
S P R I N G E R B R I E F S I N A P P L I E D S C I E N C E S A N D
T E C H N O LO G Y  CO M P U TAT I O N A L I N T E L L I G E N C E

Manasvi Aggarwal
M. N. Murty

Machine Learning
in Social Networks
Embedding
Nodes, Edges,
Communities, and
Graphs

SpringerBriefs in Applied Sciences
and Technology

Computational Intelligence

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

SpringerBriefs in Computational Intelligence are a series of slim high-quality
publications encompassing the entire spectrum of Computational Intelligence.
Featuring compact volumes of 50 to 125 pages (approximately 20,000–45,000
words), Briefs are shorter than a conventional book but longer than a journal article.
Thus Briefs serve as timely, concise tools for students, researchers, and
professionals.

More information about this subseries at http://www.springer.com/series/10618

http://www.springer.com/series/10618

Manasvi Aggarwal • M. N. Murty

Machine Learning in Social
Networks
Embedding Nodes, Edges, Communities,
and Graphs

123

Manasvi Aggarwal
Department of Computer
Science and Automation
Indian Institute of Science
Bengaluru, Karnataka, India

M. N. Murty
Department of Computer
Science and Automation
Indian Institute of Science
Bengaluru, Karnataka, India

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2625-3704 ISSN 2625-3712 (electronic)
SpringerBriefs in Computational Intelligence
ISBN 978-981-33-4021-3 ISBN 978-981-33-4022-0 (eBook)
https://doi.org/10.1007/978-981-33-4022-0

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-33-4022-0

Preface

Overview

Network analysis has gained a lot of prominence over the past decade. This is
because of a better understanding and control over learning representations of
various entities like nodes, edges, subgraphs, cliques, and graphs that represent
important components of a network.

• Representation itself is an important task in a variety of tasks. Typically, net-
works are represented as graphs. In turn, graphs are represented using adjacency
matrices.

• A related major breakthrough in the recent past is based on representing words
as vectors. This was extended to representing nodes in a graph by using random
walks over nodes in the graph as sentences. This view facilitated representing
nodes as vectors.

• Another popular technique that can be viewed as an equivalent to random
walk-based schemes uses matrix factorization.

• One more important area is deep learning based on deep neural networks that
have contributed significantly to the state of the art in the topics of interest to
this book.

This book deals with network embedding. There are different embedding
schemes that will be discussed in the book.

• Networks, especially social networks and their generic properties that help in
network representation learning, will be examined.

• Backgrounds required to deal with social network analysis in the form of neural
networks and deep learning are also important, and they will be discussed.

• Node embedding schemes based on random walks, matrix factorization, and
deep learning will be covered along with the state-of-the-art developments.

• There are several applications that require embedding of entities beyond nodes.
Applications in the areas of social, health, finance, education, and transportation
networks may require embedding of cliques, subgraphs, and graphs. Embedding

v

graphs is one of the active research areas now. Some of the state-of-the-art
algorithms in this context will be covered in this book.

• Typically, the embeddings obtained are evaluated using several downstream
machine learning (ML) tasks including classification, community detection,
visualization, and link prediction in social and information networks.

Audience

This book is intended for senior undergraduate and graduate students and
researchers working in social and complex networks. We present material in this
book so that it is accessible to a wide variety of readers with some basic exposure to
undergraduate-level mathematics. The presentation is intentionally made simpler
for the comfort of the reader.

Organization

This book is organized as follows:
Chapter 1 deals with a generic introduction to social network embedding.

Chapter 2 deals with social networks, their representation using graphs, and various
embedding schemes. It also deals with some important topics like the downstream
ML tasks including classification, clustering, visualization, and link prediction.
Chapter 3 provides a coverage on neural networks and popular deep learning tools
including convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and autoencoders. Node representation forms the subject matter of Chap. 4.
Embedding graphs is examined in Chap. 5. Finally, it is concluded in Chap. 6.

Bengaluru, India Manasvi Aggarwal
M. N. Murty

vi Preface

Contents

1 Introduction . 1
1.1 Introduction . 1
1.2 Notation . 5
1.3 Contents Covered in This Book . 5

2 Representations of Networks . 7
2.1 Introduction . 7
2.2 Networks Represented as Graphs . 8
2.3 Data Structures to Represent Graphs . 9

2.3.1 Matrix Representation . 9
2.3.2 Adjacency List . 10

2.4 Network Embeddings . 11
2.5 Experimental Datasets and Metrics . 13

2.5.1 Evaluation Datasets . 13
2.5.2 Evaluation Metrics . 14

2.6 Machine Learning Downstream Tasks . 18
2.6.1 Classification . 18
2.6.2 Clustering . 19
2.6.3 Link Prediction (LP) . 20
2.6.4 Visualization . 20
2.6.5 Network Reconstruction . 21

2.7 Embeddings Based on Matrix Factorization 21
2.7.1 Singular Value Decomposition (SVD) 22
2.7.2 Matrix Factorization Based Clustering 23
2.7.3 Soft Clustering as Matrix Factorization 25
2.7.4 Non-Negative Matrix Factorization (NMF) 26

2.8 Word2Vec . 27
2.8.1 Skip-Gram Model . 28

vii

2.9 Learning Network Embeddings . 30
2.10 Summary . 32
Bibliography . 32

3 Deep Learning . 35
3.1 Introduction . 35
3.2 Neural Networks . 36

3.2.1 Perceptron . 36
3.2.2 Characteristics of Neural Networks 39
3.2.3 Multilayer Perceptron Networks 39
3.2.4 Training MLP Networks . 41

3.3 Convolutional Neural Networks . 46
3.3.1 Activation Function . 46
3.3.2 Initialization of Weights . 48
3.3.3 Deep Feedforward Neural Network 49

3.4 Recurrent Networks . 54
3.4.1 Recurrent Neural Networks . 54
3.4.2 Long Short Term Memory . 59

3.5 Learning Representations Using Autoencoders 62
3.5.1 Types of Autoencoders . 63

3.6 Summary . 65
Bibliography . 65

4 Node Representations . 67
4.1 Introduction . 67
4.2 Random Walk Based Approaches . 68

4.2.1 DeepWalk: Online Learning of Social Representations . . . 68
4.2.2 Scalable Feature Learning for Networks: Node2vec 70

4.3 Matrix Factorization Based Algorithms 72
4.3.1 Network Representation Learning with Rich Text

Information . 72
4.3.2 GraRep: Learning Graph Representations with Global

Structural Information . 73
4.4 Graph Neural Networks . 75

4.4.1 Semi-Supervised Classification with Graph
Convolutional Networks . 75

4.4.2 Graph Attention Network . 77
4.4.3 Inductive Representation Learning on Large Graphs

(GraphSAGE) . 78
4.4.4 Jumping Knowledge Networks for Node

Representations . 79
4.4.5 Deep Graph Infomax . 81

viii Contents

4.5 Experimental Evaluation . 83
4.5.1 Node Classification . 83
4.5.2 Node Clustering . 84
4.5.3 Visualization . 85
4.5.4 Performance Analysis . 87

Bibliography . 87

5 Embedding Graphs . 89
5.1 SortPool . 90
5.2 DIFFPOOL . 92
5.3 SAGPool . 94
5.4 GIN . 96
5.5 Graph U-Nets . 98
5.6 Experimental Evaluation . 100

5.6.1 Graph Classification . 100
5.6.2 Visualization . 101

Bibliography . 103

6 Conclusions . 105

Glossary . 107

Index . 109

Contents ix

Acronyms

AI Artificial Intelligence
CNN Convolutional Neural Network
DGI Deep Graph Infomax
GAT Graph Attention Network
GCN Graph Convolution Network
GIN Graph Information Network
GNN Graph Neural Network
JC Jaccard Coefficient
LP Link Prediction
LSTM Long Short Term Memory
ML Machine Learning
MLP Multi Layer Perceptron
NMF Nonnegative Matrix Factorization
NRL Network Representation Learning
RNN Recurrent Neural Network
SIN Social and Information Network
SVD Singular Value Decomposition
TADW Text Attributed Deep Walk
WL Weisfeiler-Lehman

xi

Chapter 1
Introduction

1.1 Introduction

Networks have the capacity to represent and solve many real world problems and
consequently, their analysis is gaining prominence. In practice, there are several
applications in which the underlying network is explicit. Examples include a friend-
ship network, a citation network, and the world wide web. It is also possible to view
several other applications using an implicit network. For example, in an artificial
intelligence application, the data might be given in the form of a set of vectors,
or sequences. Even in such applications, it may make sense to derive the network
structure implicitly present in the seemingly isolated set of data points.

Networks allowus to exploit the domain knowledge.Analysing networkswill help
in detecting both the latent content and structural dependencies between entities.

• Networks can effortlessly handle the relational complex systems underlying vari-
ous applications in education, biological, citations or societal domains.

• Network structure contains properties of the corresponding data such as connec-
tions encode the similarity between network entities. In a social network if two
users are connected directly then those two users are friends of each other.

• To analyse the hidden network properties and the data that the network is repre-
senting, various machine learning and AI tools are used.

• But all machine learning (ML) algorithms cannot process the networks in their
raw form. They need vectors of numbers as input.

• Also, network data is high dimensional and therefore, analysis becomes challeng-
ing.

• To solve all these and related issues embedding tools are used. Network Repre-
sentation Learning (N RL) algorithms are developed to convert the raw structure
to a real-valued low-dimensional vector called its embedding.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_1&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_1

2 1 Introduction

– These N RL techniques capture different properties of the network and these
vectors are then exploited by various ML tasks which further help us both in
analysing the network and validating the effectiveness of the vectors.

– Conventional ways represent networks in high dimensional spaces. Further, they
cannot embody relations between nodes that are not adjacent.

– Embeddings can embody different properties of the network and information.
Thereby they show high performance on downstream ML tasks.

• We use an example to illustrate the idea of embedding.

– Consider a network represented as a graph in Fig. 1.1. There are six nodes in
the network and are represented using six vertices labeled a, b, c, d, e, and f .

– Such a graph may be represented as an adjacency matrix having one row for
each vertex and a column for each of the vertices.

– So, the adjacency matrix A is a 6 × 6 matrix. The value of Ai, j , the element in
the i th row and j th column is 1 if there is an edge between nodes i and j where
i, j = a, b, . . . , f .

– The entire adjacency matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

– In the matrix rows correspond respectively to a, b, c, d, e, and f . Similarly
columns are ordered based on a to f in the order.

– Each row may be viewed as a binary vector representing the edges between the
corresponding node and all the vertices. For example, the first row corresponds
to the edges between a and all the vertices.

– There are no self loops here. So, all the diagonal entries in the matrix have a
value 0 (zero).

– We can embed these six dimensional vectors using the following observations.

Fig. 1.1 Adjacency list of
the network in figure

1.1 Introduction 3

– Observe that in Fig. 1.1, nodes a, b, and c belong to one connected component
and nodes d, e, and f belong to the other component.

– We can record these assignments by using the following component assignment
matrix

CAM =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Here the first column corresponds to the first component and the second column
corresponds to the second component.

– Each point is a six-dimensional binary vector and it belongs to one of the con-
nected components in this simple case.

– Here the matrix CAM may be viewed as storing the two dimensional represen-
tations of each of the points in a component.

– This matrix CAM may be viewed as an embedding matrix providing a two-
dimensional embedding of the six vertices.

– Note that similar vertices share the same embedding in this example. Nodes a,
b, and c are similar as they belong to the same connected component. Further,
d, e, and f belong to the same connected component and are similar.

– Points a, b, c are represented using the vector (1, 0) and the remaining three
vertices are mapped to the vector (0, 1).

– In this example, the six dimensional data points aremapped to a two-dimensional
space. In general if there are N nodes in a network, then the adjacency matrix
will be an N × N matrix.

– By using the centroid or mean of the three six-dimensional vectors in each
component as the representative of the three points, we get the representative
matrix as

RM =
[2
3

2
3

2
3

1
3 0 0

0 0 1
3

2
3

2
3

1
3

]

Note that the first row of RM is the centroid of the first group of 3 points and
the second row is the centroid of the second group of 3 points.

– It is possible to view the product of CAM and RM as an approximation to A.
That is

A ≈ (CAM)(RM)

– In the example

4 1 Introduction

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[
2
3

2
3

2
3

1
3 0 0

0 0 1
3

2
3

2
3

1
3

]

– In a general case of an N × N matrix, if the N dimensional points are assigned
to K groups, then CAM is an N × K matrix and the corresponding RM is a
K × N matrix.

– For example, such a representation can be obtained by using some clustering
or grouping algorithm like the K -means clustering algorithm on the rows of
matrix A.

• In general there could bemany other ways of embedding nodes or edges in a graph.
• This book deals with network embeddings from many aspects such as embedding
nodes, edges as well as complete graphs.

• Also, division of all the techniques based on whether the learning is supervised
and unsupervised.

• In an unsupervised setting, we do not need the class labels of each of the points
for learning. For example, in the example graph shown in Fig. 1.1, we have not
explicitly used any classes and their labels.

• We have grouped the points based on their being members of a component or not.
• It is possible to convert the above example to lead to a supervised learning problem
by saying, for example, that points a, and c are in class − 1 and d, and f are
in class − 2.

• In such a case, we can still talk of a class-assignment matrix CLAM as a 6 × 2
matrix given below:

CLAM =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
? ?
1 0
0 1
? ?
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

• Now the first column ofCLAM corresponds toClass − 1 and the second column
corresponds to Class − 2.

• Here also the rows correspond to the six points in the order a to f .
• Note that there are question marks in the rows corresponding to the assignment of
points b and e in CLAM .

• This is because we do not know the class labels of b and e.
• One way to classify these points is to use a simple classification rule called the
nearest neighbor (NN) rule.

• NN rule says that assign a node to the class of its nearest neighbor.

1.1 Introduction 5

• Further, for a node vi let NN (vi) be a node v j if v j , (i �= j) has the shortest path
length from vi to any node.

• Note that NN (b) is either a or c as both are at a distance of 1 unit from b as they
are directly connected to b. In this simple case, both a and c belong to Class − 1;
so b is also assigned to the same class.

• Similarly, node e is assigned to Class − 2 because NN (e) is either d or f . Again
both are from Class − 2. So, e is assigned to Class − 2.

• In this simple supervised example, the matrix CLAM may be updated to indicate
the labels assigned to nodes b and e using the labels of their NNs.

• The updated CLAM is

CLAMu =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

• The above discussion based on a simple example is considered only to illustrate
various notions.

• More generic application scenarios may require more complex schemes for gen-
erating embeddings.

• Such state-of-the-art approaches are discussed later in the book and also a com-
parison of these schemes will be considered.

• In addition, details of evaluation metrics for each category are covered.

1.2 Notation

This section summarizes the notation used in the context of graphs throughout the
book. The details are provided in Table 1.1. Notation specific to a topic are excluded
to avoid confusion. Also, the related terminology is discussed when it is needed.

1.3 Contents Covered in This Book

• Chapter 2 deals with an introduction to Network Representation Learning (NRL)
followed by a discussion on the datasets and some machine learning downstream
tasks that are being used to evaluate the effectiveness of embedding learning
approaches. Also, matrix factorization approaches and word2vec model will be
presented.

• Chapter 3 covers basics of Deep Learning that aid in network representation learn-
ing and analysis tasks that will be covered later in this book. Multi-Layer neural

6 1 Introduction

Table 1.1 Summary of graph
notation used in the book

Notation Explanations

G = (V, E) Graph

V Set of nodes of the graph

E Set of edges of the graph

N Number of nodes in the graph

A Adjacency matrix of the
graph

vi i th node of graph

ei j An edge between nodes vi
and v j

xi Attribute associated with i th
node

X Set of node attributes

li Label associated with the i th
node

L Set of node labels

G = {G1, . . . ,GM } Set of graphs

Lg Set of graph labels

xij ∈ R
D Attribute vector for the j th

node in the i th graph

networks, convolutional neural networks, recurrent neural networks and autoen-
coders are covered in this chapter.

• Chapter 4 presents node embeddings. These algorithms are categorized based on
the techniques they use. For example, Matrix Factorization approaches and Deep
Learning based approaches that exploit Graph Neural Networks.

• Chapter 5 details the Graph Embedding approaches. These approaches are cate-
gorized based on whether graph embeddings are generated by first learning node
embeddings or directly without using the node embeddings. Subsequently, graph
pooling techniques are examined.

Chapter 2
Representations of Networks

2.1 Introduction

Networks are becoming ubiquitous as they can represent many real-world relational
data, for instance, information networks, molecular structures, telecommunication
networks, and protein-protein interaction networks.

A Network is a collection of entities and feasible connections between them. A
Network is most commonly represented using a Graph. Network analysis is carried
out by analysing the underlying graph. Even in non-network applications where the
data are not explicitly linked, it is possible and helpful to represent the data in the
form of a network/graph. For example, in probabilistic graphical models, the data is
visualized as a graph.

A graph is a non-euclidean data structure which is represented by G = (V, E),
where V is the set of nodes and E is the set of edges. The nodes represent the network
entities and edges represent the connections between the entities. An edge ei j ∈ E
between twonodesvi andv j is represented by apair of the nodes (vi ,v j). For example,
in a social network, each node vi represents a user, and an edge (vi , v j) represents
whether user vi is friendswith user v j or not. In protein-protein interactions network,
nodes represent proteins and edges represent interactions between these proteins.
Also, some real-world graphs have an associated set of attributes, where each node
vi ∈ V is associated with an attribute vector xi ∈ R

D , D is the dimension of each
attribute vector. Further, graphs can also have an associated node labels set L , where
yi ∈ L is the label of node vi , which specifies the class of the node.

Analysis of these networks provides advantages inmany fields such as recommen-
dation (recommending friends in a social network), biological field (deducing con-
nections between proteins for treating new diseases), community detection (grouping
users of a social network according to their interests), etc. by leveraging the latent
information of networks. Hence, network analysis is gaining prominence. But the
high dimensional, irregular graph data imposes challenges formachine learning tasks
which led to the development of many representation learning techniques.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_2&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_2

8 2 Representations of Networks

2.2 Networks Represented as Graphs

Any network can be easily represented as a Graph, defined in Sect. 2.1, which
facilitates modeling data items and relations among them.

Many variants of Graphs are possible including:

• Heterogeneous Graphs: The nodes or/and edges of such graphs can be of various
types and each type must be handled differently.

• Homogeneous Graphs: Contrary to heterogeneous graphs, nodes and edges are
instances of a single type.

• Directed and Undirected Graphs: Directed graphs have ordered pairs of vertices,
and each edge has a starting point (head) and an ending point (tail), and information
flows from head to tail. In contrast, an edge in an undirected graph can be traversed
in both directions representing a symmetric relation. Further, an undirected edge
can be replaced with two directed edges. In a directed graph, an edge between
nodes vi and v j is represented by (vi , v j), whereas in the undirected graph, it can
be written either way i.e., (vi , v j) or (v j , vi).

