
Chapter 2
Representations of Networks

2.1 Introduction

Networks are becoming ubiquitous as they can represent many real-world relational
data, for instance, information networks, molecular structures, telecommunication
networks, and protein-protein interaction networks.

A Network is a collection of entities and feasible connections between them. A
Network is most commonly represented using a Graph. Network analysis is carried
out by analysing the underlying graph. Even in non-network applications where the
data are not explicitly linked, it is possible and helpful to represent the data in the
form of a network/graph. For example, in probabilistic graphical models, the data is
visualized as a graph.

A graph is a non-euclidean data structure which is represented by G = (V, E),
where V is the set of nodes and E is the set of edges. The nodes represent the network
entities and edges represent the connections between the entities. An edge ei j ∈ E
between twonodesvi andv j is represented by apair of the nodes (vi ,v j ). For example,
in a social network, each node vi represents a user, and an edge (vi , v j ) represents
whether user vi is friendswith user v j or not. In protein-protein interactions network,
nodes represent proteins and edges represent interactions between these proteins.
Also, some real-world graphs have an associated set of attributes, where each node
vi ∈ V is associated with an attribute vector xi ∈ R

D , D is the dimension of each
attribute vector. Further, graphs can also have an associated node labels set L , where
yi ∈ L is the label of node vi , which specifies the class of the node.

Analysis of these networks provides advantages inmany fields such as recommen-
dation (recommending friends in a social network), biological field (deducing con-
nections between proteins for treating new diseases), community detection (grouping
users of a social network according to their interests), etc. by leveraging the latent
information of networks. Hence, network analysis is gaining prominence. But the
high dimensional, irregular graph data imposes challenges formachine learning tasks
which led to the development of many representation learning techniques.
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8 2 Representations of Networks

2.2 Networks Represented as Graphs

Any network can be easily represented as a Graph, defined in Sect. 2.1, which
facilitates modeling data items and relations among them.

Many variants of Graphs are possible including:

• Heterogeneous Graphs: The nodes or/and edges of such graphs can be of various
types and each type must be handled differently.

• Homogeneous Graphs: Contrary to heterogeneous graphs, nodes and edges are
instances of a single type.

• Directed and Undirected Graphs: Directed graphs have ordered pairs of vertices,
and each edge has a starting point (head) and an ending point (tail), and information
flows from head to tail. In contrast, an edge in an undirected graph can be traversed
in both directions representing a symmetric relation. Further, an undirected edge
can be replaced with two directed edges. In a directed graph, an edge between
nodes vi and v j is represented by (vi , v j ), whereas in the undirected graph, it can
be written either way i.e., (vi , v j ) or (v j , vi ).

• Dynamic Graphs: Some real-world networks might evolve over time. For exam-
ple, in social networks, new users can be added, or new interactions might occur
between existing users. This leads to the addition or removal of nodes or edges,
respectively, and hence these graphs are called dynamic. On the contrary, graphs
which do not change over time are known as static graphs.

• Knowledge Graphs: A Knowledge Graph is a directed, multi-relational graph
where an edge is represented in (head entity (h), relation (r), tail entity (t)) form,
which means that h is related to t through r. For instance, (Star Trek, Genre, Sci-
ence Fiction).

• Hypergraphs: They are the generalization of undirected graphs in which edges
are over subsets of two or more vertices. Formally, a hyper-graph H is a pair
H = (X, E) where X is a set of elements called nodes or vertices, and E is a set
of non-empty subsets of X called hyper-edges.

All these variants might contain useful auxiliary information such as vertex attributes
and/or vertex labels, in addition to the connectivity/structural information.

A toy example of an undirected and homogeneous graph with 7 nodes and 9 edges
is depicted in Fig. 2.1. To understand some important properties of a graph, let us
observe the same.

1. This example illustrates an undirected and static homogeneous graph. Therefore,
edges can be represented in both directions. For example, an edge between a and
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Fig. 2.1 A Toy network:
Circles (a, b, . . . , g) are the
nodes of the graph while
black lines denote the edges

b can be denoted as (a, b) or (b, a). In a friendship network, if u1 and u2 are
connected then stating that u1 is a friend of u2 is the same as u2 is a friend of u1.

2. Neighbours are those nodes that are connected by an edge. For example, node a
and node b are connected by an edge and hence are called neighbors (also called
adjacent nodes) of each other.

3. Common Neighbor: Further observe that both nodes a and b have an edge to node
c, that is why c is their common neighbour.

4. Degree of a node is the total number of incident edges on that node in an undirected
graph. The degree of node a is 2. Further, the sum of the degrees is equal to 2
times the number of edges:

|V |∑

i=1

deg(vi ) = 2|E | (2.1)

where |V | is the total number of nodes in the graph.
5. In directed graphs, the degree of any node v is the sum of indegree and outdegree

of v, where indegree is the number of incoming edges on v and outdegree is the
number of edges leaving v. Also, the total indegree of the graph is equal to the
total outdegree of the graph.

A graph can be represented in numerous ways. All variants, as described in
Sect. 2.2, need different representation schemes. In this book, our focus is on undi-
rected/directed, static homogeneous graphs. Next, we discuss the two most com-
monly used methods to represent graphs on the machine.

2.3 Data Structures to Represent Graphs

2.3.1 Matrix Representation

Adjacency Matrix (A): It is a square matrix where number of rows and number of
columns are the same as the number of nodes in the graph, i.e. the dimension of A is
N × N where N is the number of nodes. Each (i, j)th entry in the matrix indicates
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Table 2.1 Adjacency matrix for the graph in Fig. 2.1

From/To a b c d e f g

a 0 1 1 0 0 0 0

b 1 0 0 1 1 0 0

c 1 0 0 1 0 0 1

d 0 1 1 0 0 0 0

e 0 1 0 0 0 1 1

f 0 0 0 0 1 0 1

g 0 0 1 0 1 1 0

presence or absence of an edge between nodes vi and v j . If Ai, j is 1 then nodes vi
and v j are connected by an edge otherwise 0. If the graph is weighted then each entry
of the matrix will store the weight of the corresponding edge.

