O(i, j) = f (
M∑

m=1

N∑
n=1

wmn I (i + m − 1, j + n − 1)T 1(m, n)). (3.20)

In Fig. 3.6, the value of wmn,∀m, n is taken to be 1. However, in a CNN these
weights are learnt.

– An important aspect of learning these weights is that for each feature map we
need to learn only MN + 1 weights where M × N is the size of the template
and the extra 1 is to learn the bias term associated with the node in the hidden
layer. This is an important characteristic ofCNNs and is calledweight sharing.

– Further, the value of MN + 1 is much smaller in practice than the size of the
image given by r × s.

– We have assumed that the shifting of the template, after each multiply and add
operations, is done by one column horizontally or one row vertically (by one
pixel); in such a case the stride is 1. We can have strides of length 2 or more.

• Convolution and Pooling Layers: Each convolution layer has the input and hidden
layers as shown in Fig. 3.8; a hidden layer has some L feature maps. So, the hidden
layer will have L × M × N neurons.

– In a CNN there will be more than one such convolution layer. Typically after
each convolution layer, therewill be a pooling layer to reduce the dimensionality
further.

– A pooling layer is obtained from the features maps in the hidden layer of the
previous convolution layer.

– Let the size of each feature map be u × v; so number of neurons in a feature
map is uv.

– Let the pooling be done by using a window of size k × k, where k divides both
u and v, over the feature map. This is done by considering k × k neurons in
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Fig. 3.8 Convolution layer with multiple feature maps in the hidden layer

the feature map at a time; the window is moved horizontally and vertically in a
non-overlapping manner.

– In each window region of k2 neurons, the respective k2 outputs are pooled to
output one value that is stored in the corresponding location output of the pooling
layer.

– The output of the pooling layer is given by

Poolout (i, j) = g({ f mo((i − 1)k + 1, ( j − 1)k + 1), . . . , f mo(ik, jk)})
(3.21)

where f mo(p, q) feature map output of the neuron in the pth row and qth
column of the feature map. Observe that i = 1, . . . , u

k and j = 1, . . . , v
k .

– Note that the argument of g is a set of k2 elements across rows (i − 1)k to ik (k
rors) and columns ( j − 1)k to jk (k columns). They are the outputs of neurons
in the chosen k × k region in the feature map.

– The function g itself could popularly be the max , average, or L2 − norm of
the k2 values in the set.

• The overall architecture of the CNN will consist of several convolution layers;
after each convolution layer there will be a pooling layer with the output of the
feature maps in the layer forming the input of the pooling layer. The output of the
pooling layer will be the input of the next convolution layer.

• Typically the final output layer of the CNN will be a fully connected layer that is
connected to all the neurons in the previous layer.

• The CNN is trained using backpropagation. The error is propagated back from a
layer to the previous layer through the relevant weights.

Some important properties of CNN are that

• It is the state-of-the-art tool for classification and prediction.
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• It has been successfully used in large-scale applications where both the number
of training patterns and/or the dimensionality of the data is large. In fact it works
well only when the training data is large.

• It became popular because of its applications in image processing and speech
processing applications.

• One of the important outcomes is a variant that has become popular in network
applications in the form of graph convolutional net (GCN ).

3.4 Recurrent Networks

Earlier in this chapter, we discussedMLP andCNN models. Some of the limitations
associated with them are:

• They expect inputs of predetermined size and transform them into fixed-size vec-
tors. In contrast,many real-world problems have an unknown size, such asmachine
translation, document classification tasks, whichmakes MLP andCNN type net-
works unsuitable for these applications.

• In many applications such as sentiment classification, sentence classification, etc.,
the input is a sequence of words and the computation at a step of the sequence
depends on the current word and the previous words too. But MLP assumes that
all the inputs are not dependent on each other and thus cannot process these inputs.
Therefore, we require tools to deal with sequence data, where previous words also
effect the computations at a later step.

Recurrent Neural Networks (RNNs), Long Short TermMemory (LST M), Gated
Recurrent Units (GRUs) are developed to solve the problems mentioned above. In
the next two subsections, we discuss the RNN and the LST M models in detail.

3.4.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN ) is a multi-layered model that processes inputs
sequentially. Some important characteristics are:

• RNN is a neural network model where previous outputs play a major role in
determining the next output. These models have shown great success in many
sequential tasks, especially in the natural language processing (NLP) domains.

• For example, a character level RNN considers each word as a single input
(sequence), each character in the word as an element of the sequence, and each
successive element is called a time step.