• Dynamic Graphs: Some real-world networks might evolve over time. For exam-
ple, in social networks, new users can be added, or new interactions might occur
between existing users. This leads to the addition or removal of nodes or edges,
respectively, and hence these graphs are called dynamic. On the contrary, graphs
which do not change over time are known as static graphs.

• Knowledge Graphs: A Knowledge Graph is a directed, multi-relational graph
where an edge is represented in (head entity (h), relation (r), tail entity (t)) form,
which means that h is related to t through r. For instance, (Star Trek, Genre, Sci-
ence Fiction).

• Hypergraphs: They are the generalization of undirected graphs in which edges
are over subsets of two or more vertices. Formally, a hyper-graph H is a pair
H = (X, E) where X is a set of elements called nodes or vertices, and E is a set
of non-empty subsets of X called hyper-edges.

All these variants might contain useful auxiliary information such as vertex attributes
and/or vertex labels, in addition to the connectivity/structural information.

A toy example of an undirected and homogeneous graph with 7 nodes and 9 edges
is depicted in Fig. 2.1. To understand some important properties of a graph, let us
observe the same.

1. This example illustrates an undirected and static homogeneous graph. Therefore,
edges can be represented in both directions. For example, an edge between a and

2.2 Networks Represented as Graphs 9

Fig. 2.1 A Toy network:
Circles (a, b, . . . , g) are the
nodes of the graph while
black lines denote the edges

b can be denoted as (a, b) or (b, a). In a friendship network, if u1 and u2 are
connected then stating that u1 is a friend of u2 is the same as u2 is a friend of u1.

2. Neighbours are those nodes that are connected by an edge. For example, node a
and node b are connected by an edge and hence are called neighbors (also called
adjacent nodes) of each other.

3. Common Neighbor: Further observe that both nodes a and b have an edge to node
c, that is why c is their common neighbour.

4. Degree of a node is the total number of incident edges on that node in an undirected
graph. The degree of node a is 2. Further, the sum of the degrees is equal to 2
times the number of edges:

|V |∑

i=1

deg(vi) = 2|E | (2.1)

where |V | is the total number of nodes in the graph.
5. In directed graphs, the degree of any node v is the sum of indegree and outdegree

of v, where indegree is the number of incoming edges on v and outdegree is the
number of edges leaving v. Also, the total indegree of the graph is equal to the
total outdegree of the graph.

A graph can be represented in numerous ways. All variants, as described in
Sect. 2.2, need different representation schemes. In this book, our focus is on undi-
rected/directed, static homogeneous graphs. Next, we discuss the two most com-
monly used methods to represent graphs on the machine.

2.3 Data Structures to Represent Graphs

2.3.1 Matrix Representation

Adjacency Matrix (A): It is a square matrix where number of rows and number of
columns are the same as the number of nodes in the graph, i.e. the dimension of A is
N × N where N is the number of nodes. Each (i, j)th entry in the matrix indicates

10 2 Representations of Networks

Table 2.1 Adjacency matrix for the graph in Fig. 2.1

From/To a b c d e f g

a 0 1 1 0 0 0 0

b 1 0 0 1 1 0 0

c 1 0 0 1 0 0 1

d 0 1 1 0 0 0 0

e 0 1 0 0 0 1 1

f 0 0 0 0 1 0 1

g 0 0 1 0 1 1 0

presence or absence of an edge between nodes vi and v j . If Ai, j is 1 then nodes vi
and v j are connected by an edge otherwise 0. If the graph is weighted then each entry
of the matrix will store the weight of the corresponding edge.

Table 2.1 describes the matrix A for graph in Fig. 2.1. Some important points to
observe from A are:

• Each node vi of a graph is given an index i and i th row of matrix A corresponds
to vi .

• The graph in Fig. 2.1 has 7 nodes; therefore, dimension of matrix A is 7 × 7.
• As the graph is undirected, A is a symmetric matrix. For a directed graph, the
adjacency matrix may not be symmetric.

• Degree of a node for an undirected graph can be computed by taking the sum of
entries in either the respective row or the column of matrix A. Degree of node a
is 2 as

6∑

i=0

Ai,0 =
6∑

i=0

A0,i = 2 (2.2)

• To store matrix A, O(N 2) space is required, where N is the number of nodes.
• Observe that all diagonal entries are 0. If a graph has a self loop on a vertex vi ,
then Aii will be equal to 1, and each self loop contributes 2 to its degree (incoming
and outgoing is the same vertex).

• Also note that matrix A of a network abstracts paths of length 1, A × A gives paths
of length 2 and so on.

2.3.2 Adjacency List

Another way to represent a graph is by using its Adjacency List (adjlist). It is an
array of linked lists where the i th list, adjlist[i], stores references to every neighbour
of node vi (Fig. 2.2).

2.3 Data Structures to Represent Graphs 11

Fig. 2.2 Adjacency list of
the network in Fig. 2.1

• Each node vi of a graph is given an index i and the respective linked list stores its
adjacent nodes. As can be observed from Fig. 2.1, node a (given 0th index) has
nodes b and c as its neighbors and hence adjlist[0] has pointer to the linked list
(an array can also be used instead of linked list) which stores references to nodes
b and c. Also, the number of linked lists is equal to the number of nodes.

• Another interesting point is that if (vi , v j) ∈ E in an undirected graph, then the
list of vi will have an entry for v j and vice versa, whereas if it is an edge in a
directed graph, then only vi will have an entry for v j in its list.

• For weighted graphs, each node entry will have two items, one for node index and
the other one for the respective edge weight.

• A further observation is that the length of a list tells the degree of the respective
node in undirected graphs.

2.4 Network Embeddings

Because of the prominence of networks inmany real-world problems, network analy-
sis is gaining importance inmany disciplines. Networks contain a pool of information
needed by all end stream tasks.

Due to this, analysis schemes depend substantially on network representations
(also known as encodings or embeddings). Furthermore, structural information,
which may be intractable, has to be inscribed in the low dimensional vector space.
For example, classification of a node requires the global position and the local neigh-
borhood structure of the node; link prediction task needs to capture the similarity
between two or more nodes. But in some application domains, the network structure
may not be apparent.

Therefore, we need an efficient and optimal way to convert the raw non-euclidean
high dimensional network data to a vector such that implicit or explicit rela-
tions/properties present in the network are protected in the vector space. For example,
distance between nodes in a network should be preserved in the embedding space.
Embedding learning is also called representation learning.

12 2 Representations of Networks

Network Representation Learning: Given a network represented by a graph
G=(V,E) and some side information related to G such as a set L of discrete labels to
label the nodes and a matrix of vertex attributes X . The aim is to learn a mapping,
gv : V �→ Z , that maps each node vi of G to a vector zi of dimension d known as
embedding.

• Conventional ways of using adjacency vector for representing nodes are not appro-
priate as large scale data makes computation intractable in high dimensional
spaces. Also, they capture only first-order dependencies and are incapable of
including higher-order relations of a network.

• However, network representation learning methods learn explanatory embedding
vectors because of which many machine learning analysis tasks such as recom-
mendation, link prediction, node and graph classification, community detection,
and visualization can be efficiently tackled using these embeddings.

• Important properties that embeddings must encode are explained below.

– As discussed earlier, some real-world graphs are augmentedwith node attributes
that help network representation learning techniques to learn more discrimina-
tive embeddings as these approaches also capture the attribute level similarity
between nodes.

– Other common properties of interest are the relationships of various order of
proximities between nodes.

· The first-order proximity captures edges of a graph. Thus, if vi , v j are con-
nected by an edge then the first-order proximity is 1 between vi and v j . And it
is 0 for non-adjacent pairs of nodes. This information can easily be gathered
from the adjacency matrix of the graph.

· Two-hop relations are described by the second-order proximitywhich ismea-
sured by the number of 2-hop paths between vi and v j . These paths between
a pair of nodes can be calculated using the second-order adjacency matrix
A2.

· Similarly, higher-order proximity captures node pairs with q-hop pathswhere
q is greater than or equal to 3. This is determined by q-step transition prob-
ability i.e., the probability of landing on node v j at qth step of a random
walk starting from node vi . As the order of proximity increases, the ability
to capture global structure also increases.

– Moreover,many nodes of a graph share the common responsibility such as nodes
playing the role of a hub node. This property is also known as the structural
equivalence property.

– Another important principle is homophily, i.e. the nodes of a graph form a
community structure. All vertices in a single community share some common
interest or property. For example, in citation networks, all papers in a single
community are on the same or a similar topic.

– An acceptable representation should exhibit a proper balance of both of these
equivalences i.e., embeddings of nodes from the same community should be

2.4 Network Embeddings 13

similar to each other and the nodes with similar structural roles should also be
embedded closer to each other.

2.5 Experimental Datasets and Metrics

Many Benchmark datasets are being used to evaluate the quality of the network
embeddings or performance of algorithms on various downstream tasks.

• Some datasets contain information of a single graph, e.g. adjacency matrix, node
attributes, node labels, etc. They are used for node or edge level analysis, such as
node classification, and link prediction.

• Some datasets are a collection of graphs and are used to evaluate the efficiency
of the graph level embeddings on graph level tasks, such as graph classification,
graph clustering, etc.

This section briefs some of the most commonly used datasets and the evaluation
metrics for various downstream tasks.

2.5.1 Evaluation Datasets

Many datasets are publicly available for measuring the effectiveness of algorithms
and comparing them with the state-of-the-art approaches depending on the perfor-
mance on various downstream tasks. This section discusses some of the most fre-
quently used datasets.

1. Citation networks:
These datasets are collections of scientific, academic publications with nodes
denoting authors or papers and edges representing author-coauthor or paper-paper
citation relations. Examples of citation networks include Cora, Citeseer, PubMed
datasets. Below is a brief description of these datasets (Table2.2).

• Cora, Citeseer, PubMed are unweighted and directed networks and have node
attributes that denote the contents of the papers or authors.

• The number of distinct class labels varies across the datasets. Cora has seven
class labels, Citeseer has six distinct node labels, while PubMed has three
distinct node labels.

2. Biological networks:

• Single graph Dataset: A PPI (Proteins-Proteins Interaction) dataset is from
this category whose nodes represent proteins and edges represent the existing
physical interactions. It has 40 different node labels, with each class denoting
some biological state.

14 2 Representations of Networks

• Collection of networks (graphs): Each dataset has information for multiple
networks (graphs). Some frequently used datasets are MUTAG, PROTEINS,
NCI1/NCI109, ENZYMES, etc. All these datasets have an adjacency matrix
for each graph, graph identifiers for all the nodes, and graph labels for all the
graphs. Further, this information can be supplemented by node attributes, edge
labels, and graph attributes (Table2.3).

– MUTAG: It is a collection of chemical compounds having different muta-
genic behavior on a bacterium. It contains information of 188 graphs cate-
gorized into two classes.

– PROTEINS: This dataset is a collection of proteins, where graphs are sec-
ondary structure elements. There is an edge between two nodes if the nodes
are in any sequence of amino acids. The number of graphs is 1113, and the
number of graph labels is two.

– ENZYMES: Each graph in the set is a protein tertiary structure. It is a collec-
tion of 600 graphs, with each graph categorized into one of the two classes.

Other bioinformatic datasets are PTC, FRANKENSTEIN, etc. The details of these
datasets can be found at (https://bit.ly/39T079X). Table 2.3 contains a high-level
summary of these datasets.

3. Social Networks:

• Single graph Dataset: Some commonly used datasets are YouTube, Flickr,
BlogCatalog, where nodes correspond to the users of that social website, and
edges describe the relations between users of thewebsite. For instance, nodes of
the BlogCatalog network represent bloggers. Important statistics are provided
in Table 2.4.

• Collection of networks (graphs): Datasets such as IMDB-BINARY, IMDB-
MULTI, COLLAB, REDDIT (Binary and Multi), etc. are the most commonly
used graph level social network datasets. The details of these datasets can be
found at (https://bit.ly/39T079X).Refer toTable 2.5 for a high-level description
of these datasets.

4. Collaboration Networks: Arxiv is a collaboration network formed from the ArXiv
website, and edges represent the co-author relations. Papers are only from a single
field, and therefore the corresponding node labels are absent. Missing node label
information makes this dataset suitable for link prediction.

There are many other types of datasets, e.g., Language Networks (Wikipedia), Com-
munication Networks (Enron Email Network), etc.

2.5.2 Evaluation Metrics

As discussed, the embeddings are used for various downstream tasks (detailed dis-
cussion in Sect. 2.6). The performance on these tasks throws light on the algorithm’s

https://bit.ly/39T079X
https://bit.ly/39T079X

2.5 Experimental Datasets and Metrics 15

Table 2.2 Citation networks for node level experiments

Dataset #Nodes #Labels Attributes

Cora 2,708 7 Yes

Citeseer 19,717 6 Yes

PubMed 3,312 3 Yes

Table 2.3 Different biological datasets used in graph level experiments

Dataset #Graphs #Max
Nodes

Avg.#Nodes Avg.
#Edges

#Labels Attributes

MUTAG 188 28 17.93 19.79 2 NO

PTC 344 64 14.29 14.69 2 NO

ENZYMES 600 125 32.63 62.14 6 Yes

PROTEINS 1113 620 39.06 72.82 2 Yes

DD 1178 5748 284.32 715.66 2 NO

NCI1 4110 111 29.87 32.30 2 NO

NCI109 4127 111 29.68 32.13 2 NO

FRANKENSTEIN 4337 214 16.90 17.88 2 YES

Table 2.4 Social networks for node level experiments

Dataset #Nodes #Labels Attributes

BlogCataloga 10,312 39 NO

Flickrb 80,513 195 NO

YouTubeb 1,138,499 47 NO

Table 2.5 Social graph level datasets

Dataset #Graphs #Max
Nodes

Avg.
#Nodes

Avg.
#Edges

#Labels Attributes

IMDB-BINARY 1000 136 19.77 96.53 2 NO

IMDB-MULTI 1500 89 13.00 65.94 3 NO

COLLAB 5000 492 74.49 2457.78 3 NO

REDDIT(BINARY) 2000 3782 429.63 497.75 2 NO

REDDIT(MULTI)-12K 11929 3782 391.41 456.89 11 NO

efficacy and helps in comparing different algorithms. This section details the metrics
which are popularly used to evaluate the performance of the embeddings through
algorithms on different downstream tasks.

• Classification Accuracy is the simplest metric which tells how many correct pre-
dictions a model makes i.e., #Correct Predictions

#Total Samples . This measure may not be useful

16 2 Representations of Networks

when the data has class imbalance, that is most of the training patterns are from
one class and the other class(es) have a very small number of training patterns.

• F1 score is the weighted average of precision (P) and recall (R) and its value lies
between 0 and 1, with 1 being the highest score i.e., a model needs to maximize
the F1-score.

F1micro = 2 ∗ (P ∗ R)/(R + R) (2.3)

This is also known asF1-micro score. Another score isF1-macro, which is defined
as

F1macro =
∑

y∈L F1(y)

|L| (2.4)

Here y ∈ L is the node label, F1(y) is the F1-score for label y and |L| is the
number of distinct node labels.

– Precision and Recall:

· Precision calculates how precise the model is or how many are actually
positive (true positive) among all the predicted positives. Thismetric is useful
when misclassifying negative sample costs more. Precision is defined as:

Precision(P) = #True Posi tives

#True Posi tives + #False Posi tives
(2.5)

· Recall calculates how many samples from the positive class the model can
predict correctly. This is used when misclassifying a positive class sample
costs more to the user. Recall is described as:

Recall(R) = #True Posi tives

#True Posi tives + #False Negatives
(2.6)

Here, true positives are those inputs that belong to the positive class and are
classified correctly. False positives are those samples which belong to the neg-
ative class but are misclassified as positives. Similarly, true negatives belong to
the negative class and are correctly classified, while false negatives belong to
the positive class and are misclassified.

• Precision at k (Pr@k) : Instead of evaluating the model with respect to all the
samples, it calculates the correct number of predictions in only the top k predicted
edges:

Pr@k(i) = |{v j |vi , v j ∈ V, (vi , v j) ∈ E, rank(v j) ≤ k}|
k

(2.7)

Here V is the set of nodes, E is the set of edges, vi , v j ∈ V are the nodes, and
rank(.) is the rank of the node. This metric is used to measure the efficiency of
algorithms on the link prediction task.

• NMI (Normalized Mutual Information): It is a normalized (i.e., between 0 and
1) mutual information (MI) score with 0 denoting no MI and 1 being the perfect

2.5 Experimental Datasets and Metrics 17

correlation. This score is permutation invariant; thus, the score will remain the
same for any permutation of the cluster labels. NMI is defined as:

NMI (L ,W) = I (L;W)
[H(L)+H(W)]

2

(2.8)

Here L is the set of actual labels (ground truth clusters based on the node labels),
W is the set of predicted labels based on the predicted clusters, H(.) is the entropy
function, and I (., .) is mutual information.

– Entropy of class labels (H(Y)) talks about the uncertainty and is calculated using
the following equation:

H(L) = −
∑

i∈L
P(L = i) × log P(L = i) (2.9)

– Entropy of cluster labels (H(W)) is also calculated similarly:

H(W) = −
∑

i∈W
P(W = i) × log P(W = i) (2.10)

Here P(W=i) is given by #Samples in cluster i
T otal Number of Samples .

– The next equation describes how to calculate the MI between the class labels
and the cluster labels, which denotes the entropy reduction of class labels when
cluster labels are given.

I (L;W) = H(L) − H(L|W) (2.11)

Here H(L|W) is the conditional entropy of class labels, and for each cluster i, it
is calculated using the following equation:

H(L|W = i) = −P(W = i)
∑

l∈L
P(L = l|W = i) log(P(L = l|W = i))

(2.12)

Here P(L=l|W=i) is the probability of getting sample with label l in cluster i.

Putting all these values together, we can get the final NMI score using Eq. 2.8.
• Purity is a simple clustering measure that determines how many samples are cor-
rectly placed after clustering. All samples in a cluster are given a single label
according to themost frequent label in that cluster. The fraction of correctly labeled
samples to the total samples is known as the Purity.

18 2 Representations of Networks

Fig. 2.3 A Toy Network that
depicts the results of Machine
Learning tasks. (1) All nodes are
colored according to the node
labels such as all blue color nodes
have same node label. All grey
colored nodes are unlabeled. (2)
Dotted circles denote a cluster. All
nodes within a dotted circle belong
to the same cluster or community.
(3) Dotted lines are the predicted
links

2.6 Machine Learning Downstream Tasks

One of the important factors behind learning low-dimensional network embeddings
is that the same embedding can be exploited to deal with a host of machine learn-
ing (ML) tasks. These downstream ML tasks are performed on top of the trained
embeddings or in an end-to-end fashion while learning embeddings.

• These ML tasks include classification, clustering, link prediction, visualisation,
and reconstruction.

• Any off-the-shelf machine learning algorithm can perform the tasks mentioned
above using the learned embeddings as input features.