Table 2.1 describes the matrix A for graph in Fig. 2.1. Some important points to
observe from A are:

• Each node vi of a graph is given an index i and i th row of matrix A corresponds
to vi .

• The graph in Fig. 2.1 has 7 nodes; therefore, dimension of matrix A is 7 × 7.
• As the graph is undirected, A is a symmetric matrix. For a directed graph, the
adjacency matrix may not be symmetric.

• Degree of a node for an undirected graph can be computed by taking the sum of
entries in either the respective row or the column of matrix A. Degree of node a
is 2 as

6∑

i=0

Ai,0 =
6∑

i=0

A0,i = 2 (2.2)

• To store matrix A, O(N 2) space is required, where N is the number of nodes.
• Observe that all diagonal entries are 0. If a graph has a self loop on a vertex vi ,
then Aii will be equal to 1, and each self loop contributes 2 to its degree (incoming
and outgoing is the same vertex).

• Also note that matrix A of a network abstracts paths of length 1, A × A gives paths
of length 2 and so on.

2.3.2 Adjacency List

Another way to represent a graph is by using its Adjacency List (adjlist). It is an
array of linked lists where the i th list, adjlist[i], stores references to every neighbour
of node vi (Fig. 2.2).
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Fig. 2.2 Adjacency list of
the network in Fig. 2.1

• Each node vi of a graph is given an index i and the respective linked list stores its
adjacent nodes. As can be observed from Fig. 2.1, node a (given 0th index) has
nodes b and c as its neighbors and hence adjlist[0] has pointer to the linked list
(an array can also be used instead of linked list) which stores references to nodes
b and c. Also, the number of linked lists is equal to the number of nodes.

• Another interesting point is that if (vi , v j ) ∈ E in an undirected graph, then the
list of vi will have an entry for v j and vice versa, whereas if it is an edge in a
directed graph, then only vi will have an entry for v j in its list.

• For weighted graphs, each node entry will have two items, one for node index and
the other one for the respective edge weight.

• A further observation is that the length of a list tells the degree of the respective
node in undirected graphs.

2.4 Network Embeddings

Because of the prominence of networks inmany real-world problems, network analy-
sis is gaining importance inmany disciplines. Networks contain a pool of information
needed by all end stream tasks.

Due to this, analysis schemes depend substantially on network representations
(also known as encodings or embeddings). Furthermore, structural information,
which may be intractable, has to be inscribed in the low dimensional vector space.
For example, classification of a node requires the global position and the local neigh-
borhood structure of the node; link prediction task needs to capture the similarity
between two or more nodes. But in some application domains, the network structure
may not be apparent.

Therefore, we need an efficient and optimal way to convert the raw non-euclidean
high dimensional network data to a vector such that implicit or explicit rela-
tions/properties present in the network are protected in the vector space. For example,
distance between nodes in a network should be preserved in the embedding space.
Embedding learning is also called representation learning.



12 2 Representations of Networks

Network Representation Learning: Given a network represented by a graph
G=(V,E) and some side information related to G such as a set L of discrete labels to
label the nodes and a matrix of vertex attributes X . The aim is to learn a mapping,
gv : V �→ Z , that maps each node vi of G to a vector zi of dimension d known as
embedding.

• Conventional ways of using adjacency vector for representing nodes are not appro-
priate as large scale data makes computation intractable in high dimensional
spaces. Also, they capture only first-order dependencies and are incapable of
including higher-order relations of a network.

• However, network representation learning methods learn explanatory embedding
vectors because of which many machine learning analysis tasks such as recom-
mendation, link prediction, node and graph classification, community detection,
and visualization can be efficiently tackled using these embeddings.

• Important properties that embeddings must encode are explained below.

– As discussed earlier, some real-world graphs are augmentedwith node attributes
that help network representation learning techniques to learn more discrimina-
tive embeddings as these approaches also capture the attribute level similarity
between nodes.

– Other common properties of interest are the relationships of various order of
proximities between nodes.

· The first-order proximity captures edges of a graph. Thus, if vi , v j are con-
nected by an edge then the first-order proximity is 1 between vi and v j . And it
is 0 for non-adjacent pairs of nodes. This information can easily be gathered
from the adjacency matrix of the graph.

· Two-hop relations are described by the second-order proximitywhich ismea-
sured by the number of 2-hop paths between vi and v j . These paths between
a pair of nodes can be calculated using the second-order adjacency matrix
A2.

· Similarly, higher-order proximity captures node pairs with q-hop pathswhere
q is greater than or equal to 3. This is determined by q-step transition prob-
ability i.e., the probability of landing on node v j at qth step of a random
walk starting from node vi . As the order of proximity increases, the ability
to capture global structure also increases.

– Moreover,many nodes of a graph share the common responsibility such as nodes
playing the role of a hub node. This property is also known as the structural
equivalence property.

– Another important principle is homophily, i.e. the nodes of a graph form a
community structure. All vertices in a single community share some common
interest or property. For example, in citation networks, all papers in a single
community are on the same or a similar topic.

– An acceptable representation should exhibit a proper balance of both of these
equivalences i.e., embeddings of nodes from the same community should be
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similar to each other and the nodes with similar structural roles should also be
embedded closer to each other.

2.5 Experimental Datasets and Metrics

Many Benchmark datasets are being used to evaluate the quality of the network
embeddings or performance of algorithms on various downstream tasks.

• Some datasets contain information of a single graph, e.g. adjacency matrix, node
attributes, node labels, etc. They are used for node or edge level analysis, such as
node classification, and link prediction.

• Some datasets are a collection of graphs and are used to evaluate the efficiency
of the graph level embeddings on graph level tasks, such as graph classification,
graph clustering, etc.

This section briefs some of the most commonly used datasets and the evaluation
metrics for various downstream tasks.

2.5.1 Evaluation Datasets

Many datasets are publicly available for measuring the effectiveness of algorithms
and comparing them with the state-of-the-art approaches depending on the perfor-
mance on various downstream tasks. This section discusses some of the most fre-
quently used datasets.