• RNNs use the same set of parameters for all the time steps of an input, which
not only avoids overfitting but also learns dependencies between the elements at
different time steps of the input. So, RNN performs the same operation on each
element of the serial input. Thus these models are called recurrent.
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• On the contrary, in a vanilla neural network, each input element is associated with
a different set of weights due to which the network cannot work with serial inputs
of varying sizes.

• RNN has hidden states or unitswhich encapsulate the relations between elements
of a serial input. Hidden states are also interpreted as memory units.

• Output calculation at each time step depends on the information present in the
hidden state and the current input, thereby updating the weights of the model and
the information in the hidden state.

• Figure 3.9 shows one time step of RNN . Figure 3.10 depicts the complete archi-
tecture of RNN .

• At each time step t, it takes the one-hot encoding of an element from the input
sequence and outputs a vector whose each entry denotes the probability of the
corresponding element being the next element in the sequence.

3.4.1.1 Working of Recurrent Neural Networks

Let us denote the input, hidden and output states at step t by xt , hst and hyt respec-
tively. Initial hidden state hs0 is generally initialized by zeros and x1 (initial input)
is a one-hot vector of the first element in a serial input.

• Current state of RNN is calculated by:

hst = σ
(
Wshst−1 + Wxxt

)
(3.22)

where xt is the present input, hst−1 is the hidden state at time step t-1 and hst is
the new hidden state at time step t. σ is an activation function (tanh or ReLU). Ws

and Wx are the collection of trainable weight parameters.
• Output state at time step t is calculated using the current hidden state

hyt = Wyhst (3.23)

where hyt and hst are the output vector and the hidden state at time step t and Wy

are the weights.
• To convert the output to a probability distribution (which is required for many
tasks such as classification), softmax activation is used on hyt ,

ot = softmax(hyt ) (3.24)

• RNNs can have output at each time step or at only the final step. For example,
task of classifying the entire sequence generates only one output at the last time
step with no outputs at the intermediate time steps.



56 3 Deep Learning

Fig. 3.9 A single layer of RNN

Fig. 3.10 Complete architecture of RNN

3.4.1.2 Backpropagation Through Time

RNN is also trained using the backpropagation algorithm. The recurrent network is
a time sequence model. Therefore, backpropagation means going back in time and
hence is called Backpropagation through time (BPT T ).

• First of all, the total error for an input will be the sum of errors from each step.

– Suppose loss at each step(t) is calculated by cross entropy between predicted
vector( ôt ) and the actual one hot encoding( lt ) of the correct output word. The
total error for all the time steps is calculated as follows:

J (ô, o) = −
T∑
t=1

ôt log(lt) (3.25)

J (ô, o) is the total error and T is the total number of time steps.



3.4 Recurrent Networks 57

• Similar to errors, gradients are also summed up over all the time steps. We get the
following equations corresponding to Ws,Wh and Wy :

∂ J

∂Ws
=

T∑
t=1

∂ Jt
∂Ws

(3.26)

∂ J

∂Wh
=

T∑
t=1

∂ Jt
∂Wh

(3.27)

∂ J

∂Wy
=

T∑
t=1

∂ Jt
∂Wy

(3.28)

Here Jt is the error at time t . Each term in the summationwill be evaluated similarly.
So we will focus on the error term at time step t.

1. First we compute gradients wrt parameter Wy . The derivation of Jt wrt Wy

depends only on the current time t . Formally, Jt depends on the predicted label
(ô) (3.25) which depends on hyt (3.24) and hyt is a function ofWy (3.23). Thus,
using the chain rule of differentiation we get the following equation:

∂ Jt
∂Wy

= ∂ Jt
∂Wy

= ∂ Jt
∂ ôt

∂ot
∂hyt

∂hyt
∂Wy

(3.29)

2. The process of calculating gradients wrt toWx andWs is different. Here we will
calculate the gradients wrt Ws , and the same process can be repeated for the
other.

– Following the same steps as used for calculating the gradients for Wy and
further noting that in RNN , Ws parameters are shared at all the time steps
because of which changes in Ws will effect the error at time step t (Jt ) even
when hs1, hs2, . . ., hst−1, hst states are being computed.We get the following
equation using the points mentioned above.