• The performance on these machine learning tasks is further used for a fair com-
parison of approaches and as a measure to evaluate the quality of the learned
embeddings.

In this section, we will explain these tasks with the help of Fig. 2.3 and provide their
respective evaluation measures.

2.6.1 Classification

This is the most commonly used downstream task to justify the effectiveness of the
trained embeddings.

• In practice, some networks are augmented with node labels or edge labels or graph
labels categorizing these network entities into distinct categories. For example, in
a citation network, node labels correspond to the field of research of the corre-
sponding paper or author.

• Consider the example network shown in Fig. 2.3.

– It has 11 nodes out of which 8 of them are already labeled.

2.6 Machine Learning Downstream Tasks 19

– There are 3 nodes that are colored green, three others are colored yellow and
two nodes are colored blue. Nodes with the same color are from the same class.

– There are 3 nodes that are colored grey and they are unlabeled.

• In real-world data also, some of the nodes/edges/graphs are unlabelled. Hence, the
task of classification aims to classify these unlabeled entities into their respective
classes by making use of the existing structure and information that encompasses
the network.

• If the learning process is (semi) supervised, which uses labels during training, then
learned embeddings are more discriminative as they are trained in an end-to-end
fashion with the end task being the classification task.

• However, in unsupervised learning, first, the embeddings are learned, and then
popular classifiers, e.g. logistic regression is used with the learned embeddings
forming the input features.

• For example, in Fig. 2.3, all grey colored nodes are unlabeled, and the classification
process will classify these nodes into appropriate classes. We expect the grey
colored node in the neighborhood of the three green colored nodes to be classified
so that it is also colored green.

• Evaluation metrics for analyzing the classification performance typically are clas-
sification accuracy and F1 score.

2.6.2 Clustering

Many nodes share the same property in a network, and together they form a soft
cluster or community. For instance, in a social network, users with interest in the
same domain will form a community/cluster; in a citation network, papers having
similar research domains form a single group. The process of finding such soft
clusters is called community detection in the context of network analysis.

• This task aims to partition nodes or (sub)graphs into various groups in a way that
similarity between samples within a cluster is maximum, whereas samples from
different clusters are dissimilar.

• The partition is typically soft; it can be hard if the application demands.
• This task is very important in the biological field (proteins-proteins network, drug-
disease network) to find related and interacting drugs or associated diseases.

• In the example network shown in Fig. 2.3, there are three clusters based on con-
nectivity among the nodes; connectivity provides the similarity here. These are
shown using dotted circles.

• Similarly, in a set of graphs datasets, many graphs share the same property(ies)
and belong to the same cluster. For example, graphs that have a similar clique
structure can be grouped.

• Any generic clustering algorithm such as K-means, K-means++, or LDA can be
used after learning node or (sub)graph embeddings to obtain communities.

20 2 Representations of Networks

• It is quite similar to the community detection task, and if the learned representations
are discriminative, they should be able to detect appropriate community structure
exhibited by the graph.

• The embedding’s performance on the clustering task is measured by purity, ARI,
and normalized mutual index metrics by leveraging ground truth clusters based on
the node labels.

2.6.3 Link Prediction (L P)

It aims to predict new connections that are likely to occur in the future based on the
existing relations in the graph and the network properties.

• This will further throw light on how the network evolves.
• Link prediction can also infer the missing connections (edges) in the network.
• Major applications of link prediction are in recommender systems, social networks,
biological networks. In social networks, one can use LP to predict friendship
among users of the network and recommend the friendship connections. Biolog-
ical networks (drug-disease networks) take advantage of this task to expand the
biological dataset and infer new diseases or treatments via predicting interactions
between entities.

• For example, all the dotted lines between a pair of nodes in Fig. 2.3 are the predicted
links.

• For evaluation, some links (connections) from the given graph are deleted followed
by learning node embeddings using the new graph. These embeddings are then
used to predict these deleted edges.

• The proficiency of embeddings on howwell they can support the network evolution
depends on the quality measured by the metrics AUC and precision.

2.6.4 Visualization

This task helps in data mining and analyzing real-world high dimensional data visu-
ally by projecting it into two or three dimensions.

• Once low-dimensional embeddings are trained, which encode the network struc-
ture, any of the available visualization tools can be used.

• For instance, t-SNE takes as input the learned encodings and projects them into
2D or 3D space. Such an easy to visualize plot will help in inferring clusters or
communities.

• Principal Components can also be used for mapping the embeddings into a lower
dimension space for easy visualization.

• These visualizations provide insights into the quality of the embeddings based on
whether the nodes from the same class (or belonging to the same community) are

2.6 Machine Learning Downstream Tasks 21

close to each other. Also, nodes with different class labels need to be far away in
the projected space.

2.6.5 Network Reconstruction

• It aims at reconstructing the actual network (graph) using similarity between each
pair of node embeddings.

• The similarity score between embedding vectors determines the similarity between
two nodes and is used to infer the edge between them.

• If the learned embeddings are discriminative enough, then the underlying similarity
function should detect the original links present in the network, which determines
the quality of these learned representations.

• In the process, it will be interesting to look at existing edges that need to be deleted
based on the low similarity between the embeddings of the end vertices.

2.7 Embeddings Based on Matrix Factorization

We have seen that a popular way of representing a network graph G = (V, E) is to
use its adjacency matrix A.

• The N × N matrix A captures the structure/connectivity information. Each row
of the matrix is a vector of size N based on the presence/absence of links of a node
to all the nodes in the network. In a practical setting N could be very large.

• In addition to the connectivity, if each node has some content/attribute information,
then a matrix X of size N × D is used. Here each node is viewed as a vector of
size D, where D is the size of the vocabulary behind the content, which could also
be large.

• So, we need to represent both the structure and content data in a low-dimensional
space to facilitate efficient and accurate machine learning on the network data.

• Matrix factorization is one of the well-known techniques to reduce the dimension-
ality. This may be viewed as follows:

– We can factorize the adjacency matrix A as A = BC where A is a N × N
adjacency matrix, B is a N × K matrix, and C is a K × N matrix.

– Similarly the matrix X can be factorized as X = GH where X is of size N × D,
G is a matrix of size N × K , and H is a matrix of size K × D.

– Typically the value of K is much smaller than both N and D to facilitate dimen-
sionality reduction.

– If the structure and content in the network are in perfect agreement with each
other, then their low-dimensional representationswill also be agreeingwith each
other. This could be to the extent that the two matrices B andU are equal which
can simplify the factorizations. In practice, B andU could be different because

22 2 Representations of Networks

of noise in the correspondence. In such a case one can aim to minimize some
difference between the two matrices.

There are several well-known techniques for factorization of matrices. These are
considered in the next few subsections.

2.7.1 Singular Value Decomposition (SVD)

Singular value decomposition (SV D) is the most popular matrix factorization tech-
nique. Either a square matrix (N × N matrix) like A or a rectangular matrix (N × D
matrix) like X can be factorized using SV D.

• In general any real matrix S of size p × q can be decomposed into

Sp×q = Up×K�K×K V
T
K×q , where

– V T is the transpose of the matrix Vq×K .
– The non-zero eigenvalues of SST and ST S are the same; it is possible that some
of these eigenvalues are repeated. If p > q then SST will have at least (p − q)

0 (zero) eigenvalues. Similarly, if q > p then ST S will have at least (q − p) 0
(zero) eigenvalues. The common eigenvalues are non-negative.

– � is a diagonal matrix of size K × K . Its diagonal entries are the positive square
roots of the K largest eigenvalues of either SST or ST S, where K < min(p, q).

– These diagonal entries of � are called the singular values of S. They are non-
negative real numbers, if S is real, and are typically arranged in non-increasing
order.

– Columns ofU are the K eigenvectors of SST and columns of V are the K eigen-
vectors of ST S. These K vectors are the orthonormal eigenvectors associated
with the top K common eigenvalues.

• So, SV D can be used for matrix factorization. Further, it can be used to obtain the
principal components (PCs) of the data present in the form of the row vectors of
either A or X matrices associated with the graph representing any network.

• If the rows of the matrix S are normalized so that their mean is zero, then the
eigenvectors of ST S (columns of V) are the principal components.

• If the matrix to be factorized is symmetric, then we can decompose it using orthog-
onal matrices. For example, the adjacency matrix A will be a symmetric matrix if
the graph is undirected. In such a case we have

AN×N = PN×K DK×K P
T
K×N ,

where P is an orthogonal matrix, that is PT = P−1.

2.7 Embeddings Based on Matrix Factorization 23

2.7.2 Matrix Factorization Based Clustering

It is possible that some of the entries inU or V or both can be negative.A consequence
of this is that even the PCs can have negative entries.

• We can illustrate this using a simple example. Consider the dataset shown in
Table 2.6.

– There are four objects represented as two-dimensional patterns in the table; each
is described by the Volume of the object and its Price both in respective units.
For example, the first object has 1 unit of volume and 8 units of price.

– The sample mean of the 4 points is (2,5). So, the zero mean normalized data is
given by the matrix

Z =

⎡

⎢⎢⎣

−1 3
1 −3

−1 3
1 −3

⎤

⎥⎥⎦

– The matrix ZT Z is given by

ZT Z =
[

4 −12
−12 36

]

– The eigenvalues of thematrix ZT Z are 40 and 0 and its orthonormal eigenvectors

are

(
1√
10−3√
10

)
and

(
3√
10
1√
10

)
.

– These two vectors are the two PCs in that order and they are orthogonal to each
other and there is a negative entry in the first PC .

– This example clearly illustrates that PCs can have negative entries.

• However, there could be applications where we require only non-negative entries
in the factor matrices. Clustering or community detection is one such example.
We can explain using the example data in Table 2.6.

– Note that in the two-dimensional space characterized by Volume and Price,
pattern 1 and pattern 3 are identical. Similarly, pattern 2 and pattern 4 are also
identical.

– So, if we want to assign these 4 patterns into two clusters, then pattern 1 and
pattern 3 are in one cluster and the remaining two patterns are in the other cluster.

– Such a cluster structure may be realized using the matrix factorization, X1 =
G1H1, that is exemplified by

⎡

⎢⎢⎣

1 8
3 2
1 8
3 2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0
0 1
1 0
0 1

⎤

⎥⎥⎦

[
1 8
3 2

]

24 2 Representations of Networks

– Observe that G1 matrix (the 4 × 2 matrix in the RHS) is the cluster assignment
matrix. The two columns of G1 correspond to the two clusters. Pattern 1 and
pattern 3 are assigned to cluster 1 and the corresponding entries in column 1
are 1. Similarly, pattern 2 and pattern 4 are assigned to cluster 2 and the second
column in matrix G1 indicates this assignment.

– It is important to note that the entries inG1 and H1 are nonnegative. This property
is essential here.

– Note further that the matrix H1 is the cluster description matrix. The two rows
of H1 describe the two clusters. Here, each cluster is described by its centroid.

– In this simple example, both the patterns in each cluster are identical. In general,
a centroid-based clustering algorithm like the K -means clustering algorithm
describes each cluster by its centroid. In such a case, the i th row of matrix H1

will be the centroid of the i th cluster, for i = 1, . . . , K .
– For example, if pattern 3 and pattern 4 in Table 2.6 are changed to (1,6) and
(5,2) respectively, then the factorization, for X2 ≈ G2H2 is given by

⎡

⎢⎢⎣

1 8
3 2
1 6
5 2

⎤

⎥⎥⎦ ≈

⎡

⎢⎢⎣

1 0
0 1
1 0
0 1

⎤

⎥⎥⎦

[
1 7
4 2

]

where X2 is the modified version of X1 and G2 and H2 are respective cluster
assignment and cluster description matrices.

– Note that pattern 1 and pattern 3 are assigned to cluster 1 and the remaining two
patterns are assigned to cluster 2. In this case, G2 = G1 and H2 has the cluster
centroids (1,7) and (4,2) as its rows.

– Observe further that the factorization of X1 is exact whereas the factorization
of X2 is approximate.

– In general, any hard clustering output can be abstracted by such a non-negative
matrix factorization where X ≈ GH where each row of G will have one entry
1 and the remaining K − 1 entries 0.

– If the entry Gi j in the i th row and the j th column of G is 1, then it indicates
that the i th pattern, that is the i th row of X is assigned to cluster j .

– All other entries in the i th row of G will be 0; that is Gik = 0, ∀k
= j. This is
because in hard clustering a pattern is assigned to one and only one cluster.

– Further, H(i), the i th row of H represents the i th cluster. It could be the centroid
in the case of K -means algorithm; but in general it could any vector that is a
suitable representative of the i th cluster.

Every hard clustering output can be viewed as leading to such a matrix factorization.
For example, the output of spectral clustering also can be represented in terms of
matrix factorization.

2.7 Embeddings Based on Matrix Factorization 25

Table 2.6 Example data
matrix

Pattern Volume Price

1 1 8

2 3 2

3 1 8

4 3 2

2.7.3 Soft Clustering as Matrix Factorization

There are several applications where a natural requirement is to assign a pattern
to more than one cluster. For example, a document may share more than one
topic/cluster; for example, it may be dealing with both sports and politics. In such a
case, we require the clustering to be soft.

• Topic models like the latent Dirichlet allocation (LDA) are probabilistic and they
assign a document to more than one topic/cluster.

• In such a case, in the approximation of X as GH , the i th row of G has one or more
non-zero entries. The entries in any row of G add upto 1. Gi j could be viewed as
the probability that the i th document belongs to the j th topic/cluster.

• The i th row of H is the probabilistic description of the i th topic/cluster. In fact a
topic is an assignment of a probability value to each term in the vocabulary present
in the collection of documents.

• It is not just the LDA alone. Every soft clustering output could be represented
using an appropriate factorization of matrices.

• For example, probabilistic latent semantic indexing (PLSI) is one such example.
The output of PLSI can be abstracted as

Sp×q = Up×K ZK×K VK×q

– Here the p × q matrix S represents p documents using q vocabulary terms,
where the input is a collection of p documents and the vocabulary size is q.

– The matrix U is of size p × K . It describes p documents using K topics/soft
clusters.

– The matrix V of size K × q is a description of the K topics using the q vocab-
ulary terms. The i th row of V describes the i th topic for i = 1, . . . , K and each
row is a q-dimensional vector with one or more probability entries.

– The K × K matrix Z is a diagonal matrix that describes the strength of each of
the topics. The diagonal entry in the i th row and the i th column of Z, that is Zii

indicates the importance of topic i in the collection.

There could be applications where the factorization could be deterministic rather
than probabilistic.

26 2 Representations of Networks

2.7.4 Non-Negative Matrix Factorization (NMF)

One of the well-known matrix factorization approaches that is deterministic is the
NMF . Here, a matrix X is approximated using two factors G and H .

• It is viewed as minimizing the squared euclidean norm between X and GH . So,
It is based on

||X − GH ||2.

• This norm is the sum of element-wise deviations or the squared deviations between
Xi j and (GH)i j are added over all the elements, that is for i = 1, . . . , N and
j = 1, . . . D.

• We find G and H so that ||X − GH ||2 is minimized under the constraints that
Gi j ≥ 0 and Hi j ≥ 0 for all i and j .

• If X andG are known then finding H is a well-behaved convex optimization prob-
lem. Similarly, if X and H are given, then finding G is also a convex optimization
problem.

• So, the problem of finding G and H given X is solved by using an alternating
minimization process. Using X and some initial G, H is computed. Using X and
the obtained H ,G is updated. This process goes on till some termination condition
is satisfied.

• The solution obtained by this optimization is locally optimal. Note that several
of the factorization schemes can give us only a local optimum. These include the
K -means clustering, LDA, PLSI , and NMF .

• On the other hand SV D and the orthogonal decomposition are deterministic and
give us the exact factorization.

• The motivation behind NMF was that the factors G and H provide information
about the presence/absence of parts of objects in the data.

• Consider the example matrix factorization given by

⎡

⎢⎢⎣

1 1 0 0 1 1
1 1 0 0 1 1
0 0 1 1 0 0
0 0 1 1 0 0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0
1 0
0 1
0 1

⎤

⎥⎥⎦

[
1 1 0 0 1 1
0 0 1 1 0 0

]

• This illustrates NMF . Note that the 4 × 6 matrix in the LHS is a rank 2 matrix. It
clearly shows two linearly independent row vectors, (110011) and (001100) and

the two linearly independent column vectors

⎛

⎜⎜⎝

1
1
0
0

⎞

⎟⎟⎠ and

⎛

⎜⎜⎝

0
0
1
1

⎞

⎟⎟⎠.

• The factorization aptly captures this by exploiting the fact that the rank of the
matrix is 2 (K = 2).

• In general, the value of K is upper bounded by the minimum of N and D where
X is of size N × D.

2.7 Embeddings Based on Matrix Factorization 27

• Further note that the independent columns form the G matrix and the independent
rows form the H matrix. These basis vectors may be viewed as parts of the objects
or patterns present in X .

• Further, note that there are two hard clusters and the assignment of the first two
vectors to the first cluster and the remaining two rows to the second cluster are
depicted by the 4 × 2 matrix in the example.

• Similarly, the two rows of the 2 × 6 matrix, in the RHS of the example, capture
the description of the two clusters.

• A fundamental observation from linear algebra is that row rank = column rank =
rank of any matrix.

• This implies that clustering and dimensionality reduction have an excellent corre-
spondence as depicted in the example factorization.

Even though matrix factorization is very popular in several machine learning appli-
cations, its main drawback is that it is computationally not very attractive to deal
with large-scale network datasets. An alternative is based on random walks. We
consider in the next section, word2vec that offered the basic platform for several
state-of-the-art network embedding schemes that use random walks.

2.8 Word2Vec

It is the most influential tool in terms of its impact on network embedding schemes.
It deals with representing each word as a vector. Neural network models require real-
valued vectors as input. So, a string or a word needs to be converted into a vector
of numbers to be processed by a neural network model to carry out various tasks.
Word2vec is one of the popular techniques, and it is described below:

• Word2Vec employs a neural networkmodel with a single hidden layer. It generates
real-valued vector representations, called neural word embeddings, for all the
words in the vocabulary.

• Theseword embeddings provide ameans to calculate the similarity betweenwords,
sentences, and consequently, the documents.

• First step is to create a training corpus as follows:

– All unique words will make up the vocabulary (W), and each unique word will
be given an index between 1 and |W|, where |W| is the number of unique words.

– Word2vec uses words and their contexts, based on the principle that words with
similar context are similar.

· Context of a word is a set of all those words which occur within a window
of fixed size in a sentence with the focused word in the middle.

· Formally, the context of a word with window size fixed to ws includes ws
words before and ws words after the focused word, totaling into 2ws words.

28 2 Representations of Networks

· For example, let w1, w2, ..., wi−2, wi−1, wi , wi+1, wi+2, ...wn−1, wn−2 be
a sentence, then the context of word wi for the window of size 2 is
{wi−2, wi−1, wi+1, wi+2}.