1. Citation networks:
These datasets are collections of scientific, academic publications with nodes
denoting authors or papers and edges representing author-coauthor or paper-paper
citation relations. Examples of citation networks include Cora, Citeseer, PubMed
datasets. Below is a brief description of these datasets (Table2.2).

• Cora, Citeseer, PubMed are unweighted and directed networks and have node
attributes that denote the contents of the papers or authors.

• The number of distinct class labels varies across the datasets. Cora has seven
class labels, Citeseer has six distinct node labels, while PubMed has three
distinct node labels.

2. Biological networks:

• Single graph Dataset: A PPI (Proteins-Proteins Interaction) dataset is from
this category whose nodes represent proteins and edges represent the existing
physical interactions. It has 40 different node labels, with each class denoting
some biological state.
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• Collection of networks (graphs): Each dataset has information for multiple
networks (graphs). Some frequently used datasets are MUTAG, PROTEINS,
NCI1/NCI109, ENZYMES, etc. All these datasets have an adjacency matrix
for each graph, graph identifiers for all the nodes, and graph labels for all the
graphs. Further, this information can be supplemented by node attributes, edge
labels, and graph attributes (Table2.3).

– MUTAG: It is a collection of chemical compounds having different muta-
genic behavior on a bacterium. It contains information of 188 graphs cate-
gorized into two classes.

– PROTEINS: This dataset is a collection of proteins, where graphs are sec-
ondary structure elements. There is an edge between two nodes if the nodes
are in any sequence of amino acids. The number of graphs is 1113, and the
number of graph labels is two.

– ENZYMES: Each graph in the set is a protein tertiary structure. It is a collec-
tion of 600 graphs, with each graph categorized into one of the two classes.

Other bioinformatic datasets are PTC, FRANKENSTEIN, etc. The details of these
datasets can be found at (https://bit.ly/39T079X). Table 2.3 contains a high-level
summary of these datasets.

3. Social Networks:

• Single graph Dataset: Some commonly used datasets are YouTube, Flickr,
BlogCatalog, where nodes correspond to the users of that social website, and
edges describe the relations between users of thewebsite. For instance, nodes of
the BlogCatalog network represent bloggers. Important statistics are provided
in Table 2.4.

• Collection of networks (graphs): Datasets such as IMDB-BINARY, IMDB-
MULTI, COLLAB, REDDIT (Binary and Multi), etc. are the most commonly
used graph level social network datasets. The details of these datasets can be
found at (https://bit.ly/39T079X).Refer toTable 2.5 for a high-level description
of these datasets.

4. Collaboration Networks: Arxiv is a collaboration network formed from the ArXiv
website, and edges represent the co-author relations. Papers are only from a single
field, and therefore the corresponding node labels are absent. Missing node label
information makes this dataset suitable for link prediction.

There are many other types of datasets, e.g., Language Networks (Wikipedia), Com-
munication Networks (Enron Email Network), etc.

2.5.2 Evaluation Metrics

As discussed, the embeddings are used for various downstream tasks (detailed dis-
cussion in Sect. 2.6). The performance on these tasks throws light on the algorithm’s

https://bit.ly/39T079X
https://bit.ly/39T079X
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Table 2.2 Citation networks for node level experiments

Dataset #Nodes #Labels Attributes

Cora 2,708 7 Yes

Citeseer 19,717 6 Yes

PubMed 3,312 3 Yes

Table 2.3 Different biological datasets used in graph level experiments

Dataset #Graphs #Max
Nodes

Avg.#Nodes Avg.
#Edges

#Labels Attributes

MUTAG 188 28 17.93 19.79 2 NO

PTC 344 64 14.29 14.69 2 NO

ENZYMES 600 125 32.63 62.14 6 Yes

PROTEINS 1113 620 39.06 72.82 2 Yes

DD 1178 5748 284.32 715.66 2 NO

NCI1 4110 111 29.87 32.30 2 NO

NCI109 4127 111 29.68 32.13 2 NO

FRANKENSTEIN 4337 214 16.90 17.88 2 YES

Table 2.4 Social networks for node level experiments

Dataset #Nodes #Labels Attributes

BlogCataloga 10,312 39 NO

Flickrb 80,513 195 NO

YouTubeb 1,138,499 47 NO

Table 2.5 Social graph level datasets

Dataset #Graphs #Max
Nodes

Avg.
#Nodes

Avg.
#Edges

#Labels Attributes

IMDB-BINARY 1000 136 19.77 96.53 2 NO

IMDB-MULTI 1500 89 13.00 65.94 3 NO

COLLAB 5000 492 74.49 2457.78 3 NO

REDDIT(BINARY) 2000 3782 429.63 497.75 2 NO

REDDIT(MULTI)-12K 11929 3782 391.41 456.89 11 NO

efficacy and helps in comparing different algorithms. This section details the metrics
which are popularly used to evaluate the performance of the embeddings through
algorithms on different downstream tasks.

• Classification Accuracy is the simplest metric which tells how many correct pre-
dictions a model makes i.e., #Correct Predictions

#Total Samples . This measure may not be useful
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when the data has class imbalance, that is most of the training patterns are from
one class and the other class(es) have a very small number of training patterns.

• F1 score is the weighted average of precision (P) and recall (R) and its value lies
between 0 and 1, with 1 being the highest score i.e., a model needs to maximize
the F1-score.

F1micro = 2 ∗ (P ∗ R)/(R + R) (2.3)

This is also known asF1-micro score. Another score isF1-macro, which is defined
as

F1macro =
∑

y∈L F1(y)

|L| (2.4)

Here y ∈ L is the node label, F1(y) is the F1-score for label y and |L| is the
number of distinct node labels.

– Precision and Recall:

· Precision calculates how precise the model is or how many are actually
positive (true positive) among all the predicted positives. Thismetric is useful
when misclassifying negative sample costs more. Precision is defined as:

Precision(P) = #True Posi tives

#True Posi tives + #False Posi tives
(2.5)

· Recall calculates how many samples from the positive class the model can
predict correctly. This is used when misclassifying a positive class sample
costs more to the user. Recall is described as:

Recall(R) = #True Posi tives

#True Posi tives + #False Negatives
(2.6)

Here, true positives are those inputs that belong to the positive class and are
classified correctly. False positives are those samples which belong to the neg-
ative class but are misclassified as positives. Similarly, true negatives belong to
the negative class and are correctly classified, while false negatives belong to
the positive class and are misclassified.