∂ Jt
∂Ws

=
t∑

q=0

∂ Jt
∂ ôt

∂ ôt
∂hst

∂hst
∂hsq

∂hsq
∂Ws

(3.30)

– More generally, the third term in Eq. 3.30 is a chain of derivatives. As hsk
is a function of hsk−1 which depends on hsk−2 and this continues with first
hidden state depending only on Ws . Based on this, the above equation can
be rewritten as:
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∂ Jt
∂Ws

=
t∑

q=0

∂ Jt
∂ ôt

∂ ôt
∂hst

⎛
⎝

t∏
p=q+1

∂hsp
∂hsp−1

⎞
⎠ ∂hsq

∂Ws
(3.31)

· For example, while calculating gradient at time step t= 3 and examining
the effect of the change in Ws on J3 when hs1 is being evaluated.

∂ Jt
∂Ws

= ∂ J3
∂ ô3

∂ ô3
∂hs3

∂hs3
∂hs2

∂hs2
∂hs1

∂hs1
∂Ws

(3.32)

3.4.1.3 Vanishing and Exploding Gradients

The problems of vanishing and exploding gradients occur in deep feedforward neural
networks and are already discussed. These problems also exist in RNNs. In this
subsection, we discuss these problems and some existing solutions.

1. Recurrent Neural Networks suffer from the short-term memory problem, i.e.,
RNNs cannot learn dependencies between far apart elements. The diminished
information from previous time steps is the consequence of the vanishing gradient
problem.

2. Therefore, Vanilla RNNs face problems dealing with long-range dependencies.
For example, in the sentence, “Tyson had a trip to a hill station with his friend”,
“his” is used for “Tyson”, and to figure this relation, RNNs will have to remember
a lot of information.

3. More formally, the expanded Eq. 3.30 includes the chain of derivatives of ∂hs3
∂hsk

that
depends on the derivative of the activation functions. The value of the derivatives
of tanh or sigmoid activation functions can reach 1 or 1/4, respectively.

4. Also, gradients of tanh and sigmoidbecome0during saturation.As a consequence,
the gradients of neurons from far away steps approach 0. The multiplication
of such small values significantly shrinks the gradient, and after a few steps, it
vanishes, and hence those neurons will not learn anything.

5. Some existing solutions for the Vanishing Gradient problem are:

• Proper initialization of the W matrix needs to be used.
• Abetter solution is to use a variant of RNN , such as Long Short-TermMemory
(LST M) or Gated Recurrent Unit (GRU ). Both these models can overcome
the problem of vanishing gradients.

6. Another problem with RNN is the exploding gradient, the opposite of the van-
ishing gradient, in which gradients become very large (will have values as NaN).
This can be solved by using a threshold value as a cap on all the gradients.
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3.4.2 Long Short Term Memory

The short term memory of Recurrent Neural Networks makes difficult for RNNs
to carry information from previous time steps that are far apart because gradients
become very small, and no learning can take place from that point. Long Short
Term Memory (LST Ms), an improvement over RNNs, were developed to solve
this vanishing gradient problem and handle long range dependencies between the
elements. Some essential characteristics of LST Ms are:

1. Major difference between RNN and LST M is their cell structure. Each RNN
module is a simple single layer neural network structure, while each LST M
module is a more complicated structure and uses four gates or four neural network
layers.

2. LSTM core idea is its cell state and its gates (input, forget, output).

• Cell state (represented as Ct ) at time t carries and passes only the appropriate
information during training.

• Gates are used to distinguishing the important and the irrelevant information
from the cell state and based on the importance score update the cell state.

• These gates are composed of multiplication operation and a neural network
with a sigmoid layer.

3. Just like humans tend to forget unimportant words and remember only the main
parts of a speech, gates in LST M also help learn only the relevant information.
Hence, they solve problems associated with the short term memory of RNN .

4. Similar to RNNs, LST Ms too have hidden state hst at each time t.

3.4.2.1 Different Gates Used by LSTM

LST M uses various GATES for different purposes. All these gates are neural net-
works.

• Sigmoid layer is used in almost all the gates to determine the information to be
updated and the information to be discarded.

• Sigmoid function outputs values between 0 and 1, with 1 representing the most
important information and 0 representing the least important information.

• If any value in the cell is multiplied by 0, then the cell forgets that information and
does not let that information pass through; otherwise, the value is fed to the later
time steps.

Now we discuss important units of LST M architecture. In the text and equations
below, we use t to denote the current time step, hst−1 to represent the hidden state at
the previous time step t-1, and xt as input at time t.

• Forget Gate decides which values to be discarded from the cell state at the previous
time step.
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– It uses a sigmoid layer that takes the previous hidden state hst−1 along with the
current input xt and gives values between 0 and 1.