· The training corpus contains all (word, context) pairs for all the words in
the vocabulary, such as for the word wi : (wi , wi−2), (wi , wi−1), (wi , wi+1),
(wi , wi+2) word-context pairs are in the training set.

• Given the corpus, the word embeddings can be learnt using two different schemes.

1. CBOW (continuous bag of words) takes the context words as input and predicts
the probability of the target word corresponding to the input.

2. Skip-Gram works by taking the word as input and predicting the words in its
context. So, from each pair in the training corpus, it takes the word as input
and predicts the probability distributions corresponding to the context words.

• The learned encodings have some implicit dependencies, unlike one-hot vectors.
One hot vector is a binary vector of size |W|, which will have 0s in all positions
but 1 in one location that indexes the word being encoded.

• In the following section, we will explain the skip-gram model in more detail
because skip-gramgivesmore precise results thanCBOWevenwhile using smaller
data sets.

2.8.1 Skip-Gram Model

Figure 2.4 shows the architecture of the skip-gram approach. Some important points
to observe from the figure and the working of the skip-gram model are summarized
below.

• U1 is a weight matrix of dimension |W | × d (where d is the dimension of the
word representations) between input and the hidden layer. U2 is a weight matrix
of dimension d × |W | between hidden and the output layers.

• Multiplication of the input vector with U1 gives a row of U1 corresponding to the
input. This is the vector of the hidden layer and has a dimension of 1 × d. The
output vector of dimension 1 × |W | is computed by multiplying this hidden layer
vector with U2. According to the window size (i.e., the number of the context
words), this output vector is repeated.

• In the figure, it takes one-hot vector of the word as input and generates two vectors
(VECTOR1 and VECTOR2) of probabilities. The i th index of the vector denotes
the probability of the i th vocabulary word being the input’s context word.

In general, a skip-grammodel generates 2.ws output vectors, one for each context
word, wherews is the window size. After training, the matrixU1 is the required word
representation i.e., each row of the first layer weight matrix is interpreted as the word
embedding of the correspondingword in the vocabulary. Thus the goal ofword2vec is
just to train this weight matrix of the hidden layer and each word will be represented

2.8 Word2Vec 29

Fig. 2.4 Word2vec: a
skip-gram model

by a vector of size 1 × d, where d is the dimension and the number of nodes in
the hidden layer. The main objective of word2vec is to output similar probability
distributions for the words with similar contexts, and consequently, those words
should have similar embeddings too. Precisely, the model outputs the probability of
being the context word of the input for all the words.

Moreover, when the model is trained on the entire training set, all the weights
of the model are modified for each pair in the corpus. So, on a large corpus, the
computation becomes challenging to track. Therefore, negative sampling is used to
train the word2vec model.

• Instead of updating all the weights of themodel for each training pair, it will update
the parameters corresponding to the positive word along with K negative words.

• Formally saying, for each positive (word, context) pair, it will sample k negative
(word, context) pairs and not the complete training set.

• These pairs are called negative because the pair’s context word is randomly chosen,
not from nearby words.

• Loss is propagated for these selected K entries. The corresponding weights are
updated along with the weights of the positive word by maximizing the log-
likelihood corresponding to the positive sample andminimizing the log-likelihood
of the selected negative pairs.

30 2 Representations of Networks

2.9 Learning Network Embeddings

Any network embedding method generates vectors of low dimension representing
an entity of the network such as a node, an edge, or the entire (sub)graph. These are
called node embedding, edge embedding, or whole (sub)graph embedding, respec-
tively. Different types of embeddings have diverse applications such as whole graph
embedding can facilitate the grouping of multiple graphs together. In contrast, node
embeddings are used for node classification, node clustering, and edge prediction
tasks.

• Node and Edge Embeddings:

1. The aim of node embedding is to represent each node of the network as a low-
dimensional vector.

– They preserve relations between the nodes of the network in the form of
geometric relations between node embeddings.

– Each node representation learning approach aims at preserving different
properties of the network.

– So, existing approaches differ in how they encode the similarity between
nodes and what node similarity the approach accounts for.

– For example, some approaches preserve the macroscopic structure that cap-
tures scale-free properties. Some maintain first or second-order proximities
between nodes, and other methods embed nodes based on their roles in the
network.

– These embeddings are then exploited bymanymachine learning downstream
tasks such as classification and clustering of nodes.

– Chapter 4 deals with the topic of node embeddings.

2. Edge embedding aims to encode edges of the network in a vector space.

– Edges encode node pair relations (pairwise similarity between nodes).
– Major challenges involve dealing with asymmetry, calculating edge level

similarities to encode edge semantics, and facilitating various edge-based
tasks such as link prediction.

• Graph Embedding: It aims at representing a set of nodes or an entire graph in a
low-dimensional vector space.

– Embeddings are such that the properties of the entire graph are captured using
similarity between graphs, i.e., the algorithm generates a single vector for the
whole (sub)graph.

– An important requirement is to keep similar graphs close in the embedding
space.

– These embeddings have many critical applications, from predicting the class
label of an entire graph (graph classification) to clustering graphs.

– For instance, finding anti-cancer activity, finding molecule toxicity level, and
many more can be tackled by embedding the entire graph.

2.9 Learning Network Embeddings 31

– Some algorithms first generate embeddings for nodes using node representa-
tion learning algorithms and then use any aggregation operator (mean, average,
maximum) on those embeddings to output a single vector.

– A myriad of graph pooling operations is recently developed, which output the
graph’s coarsened versions and finally represents the entire graph with a single
vector.

– A detailed discussion of these approaches is provided in Chap. 6.

Also, we can group the embedding learning algorithms into Supervised andUnsu-
pervised, as explained below:

• Supervised Learning:

– Supervised or semi-supervised learning of embeddings depends primarily on
label information to learn the model’s parameters as the loss is controlled by
actual and predicted labels.

– During the training stage, class label information and information in matrices
A (structure) and X (attribute) are exploited. Therefore more discriminative
representation learning takes place.

– Though a small proportion of nodes are labeled, labels proffer information about
the categorization of network entities.

– The learning in this setting depends on the downstream tasks such as classifica-
tion or link prediction; therefore, these embeddings may be limited to be used
for a particular task only.

– Further, collecting labels is very expensive, which is another disadvantage of
these approaches.

• Unsupervised Learning:

– These approaches can work without the label information while learning repre-
sentations.

– So, these methods can be used to learn embeddings even when class label infor-
mation is not available.

– Unsupervised learning algorithms use structural information and sometimes
attribute information (if available) during the training stage.

– Since unsupervised algorithms do not exploit any downstream task knowledge
for embedding learning; therefore, the embeddings learned are generic and task
agnostic, unlike embeddings learned by supervised approaches.

– An advantage of these embeddings is that they can be used across all downstream
tasks for further analysis, such as classification and clustering.

32 2 Representations of Networks

2.10 Summary

• We provided a brief introduction to network representation.
• Graphs are popularly used in representing networks.
• Adjacency matrix associated with the network graph captures the structural prop-
erties of the network.

• Content matrix captures the attribute information or content associated with the
nodes in the network.

• matrix factorization plays an important role in arriving at a low-dimensional rep-
resentation of the network entities and even the entire network.

• The low-dimensional embeddings obtained are useful in dealing with several ML
tasks including classification, community detection, link prediction, visualization
and network construction.

• Word2vec is the most influential tool in network embedding. Random walk over
nodes in the graph can be viewed as some kind of sentences.

• High degree nodes will appear in more such walks. The sequences of vertices
visited can be viewed like sentences where each node in the walk can be viewed
like a word.

• Soword2vec can be used in the network/graph applications to embed nodes, where
a random walk over vertices is like a sentence and a vertex is like a word in the
sentence.

• These ML tasks are instrumental in several important application domains. Some
examples are:

– E-commerce: Recommending one or more products to customers
– Education: Finding concepts that are not well understood by a student, interre-
lationships between different concepts/topics

– Health: Identifying possible drug interactions
– Transportation: Suggesting optimal routes
– Agriculture: Estimating crop yields
– Security: Locating terrorist groups

Bibliography

1. Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and
applications. arXiv preprint arXiv:1709.05584

2. Goyal P, Ferrara E (2018) Graph embedding techniques, applications, and performance: a
survey. Knowl Based Syst 151:78–94

3. Cui P, Wang X, Pei J, ZhuW (2018) A survey on network embedding. IEEE Trans Knowl Data
Eng 31(5):833–852

4. Zhang D, Yin J, Zhu X, Zhang C (2018) Network representation learning: a survey. IEEE Trans
Big Data

http://arxiv.org/abs/1709.05584

Bibliography 33

5. Debnath AK, Lopez de Compadre RL, Debnath G, ShustermanAJ, Hansch C (1991) Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correla-
tion with molecular orbital energies and hydrophobicity. J Med Chem 34(2):786–797. http://
graphkernels.cs.tu-dortmund.de

6. McCallumAK, NigamK, Rennie J, Seymore K (2000) Automating the construction of internet
portals with machine learning. Inf Retr 3(2):127–163

7. Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-enzymes without
alignments. J Mol Biol 330(4):771–783. http://graphkernels.cs.tu-dortmund.de

8. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004)
BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res
32(suppl_1):D431–D433. http://graphkernels.cs.tu-dortmund.de

9. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, LivstoneM, Oughtred R, Lackner
DH, Bähler J, Wood V, Dolinski K (2007) The BioGRID interaction database: 2008 update.
Nucleic Acids Res 36(suppl_1):D637–D640

10. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking
diameters. ACM Trans Knowl Disc Data (TKDD) 1(1):2-es

11. Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) August. Arnetminer: extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD international
conference on knowledge discovery and data mining, pp 990–998

12. Tang L, Liu H (2009) Relational learning via latent social dimensions. In: Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp
817–826

13. TangL,LiuH (2009)Scalable learningof collective behavior basedon sparse social dimensions.
In: Proceedings of the 18th ACM conference on information and knowledge management, pp
1107–1116

14. Kersting K, Kriege NM, Morris C, Mutzel P, Neumann M (2016) Benchmark data sets for
graph kernels. http://graphkernels.cs.tu-dortmund.de

15. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Advances in
neural information processing systems, pp 556–562

16. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems.
Computer 42(8):30–37

17. McCormick C (2016) Word2Vec tutorial - the skip-gram model. http://mccormickml.com/
2016/04/19/word2vec-tutorial-the-skip-gram-model/

18. McCormick C (2017) Word2Vec tutorial part 2 - negative sampling. http://mccormickml.com/
2017/01/11/word2vec-tutorial-part-2-negative-sampling/

19. NSS (2017) An intuitive understanding of word embeddings: from count vectors toWord2Vec.
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

Chapter 3
Deep Learning

3.1 Introduction

Representation is the most fundamental issue in network analysis. More generically
it affects the performance of any machine learning system. For example weight of
objects alone is adequate to classify objects into lighter andheavier classes. Similarly,
height is adequate to discriminate objects into tall and short classes. Such choices
are simple in real life and are often based on commonsense.

However, in most of the practical applications, it is not possible to come out with
a representation of the data so easily. However, a good representation is essential
for successful machine learning. This may be attributed to the raise in the usage
of deep learning systems. A routine way of appreciating deep learning is that the
underlying learning system is realized using a cascade of systems that successively
process data and pass on the information to subsequent levels; the size of the cascade
is an indication of the depth of the learning system.

A hallmark of a deep learning systems is:

• Representation Learning:
Can the system learn the representation automatically from the given data?
In order to answer this question, we need to pose additional questions like:

1. What is the size of the data required to learn the right representation automat-
ically?

2. What is the type of data that can be processed?
3. Is it required to scale/normalize the data?
4. Will the performance be affected by the order in which the data is processed?
5. Is the model learnt for one application generic enough to be used in other

applications?

Even though it is possible for a variety of realizations to answer one or more of
these questions convincingly, it is the artificial neural network based systems that are

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_3&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_3

36 3 Deep Learning

shown to answer most of these questions. So, they are the most popular and perhaps
only systems available for deep learning currently. So, it is convenient to view deep
learning and deep neural networks as synonymous; we take this stand in rest of the
chapter.

3.2 Neural Networks

Artificial neural networks (ANNs) are used by default for deep learning. Before we
go into an exposition of deep neural networks, we will examine the basic building
blocks that are essential in understanding the functionality of deep neural networks
in this section. Historically, there were several developments in the early days but
one of the simplest and important milestones was perceptron. We examine it and
then consider more deeper architectures.

3.2.1 Perceptron

The working of Perceptron may be explained using Fig. 3.1

• Let X be an l-dimensional vector corresponding to a train or a test pattern. Such

a pattern is given by X =

⎛
⎜⎜⎜⎝

x1
x2
...

xl

⎞
⎟⎟⎟⎠.

• Let φi (X), i = 1, . . . , d be features extracted from X . So, φi s are mappings from

�l to �. For example, if X is a 2-dimensional vector given by X =
(
x1
x2

)
, then

φ1(X) = x1, φ2(X) = x2, and φ3(X) = x1x2 is a possible set of 3 features. Here,
l = 2 and d = 3.

Fig. 3.1 Perceptron in the feature space

3.2 Neural Networks 37

• Theweightsw1, w2, . . ., wd indicate the importance ofφ1(X), φ2(X), . . ., φd(X)

respectively. We call the perceptron using such a generic representation as a per-
ceptron in the feature space

• The unit indicated by fa is called the activation unit where fa is the activation
function. The sum of weighted features given by

∑d
i=1 iφi (X) is the input to fa ;

fa is a function from � to �. A simple example of fa is

fa(α) =
{
1 i f α > 0
0 otherwise

(3.1)

Such an activation function fa is called a Linear Threshold Function.
• Note that Output = fa(

∑d
i=1 wiφi (X)) which in general is a nonlinear function

of the weighted sum
∑d

i=1 wiφi (X)).
• Let us consider a simple example to illustrate its working:
Example: Consider the following five 2-dimensional patterns.

Negative Class:
(
1
2

)
,

(
2
3

)

Positive Class:
(
3
1

)
,

(
4
1

)
,

(
4
2

)

– Note that we have l = 2 in this example. Further let us assume that φ1(X) = x1
andφ2(X) = x2. So, in this case l = d = 2 and the input features are the features
used.

– Using some algorithm supposewe learn the weights to bew1 = 1 andw2 = −1.
So the weighted sum is given by

∑2
i=1 wiφi (X) = x1 − x2.

– If we use the linear threshold function fa on the weighted sum, we make the
following decision:

for a pattern X =
(
x1
x2

)
, if x1 − x2 > 0, then classify X as a positive class

pattern and if x1 − x2 < 0 then assign X to the negative class.

– Note that for pattern

(
1
2

)
, x1 − x2 = −1 < 0; So, it is classified as a member

of the negative class. Similarly, for

(
3
1

)
, x1 − x2 = 2 > 0; So, it is assigned

to the positive class. Further, x1 − x2 = 0 characterizes the boundary to decide
between the two classes.

– We depict the example using Fig. 3.2. In the figure, the two patterns of the
negative class and the three patterns of the positive class are shown. Further,
the dotted line x1 = x2 or equivalently x1 − x2 = 0 is the decision boundary
between the two classes characterized by w1 = 1 and w2 = −1.

– There is another line, a broken line, which is parallel to the earlier line and is
described by x1 = x2 + 1. Note that even this line also is a decision boundary
between the two classes. It is possible to see that if there exists one decision
boundary, there can be infinite decision boundaries between the two classes.

38 3 Deep Learning

Fig. 3.2 Decision
boundaries

– The decision boundary x1 = x2 + 1 or equivalently x1 − x2 − 1 = 0 may be
explained by a different choice of φi s andwi s. If we define φ0(X) = 1 andw0 =
−1 and retain the earlier predicates and weights, then the decision boundary is
described by

∑2
i=0 wiφi (X) = −1 + x1 − x2 = 0. This is a more generic form

that relaxes the constraint that the decision boundary goes through the origin.

• In the two-dimensional example we have considered the decision boundary to be
a line and its generic form is

∑2
i=0 wiφi = 0. These ideas can be extended to

deal with binary classification (two-class) problems in any l dimensions by using∑d
i=0 wiφi as the weighted sum or input to the activation function fa . In such a

case, the decision boundary is a hyperplane.
• A popular choice for the features is φ0(X) = 1 and φi (X) = xi for i = 1, 2, . . . , l.
The advantage of this representation is that it requires d + 1 features (including
φ0) where d = l. So, the complexity is linear in the input dimension l. Let us call a
perceptron using such a representation as a perceptron in the input spaceHowever,
the resulting decision boundary cannot deal with two classes of patterns that are
not linearly separable.

• An important point is that by considering a larger value of d, it is possible to deal
with nonlinear classification problems. Specifically, when the patterns are l-bit
binary strings, it is possible to represent any boolean function on l bits using all
possible subsets (minterms of different sizes) as features.

• For example, the function odd − pari ty(x1, x2, x3) returns a 1 if x1 + x2 + x3
is odd and returns a value 0 otherwise. It is not linear in terms of the four fea-
tures φ0(X) = 1 and φi (X) = xi for i = 1, 2, 3 where X is a 3-bit binary pattern.
However by using additional features, or minterms, it is possible to represent
the odd-parity function using the form x1 + x2 + x3 − 2(x1x2 + x1x3 + x2x3) +
4x1x2x3.. Note that such a representation involves features that are nonlinear in
x1, x2, and x3 like x1x2, x1x3, x2x3, and x1x2x3.

• Any vector can be represented as a binary string of some length l on a boolean
computer. So, any classification problem based on training patterns can be dealt
with a perceptron in the feature space that employs 2l features. However, in most
of the practical problems the value of l, the number of bits could be very large and
training a perceptron using 2l features could be computationally prohibitive. That
is the reason for employing a perceptron in the input space.

3.2 Neural Networks 39

3.2.2 Characteristics of Neural Networks

Some of the important characteristics of ANNs which are related to the discussion
so far are:

• They may be viewed as linear classifiers. They can handle even non-linear classi-
fication problems using an appropriate representation.

• If the classes are linearly separable in the input (l-dimensional) space, then the
learning algorithms behind units like perceptron in the input space can find one
out of the infinite possible linear decision boundaries in the (l + 1)-dimensional
space. Popularly, perceptron in the input space is called perceptron and henceforth
we too will follow this popular terminology.

• There are other linear Classifiers including the ones based on support vector
machines (SV Ms). An SV M constrains the search space for the decision bound-
ary by specifying an appropriate objective function. It is possible to view an SVM
also as an ANN .

• It is possible to choose an appropriate activation function to realize the associated/
pre-specified nonlinearity.

• The notion of weighted sum that is used as the input of an activation function
naturally imposes a constraint on the type of data that can be processed. ANNs are
intrinsically capable of processing only numeric data unlike some other classifiers
including the ones based on decision trees and Bayes decision theory.

• Even though some of the ANNs including SV Ms normalize the data as a process-
ing step, in theory normalization is not required in using ANNs. For example, if
a component φi (X) is more important than another component φ j (X), then the
associated weight wi can be chosen to be larger than w j .