• Precision at k (Pr@k) : Instead of evaluating the model with respect to all the
samples, it calculates the correct number of predictions in only the top k predicted
edges:

Pr@k(i) = |{v j |vi , v j ∈ V, (vi , v j ) ∈ E, rank(v j ) ≤ k}|
k

(2.7)

Here V is the set of nodes, E is the set of edges, vi , v j ∈ V are the nodes, and
rank(.) is the rank of the node. This metric is used to measure the efficiency of
algorithms on the link prediction task.

• NMI (Normalized Mutual Information): It is a normalized (i.e., between 0 and
1) mutual information (MI) score with 0 denoting no MI and 1 being the perfect
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correlation. This score is permutation invariant; thus, the score will remain the
same for any permutation of the cluster labels. NMI is defined as:

NMI (L ,W ) = I (L;W )
[H(L)+H(W )]

2

(2.8)

Here L is the set of actual labels (ground truth clusters based on the node labels),
W is the set of predicted labels based on the predicted clusters, H(.) is the entropy
function, and I (., .) is mutual information.

– Entropy of class labels (H(Y)) talks about the uncertainty and is calculated using
the following equation:

H(L) = −
∑

i∈L
P(L = i) × log P(L = i) (2.9)

– Entropy of cluster labels (H(W)) is also calculated similarly:

H(W ) = −
∑

i∈W
P(W = i) × log P(W = i) (2.10)

Here P(W=i) is given by #Samples in cluster i
T otal Number of Samples .

– The next equation describes how to calculate the MI between the class labels
and the cluster labels, which denotes the entropy reduction of class labels when
cluster labels are given.

I (L;W ) = H(L) − H(L|W ) (2.11)

Here H(L|W) is the conditional entropy of class labels, and for each cluster i, it
is calculated using the following equation:

H(L|W = i) = −P(W = i)
∑

l∈L
P(L = l|W = i) log(P(L = l|W = i))

(2.12)

Here P(L=l|W=i) is the probability of getting sample with label l in cluster i.

Putting all these values together, we can get the final NMI score using Eq. 2.8.
• Purity is a simple clustering measure that determines how many samples are cor-
rectly placed after clustering. All samples in a cluster are given a single label
according to themost frequent label in that cluster. The fraction of correctly labeled
samples to the total samples is known as the Purity.
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Fig. 2.3 A Toy Network that
depicts the results of Machine
Learning tasks. (1) All nodes are
colored according to the node
labels such as all blue color nodes
have same node label. All grey
colored nodes are unlabeled. (2)
Dotted circles denote a cluster. All
nodes within a dotted circle belong
to the same cluster or community.
(3) Dotted lines are the predicted
links

2.6 Machine Learning Downstream Tasks

One of the important factors behind learning low-dimensional network embeddings
is that the same embedding can be exploited to deal with a host of machine learn-
ing (ML) tasks. These downstream ML tasks are performed on top of the trained
embeddings or in an end-to-end fashion while learning embeddings.

• These ML tasks include classification, clustering, link prediction, visualisation,
and reconstruction.

• Any off-the-shelf machine learning algorithm can perform the tasks mentioned
above using the learned embeddings as input features.

• The performance on these machine learning tasks is further used for a fair com-
parison of approaches and as a measure to evaluate the quality of the learned
embeddings.

In this section, we will explain these tasks with the help of Fig. 2.3 and provide their
respective evaluation measures.

2.6.1 Classification

This is the most commonly used downstream task to justify the effectiveness of the
trained embeddings.

• In practice, some networks are augmented with node labels or edge labels or graph
labels categorizing these network entities into distinct categories. For example, in
a citation network, node labels correspond to the field of research of the corre-
sponding paper or author.

• Consider the example network shown in Fig. 2.3.

– It has 11 nodes out of which 8 of them are already labeled.
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– There are 3 nodes that are colored green, three others are colored yellow and
two nodes are colored blue. Nodes with the same color are from the same class.

– There are 3 nodes that are colored grey and they are unlabeled.

• In real-world data also, some of the nodes/edges/graphs are unlabelled. Hence, the
task of classification aims to classify these unlabeled entities into their respective
classes by making use of the existing structure and information that encompasses
the network.

• If the learning process is (semi) supervised, which uses labels during training, then
learned embeddings are more discriminative as they are trained in an end-to-end
fashion with the end task being the classification task.

• However, in unsupervised learning, first, the embeddings are learned, and then
popular classifiers, e.g. logistic regression is used with the learned embeddings
forming the input features.

• For example, in Fig. 2.3, all grey colored nodes are unlabeled, and the classification
process will classify these nodes into appropriate classes. We expect the grey
colored node in the neighborhood of the three green colored nodes to be classified
so that it is also colored green.

• Evaluation metrics for analyzing the classification performance typically are clas-
sification accuracy and F1 score.

2.6.2 Clustering

Many nodes share the same property in a network, and together they form a soft
cluster or community. For instance, in a social network, users with interest in the
same domain will form a community/cluster; in a citation network, papers having
similar research domains form a single group. The process of finding such soft
clusters is called community detection in the context of network analysis.

• This task aims to partition nodes or (sub)graphs into various groups in a way that
similarity between samples within a cluster is maximum, whereas samples from
different clusters are dissimilar.

• The partition is typically soft; it can be hard if the application demands.
• This task is very important in the biological field (proteins-proteins network, drug-
disease network ) to find related and interacting drugs or associated diseases.

• In the example network shown in Fig. 2.3, there are three clusters based on con-
nectivity among the nodes; connectivity provides the similarity here. These are
shown using dotted circles.

• Similarly, in a set of graphs datasets, many graphs share the same property(ies)
and belong to the same cluster. For example, graphs that have a similar clique
structure can be grouped.