– All important information will have values closer to 1. The forget gate can be
described as follows:

f gt = σ(W fg[hst−1, xt ] + β f g) (3.33)

Here W fg, β f g are the weights and bias terms associated with the forget gate
layer. σ is an activation function. f gt is the output of the forget gate at time step
t.

• The next step is to determine the information to be included in the cell state.

– It is done by a group of 2 layers.

· Input gate layer uses a sigmoid layer that takes the previous hidden state and
the current input and decides which information to update. Equation 3.34
describes this step.

git = σ(Wgi [hst−1, xt ] + βgi ) (3.34)

Here Wgi , βgi are the parameters of the input gate layer.
· tanh layer outputs values between −1 and 1. It gives a new set of entries ĉit

that can be included in the cell state. Equation 3.35 describes this step.

ĉit = tanh(Wci [hst−1, xt ] + βci ) (3.35)

Here Wci , βci are the parameters of tanh layer.

– Multiplication of these two outputs determines the useful entries of ĉit with the
help of sigmoid output git .

zt = git ∗ cit (3.36)

• The next step is to form the new cell state Ct from the information calculated so
far. Remember that f gt knows what to throw away and what to keep for further
states.

– To form a new cell state, the first step is to multiply the cell state Ct−1 with the
forget vector f gt .

– This helps the cell to forget unimportant information bymultiplyingwith a value
closer to zero, which is determined by the f gt entries. That way, it can focus
only on appropriate part of the sequence until the previous time step.

– We then add zt (the input gate output) to the resulting product. The result is
the new cell state, which contains the updated, appropriate information. The
following equation describes these steps.

Ct = f gt ∗ Ct−1 + zt (3.37)
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where zt is defined in Eq. 3.31.

• The next important gate layer is the output gate layer, which determines the next
hidden state based on the new cell state just formed.

– A sigmoid layer is used to decide the information from Ct to pass on to the next
states. It takes xt and Ct−1 as inputs.

– The next step is to use a tanh layer on the new cell state Ct .
– Finally, multiplication of these sigmoid and tanh outputs will determine the
information for the next hidden state. These steps can be described by the fol-
lowing equation:

ogt = σ(Wog[hst−1, xt ] + βog)

hst = ogt ∗ tanh(Ct )
(3.38)

whereWog, βog are the parameters of the output gate layer. hst is the new hidden
state at time step t.

• Figure 3.11 shows a complete layer of the LST M model.

– This figure shows all the steps that we explained above to generate a new hidden
and a cell state by using previous hidden state, current cell state, current input
and all the gates.

– In this figure, σ represents the sigmoid layer. Each blue circle denotes one of the
layers described in the text above, and each red circle represents a mathematical
operation (element-wise multiplication or addition).

Fig. 3.11 LSTM complete architecture
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Fig. 3.12 Autoencoder architecture

3.5 Learning Representations Using Autoencoders

An autoencoder is a popular unsupervised model for learning representations in a
low dimensional space.

• It is a neural network that employs a non-linear transformation on the input to
compress it. This is done so that the original data can be reconstructed using this
low-dimensional representation.

• An autoencoder incorporates an encoder and a decoder. The encoder compresses
the input. The decoder decompresses the compressed input to get back the original
input. Another important component is the code, also known as the bottleneck,
which is the compressed representation of the input.

• An ideal autoencoder should be sensitive to the input to learn a less lossy recon-
struction but, at the same time, should not learn an identity mapping.

• Significant applications of autoencoders are dimensionality reduction and rep-
resentation learning. The recent development of variational autoencoders makes
autoencoders useful as generative models also.

• Figure 3.12 shows the architecture of a simple autoencoder.

– As shown by the outer boxes in the figure, the encoder comprises the input and
the hidden layers, while the decoder is made up of the hidden and the output
layers.

– Input, output, and hidden layers can have any number of units (neurons).
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– W1, b1 and W2, b2 indicate the weights, bias between input and hidden layers
and hidden and output layers respectively.

· In some cases, these weights can be tied together, such thatW2 = WT
1 , which

is sometimes used to avoid overfitting as the number of trainable parameters
is less in this setting.

• An autoencoder computes the compressed representation of the input as follows:

– The Encoder receives the input (x) (input layer) and computes the latent repre-
sentation (code) as h = σ(W1x + b1). This is fed to the decoder which outputs
the reconstructed input (z) as z = σ(W2x + b2), where σ is an activation func-
tion.

– Autoencoders are trained using gradient descent, and parameters are learned
using the backpropagation rule as used by MLPs.