3.2.3 Multilayer Perceptron Networks

A perceptron cannot handle classes that are not linearly separable. Further, to get the
right representation is difficult. A Multilayer perceptron (MLP) is a feedforward
network that combines multiple layers, where each layer may have multiple percep-
trons. A major advantage of such a network is that it has the potential to learn the
required representation from the input data. As an example, consider the exclusive
or (XOR) function given in Table 3.1:

Table 3.1 is the truth table of the boolean function exclusive or (XOR). The
output is 1 when exactly one of the inputs is 1, but not both. The first three columns
characterize the truth table. The fourth and fifth columns in the table show equivalent
representations of the XOR function.

40 3 Deep Learning

Table 3.1 Exclusive or representations

x1 x2 x1 ⊕ x2 x1 + x2 − 2x1x2 x1x2 + x1x2

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

A perceptron cannot represent it in terms of inputs x1 and x2 alone as it is not a
linear function in these inputs. However the fourth column suggests that if we use
an additional feature x1x2 then it can be realized. Similarly the fifth column gives an
equivalent representation using the features x1x2 and x1x2. These two representations
can be represented using the following MLPs.

1. Representing XOR as x1 + x2 − 2x1x2: The corresponding MLP is shown in
Fig. 3.3.

• Note that in the figure there are three layers.
• The input layer receives the inputs x1 and x2; note that each pattern is a two-
dimensional vector here. The input layer is indicated by the presence of small
circles.

• There are two additional layers. In the output there is a perceptron whose
output is the exclusive or of x1 and x2 shown as x1 ⊕ x2. It is equivalent to
x1 + x2 − 2x1x2.

• There is a perceptron in the middle layer; it is also called the hidden layer.
• The hidden layer perceptron outputs the AND of the inputs x1 and x2, that is
x1 ∧ x2. It is characterized by the equivalent form x1 + x2 > 1; so it outputs 1
only when both x1 and x2 are 1, else a 0 (zero) exactly like an AND gate.

• The perceptron in the output layer has 3 inputs; they are x1, x2 and −2x1x2. It
outputs the sum of the three inputs giving the equivalent x1 + x2 − 2x1x2 of
the Exclusive OR of x1 and x2 and is represented by x1 ⊕ x2

2. Considering the other representation of XOR using x1x2 + x1x2, the correspond-
ing MLP is depicted in Fig. 3.4.

• Note that there are 3 layers in this case also. The inputs are x1 and x2.
• In the hidden layer there are two perceptrons. The top one outputs x1x2; it is rep-
resented by the equivalent form x1 − x2 > 0. Similarly, the second perceptron
in the layer outputs x1x2; its equivalent representation is x2 − x1 > 0.

• The output layer has a single perceptron which is an I nclusive OR gate; it has
two inputs. So, its output is x1x2 + x1x2 that is equivalent to the XOR function.

• Even though these two ANNs are very simple, early work on MLPs exploited the
results on these networks to highlight the fact it is possible to learn the weights
connecting perceptrons (or neurons as they are called) in successive layers.

3.2 Neural Networks 41

Fig. 3.3 Exclusive or represented as x1 + x2 − 2x1x2

Fig. 3.4 Exclusive or represented as x1x2 + x1x2

• MLPs are called feedforward networks as can be illustrated by using Fig. 3.4.
The outputs of the neurons in layer i become the inputs to neurons in the (i + 1)th
layer.

• If we observe Fig. 3.3, we see that the (i + 1)th layer gets inputs not only from
the i th layer but also from the earlier layers. Typically, in an MLP , the weights
connect neurons in two successive layers only.

• Learning in MLP networks amounts to starting with a set of initial weights and
keep changing or updating the weights based on some criterion.

3.2.4 Training MLP Networks

The earliest and still the most popular algorithm for training MLPs is backpropa-
gation. Before we consider the backpropagation algorithm, let us consider a related
problem of training a single perceptron using the so called delta rule.

3.2.4.1 Delta Rule

Let us consider training a single perceptron.

42 3 Deep Learning

• Let yiobt be the output obtained by the perceptron for input Xi .
• Let the target or expected output for the pattern Xi be yitar .
• Let there be n training patterns given by {(X1, y1tar), (X2, y2tar), . . . , (Xn, yntar)}.
• The idea is to start with some initial weight vector and update the weight vector
so that error between the target outputs and obtained outputs is minimized.

• The error, Error(W) is defined as

Error(W) = 1

2

n∑
i=1

(yitar − yiobt)
2 (3.2)

Here, 1
2 is used for the convenience of calculus.

• We know that yiobt = fa(Wt Xi + b) = fa(W Aug.Xaug
i) where W Aug =

(b, w1, . . . , wd)
t and Xaug

i = (1, xi1, xi2, . . . , xid)t are the augmented vectors that
subsume the bias b into W .

• So, the process of learning W and b is converted into learning Waug . Henceforth,
we use W instead of Waug for the sake of simplicity in notation. Correspondingly
Xaug
i is called Xi .

• We assume that fa is a linear function defined as fa(wsum) = wsum. So, yiobt =
fa(Wt Xi) = Wt Xi where W and Xi are augmented respectively.

• Finding the optimal W is done in the case of the delta rule by using gradient
descent. The partial derivatives involved in computing the gradient of Error(W)

with respect to W are calculated by using the chain rule:

δError(W)

δw j
= δError(W)

δyiobt
.
δyiobt
δw j

(3.3)

• Note that
δError(W)

δyiobt
= −(yitar − yiobt) (3.4)

and
δyiobt
δw j

= xi j , f or j = 0, 1, . . . , d (3.5)

by assuming that w0 = b and xi0 = 1 for i = 1, 2, . . . , n.

• So,
δError(W)

δw j
= δError(W)

δyiobt
.
δyiobt
δw j

= −(yitar − yiobt).xi j (3.6)

• So, the gradient descent that employs the negation of the gradient will mean

W (k + 1) = W (k) − η(−(yitar − yiobt)Xi) = W (k) + η(yitar − yiobt)Xi . (3.7)

3.2 Neural Networks 43

Table 3.2 Training data for
the delta rule

Pattern Value ytar

X1 0 0

X2 1 3

X3 2 6

X4 3 9

where the updated weight vector, W (k + 1) is obtained by updating the current
weight vector, W (k) and η is the learning parameter.

• It is called the delta rule or the delta learning rule because the difference (delta)
between the target output and the obtained output is involved in the computation
of the update.

• Note that the linear activation function is used instead of the linear threshold
function, popularly used by Perceptron, to ensure that δyiobt

δw j
can be computed; this

is not possible when we use the linear threshold function.
• Algorithm for Learning W :

1. Choose k = 1 and initialize W (k) with small values, and η with a small value.
2. Consider each pattern Xi in the training set and update to get W (k + 1) =

W (k) + η(yitar − yiobt)Xi . Set k = k + 1. Update till all the patterns are consid-
ered; this is called an epoch.

3. Stop if there is no change in the weight vector for an entire epoch, else iterate
by going to step 2.

• Example:

– Let us consider a function g : � → � given by g(X) = 3X . Let the training
data be as shown in the Table 3.2.

– We consider a simple perceptron with no bias that is shown in Fig. 3.5.
– Let us initialize the value of weight W (1) to 0.1 and η to 1.
– The first pattern in Table 3.2 is input to the perceptron in Fig. 3.5, It is correctly
classified as X1 = 0 ⇒ y1obt = W.X1 = 0 = y1tar . So, W (1) is not updated.

– We consider X2 = 1. The value of y2obt = W.X2 = 0.2 .1 = 0.2 and y2tar = 3.
So, W (2) = W (1) + η(y2tar − y2obt).X2 = 0.2 + 1(3 − 0.2).1 = 3.

– Using the value of W (2) all the patterns will be correctly classified. So, the
algorithm stops and the weight value is 3.

• The example considered is very simple and it is primarily used to illustrate the delta
rule based learning of the weight W . Also, it is a simple curve fitting/regression
problem that may be viewed as a generalized version of the classification problem.

44 3 Deep Learning

Fig. 3.5 Example
perceptron with bias, b = 0

3.2.4.2 Backpropagation

Let us consider a multi-layer network (MLP).

• It will have p(> 2) layers with the input layer (first layer), output layer (pth
layer), and p − 2 hidden layers. For example, in Fig. 3.4 the value of p is 3 with
one hidden layer.

• There will be nq neurons in the qth layer for q = 1, 2, . . . , p. In Fig. 3.4, there
are 2 (nq = 2) neurons in each of the input and hidden layers.

• Every neuron in layer q is connected to every neuron in layer q + 1 for q =
1, . . . , p − 1. The connections in Fig. 3.4 exemplify this.

• The weight specified by w
q
rs is the weight associated with the connection between

r th (r = 1, 2, . . . , nq) neuron in the qth layer and sth neuron in the (q + 1)th
layer.

Some important properties of backpropagation may be summarized as follows:

• Let there be n training patterns given by {(Xi , y
ip
t), i = 1, 2, . . . , n}, where yipt

stands for the target output at the pth layer (output layer) when Xi is input. Further,
Xi is a vector of dimension n1 and yipt is a vector of dimension np.

• Let wsumq+1
is be the weighted sum input to the activation function at node s in the

(q + 1)th layer for input Xi , where

wsumq+1
is =

nq∑
j=1

w
q
js y

iq j
o , (3.8)

where yiq jo is the output obtained at the j th node of the qth layer for input Xi .
• We assume that the same activation function, fa , is used at all the neurons in the
entire MLP network.

• Note that wq
js affects the final error through wsumq+1

s .
• It is a feedforward neural network. So, when training vector Xi is presented at the
input layer of the network, then yi1 jo (= Xi j) is the output of the j th node in the
first layer (input layer).

• The output of the j th node in layer q is given by yiq jo (= fa(wsumq−1
i j)).

• Let the obtained output at the j th node in the output layer be yipjo .
• We need to learn all the weights w

q
rs , q = 1, . . . , p, r = 0, 1, . . . , nq , and s =

1, . . . , nq+1. Let W be the collection of these weights.
• Training the MLP is achieved by getting W that minimizes squared error across
all the n patterns. It is given by

3.2 Neural Networks 45

Error(W) =
n∑

i=1

1

2

np∑
j=1

(yipjt − yipjo)2. (3.9)

• We use gradient descent and the update rule is given by

wq
rs(k + 1) = wq

rs(k) − η
δError(W)

δw
q
rs

(3.10)

• We can compute δError(W)

δw
q
rs

, using the chain rule similar to the one used by the delta
rule as

δError(W)

δw
q
rs

= δError(W)

δwsumq+1
is

.
δwsumq+1

is

δw
q
rs

(3.11)

• Note that δwsumq+1
is

δw
q
rs

= yiqro .

• Let errorq+1
is = δError(W)

δwsumq+1
is

. It is possible to view it as backpropagated error at node

s in layer q + 1 when Xi is input to the MLP .
• The process of backpropagation of error is initiated at the output layer; once we
know error p

i j for node j in the output layer, we propagate it back to nodes in layer
p − 1, then to nodes in layer p − 2, and so on till the nodes in the input layer.

• The error propagation is characterized by

errorqi j =
nq+1∑
s=1

errorq+1
is Wq

js f
′
a(wsumq

i j) (3.12)

• The previous error computation is a result of the following chain rule:

errorqi j =
nq+1∑
s=1

errorq+1
is .

δwsumq+1
is

δyiq jo

.
δyiq jo

δwsump
i j

(3.13)

• In propagating the error back, we first start with the output layer (layer p)

error p
i j = δError(W)

δwsump
i j

= δError(W)

δyipjo

.
δyipjo

δwsump
i j

= (yipjo − yipjt). f ′
a(wsumq

i j)

(3.14)
• This is easy to compute because for input Xi we go through the forward pass to
compute yiq jo f or j = 1, 2, . . . , nq and q = 1, 2, . . . , p. Once we have yipjo , we
can compute (yipjo − yipjt).

• The quantity f ′
a(wsumq

i j) can be computed because the form of f ′
a is known in

advance based on the functional form of fa .
• Once we compute error p

i j , for all the nodes in the pth layer (output layer), then we
can propagate back, using the earlier equation, to get error of nodes in the previous

46 3 Deep Learning

layer, and iteratively till we get error at every node in the MLP . We can use these
errors to update the weights across the network for pattern Xi .

• The process is repeated for all the patterns; such an iteration over all the patterns
is called an epoch. This process is repeated over several such epochs till some
termination criterion on the error at the output layer is met.

• During the early days of MLP research, there was more effort on

– Why linear threshold activation is inadequate? Therewas a need for an activation
function fa that is differentiable for the backpropagation of error. One of the
most popular is the sigmoid function given by fa(x) = 1

1+e−x .
– How many hidden layers are required to learn a required function on an MLP?
The universal function approximation theorem showed that one hidden layer is
adequate to approximate any function. The radial basis function networks were
based on this.

– What happens ifwe usemore hidden layers? The number ofweights in theMLP
network contribute to the dimensionality of the problem. So, more hidden layers
mean more weights and a higher dimensional problem. With smaller training
sets, the learnt MLP can overfit.

3.3 Convolutional Neural Networks

In the previous section, we have examined the MLP network. Some of the problems
associated with it are:

1. The sigmoid activation function can have vanishing or exploding gradient; so, it
is not the right activation function. This is also linked with how the initial weights
are chosen.

2. Overfitting the training data can occur if the number of hidden layers/neurons is
large; this happens if the training data is small.

3. Most of the backpropagation training scenarios used software simulations on
slower machines; in the early days people were even restricting the weights to
have integer values to run the simulations faster.

There are better and efficient processing platforms available now. We will consider
the details associated with the activation functions and weight initialization in the
next two subsections.

3.3.1 Activation Function

• Earlier Activation Functions:
In the case of delta rule, we have seen the use of the linear activation function.
It is not useful in dealing with any required nonlinearity across multiple layers

3.3 Convolutional Neural Networks 47

as it collapses multiple layers in the network into one; this is because the relation
between the input and the final output will be through another linear function. This
is similar to multiplication of several matrices giving rise to another matrix. This
prompts the use of a nonlinear activation function. A popularly used nonlinear
activation function is the sigmoid function. Some of its properties are:

– It is given by fs(x) = 1
1+e−x . So, it maps any real number to a value in [0, 1].

Further, values of the input x above 5 will take the output close to 1 and values
below −5 make the output close to 0.

– It needs to compute the exponential of the argument which could be time con-
suming.

– Its derivative is f ′
s (x) = fs(x)(1 − fs(x)). As x tends to a large value, (1 −

fs(x)) tends to 0 (zero) and if it tends to a small value fs(x) tends to zero. So,
in either case the derivative tends to 0. Thus the gradient can vanish.

– It is not zero centered. It assumes only positive values. This can affect the
resulting output badly when there are many hidden layers in the MLP .

– If the wsum is small as the initial weights are small, then the derivative of the
sigmoid function will be close to 0 and may even vanish. So, if there are more
layers to be trained, then backpropagation may fail to update the weights in
the earlier (closer to the input) layers as weights in such layers are considered
for updation towards the end of error backpropagation. This is because of the
vanishing gradient problem.

– On the contrary, if theweights are initializedwith larger values, then it is possible
to have the exploding gradient problem where the gradient can assume a value
that is prohibitively large.

– A solution offered, to handle the zero-center problem, is in the form of the tanh
function, ft , that may be defined as

ft (x) = 2 fs(2x) − 1. (3.15)

It is easy to see that ft maps any real number to a value in the rang [−1,+1].
– Both sigmoid and tanh functions are still used, even though they are not as
popular as earlier as both may have difficulty with their gradients. It may lead to
vanishing or exploding gradient problemwhich can impact the training accuracy
and time.

• Activation Functions Popular with Deep Neural Networks (DNNs)

– Rectified Linear Unit (ReLU): It is a popular activation function. It has the
following characteristics:

· It is defined as

fr (x) =
{
0 x ≤ 0
x x > 0

(3.16)

· It is popular because it is computationally simpler.
· It is used only in the hidden layers.

48 3 Deep Learning

· It works well when x is positive. Its gradient vanishes when x is 0 or negative;
so not useful for backpropagation when its input falls in this range. This is
called the Dying ReLU problem.

– Leaky ReLU: It offers a solution to the dying ReLU problem. Its properties are:

· It is defined as fl(x) = max(0.01x, x). So, it is a variant of ReLU function.
· It permits backpropagation for input values that are less than or equal to zero

also. However, in this range predictions based on fl(x) may be inconsistent.
· It trains faster then ReLU.

– Softmax: It permits us to convert a vector of values to another vector of same
size that has normalized values adding upto 1. Its characteristics are:

· It is a mapping from �np to (0, 1)np . It is specified as

fsmax (y
ipj
o) = e(yipjo)

∑np

j=1 e
(yipjo)

(3.17)

· It is used at the output layer of a DNN to convert a vector of real numbers
into vector of probabilities; the sum of the values of its outputs is 1.

3.3.2 Initialization of Weights

Different schemes have been used to initialize weights in the past.

• Zero Weights: Typically in perceptron training based on fixed increment rule, it is
convenient to start with a zero weight vector and still guarantee convergence of
the update algorithm when the classes are linearly separable. However, in the case
of a DNN , initializing all the weights to 0 or in general any constant value can
lead to highly symmetric behaviour across the network leading every weight to be
the same across the iterations.

• Random weights: It is possible to view a deep neural network (DNN) as a device
that transforms the input, to match with the desired output, through successive
layers. It is a lossy transformation. So, if we select the weights randomly, then
the information loss in the initial layers may be so bad that the backpropagation
algorithmmay not be able to abstract the desired overall mapping even over a good
number of iterations/epochs.

• Smaller or larger weights: In the previous subsection we have considered how
initialization with smaller or larger weights can lead to vanishing or exploding
gradient problems.

These issues associated with initialization were responsible for an appropriately nor-
malized scheme to work. Some important normalization schemes that try to maintain
zero mean and specified variance of the weights in the DNN are:

3.3 Convolutional Neural Networks 49

• Xavier initialization and variants:

– Here the weights in layer q, q = 1, . . . , p are initialized by

wq
rs ∼

[
−

√
6√

nq + nq+1
,

√
6√

nq + nq+1

]
(3.18)

whereweights are randomlydrawn fromauniformdistribution in the normalized
range specified.

– The bias for each neuron is initialized to 0 (zero).
– This normalization is to ensure that the weights are chosen with a zero mean
and a standard deviation that is a normalized version of 1.

– It is a replacement of earlier normalization schemes that took into account only
nq .

– This modification helps in ensuring that the activation outputs and gradients
encountered in the backpropagation runs have variances that are neither too
small nor too large.

• Kaiming Initialization:

– A variant is proposed by Kaiming He et al. where values of weights w
q
rs are

randomly chosen from the standard normal distribution and are multiplied by√
2√
nq

in this initialization.
– This works better than Xavier initialization when ReLU activation is used.
– It was observed that both training and testing errors converged to be requiring
a smaller number of iterations/epochs to converge; 20 epochs appeared to be
adequate in practice for a good performance.