• Any generic clustering algorithm such as K-means, K-means++, or LDA can be
used after learning node or (sub)graph embeddings to obtain communities.
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• It is quite similar to the community detection task, and if the learned representations
are discriminative, they should be able to detect appropriate community structure
exhibited by the graph.

• The embedding’s performance on the clustering task is measured by purity, ARI,
and normalized mutual index metrics by leveraging ground truth clusters based on
the node labels.

2.6.3 Link Prediction (L P)

It aims to predict new connections that are likely to occur in the future based on the
existing relations in the graph and the network properties.

• This will further throw light on how the network evolves.
• Link prediction can also infer the missing connections (edges) in the network.
• Major applications of link prediction are in recommender systems, social networks,
biological networks. In social networks, one can use LP to predict friendship
among users of the network and recommend the friendship connections. Biolog-
ical networks (drug-disease networks) take advantage of this task to expand the
biological dataset and infer new diseases or treatments via predicting interactions
between entities.

• For example, all the dotted lines between a pair of nodes in Fig. 2.3 are the predicted
links.

• For evaluation, some links (connections) from the given graph are deleted followed
by learning node embeddings using the new graph. These embeddings are then
used to predict these deleted edges.

• The proficiency of embeddings on howwell they can support the network evolution
depends on the quality measured by the metrics AUC and precision.

2.6.4 Visualization

This task helps in data mining and analyzing real-world high dimensional data visu-
ally by projecting it into two or three dimensions.

• Once low-dimensional embeddings are trained, which encode the network struc-
ture, any of the available visualization tools can be used.

• For instance, t-SNE takes as input the learned encodings and projects them into
2D or 3D space. Such an easy to visualize plot will help in inferring clusters or
communities.

• Principal Components can also be used for mapping the embeddings into a lower
dimension space for easy visualization.

• These visualizations provide insights into the quality of the embeddings based on
whether the nodes from the same class (or belonging to the same community) are
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close to each other. Also, nodes with different class labels need to be far away in
the projected space.

2.6.5 Network Reconstruction

• It aims at reconstructing the actual network (graph) using similarity between each
pair of node embeddings.

• The similarity score between embedding vectors determines the similarity between
two nodes and is used to infer the edge between them.

• If the learned embeddings are discriminative enough, then the underlying similarity
function should detect the original links present in the network, which determines
the quality of these learned representations.

• In the process, it will be interesting to look at existing edges that need to be deleted
based on the low similarity between the embeddings of the end vertices.

2.7 Embeddings Based on Matrix Factorization

We have seen that a popular way of representing a network graph G = (V, E) is to
use its adjacency matrix A.

• The N × N matrix A captures the structure/connectivity information. Each row
of the matrix is a vector of size N based on the presence/absence of links of a node
to all the nodes in the network. In a practical setting N could be very large.

• In addition to the connectivity, if each node has some content/attribute information,
then a matrix X of size N × D is used. Here each node is viewed as a vector of
size D, where D is the size of the vocabulary behind the content, which could also
be large.

• So, we need to represent both the structure and content data in a low-dimensional
space to facilitate efficient and accurate machine learning on the network data.

• Matrix factorization is one of the well-known techniques to reduce the dimension-
ality. This may be viewed as follows:

– We can factorize the adjacency matrix A as A = BC where A is a N × N
adjacency matrix, B is a N × K matrix, and C is a K × N matrix.

– Similarly the matrix X can be factorized as X = GH where X is of size N × D,
G is a matrix of size N × K , and H is a matrix of size K × D.

– Typically the value of K is much smaller than both N and D to facilitate dimen-
sionality reduction.

– If the structure and content in the network are in perfect agreement with each
other, then their low-dimensional representationswill also be agreeingwith each
other. This could be to the extent that the two matrices B andU are equal which
can simplify the factorizations. In practice, B andU could be different because
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of noise in the correspondence. In such a case one can aim to minimize some
difference between the two matrices.

There are several well-known techniques for factorization of matrices. These are
considered in the next few subsections.

2.7.1 Singular Value Decomposition (SVD)

Singular value decomposition (SV D) is the most popular matrix factorization tech-
nique. Either a square matrix (N × N matrix) like A or a rectangular matrix (N × D
matrix) like X can be factorized using SV D.

• In general any real matrix S of size p × q can be decomposed into

Sp×q = Up×K�K×K V
T
K×q , where

– V T is the transpose of the matrix Vq×K .
– The non-zero eigenvalues of SST and ST S are the same; it is possible that some
of these eigenvalues are repeated. If p > q then SST will have at least (p − q)

0 (zero) eigenvalues. Similarly, if q > p then ST S will have at least (q − p) 0
(zero) eigenvalues. The common eigenvalues are non-negative.

– � is a diagonal matrix of size K × K . Its diagonal entries are the positive square
roots of the K largest eigenvalues of either SST or ST S, where K < min(p, q).

– These diagonal entries of � are called the singular values of S. They are non-
negative real numbers, if S is real, and are typically arranged in non-increasing
order.

– Columns ofU are the K eigenvectors of SST and columns of V are the K eigen-
vectors of ST S. These K vectors are the orthonormal eigenvectors associated
with the top K common eigenvalues.

• So, SV D can be used for matrix factorization. Further, it can be used to obtain the
principal components (PCs) of the data present in the form of the row vectors of
either A or X matrices associated with the graph representing any network.

• If the rows of the matrix S are normalized so that their mean is zero, then the
eigenvectors of ST S (columns of V ) are the principal components.

• If the matrix to be factorized is symmetric, then we can decompose it using orthog-
onal matrices. For example, the adjacency matrix A will be a symmetric matrix if
the graph is undirected. In such a case we have

AN×N = PN×K DK×K P
T
K×N ,

where P is an orthogonal matrix, that is PT = P−1.
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2.7.2 Matrix Factorization Based Clustering

It is possible that some of the entries inU or V or both can be negative.A consequence
of this is that even the PCs can have negative entries.

• We can illustrate this using a simple example. Consider the dataset shown in
Table 2.6.