– Loss function of autoencoder depends on the input x and the output z as the loss
should reflect the deviation of the reconstructed input (output of autoencoder)
from the input.

· One possible loss function is L2Norm. Let the dataset contains x1, x2, . . . , xn
samples, where n is the number of samples in the dataset. The L2 norm loss
is given by:

Loss = 1

2

n∑
i=1

|xi − zi |2 (3.39)

· It is clear from the loss function that there is no role of the label information
during training; thus, it is an unsupervised learning scheme. But autoencoders
can be trained in a supervised manner for a specific downstream task such as
the classification task.

· For the supervised classification task, some fully connected layers with the
last layer being the softmax layer, are appended. The model is trained in
an end to end fashion using cross entropy loss, which leverages the label
information. In this case, the information loss would be less.

3.5.1 Types of Autoencoders

There are many variations of autoencoders. In this subsection we briefly describe
some of them.

• Sequence-to-Sequence Autoencoder: It uses recurrent neural networks for encoder
and decoder operations. These autoencoders first convert the entire sequence to a
single lower dimension encoding, following which the decoder tries to get back
the sequence from this encoding.

• Deep Autoencoder: This is an extension of vanilla autoencoder that has many
layers in the encoder and the decoder part. The first set of layers compresses the
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input while the next set of layers (decoder) will reconstruct the input from the
latent representations. Also, as we go deeper, more high order or more abstract
features are learned.

• Undercomplete Autoencoder: This variant develops a generalized model with the
encoder’s output dimension (code dimension) smaller than the input dimension.
These autoencoders can ensure that the model is not copying the input and is
learning important data distribution features because a smaller code dimension
restricts the information flowing through the model. This type of model only
constraints the number of hidden units in the bottleneck layer. And there can be
cases where the hidden layer has only one neuron while encoder and decoder
having abundant capacity tend to overfit the data and, therefore, couldn’t learn
anything meaningful.

• Regularized Autoencoders: These autoencoders provide the ability to learn other
properties of data instead of copying the input to the output even if the encoder
and decoder have the superabundant capacity or the encoder output dimension is
equal to or greater than the input dimension. Regularized autoencoders leverage
a loss function which helps learn only the variations and not the redundancies in
the data and further avoids overfitting.

• Various regularization techniques are used in order to prevent encoder and decoder
from learning the identity functions.

– Denoising Autoencoders: These autoencoders add some random gaussian noise
to the inputs before training. However, the model still reconstructs the uncor-
rupted data because the model loss depends on the original input and not on the
noisy input. This acts as a regularizer and helps autoencoders distinguish more
essential parts of the input as these autoencoders try to undo the corruption. The
loss function is as follows:

Loss = 1

2

n∑
i=1

|xi − ẑi |2 (3.40)

Here ẑi is the output of the model with input being the corrupted data. Same
mechanism can be applied at any layer of the autoencoder.

– Sparse Autoencoder: This variant minimizes the number of non-zero entries in
the latent representation. It constrains the capacity of the model by penalizing
the activations within the hidden layer, and hence without any limitation on
the number of nodes in the hidden layer, the model can learn the input data
distribution irrespective of the encoder and decoder capacity.
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3.6 Summary

Deep learning is an important topic that has found applications in several areas.

• The availability of large scale datasets and powerful computing platforms have
played an important role making deep learning possible.

• Deep neural networks form the de facto tools for deep learning.
• Perceptron is one of the earliest and themost basic neural networkmodels. It forms
the basis for a variety of neural network models.

• The need and importance of MLPs is considered next. Backpropagation is the
training algorithm that was important in training MLP networks.

• The difficulty in increasing the number of layers was analysed to identify the
vanishing and exploding gradient problems.

• Important contributions behind the design and training of deep neural networks in
the form of activation functions like ReLU and softmax are examined.

• Another important contribution behind the success of deep neural networks is the
weight initialization and updating.

• Other factors that impacted deep learning include convolution, pooling and weight
sharing.

• Several important deep learning models including CNN , RNN , LST M and
autoencoders are considered.

• CNNs have been extensively used in image processing and speech processing.
• For analysing sequence data RNNs and LST M are popularly used. They find
applications in natural language processing and biological sequence data.

• Autoencoders are the most popular dimensionality reduction tools that can com-
press input data using a non-linear transformation.

• We considered some of the important properties associated with CNNs, RNNs
and autoencoders, the difficulties in training these models, and solutions provided.

• The deep learning models are important in the context of network data analysis.
We will consider specific roles of CNNs, autoencoders and RNNs in the context
of network embeddings in the later chapters.
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