• Typically these schemes conduct analysis based on looking at the variance of the
product of weights and outputs of the neurons.

3.3.3 Deep Feedforward Neural Network

Before the year 2000, it was strongly believed that one or two hidden layers are
adequate to deal with most of the machine learning tasks. One major observation
was that backpropagation is based on gradient descent and it can only guarantee
to reach a locally optimal value of the criterion function. This was the reason for
support vectors machines (SV Ms) to flourish, for more than two decades, as the
machine learning benchmark tool as it guarantees globally optimal margin based
learning in theory. However, in the past decade the earlier views ware significantly
altered due to some important contributions in the area of deep learning. It became so
important that every problem in the area of artificial intelligence (AI) is invariably
solved using deep learning. Convolutional neural network is the popular feed forward

50 3 Deep Learning

deep learning architecture. Some of the contributions related to convolutional neural
networks are discussed below:

• Convolution: It is a well-known operation in signal processing with applications
to speech signals (one-dimensional) and images (two-dimensional).

• Let I be a two-dimensional image input which is represented as an array of size
r × s; So, I has r rows and s columns.

• Let the convolution template (or kernel) T be a smaller size pattern of sizeM × N .
• The convolution output, O , that is an array of size (r − M + 1) × (s − N + 1) is
given by

O(i, j) = f (
M∑

m=1

N∑
n=1

I (i + m − 1, j + n − 1)T 1(m, n). (3.19)

The role of template T in convolution is to locate parts of the input image I that
match with the pattern present in T .

• Function f may be defined as f (x) = 1 if x > θ else f (x) = 0 where θ is a
threshold.

• Let us illustrate the convolution operation in two dimensions using the example
in Fig. 3.6.

– There are two parts labeled (a) (upper part) and (b) (lower part) in the figure.
The input image in both the parts is the same. It is a 9 × 9 binary image array
I N PUT , of character 7, consisting of 81 pixels labeled I N PUT (1, 1) to
I N PUT (9, 9). Note that r = s = 9 in this example.

– It has a horizontal line segment in the top part against I N PUT (2, 1) to
I N PUT (3, 9) (rows 2 and 3) and a vertical line segment in columns 7 to 9
across rows 2 to 9.

Fig. 3.6 Example
convolution operation on
input image of character 7

3.3 Convolutional Neural Networks 51

– In part (a), T emplate1 is used for convolution. It is a 5 × 5 binary pattern,
T emplate1 of 25 binary pixels addressed by T emplate1(1, 1) to T emplate1
(5, 5). So, M = N = 5 here.

– Further, Note that in (a) T emplate1 is aligned with the top left part in I N PUT
such that T emplate1(1, 1) is aligned with I N PUT (1, 1) and T emplate1
(5, 5) is aligned with I N PUT (5, 5).

– The pixel wise multiplication and addition as indicated in the equation for O
gives us OUT PUT 1(1, 1) = f (5). If θ = 3, then f (5) = 1. This value 1 is
indicated in OUT PUT (1, 1) in (a). If f is not used then we get the value
O(1, 1) = 5.

– By shifting one position horizontally and multiplying and adding we get
OUT PUT 1(1, 2). Further, while computing OUT PUT 1(1, 5),
T EMPLAT E1 will be aligned completely with the top 5 rows and rightmost 5
columns of I N PUT . So, moving right further is not done which will make only
a part of T EMPLAT E1 align with a part of I N PUT . Under these conditions,
the other option is to create virtual columns filled with 0s. However, we consider
alignment of the N th column of the template with the sth column of the input
and move no further.

– In order to compute OUT PUT 1(i, j) for i = 2, . . . , r − M + 1 and j =
1, . . . , s − N + 1 we need to align the top row of T EMPLAT E1 with the
i th row of I N PUT .

– This results in the output image given by OUT PUT 1 shown in (a). Note that
this template has captured the horizontal lines in the input. It is popularly called
as mask in image processing and kernel/filter is the popularly used term in
CNNs.

– Similarly T EMPLAT E2 in part (b) captures the vertical lines present in the
character image in I N PUT .

– This example is meant to illustrate the notion of convolution more than being a
real mask for use in image convolution. Further, the threshold based function f
is used here to get a binary output; such a function is not used in practice.

• Feature Maps: In a CNN , we will have multiple convolution layers. For example
in Fig. 3.6 we have seen two different templates working on the same input image.
T EMPLAT E1 looks for horizontal lines in the input; this may be viewed as
extracting one kind of feature. Similarly T EMPLAT E2 looks for vertical lines;
so extracts a different kind of feature. Each of the resulting outputs may be viewed
as a feature map. In a more generic setting, we will have

– Multiple templates/kernels each looking for a different kind of feature.
– It is possible to have more than one occurrence of a feature in the same input
image. For example, instead of character 7, if we consider the character 0 (zero)
shown in Fig. 3.7 that has two horizontal (leftmost and rightmost) and two
vertical (top and bottom) segments, then the same templates, T EMPLAT E1
and T EMPLAT E2 will each extract the respective features twice.

– In practice, we may have images that are much larger in size compared to the
small 9 × 9 input images shown in Figs. 3.6 and 3.7.

52 3 Deep Learning

Fig. 3.7 Example of character zero with two horizontal and two vertical segments

– Also there can be a good number of templates each looking for one or more
occurrences of the feature embedded in it. Correspondingly, there can be several
feature maps one for each template.

– Each hidden layer may be viewed as made up of such multiple feature maps as
many as the number of templates used in convolutions.

– The output of convolution is generally defined as

O(i, j) = f (
M∑

m=1

N∑
n=1

wmn I (i + m − 1, j + n − 1)T 1(m, n)). (3.20)

In Fig. 3.6, the value of wmn,∀m, n is taken to be 1. However, in a CNN these
weights are learnt.

– An important aspect of learning these weights is that for each feature map we
need to learn only MN + 1 weights where M × N is the size of the template
and the extra 1 is to learn the bias term associated with the node in the hidden
layer. This is an important characteristic ofCNNs and is calledweight sharing.

– Further, the value of MN + 1 is much smaller in practice than the size of the
image given by r × s.

– We have assumed that the shifting of the template, after each multiply and add
operations, is done by one column horizontally or one row vertically (by one
pixel); in such a case the stride is 1. We can have strides of length 2 or more.

• Convolution and Pooling Layers: Each convolution layer has the input and hidden
layers as shown in Fig. 3.8; a hidden layer has some L feature maps. So, the hidden
layer will have L × M × N neurons.

– In a CNN there will be more than one such convolution layer. Typically after
each convolution layer, therewill be a pooling layer to reduce the dimensionality
further.

– A pooling layer is obtained from the features maps in the hidden layer of the
previous convolution layer.

– Let the size of each feature map be u × v; so number of neurons in a feature
map is uv.

– Let the pooling be done by using a window of size k × k, where k divides both
u and v, over the feature map. This is done by considering k × k neurons in

3.3 Convolutional Neural Networks 53

Fig. 3.8 Convolution layer with multiple feature maps in the hidden layer

the feature map at a time; the window is moved horizontally and vertically in a
non-overlapping manner.

– In each window region of k2 neurons, the respective k2 outputs are pooled to
output one value that is stored in the corresponding location output of the pooling
layer.

– The output of the pooling layer is given by

Poolout (i, j) = g({ f mo((i − 1)k + 1, (j − 1)k + 1), . . . , f mo(ik, jk)})
(3.21)

where f mo(p, q) feature map output of the neuron in the pth row and qth
column of the feature map. Observe that i = 1, . . . , u

k and j = 1, . . . , v
k .

– Note that the argument of g is a set of k2 elements across rows (i − 1)k to ik (k
rors) and columns (j − 1)k to jk (k columns). They are the outputs of neurons
in the chosen k × k region in the feature map.

– The function g itself could popularly be the max , average, or L2 − norm of
the k2 values in the set.

• The overall architecture of the CNN will consist of several convolution layers;
after each convolution layer there will be a pooling layer with the output of the
feature maps in the layer forming the input of the pooling layer. The output of the
pooling layer will be the input of the next convolution layer.

• Typically the final output layer of the CNN will be a fully connected layer that is
connected to all the neurons in the previous layer.

• The CNN is trained using backpropagation. The error is propagated back from a
layer to the previous layer through the relevant weights.

Some important properties of CNN are that

• It is the state-of-the-art tool for classification and prediction.

54 3 Deep Learning

• It has been successfully used in large-scale applications where both the number
of training patterns and/or the dimensionality of the data is large. In fact it works
well only when the training data is large.

• It became popular because of its applications in image processing and speech
processing applications.

• One of the important outcomes is a variant that has become popular in network
applications in the form of graph convolutional net (GCN).

3.4 Recurrent Networks

Earlier in this chapter, we discussedMLP andCNN models. Some of the limitations
associated with them are:

• They expect inputs of predetermined size and transform them into fixed-size vec-
tors. In contrast,many real-world problems have an unknown size, such asmachine
translation, document classification tasks, whichmakes MLP andCNN type net-
works unsuitable for these applications.

• In many applications such as sentiment classification, sentence classification, etc.,
the input is a sequence of words and the computation at a step of the sequence
depends on the current word and the previous words too. But MLP assumes that
all the inputs are not dependent on each other and thus cannot process these inputs.
Therefore, we require tools to deal with sequence data, where previous words also
effect the computations at a later step.

Recurrent Neural Networks (RNNs), Long Short TermMemory (LST M), Gated
Recurrent Units (GRUs) are developed to solve the problems mentioned above. In
the next two subsections, we discuss the RNN and the LST M models in detail.

3.4.1 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a multi-layered model that processes inputs
sequentially. Some important characteristics are:

• RNN is a neural network model where previous outputs play a major role in
determining the next output. These models have shown great success in many
sequential tasks, especially in the natural language processing (NLP) domains.

• For example, a character level RNN considers each word as a single input
(sequence), each character in the word as an element of the sequence, and each
successive element is called a time step.

• RNNs use the same set of parameters for all the time steps of an input, which
not only avoids overfitting but also learns dependencies between the elements at
different time steps of the input. So, RNN performs the same operation on each
element of the serial input. Thus these models are called recurrent.

3.4 Recurrent Networks 55

• On the contrary, in a vanilla neural network, each input element is associated with
a different set of weights due to which the network cannot work with serial inputs
of varying sizes.

• RNN has hidden states or unitswhich encapsulate the relations between elements
of a serial input. Hidden states are also interpreted as memory units.

• Output calculation at each time step depends on the information present in the
hidden state and the current input, thereby updating the weights of the model and
the information in the hidden state.

• Figure 3.9 shows one time step of RNN . Figure 3.10 depicts the complete archi-
tecture of RNN .

• At each time step t, it takes the one-hot encoding of an element from the input
sequence and outputs a vector whose each entry denotes the probability of the
corresponding element being the next element in the sequence.

3.4.1.1 Working of Recurrent Neural Networks

Let us denote the input, hidden and output states at step t by xt , hst and hyt respec-
tively. Initial hidden state hs0 is generally initialized by zeros and x1 (initial input)
is a one-hot vector of the first element in a serial input.

• Current state of RNN is calculated by:

hst = σ
(
Wshst−1 + Wxxt

)
(3.22)

where xt is the present input, hst−1 is the hidden state at time step t-1 and hst is
the new hidden state at time step t. σ is an activation function (tanh or ReLU). Ws

and Wx are the collection of trainable weight parameters.
• Output state at time step t is calculated using the current hidden state

hyt = Wyhst (3.23)

where hyt and hst are the output vector and the hidden state at time step t and Wy

are the weights.
• To convert the output to a probability distribution (which is required for many
tasks such as classification), softmax activation is used on hyt ,

ot = softmax(hyt) (3.24)

• RNNs can have output at each time step or at only the final step. For example,
task of classifying the entire sequence generates only one output at the last time
step with no outputs at the intermediate time steps.

56 3 Deep Learning

Fig. 3.9 A single layer of RNN

Fig. 3.10 Complete architecture of RNN

3.4.1.2 Backpropagation Through Time

RNN is also trained using the backpropagation algorithm. The recurrent network is
a time sequence model. Therefore, backpropagation means going back in time and
hence is called Backpropagation through time (BPT T).

• First of all, the total error for an input will be the sum of errors from each step.

– Suppose loss at each step(t) is calculated by cross entropy between predicted
vector(ôt) and the actual one hot encoding(lt) of the correct output word. The
total error for all the time steps is calculated as follows:

J (ô, o) = −
T∑
t=1

ôt log(lt) (3.25)

J (ô, o) is the total error and T is the total number of time steps.

3.4 Recurrent Networks 57

• Similar to errors, gradients are also summed up over all the time steps. We get the
following equations corresponding to Ws,Wh and Wy :

∂ J

∂Ws
=

T∑
t=1

∂ Jt
∂Ws

(3.26)

∂ J

∂Wh
=

T∑
t=1

∂ Jt
∂Wh

(3.27)

∂ J

∂Wy
=

T∑
t=1

∂ Jt
∂Wy

(3.28)

Here Jt is the error at time t . Each term in the summationwill be evaluated similarly.
So we will focus on the error term at time step t.

1. First we compute gradients wrt parameter Wy . The derivation of Jt wrt Wy

depends only on the current time t . Formally, Jt depends on the predicted label
(ô) (3.25) which depends on hyt (3.24) and hyt is a function ofWy (3.23). Thus,
using the chain rule of differentiation we get the following equation:

∂ Jt
∂Wy

= ∂ Jt
∂Wy

= ∂ Jt
∂ ôt

∂ot
∂hyt

∂hyt
∂Wy

(3.29)

2. The process of calculating gradients wrt toWx andWs is different. Here we will
calculate the gradients wrt Ws , and the same process can be repeated for the
other.

– Following the same steps as used for calculating the gradients for Wy and
further noting that in RNN , Ws parameters are shared at all the time steps
because of which changes in Ws will effect the error at time step t (Jt) even
when hs1, hs2, . . ., hst−1, hst states are being computed.We get the following
equation using the points mentioned above.

∂ Jt
∂Ws

=
t∑

q=0

∂ Jt
∂ ôt

∂ ôt
∂hst

∂hst
∂hsq

∂hsq
∂Ws

(3.30)

– More generally, the third term in Eq. 3.30 is a chain of derivatives. As hsk
is a function of hsk−1 which depends on hsk−2 and this continues with first
hidden state depending only on Ws . Based on this, the above equation can
be rewritten as:

58 3 Deep Learning

∂ Jt
∂Ws

=
t∑

q=0

∂ Jt
∂ ôt

∂ ôt
∂hst

⎛
⎝

t∏
p=q+1

∂hsp
∂hsp−1

⎞
⎠ ∂hsq

∂Ws
(3.31)

· For example, while calculating gradient at time step t= 3 and examining
the effect of the change in Ws on J3 when hs1 is being evaluated.

∂ Jt
∂Ws

= ∂ J3
∂ ô3

∂ ô3
∂hs3

∂hs3
∂hs2

∂hs2
∂hs1

∂hs1
∂Ws

(3.32)

3.4.1.3 Vanishing and Exploding Gradients

The problems of vanishing and exploding gradients occur in deep feedforward neural
networks and are already discussed. These problems also exist in RNNs. In this
subsection, we discuss these problems and some existing solutions.

1. Recurrent Neural Networks suffer from the short-term memory problem, i.e.,
RNNs cannot learn dependencies between far apart elements. The diminished
information from previous time steps is the consequence of the vanishing gradient
problem.

2. Therefore, Vanilla RNNs face problems dealing with long-range dependencies.
For example, in the sentence, “Tyson had a trip to a hill station with his friend”,
“his” is used for “Tyson”, and to figure this relation, RNNs will have to remember
a lot of information.

3. More formally, the expanded Eq. 3.30 includes the chain of derivatives of ∂hs3
∂hsk

that
depends on the derivative of the activation functions. The value of the derivatives
of tanh or sigmoid activation functions can reach 1 or 1/4, respectively.

4. Also, gradients of tanh and sigmoidbecome0during saturation.As a consequence,
the gradients of neurons from far away steps approach 0. The multiplication
of such small values significantly shrinks the gradient, and after a few steps, it
vanishes, and hence those neurons will not learn anything.

5. Some existing solutions for the Vanishing Gradient problem are:

• Proper initialization of the W matrix needs to be used.
• Abetter solution is to use a variant of RNN , such as Long Short-TermMemory
(LST M) or Gated Recurrent Unit (GRU). Both these models can overcome
the problem of vanishing gradients.

6. Another problem with RNN is the exploding gradient, the opposite of the van-
ishing gradient, in which gradients become very large (will have values as NaN).
This can be solved by using a threshold value as a cap on all the gradients.

3.4 Recurrent Networks 59

3.4.2 Long Short Term Memory

The short term memory of Recurrent Neural Networks makes difficult for RNNs
to carry information from previous time steps that are far apart because gradients
become very small, and no learning can take place from that point. Long Short
Term Memory (LST Ms), an improvement over RNNs, were developed to solve
this vanishing gradient problem and handle long range dependencies between the
elements. Some essential characteristics of LST Ms are:

1. Major difference between RNN and LST M is their cell structure. Each RNN
module is a simple single layer neural network structure, while each LST M
module is a more complicated structure and uses four gates or four neural network
layers.

2. LSTM core idea is its cell state and its gates (input, forget, output).

• Cell state (represented as Ct) at time t carries and passes only the appropriate
information during training.

• Gates are used to distinguishing the important and the irrelevant information
from the cell state and based on the importance score update the cell state.

• These gates are composed of multiplication operation and a neural network
with a sigmoid layer.

3. Just like humans tend to forget unimportant words and remember only the main
parts of a speech, gates in LST M also help learn only the relevant information.
Hence, they solve problems associated with the short term memory of RNN .

4. Similar to RNNs, LST Ms too have hidden state hst at each time t.

3.4.2.1 Different Gates Used by LSTM

LST M uses various GATES for different purposes. All these gates are neural net-
works.

• Sigmoid layer is used in almost all the gates to determine the information to be
updated and the information to be discarded.

• Sigmoid function outputs values between 0 and 1, with 1 representing the most
important information and 0 representing the least important information.

• If any value in the cell is multiplied by 0, then the cell forgets that information and
does not let that information pass through; otherwise, the value is fed to the later
time steps.

Now we discuss important units of LST M architecture. In the text and equations
below, we use t to denote the current time step, hst−1 to represent the hidden state at
the previous time step t-1, and xt as input at time t.

• Forget Gate decides which values to be discarded from the cell state at the previous
time step.

60 3 Deep Learning

– It uses a sigmoid layer that takes the previous hidden state hst−1 along with the
current input xt and gives values between 0 and 1.

– All important information will have values closer to 1. The forget gate can be
described as follows:

f gt = σ(W fg[hst−1, xt] + β f g) (3.33)

Here W fg, β f g are the weights and bias terms associated with the forget gate
layer. σ is an activation function. f gt is the output of the forget gate at time step
t.