– There are four objects represented as two-dimensional patterns in the table; each
is described by the Volume of the object and its Price both in respective units.
For example, the first object has 1 unit of volume and 8 units of price.

– The sample mean of the 4 points is (2,5). So, the zero mean normalized data is
given by the matrix

Z =

⎡

⎢⎢⎣

−1 3
1 −3

−1 3
1 −3

⎤

⎥⎥⎦

– The matrix ZT Z is given by

ZT Z =
[

4 −12
−12 36

]

– The eigenvalues of thematrix ZT Z are 40 and 0 and its orthonormal eigenvectors

are

(
1√
10−3√
10

)
and

(
3√
10
1√
10

)
.

– These two vectors are the two PCs in that order and they are orthogonal to each
other and there is a negative entry in the first PC .

– This example clearly illustrates that PCs can have negative entries.

• However, there could be applications where we require only non-negative entries
in the factor matrices. Clustering or community detection is one such example.
We can explain using the example data in Table 2.6.

– Note that in the two-dimensional space characterized by Volume and Price,
pattern 1 and pattern 3 are identical. Similarly, pattern 2 and pattern 4 are also
identical.

– So, if we want to assign these 4 patterns into two clusters, then pattern 1 and
pattern 3 are in one cluster and the remaining two patterns are in the other cluster.

– Such a cluster structure may be realized using the matrix factorization, X1 =
G1H1, that is exemplified by

⎡

⎢⎢⎣

1 8
3 2
1 8
3 2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0
0 1
1 0
0 1

⎤

⎥⎥⎦

[
1 8
3 2

]



24 2 Representations of Networks

– Observe that G1 matrix (the 4 × 2 matrix in the RHS) is the cluster assignment
matrix. The two columns of G1 correspond to the two clusters. Pattern 1 and
pattern 3 are assigned to cluster 1 and the corresponding entries in column 1
are 1. Similarly, pattern 2 and pattern 4 are assigned to cluster 2 and the second
column in matrix G1 indicates this assignment.

– It is important to note that the entries inG1 and H1 are nonnegative. This property
is essential here.

– Note further that the matrix H1 is the cluster description matrix. The two rows
of H1 describe the two clusters. Here, each cluster is described by its centroid.

– In this simple example, both the patterns in each cluster are identical. In general,
a centroid-based clustering algorithm like the K -means clustering algorithm
describes each cluster by its centroid. In such a case, the i th row of matrix H1

will be the centroid of the i th cluster, for i = 1, . . . , K .
– For example, if pattern 3 and pattern 4 in Table 2.6 are changed to (1,6) and
(5,2) respectively, then the factorization, for X2 ≈ G2H2 is given by

⎡

⎢⎢⎣

1 8
3 2
1 6
5 2

⎤

⎥⎥⎦ ≈

⎡

⎢⎢⎣

1 0
0 1
1 0
0 1

⎤

⎥⎥⎦

[
1 7
4 2

]

where X2 is the modified version of X1 and G2 and H2 are respective cluster
assignment and cluster description matrices.

– Note that pattern 1 and pattern 3 are assigned to cluster 1 and the remaining two
patterns are assigned to cluster 2. In this case, G2 = G1 and H2 has the cluster
centroids (1,7) and (4,2) as its rows.

– Observe further that the factorization of X1 is exact whereas the factorization
of X2 is approximate.

– In general, any hard clustering output can be abstracted by such a non-negative
matrix factorization where X ≈ GH where each row of G will have one entry
1 and the remaining K − 1 entries 0.

– If the entry Gi j in the i th row and the j th column of G is 1, then it indicates
that the i th pattern, that is the i th row of X is assigned to cluster j .

– All other entries in the i th row of G will be 0; that is Gik = 0, ∀k 
= j. This is
because in hard clustering a pattern is assigned to one and only one cluster.

– Further, H(i), the i th row of H represents the i th cluster. It could be the centroid
in the case of K -means algorithm; but in general it could any vector that is a
suitable representative of the i th cluster.

Every hard clustering output can be viewed as leading to such a matrix factorization.
For example, the output of spectral clustering also can be represented in terms of
matrix factorization.
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Table 2.6 Example data
matrix

Pattern Volume Price

1 1 8

2 3 2

3 1 8

4 3 2

2.7.3 Soft Clustering as Matrix Factorization

There are several applications where a natural requirement is to assign a pattern
to more than one cluster. For example, a document may share more than one
topic/cluster; for example, it may be dealing with both sports and politics. In such a
case, we require the clustering to be soft.

• Topic models like the latent Dirichlet allocation (LDA) are probabilistic and they
assign a document to more than one topic/cluster.

• In such a case, in the approximation of X as GH , the i th row of G has one or more
non-zero entries. The entries in any row of G add upto 1. Gi j could be viewed as
the probability that the i th document belongs to the j th topic/cluster.

• The i th row of H is the probabilistic description of the i th topic/cluster. In fact a
topic is an assignment of a probability value to each term in the vocabulary present
in the collection of documents.

• It is not just the LDA alone. Every soft clustering output could be represented
using an appropriate factorization of matrices.

• For example, probabilistic latent semantic indexing (PLSI ) is one such example.
The output of PLSI can be abstracted as

Sp×q = Up×K ZK×K VK×q

– Here the p × q matrix S represents p documents using q vocabulary terms,
where the input is a collection of p documents and the vocabulary size is q.

– The matrix U is of size p × K . It describes p documents using K topics/soft
clusters.

– The matrix V of size K × q is a description of the K topics using the q vocab-
ulary terms. The i th row of V describes the i th topic for i = 1, . . . , K and each
row is a q-dimensional vector with one or more probability entries.

– The K × K matrix Z is a diagonal matrix that describes the strength of each of
the topics. The diagonal entry in the i th row and the i th column of Z, that is Zii

indicates the importance of topic i in the collection.

There could be applications where the factorization could be deterministic rather
than probabilistic.
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2.7.4 Non-Negative Matrix Factorization (NMF)

One of the well-known matrix factorization approaches that is deterministic is the
NMF . Here, a matrix X is approximated using two factors G and H .