• The next step is to determine the information to be included in the cell state.

– It is done by a group of 2 layers.

· Input gate layer uses a sigmoid layer that takes the previous hidden state and
the current input and decides which information to update. Equation 3.34
describes this step.

git = σ(Wgi [hst−1, xt] + βgi) (3.34)

Here Wgi , βgi are the parameters of the input gate layer.
· tanh layer outputs values between −1 and 1. It gives a new set of entries ĉit

that can be included in the cell state. Equation 3.35 describes this step.

ĉit = tanh(Wci [hst−1, xt] + βci) (3.35)

Here Wci , βci are the parameters of tanh layer.

– Multiplication of these two outputs determines the useful entries of ĉit with the
help of sigmoid output git .

zt = git ∗ cit (3.36)

• The next step is to form the new cell state Ct from the information calculated so
far. Remember that f gt knows what to throw away and what to keep for further
states.

– To form a new cell state, the first step is to multiply the cell state Ct−1 with the
forget vector f gt .

– This helps the cell to forget unimportant information bymultiplyingwith a value
closer to zero, which is determined by the f gt entries. That way, it can focus
only on appropriate part of the sequence until the previous time step.

– We then add zt (the input gate output) to the resulting product. The result is
the new cell state, which contains the updated, appropriate information. The
following equation describes these steps.

Ct = f gt ∗ Ct−1 + zt (3.37)

3.4 Recurrent Networks 61

where zt is defined in Eq. 3.31.

• The next important gate layer is the output gate layer, which determines the next
hidden state based on the new cell state just formed.

– A sigmoid layer is used to decide the information from Ct to pass on to the next
states. It takes xt and Ct−1 as inputs.

– The next step is to use a tanh layer on the new cell state Ct .
– Finally, multiplication of these sigmoid and tanh outputs will determine the
information for the next hidden state. These steps can be described by the fol-
lowing equation:

ogt = σ(Wog[hst−1, xt] + βog)

hst = ogt ∗ tanh(Ct)
(3.38)

whereWog, βog are the parameters of the output gate layer. hst is the new hidden
state at time step t.

• Figure 3.11 shows a complete layer of the LST M model.

– This figure shows all the steps that we explained above to generate a new hidden
and a cell state by using previous hidden state, current cell state, current input
and all the gates.

– In this figure, σ represents the sigmoid layer. Each blue circle denotes one of the
layers described in the text above, and each red circle represents a mathematical
operation (element-wise multiplication or addition).

Fig. 3.11 LSTM complete architecture

62 3 Deep Learning

Fig. 3.12 Autoencoder architecture

3.5 Learning Representations Using Autoencoders

An autoencoder is a popular unsupervised model for learning representations in a
low dimensional space.

• It is a neural network that employs a non-linear transformation on the input to
compress it. This is done so that the original data can be reconstructed using this
low-dimensional representation.

• An autoencoder incorporates an encoder and a decoder. The encoder compresses
the input. The decoder decompresses the compressed input to get back the original
input. Another important component is the code, also known as the bottleneck,
which is the compressed representation of the input.

• An ideal autoencoder should be sensitive to the input to learn a less lossy recon-
struction but, at the same time, should not learn an identity mapping.

• Significant applications of autoencoders are dimensionality reduction and rep-
resentation learning. The recent development of variational autoencoders makes
autoencoders useful as generative models also.

• Figure 3.12 shows the architecture of a simple autoencoder.

– As shown by the outer boxes in the figure, the encoder comprises the input and
the hidden layers, while the decoder is made up of the hidden and the output
layers.

– Input, output, and hidden layers can have any number of units (neurons).

3.5 Learning Representations Using Autoencoders 63

– W1, b1 and W2, b2 indicate the weights, bias between input and hidden layers
and hidden and output layers respectively.

· In some cases, these weights can be tied together, such thatW2 = WT
1 , which

is sometimes used to avoid overfitting as the number of trainable parameters
is less in this setting.

• An autoencoder computes the compressed representation of the input as follows:

– The Encoder receives the input (x) (input layer) and computes the latent repre-
sentation (code) as h = σ(W1x + b1). This is fed to the decoder which outputs
the reconstructed input (z) as z = σ(W2x + b2), where σ is an activation func-
tion.

– Autoencoders are trained using gradient descent, and parameters are learned
using the backpropagation rule as used by MLPs.

– Loss function of autoencoder depends on the input x and the output z as the loss
should reflect the deviation of the reconstructed input (output of autoencoder)
from the input.

· One possible loss function is L2Norm. Let the dataset contains x1, x2, . . . , xn
samples, where n is the number of samples in the dataset. The L2 norm loss
is given by:

Loss = 1

2

n∑
i=1

|xi − zi |2 (3.39)

· It is clear from the loss function that there is no role of the label information
during training; thus, it is an unsupervised learning scheme. But autoencoders
can be trained in a supervised manner for a specific downstream task such as
the classification task.

· For the supervised classification task, some fully connected layers with the
last layer being the softmax layer, are appended. The model is trained in
an end to end fashion using cross entropy loss, which leverages the label
information. In this case, the information loss would be less.

3.5.1 Types of Autoencoders

There are many variations of autoencoders. In this subsection we briefly describe
some of them.

• Sequence-to-Sequence Autoencoder: It uses recurrent neural networks for encoder
and decoder operations. These autoencoders first convert the entire sequence to a
single lower dimension encoding, following which the decoder tries to get back
the sequence from this encoding.

• Deep Autoencoder: This is an extension of vanilla autoencoder that has many
layers in the encoder and the decoder part. The first set of layers compresses the

64 3 Deep Learning

input while the next set of layers (decoder) will reconstruct the input from the
latent representations. Also, as we go deeper, more high order or more abstract
features are learned.

• Undercomplete Autoencoder: This variant develops a generalized model with the
encoder’s output dimension (code dimension) smaller than the input dimension.
These autoencoders can ensure that the model is not copying the input and is
learning important data distribution features because a smaller code dimension
restricts the information flowing through the model. This type of model only
constraints the number of hidden units in the bottleneck layer. And there can be
cases where the hidden layer has only one neuron while encoder and decoder
having abundant capacity tend to overfit the data and, therefore, couldn’t learn
anything meaningful.

• Regularized Autoencoders: These autoencoders provide the ability to learn other
properties of data instead of copying the input to the output even if the encoder
and decoder have the superabundant capacity or the encoder output dimension is
equal to or greater than the input dimension. Regularized autoencoders leverage
a loss function which helps learn only the variations and not the redundancies in
the data and further avoids overfitting.

• Various regularization techniques are used in order to prevent encoder and decoder
from learning the identity functions.

– Denoising Autoencoders: These autoencoders add some random gaussian noise
to the inputs before training. However, the model still reconstructs the uncor-
rupted data because the model loss depends on the original input and not on the
noisy input. This acts as a regularizer and helps autoencoders distinguish more
essential parts of the input as these autoencoders try to undo the corruption. The
loss function is as follows:

Loss = 1

2

n∑
i=1

|xi − ẑi |2 (3.40)

Here ẑi is the output of the model with input being the corrupted data. Same
mechanism can be applied at any layer of the autoencoder.

– Sparse Autoencoder: This variant minimizes the number of non-zero entries in
the latent representation. It constrains the capacity of the model by penalizing
the activations within the hidden layer, and hence without any limitation on
the number of nodes in the hidden layer, the model can learn the input data
distribution irrespective of the encoder and decoder capacity.

3.6 Summary 65

3.6 Summary

Deep learning is an important topic that has found applications in several areas.

• The availability of large scale datasets and powerful computing platforms have
played an important role making deep learning possible.

• Deep neural networks form the de facto tools for deep learning.
• Perceptron is one of the earliest and themost basic neural networkmodels. It forms
the basis for a variety of neural network models.

• The need and importance of MLPs is considered next. Backpropagation is the
training algorithm that was important in training MLP networks.

• The difficulty in increasing the number of layers was analysed to identify the
vanishing and exploding gradient problems.

• Important contributions behind the design and training of deep neural networks in
the form of activation functions like ReLU and softmax are examined.

• Another important contribution behind the success of deep neural networks is the
weight initialization and updating.

• Other factors that impacted deep learning include convolution, pooling and weight
sharing.

• Several important deep learning models including CNN , RNN , LST M and
autoencoders are considered.

• CNNs have been extensively used in image processing and speech processing.
• For analysing sequence data RNNs and LST M are popularly used. They find
applications in natural language processing and biological sequence data.

• Autoencoders are the most popular dimensionality reduction tools that can com-
press input data using a non-linear transformation.

• We considered some of the important properties associated with CNNs, RNNs
and autoencoders, the difficulties in training these models, and solutions provided.

• The deep learning models are important in the context of network data analysis.
We will consider specific roles of CNNs, autoencoders and RNNs in the context
of network embeddings in the later chapters.

Bibliography

1. Bishop CM (2005) Neural networks for pattern recognition. Oxford University Press
2. Murty MN, Raghava R (2016) Support vector machines and perceptrons. Springer briefs in

computer science
3. Loiseau JCB (2019) Rosenblatt’s perceptron, the first modern neural network,

https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-
37a3ec09038a/

4. Mazur M (2015) https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-
example/

5. Nielsen MA (2015) Neural networks and deep learning, vol 2018. Determination Press, San
Francisco, CA, USA

https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a/
https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

66 3 Deep Learning

6. Mhaskar HN, Micchelli CA (1994) How to choose an activation function. In: Advances in
neural information processing systems, pp 319–326

7. Wu J (2017) Convolutional neural networks. Published online at https://cs.nju.edu.cn/wujx/
teaching/15CNN.pdf

8. Britz D (2015) Recurrent neural networks tutorial, part 3 - backpropagation through
time and vanishing gradients, http://www.wildml.com/2015/10/recurrent-neural-networks-
tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

9. WolfW (2016)Recurrent neural network gradients, and lessons learned therein, http://willwolf.
io/2016/10/18/recurrent-neural-network-gradients-and-lessons-learned-therein/

10. Gupta DS (2017) Fundamentals of deep learning - introduction to recurrent neural networks,
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/

11. Olah C (2015) Understanding LSTM networks, https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

12. Srivastava P (2017)Essentials of deep learning : introduction to long short termmemory, https://
www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-
lstm/

13. Nguyen M (2018) Illustrated guide to LSTM’s and GRU’s: a step by step expla-
nation, https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-
explanation-44e9eb85bf21/

14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, http://www.
deeplearningbook.org/

15. Jordan J (2018) Introduction to autoencoders, https://www.jeremyjordan.me/autoencoders/
16. Choi HI (2019) Lecture 16: autoencoders (Draft: version 0.7. 2)

https://cs.nju.edu.cn/wujx/teaching/15CNN.pdf
https://cs.nju.edu.cn/wujx/teaching/15CNN.pdf
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
http://willwolf.io/2016/10/18/recurrent-neural-network-gradients-and-lessons-learned-therein/
http://willwolf.io/2016/10/18/recurrent-neural-network-gradients-and-lessons-learned-therein/
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21/
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://www.jeremyjordan.me/autoencoders/

Chapter 4
Node Representations

4.1 Introduction

A major issue in implementing ML schemes is the dimensionality of the data. If
there is a sufficient amount of training data, then it is easy to train the ML models
successfully, especially by using deep learning (DL) methods as they can learn the
appropriate representations. However, even these DL models can succeed only if
there are powerful machines and large datasets for learning the model.

In most of the current day applications, there is still a challenge to deal with high-
dimensional datasets where the number of data points is not too large. For example,
in social network analysis, we have to deal with adjacency matrices of size N × N ,
where N is the number of nodes in the network represented as a graph. Here the
dimensionality of each node is as large as the number of nodes in the network.

There are several applications involving networks. For instance, discovering new
patterns in a drug-disease network helps develop new treatments, recommending
friends in a social network, clustering publications in a citation network to find
related domain papers, and find communities of users in a user interest network,
which helps in appropriate broadcasting of news.

So, there is a natural requirement to employ ML tasks on the network datasets
to carry out meaningful analysis of the underlying data. The downstream ML tasks
include classification and clustering. In such cases, we require a low-dimensional
representation of the network dataset. In this chapter, we deal with embedding net-
work data in a low-dimensional space. Specifically, we examine various embedding
schemes that can be used to embed nodes and edges in a low-dimensional space to
facilitate the required downstream ML tasks.

The node-level downstream tasks include node classification, node clustering,
recommendation, link prediction, and visualization. In this chapter, we discuss some
node representation techniques based on random walk, matrix factorization, or deep
learning methods. Further, some algorithms learn representations in an unsupervised

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_4&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_4

68 4 Node Representations

setting while others learn in a supervised setting. We finally present comparisons of
these algorithms according to their performance on downstream tasks.

4.2 RandomWalk Based Approaches

To learn embeddings, the algorithm should at least consider the network structure.
The most straightforward representation can be formed using the adjacency vector
that only captures first-order neighborhood structure but has many disadvantages,
including high dimensionality and sparsity. In this section, we discuss random-walk
based node representation algorithms.

A random walk rooted at node vi is a sequence of nodes {v1
i ,v

2
i ,. . .,v

l
i} where, v

k
i

is the vertex at step k in the walk and is randomly selected from the neighbors of the
node at the previous step in the random walk i.e., from neighbors of vk−1

i . Random
walk based algorithms learn node embeddings by transforming the network into a
collection of random walks, treating them as sentences in a language and applying
the skip-gram model.

4.2.1 DeepWalk: Online Learning of Social Representations

DeepWalk is an unsupervised method based on the random walk technique. It learns
representations of nodes by modeling a set of random walks. Let us consider a graph
G(V, E) where V is the set of N nodes, and E is the set of edges.

• DeepWalk aims to learn the latent embeddings of the nodes. For this, DeepWalk
introduces a mapping function g : vi ∈ V �→ RN×d , where g(vi) ∈ Rd is the low-
dimensional representation of node vi using dimension d.

• A set of ρ walks of length L is sampled for each node in the graph. At each step
of a walk, a node is sampled uniformly from the previous node neighbors in the
walk, which is repeated until the maximum length L is achieved.

• For example, consider the graph in Fig. 4.1, some random walks rooted at
vertex g can be: (g, d, e, f, a, b, c) (orange color arrows depict this walk),
(g, d, e, f, c, b, a) and (g, d, c, b, a, f, e).

Fig. 4.1 An illustration of
random walk rooted at
node g

4.2 Random Walk Based Approaches 69

• Following the walk generation, it exploits the skip-gram model by considering
each sampled walk as a sentence and the nodes of the walk as the words in the
sentence to learn the latent representations of the nodes.

– Like the context of a word, the context of a node in a walk consists of the nodes
appearing on the right side and the left side within a window of size k around
the given node.

– Let us consider in Fig. 4.1 the randomwalk g, d, e, f, a, b, cwith starting vertex
g. In this example, if we consider a window of size K = 2, then the context of
node f is the collection of nodes {d, e, a, b}.

More precisely, for each walk in the set, the following steps are performed.

• DeepWalk iterates over each node vi , called the source node, in the walk, and first
maps the node vi to the respective current representation g(vi) and then traverses
through all its context nodes.

• Finally, DeepWalk maximizes the likelihood of observing the neighboring nodes
(i.e., the context nodes) given the representation of the source node vi , described
by the following optimization problem:

min
g

− log Pr(vi−k, . . . , vi−1, vi+1, . . . , vi+k |g(vi)) (4.1)

Here {vi−k, . . . , vi−1, vi+1, . . . , vi+k} is the set of context nodes of vi using a
window size k. The minimization is done over g.

• Further, some relaxations are made to reduce the computational cost.

– First, DeepWalk removes the ordering constraint and maximizes the probability
of any context nodewithout using the information of its distance from the source
node.

– Second,DeepWalk exploits the conditional independence assumption, i.e., given
the representation of vi , the probability of observing a context node is indepen-
dent of other context nodes.

• Hence, Eq. 4.1 can be approximated using these assumptions as following:

min
g

−
j=i+k∑

j=i−k, j �=i

logPr(v j |g(vi)) (4.2)

Here Pr(v j |g(vi)) is the probability distribution which can be modeled using
logistic regression.

• But this would lead to N number of labels (N is the number of nodes), which could
be very large. Thus, to approximate the distribution Pr(v j |g(vi)), DeepWalk uses
Hierarchical Softmax. Each node is allotted to a leaf node of a binary tree, and the
prediction problem becomes maximizing the likelihood of a particular path in the
tree.

70 4 Node Representations

The architecture of DeepWalk learns embeddings such that nodes will be closer in
the embedding space if they share the same neighborhoods in the graph and hence
preserving second and high order proximities.

4.2.2 Scalable Feature Learning for Networks: Node2vec

node2vec is another random walk based algorithm to learn node representations. Let
g : V �→ RN×F be the function that maps nodes to their F dimensional embedding
vectors, which node2vec aims to learn with g(i) representing the embedding of node
i . We first discuss the random walk generation procedure of node2vec.

Breadth-First Search (BFS) strategy limits the search to nearby nodes, i.e., local
neighborhood, and captures amicroscopic view that is essential and sufficient to infer
the structural equivalences. Hence, BFS samples neighborhoods that lead to node
representations such that structurally equivalent nodes remain closer in the embed-
ding space. On the other hand, Depth First Search (DFS) can move far away from
the root and represent the macroscopic view, which characterizes the communities
according to homophily.

Building on this, node2vec designs a flexible biased random walk (neighborhood
sampling strategy) that interpolates between breadth-first and depth-first strategies
to traverse (sample) neighborhoods:

• Suppose wi is the i th node in a random walk rooted at node u. If (u, s) ∈ E , node
wi is produced by distribution P(wi = s|wi−1 = u) = πus

Z , else it is 0. Here, πus

is the transition probability from u to s and Z is a normalizing constant.
• Formally, node2vec defines a second order walk, i.e., if the walk just crossed the
edge (z, u), it selects the next node in the walk from the neighbors of u. Let that
node be s, which is at distance dzs of either 0 or 1 or 2 from node z. Thus, node2vec
assesses the transition probability πus for traversing edge (u, s) to visit node s.

• node2vec fixes the normalized transition probability πus as:

– if dzs = 1, then πus = 1.wus

– if dzs = 0, then πus = 1
p .wus

– if dzs = 2, then πus = 1
q .wus

Here wus is the weight of edge (u, s) and the probability is managed by p and q
parameters (discussed below).

• For instance, consider the graph in Fig. 4.2. We assume that we have reached node
g from node e after traversing the edge (e, g). The walk visits the next node, a
neighbor of node g, i.e., one of {b, c, f, e, d}. Note that the set of distances between
node e and {b, c, f, e, d} is {2, 1, 1, 0, 2}. Different colors show nodeswith different
distances from node e. Each edge label shows the transition probability according
to the distance of the respective node from node e.

• Two parameters control the transition probability, return parameter p, and in-out
parameter q.