• It is viewed as minimizing the squared euclidean norm between X and GH . So,
It is based on

||X − GH ||2.

• This norm is the sum of element-wise deviations or the squared deviations between
Xi j and (GH)i j are added over all the elements, that is for i = 1, . . . , N and
j = 1, . . . D.

• We find G and H so that ||X − GH ||2 is minimized under the constraints that
Gi j ≥ 0 and Hi j ≥ 0 for all i and j .

• If X andG are known then finding H is a well-behaved convex optimization prob-
lem. Similarly, if X and H are given, then finding G is also a convex optimization
problem.

• So, the problem of finding G and H given X is solved by using an alternating
minimization process. Using X and some initial G, H is computed. Using X and
the obtained H ,G is updated. This process goes on till some termination condition
is satisfied.

• The solution obtained by this optimization is locally optimal. Note that several
of the factorization schemes can give us only a local optimum. These include the
K -means clustering, LDA, PLSI , and NMF .

• On the other hand SV D and the orthogonal decomposition are deterministic and
give us the exact factorization.

• The motivation behind NMF was that the factors G and H provide information
about the presence/absence of parts of objects in the data.

• Consider the example matrix factorization given by

⎡

⎢⎢⎣

1 1 0 0 1 1
1 1 0 0 1 1
0 0 1 1 0 0
0 0 1 1 0 0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎦

[
1 1 0 0 1 1
0 0 1 1 0 0

]

• This illustrates NMF . Note that the 4 × 6 matrix in the LHS is a rank 2 matrix. It
clearly shows two linearly independent row vectors, (110011) and (001100) and

the two linearly independent column vectors

⎛

⎜⎜⎝

1
1
0
0

⎞

⎟⎟⎠ and

⎛

⎜⎜⎝

0
0
1
1

⎞

⎟⎟⎠.

• The factorization aptly captures this by exploiting the fact that the rank of the
matrix is 2 (K = 2).

• In general, the value of K is upper bounded by the minimum of N and D where
X is of size N × D.
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• Further note that the independent columns form the G matrix and the independent
rows form the H matrix. These basis vectors may be viewed as parts of the objects
or patterns present in X .

• Further, note that there are two hard clusters and the assignment of the first two
vectors to the first cluster and the remaining two rows to the second cluster are
depicted by the 4 × 2 matrix in the example.

• Similarly, the two rows of the 2 × 6 matrix, in the RHS of the example, capture
the description of the two clusters.

• A fundamental observation from linear algebra is that row rank = column rank =
rank of any matrix.

• This implies that clustering and dimensionality reduction have an excellent corre-
spondence as depicted in the example factorization.

Even though matrix factorization is very popular in several machine learning appli-
cations, its main drawback is that it is computationally not very attractive to deal
with large-scale network datasets. An alternative is based on random walks. We
consider in the next section, word2vec that offered the basic platform for several
state-of-the-art network embedding schemes that use random walks.

2.8 Word2Vec

It is the most influential tool in terms of its impact on network embedding schemes.
It deals with representing each word as a vector. Neural network models require real-
valued vectors as input. So, a string or a word needs to be converted into a vector
of numbers to be processed by a neural network model to carry out various tasks.
Word2vec is one of the popular techniques, and it is described below:

• Word2Vec employs a neural networkmodel with a single hidden layer. It generates
real-valued vector representations, called neural word embeddings, for all the
words in the vocabulary.

• Theseword embeddings provide ameans to calculate the similarity betweenwords,
sentences, and consequently, the documents.

• First step is to create a training corpus as follows:

– All unique words will make up the vocabulary (W), and each unique word will
be given an index between 1 and |W|, where |W| is the number of unique words.

– Word2vec uses words and their contexts, based on the principle that words with
similar context are similar.

· Context of a word is a set of all those words which occur within a window
of fixed size in a sentence with the focused word in the middle.

· Formally, the context of a word with window size fixed to ws includes ws
words before and ws words after the focused word, totaling into 2ws words.
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· For example, let w1, w2, ..., wi−2, wi−1, wi , wi+1, wi+2, ...wn−1, wn−2 be
a sentence, then the context of word wi for the window of size 2 is
{wi−2, wi−1, wi+1, wi+2}.

· The training corpus contains all (word, context) pairs for all the words in
the vocabulary, such as for the word wi : (wi , wi−2), (wi , wi−1), (wi , wi+1),
(wi , wi+2) word-context pairs are in the training set.

• Given the corpus, the word embeddings can be learnt using two different schemes.

1. CBOW (continuous bag of words) takes the context words as input and predicts
the probability of the target word corresponding to the input.

2. Skip-Gram works by taking the word as input and predicting the words in its
context. So, from each pair in the training corpus, it takes the word as input
and predicts the probability distributions corresponding to the context words.

• The learned encodings have some implicit dependencies, unlike one-hot vectors.
One hot vector is a binary vector of size |W|, which will have 0s in all positions
but 1 in one location that indexes the word being encoded.

• In the following section, we will explain the skip-gram model in more detail
because skip-gramgivesmore precise results thanCBOWevenwhile using smaller
data sets.

2.8.1 Skip-Gram Model

Figure 2.4 shows the architecture of the skip-gram approach. Some important points
to observe from the figure and the working of the skip-gram model are summarized
below.

• U1 is a weight matrix of dimension |W | × d (where d is the dimension of the
word representations) between input and the hidden layer. U2 is a weight matrix
of dimension d × |W | between hidden and the output layers.

• Multiplication of the input vector with U1 gives a row of U1 corresponding to the
input. This is the vector of the hidden layer and has a dimension of 1 × d. The
output vector of dimension 1 × |W | is computed by multiplying this hidden layer
vector with U2. According to the window size (i.e., the number of the context
words), this output vector is repeated.

• In the figure, it takes one-hot vector of the word as input and generates two vectors
(VECTOR1 and VECTOR2) of probabilities. The i th index of the vector denotes
the probability of the i th vocabulary word being the input’s context word.

In general, a skip-grammodel generates 2.ws output vectors, one for each context
word, wherews is the window size. After training, the matrixU1 is the required word
representation i.e., each row of the first layer weight matrix is interpreted as the word
embedding of the correspondingword in the vocabulary. Thus the goal ofword2vec is
just to train this weight matrix of the hidden layer and each word will be represented
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Fig. 2.4 Word2vec: a
skip-gram model

by a vector of size 1 × d, where d is the dimension and the number of nodes in
the hidden layer. The main objective of word2vec is to output similar probability
distributions for the words with similar contexts, and consequently, those words
should have similar embeddings too. Precisely, the model outputs the probability of
being the context word of the input for all the words.

Moreover, when the model is trained on the entire training set, all the weights
of the model are modified for each pair in the corpus. So, on a large corpus, the
computation becomes challenging to track. Therefore, negative sampling is used to
train the word2vec model.

• Instead of updating all the weights of themodel for each training pair, it will update
the parameters corresponding to the positive word along with K negative words.

• Formally saying, for each positive (word, context) pair, it will sample k negative
(word, context) pairs and not the complete training set.

• These pairs are called negative because the pair’s context word is randomly chosen,
not from nearby words.

• Loss is propagated for these selected K entries. The corresponding weights are
updated along with the weights of the positive word by maximizing the log-
likelihood corresponding to the positive sample andminimizing the log-likelihood
of the selected negative pairs.
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2.9 Learning Network Embeddings

Any network embedding method generates vectors of low dimension representing
an entity of the network such as a node, an edge, or the entire (sub)graph. These are
called node embedding, edge embedding, or whole (sub)graph embedding, respec-
tively. Different types of embeddings have diverse applications such as whole graph
embedding can facilitate the grouping of multiple graphs together. In contrast, node
embeddings are used for node classification, node clustering, and edge prediction
tasks.

• Node and Edge Embeddings:

1. The aim of node embedding is to represent each node of the network as a low-
dimensional vector.

– They preserve relations between the nodes of the network in the form of
geometric relations between node embeddings.

– Each node representation learning approach aims at preserving different
properties of the network.

– So, existing approaches differ in how they encode the similarity between
nodes and what node similarity the approach accounts for.

– For example, some approaches preserve the macroscopic structure that cap-
tures scale-free properties. Some maintain first or second-order proximities
between nodes, and other methods embed nodes based on their roles in the
network.

– These embeddings are then exploited bymanymachine learning downstream
tasks such as classification and clustering of nodes.

– Chapter 4 deals with the topic of node embeddings.

2. Edge embedding aims to encode edges of the network in a vector space.

– Edges encode node pair relations (pairwise similarity between nodes).
– Major challenges involve dealing with asymmetry, calculating edge level

similarities to encode edge semantics, and facilitating various edge-based
tasks such as link prediction.

• Graph Embedding: It aims at representing a set of nodes or an entire graph in a
low-dimensional vector space.

– Embeddings are such that the properties of the entire graph are captured using
similarity between graphs, i.e., the algorithm generates a single vector for the
whole (sub)graph.

– An important requirement is to keep similar graphs close in the embedding
space.

– These embeddings have many critical applications, from predicting the class
label of an entire graph (graph classification) to clustering graphs.

– For instance, finding anti-cancer activity, finding molecule toxicity level, and
many more can be tackled by embedding the entire graph.
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– Some algorithms first generate embeddings for nodes using node representa-
tion learning algorithms and then use any aggregation operator (mean, average,
maximum) on those embeddings to output a single vector.

– A myriad of graph pooling operations is recently developed, which output the
graph’s coarsened versions and finally represents the entire graph with a single
vector.

– A detailed discussion of these approaches is provided in Chap. 6.

Also, we can group the embedding learning algorithms into Supervised andUnsu-
pervised, as explained below:

• Supervised Learning:

– Supervised or semi-supervised learning of embeddings depends primarily on
label information to learn the model’s parameters as the loss is controlled by
actual and predicted labels.

– During the training stage, class label information and information in matrices
A (structure) and X (attribute) are exploited. Therefore more discriminative
representation learning takes place.

– Though a small proportion of nodes are labeled, labels proffer information about
the categorization of network entities.

– The learning in this setting depends on the downstream tasks such as classifica-
tion or link prediction; therefore, these embeddings may be limited to be used
for a particular task only.

– Further, collecting labels is very expensive, which is another disadvantage of
these approaches.

• Unsupervised Learning:

– These approaches can work without the label information while learning repre-
sentations.

– So, these methods can be used to learn embeddings even when class label infor-
mation is not available.

– Unsupervised learning algorithms use structural information and sometimes
attribute information (if available) during the training stage.

– Since unsupervised algorithms do not exploit any downstream task knowledge
for embedding learning; therefore, the embeddings learned are generic and task
agnostic, unlike embeddings learned by supervised approaches.

– An advantage of these embeddings is that they can be used across all downstream
tasks for further analysis, such as classification and clustering.
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2.10 Summary

• We provided a brief introduction to network representation.
• Graphs are popularly used in representing networks.
• Adjacency matrix associated with the network graph captures the structural prop-
erties of the network.

• Content matrix captures the attribute information or content associated with the
nodes in the network.

• matrix factorization plays an important role in arriving at a low-dimensional rep-
resentation of the network entities and even the entire network.

• The low-dimensional embeddings obtained are useful in dealing with several ML
tasks including classification, community detection, link prediction, visualization
and network construction.

• Word2vec is the most influential tool in network embedding. Random walk over
nodes in the graph can be viewed as some kind of sentences.

• High degree nodes will appear in more such walks. The sequences of vertices
visited can be viewed like sentences where each node in the walk can be viewed
like a word.

• Soword2vec can be used in the network/graph applications to embed nodes, where
a random walk over vertices is like a sentence and a vertex is like a word in the
sentence.

• These ML tasks are instrumental in several important application domains. Some
examples are:

– E-commerce: Recommending one or more products to customers
– Education: Finding concepts that are not well understood by a student, interre-
lationships between different concepts/topics

– Health: Identifying possible drug interactions
– Transportation: Suggesting optimal routes
– Agriculture: Estimating crop yields
– Security: Locating terrorist groups
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