4.2 Random Walk Based Approaches 71

Fig. 4.2 An overview of 2nd
order random walk in
node2vec. The walk has
transitioned to node g from
node e. Next, it is assessing
the next node in the walk
after node g. Labels on the
edges denote the transition
probability from g to its
neighbors

– p controls the probability of immediately sampling an already visited node. A
smaller value of p makes sure that it is highly likely to revisit a node in the next
two steps and walk remains close to the start (root) node. On the contrary, it
avoids redundancy in 2-hops if p is fixed to a high value.

– On the other hand, q allows the walk to differentiate between the inward and
the outward nodes. If q > 1, then the walk is likely to visit nodes near the node
z while if q < 1, then walk is biased to the nodes farther from node z. Hence,
node2vec can approximate BFS behavior when q > 1, which motivates the
inward exploration, while DFS like exploration when q < 1, which motivates
the outward movement.

So, node2vec samples multiple neighborhood setsNi of fixed size for each source
node vi using the second order-randomwalk strategy. node2vec then follows the skip-
gram model, and similar to DeepWalk, node2vec maximizes the log-likelihood of
visiting the neighborhoodNvi of vi given the representation of node vi described by
mapping g.

Further, to make the optimization manageable, node2vec makes some assump-
tions.

• First, the conditional independence assumption, which factorizes the log-
probability by assuming that the likelihood of observing a context node does not
depend on the knowledge of other context nodes, conditioned on the representation
of node vi .

• Second, the symmetry in the feature space states that the source and the context
nodes have a symmetric impact on each other in the feature dimension.

Hence, node2vec models the log-probability of each node-context pair as a soft-
max unit. This unit is described by the dot product between their features. The
following equations summarize the optimization problem:

72 4 Node Representations

min
g

−
∑

v j∈Nvi

log P(v j |g(vi)) where,

P(v j |g(vi)) = exp(g(vi).g(v j))∑
vk∈V

exp(g(vk).g(vi))
(4.3)

In the above equations,Nvi is the neighborhood set of node vi and V is the set of all
the nodes. Moreover,∑
vk∈V

exp(g(vk).g(vi)) is infeasible to calculate, and hence P(v j |g(vi)) is approxi-
mated by using the negative sampling technique as is done in word2vec.

4.3 Matrix Factorization Based Algorithms

4.3.1 Network Representation Learning with Rich Text
Information

Most network representation learning (N RL) algorithms consider the network struc-
ture, but they do not integrate node attributes. A trivial way is to learn representa-
tions from node features and the network structure independently and then merge
them to form a single representation. However, this approach will lose the impact of
the important interactions between node attributes and the network structure. Text-
associated DeepWalk (T ADW) architecture provides a solution for this and inte-
grates the structure and the text features of the nodes in the representation learning
under matrix factorization.

LetG = (V, E)be agraphwith a set of N verticesV and a set of edges E . Suppose,
A ∈ RN×N is the normalized adjacencymatrix of graphG such that if (i, j) ∈ E then
Ai j is equal to the 1/(degree of node i) and if (i, j) /∈ E then Ai j = 0.

• T ADW first proves the equivalence between the DeepWalk and matrix factoriza-
tion. Let P ∈ RN×N be amatrix where Pi j is the log of the average probability, i.e.,
the probability of node i visiting node j randomly in a fixed number of steps(t).

– DeepWalk factorizes P into two matrices Z ∈ Rk×N and S ∈ Rk×N , where each
column of Z is the k-dimensional representation of node and each column of
S is the k-dimensional representation of the context node and further k � N .
DeepWalk aims to solve Z and S to minimize:

min
Z ,S

||P − ZT S||2F + λ

2
(||Z ||2F + ||S||2F) (4.4)

• Next, TADW is proposed, aiming to integrate node featureswith the network struc-
ture to learn enhanced node representations using inductive matrix completion.

• So, TADW aims to solve Z and S to minimize the following:

4.3 Matrix Factorization Based Algorithms 73

min
Z ,S

||P − ZT SB||2F + λ

2
(||Z ||2F + ||S||2F) (4.5)

Here, B ∈ RD×N is the matrix of the original D dimensional node features.
• In DeepWalk, the i j th entry of matrix P is Pi j = log([ei (A + A2 + · · · + At)] j/t .
But in TADW, the matrix P = (A+A2)

2 is factorized as there are more non-zero
entries in log P , and the complexity of the matrix factorization with square loss
increases in proportion to the number of non-zero elements in the matrix.

• Both matrices Z ∈ Rk×N and SB are considered as the low dimensional node
representations, and in TADW, they are concatenated together to form the final
2K dimensional node representations.

4.3.2 GraRep: Learning Graph Representations with Global
Structural Information

Network representation learning schemes discussed so far do not capture k-step
(k > 2) relations between nodes. GraRep is based on the view that the k-step relations
between nodes are essential to capture the global structural information of the graph.

• GraRep encodes k-step relations between nodes, with various values of k, by
exploiting multiple higher-order transition matrices associated with the graph and
defines distinct loss functions for encoding various k-step relations.

• GraRep aims at generating a global representation matrix W ∈ RN×F where F is
the feature dimension, and i th row of W denotes the representation of node i .

• These embeddings encapsulate the respective graph’s global structural details by
examining different connections of the nodes in respect of different transition steps
and encoding long-range relationships between nodes.

• Transition Matrix:

– Given nodes i and j , GraRep aims to get global representations that encode the
distant relations between these nodes, which requires studying the strength of
their relations.

– For this, it is checked to see if a path exists between the nodes and then compute
the probability of transition (pk(j |i)) from node i to node j in k steps.

– The 2-step transition probability matrix is A2 = A.A, 3-step transition matrix
is A3 = A.A.A, and likewise, k-step transition matrix is Ak . The probability of
k-step transition from node i to node j (pk(j |i)) is given by the i j th entry of
Ak i.e., Ak

i j .

• Loss Function:

– For each k, GraRep first samples all paths of k steps which start with i and end
at j .

74 4 Node Representations

– The goal is to maximize the probability of all such i j pairs that belong to graph
G and minimize the probability of all the other pairs which are not from the
graph.

– Inspired by the skip-gram model, the NCE (Noise Contrastive Estimation) is
exploited to define the objective function.

– For each k ∈ {1, . . . , K }, GraRep defines the k-step loss function for the com-
plete graph as:

Lk =
∑

i∈V
Lk(i) where,

Lk(i) =
(∑

j∈V
pk(j |i) log σ(

−→
i .

−→
j)

)
+ γE j ′∼pk (V)[log σ(−−→

i .
−→
j ′)] (4.6)

Here pk(i | j) is the probability of transition from node i to node j in k-steps,
σ is a sigmoid activation function, hyperparameter γ is the number of negative
samples. E j ′∼pk (V) is the expectation when j ′ follows the distribution pk(V),
where j ′ is a negative sample.

– For large k, transition probabilities converge to a particular value and hence,
pk(j) is calculated as:

pk(j) =
∑

i ′
q(i ′)pk(j |i ′) (4.7)

Here q(i ′) denotes the likelihood of node i ′ being the starting node which is 1
N

as it is assumed to follow a uniform distribution.

Matrix Factorization Based Optimization: GraRep follows the matrix factor-
ization version of the skip-gram model. But GraRep encodes the higher-order prox-
imity between two nodes such that nodes having common neighbors at k-step (1 ≤ k)
will have similar embeddings.

For each k ∈ {1, . . . , K }, GraRep describes the context nodes as the k-step neigh-
bors and performs a three step process to learn k-step representations for all the
nodes.

• First, GraRep calculates a k-step transition probability matrix T k .
• Second, it computes the k-step representation, ∀k = 1, . . . , K . It uses SVD to
factorize the log probability matrix as follows:

Xk = Skσ k(Wk)T

Xk ≈ Skdσ
k
d (Wk

d)T (4.8)

Here Skd and Wk
d are the d columns of the respective matrices; σ k

d are the top d

singular values and the matrix Skd

√
(σ k

d) denotes the node representations.
• Lastly, it concatenates all the learned k-step representations to get a final repre-
sentation for each node.

4.4 Graph Neural Networks 75

4.4 Graph Neural Networks

Representation learning is vigorously impacted by the advent of deep learning, which
led to the introduction of Graph neural networks (GNNs). GNNs have gained
significant attention for node representation and classification tasks.

Graphs belong to a non-Euclidean space and are irregular structures with an
unordered sequence of nodes. Further, nodes in a graph are dependent on each other
because of the existing relations (edges). These properties foist problems for down-
stream tasks, and unlike images or text,machine learning tools cannot be used directly
on graphs. GNNs map nodes from non-Euclidean space to Euclidean space by lever-
aging both the node attributes and the structure.

Given a graph G = (V, E), where V denotes the set of nodes and E denotes
the edge set, GNNs learn node embeddings by aggregating node features from the
neighbors of the node as:

• First, AGGREGAT E function computes the aggregation of the embeddings of
neighbors of node i and outputs a single vector uk+1

i as described below:

uk+1
i = AGGREGAT Ek

({
hkj : j ∈ N(i)

})
(4.9)

Here hki describes the output embeddings of node i in the kth GNN layer, and
NG(i) is the neighbor set of node i . The AGGREGAT E function should be
permutation invariant because neighbors of nodes are not in a consistent order
across all the nodes and should also work with variable neighborhood sizes.

• Finally, theCOMBI N E function combines the embedding vector of the i th node
from kth layer and the aggregated representation vector of the neighbors of node
i (uk+1

i) to output an updated embedding vector of node i in k + 1th GNN layer
as described by the equation below:

hk+1
i = COMBI N El

(
hki , u

k+1
i

)
(4.10)

In this section, we discuss some state-of-the-art GNN based algorithms for learn-
ing node representations.

4.4.1 Semi-Supervised Classification with Graph
Convolutional Networks

Graph Convolutional Network generalizes the convolution operator to the graph
domain. Formally, graph convolutional network (GCN) computes a weighted mean
of the representations of the neighbors of a node to find the representation of the
node. It performs in a transductive setting and needs the complete train and test sets
during the learning stage.

76 4 Node Representations

• GCN takes the following as input for a graph G = (V, E), where V is the set of
nodes and E is the set of edges:

– An adjacency matrix A ∈ R
N×N (where N is the number of nodes |V |) describ-

ing the structure of the graph.
– A node feature matrix X ∈ R

N×D where N is the number of nodes and D is the
feature dimension. Xi denotes the feature vector of node i .

• Given these inputs, the layer-wise propagation rule (lth layer) of graph convolution
can be defined as:

Hl+1 = σ(D̂− 1
2 ÂD̂− 1

2 HlWl) (4.11)

Here Hl ∈ RN×F ′
is the node representation matrix in the lth GCN layer with

D feature dimension. Â = A + IN denotes the adjacency matrix with a self loop
at each node of G. D̂ ∈ R

N×N is the diagonal degree matrix, and i th diagonal
entry is d̂i = ∑

j∈{1,2,...,N }
Âi j . Wl ∈ R

F ′×F ′
is a convolution matrix with feature

dimension F ′ (except W 0 ∈ R
D×F ′

), which is shared across all the nodes of the
graph.σ() is an activation function such asReLUand the initial node representation
matrix H 0 = X . The final node representation matrix Z is equal to the output
representation matrix HL in the last GCN layer L .

• At last, one more GCN layer with convolution matrix WP ∈ RF ′×C , where C is
the number of distinct node labels, and with an activation function σ that is set to
softmax is added to generate predictions Y ∈ RN×C for node classification task.

• Finally, the cross-entropy loss is calculated to perform semi-supervisedmulti-class
classification as:

L =
∑

i∈NL

C∑

j=1

Yi j logOi j (4.12)

Here Y and O are the predicted and actual labels sets and NL contains the indices
of labeled nodes.

Further, this propagation rule solves two issues.

• First, it adds self-loops in matrix A so that the computation of a node embedding
considers the node features along with its neighbor’s features. Thus, Eq. 4.11
computes the new representation matrix in layer l + 1, denoted by Hl+1, as the
aggregation of the embeddings of the neighbors and the node itself.

• Second, matrix A is normalized by the degree matrix D. This makes the scale of
the features of all the nodes the same because the sum of the degrees for each node
is equal to 1 after normalization.

4.4 Graph Neural Networks 77

4.4.2 Graph Attention Network

Another GNN based supervised model to learn the representation of nodes is Graph
Attention Network (GAT), which uses attention in the GCN framework.

• GAT leverages self-attention on the graph domain to learn the importance of a
node in determining the label of another node. More precisely, GAT captures the
significance of a node to the embedding of another node in its neighborhood by
training an attention vector.

• The following equations compute the attention scores for node pairs:

cpq = LeakyReLU
(
aT [Wz p‖Wzq]

)

βpq = softmaxq
(
exp(cpq)

)

= exp
(
LeakyReLU

(
aT [Wz p‖Wzq]

))
∑
i∈Np

exp
(
LeakyReLU

(
aT [Wz p‖Wzi]

)) (4.13)

– In these equations, zq ∈ Rk is the feature vector of qth node with feature dimen-

sion k, W ∈ Rk×k
′
is a trainable weight matrix where k

′
is the output feature

dimension, || denotes the concatenation, and Np denotes the set of immediate

neighbors of node p, including node p itself; a ∈ R2k
′
, which is a weight vector

of a single layer neural network, and LeakyReLU non-linearity, are used to learn
the attention mechanism which computes the attention coefficient cpq .

– The attention coefficient cpq denotes the importance of the features of node q to
node p. cpq is normalized across the neighbors (∀q ∈ Np) of pth node to make
the attention coefficients comparable across all the nodes. These normalized
scores are denoted by βpq .

– Also, the attention coefficients cpq are computed only for nodesq ∈ Np (only for
those pairs of nodes that are first-order neighbors), i.e., GAT performs masked
attention, henceforth, inducing the structure of the graph.

• These learned normalized attention values are further used to calculate the lin-
ear combination of the corresponding feature vectors to calculate the new output
features of each node as follows:

z′
p = σ

(∑

q∈Np

βpqWzq
)

(4.14)

Here βpq is the attention score calculated in Eq. 4.13, σ is the non-linearity, and
z′

p ∈ Rk is the new output feature vector of node p. Until here, we have discussed
a single head GAT layer, which can also be extended to multi-head attention
by learning r different attention mechanisms with separate linear transformation
weights and parameter a for each head.

78 4 Node Representations

– For multi-head attention GAT layer, the output features of node p are computed
as:

z′
p =

∣∣∣
∣∣∣
r=R

r=1
σ
(∑

q∈Np

βr
pqW

r zq
)

(4.15)

Here, Wr is the transformation weight matrix for head r , βr
pq is the normalized

attention score determined by the attention head r , and || is the concatenation
of the features from all the heads to learn the final feature vector z′

p.
– Moreover, if the last GAT layer (i.e., prediction layer) also computes multi-head
attention, then instead of concatenation, the sum operator is used to calculate
z′
p as follows:

z′
p = σ

(1
r

R∑

r=1

∑

q∈Np

βr
pqW

r zq
)

(4.16)

Here σ is either the sigmoid or softmax non linearity to convert the output of
this layer into predictions, and Wr ∈ RN×C with C distinct node labels is the
transformation weight matrix for head r in the prediction layer.

4.4.3 Inductive Representation Learning on Large Graphs
(GraphSAGE)

GraphSAGE was introduced as an improvement over GCN. Many GNN based
approaches are transductive, i.e., all node features and their corresponding connec-
tions are leveraged during training, which implies that for new nodes, the model
will have to be re-trained. But GraphSAGE introduces an inductive framework that,
instead of learning representations for each node separately, learns a set of aggregator
functions that sample and aggregate the information from the local neighborhood of
a node to learn the node’s representations. During the testing stage, these trained
aggregator functions are used to generate representations for the new nodes.

Let G = (V, E) be a graph with a set of N nodes V and a set of edges E .

• GraphSAGE combines information present in the node and the node’s local struc-
ture for generating new latent representation as follows:

ztNi
= AGGREGAT Et

({zt−1
j ,∀ j ∈ Ni }

)

zti = σ
(
Wt .[zt−1

i ‖ztNi
]) (4.17)

– Here Ni denotes a fixed size set of uniformly sampled immediate neighbors of
node i .

– AGGREGAT Et function, ∀t ∈ {1, . . . , T }, aggregates embeddings of the
immediate neighbors of the node, {zt−1

j ,∀ j ∈ Ni }, and generates vector ztNi

representing the neighborhood of node i .

4.4 Graph Neural Networks 79

– The aggregation step operates on embeddings from previous layer, such as
AGGREGAT Et uses embeddings from layer t − 1.

– At layer t = 0, these embeddings are the input node features.

• Next, GraphSAGE concatenates the neighborhood vector, ztNi
, with the embedding

vector from the previous layer of node i , zt−1
i .

• Finally, the embedding of node i in layer t is computed by linearly transforming this
concatenated vector using weight matrix Wt and applying a nonlinear activation
function σ on this transformed vector.

– These weight parameters Wt transmit features between different layers (or
different depths or different AGGREGAT E functions). The generated node
embeddings are used by the next layer, i.e., AGGREGAT Et+1 function.

• To learn neighborhood aggregation,GraphSAGE introduces three aggregator func-
tions: mean aggregator, pooling based aggregator, and LSTM aggregator.

– The mean aggregator takes the mean of the neighbor’s embeddings to derive a
representation of the node’s local neighborhood structure.

– LSTMaggregator applies LSTM to a random permutation of the representations
of the node’s neighbors to generate a representation of the node’s neighborhood.

– The pooling aggregator passes feature vectors of a node’s neighbors through a
neural network and aggregates these transformed features using themax-pooling
operator.

• Further, GraphSAGE introduces a graph-based unsupervised loss function (dis-
cussed in the Eq. 4.18 below), making nearby nodes identical and distant nodes
highly dissimilar in the embedding space and operates on the last layer output
embeddings, i.e., zTi ,∀i ∈ V . The parameters of themodel are tuned using stochas-
tic gradient descent.

JG(Zi) = −log
(
σ(zTi z j)

) − Sn.E jn∼Ps (j) log
(
σ(−zTi z jn)

)
(4.18)

Here, j is a node that co-occurs near node i in a random walk of fixed length.
zi and z j are the representations of nodes i and j in the last layer T , Sn is the
number of negative samples, Ps is the distribution for negative sampling, and σ is
the sigmoid activation function.

4.4.4 Jumping Knowledge Networks for Node
Representations

This work manages how to specifically leverage information from neighborhoods of
different ranges.

80 4 Node Representations

Fig. 4.3 The architecture of JK-Net. NEIGH. AGG. denote the neighborhood aggregation. Xi is
the input feature vector, and hi is the final feature vector of node i

• A node representation depends on different ranges of neighborhoods, depending
on the structure of the graph.

• The introduced JK-nets are adaptive to the local neighborhood properties, i.e., for
each node, different ranges of neighborhoods (or influence distribution of a node)
are exploited to learn structure-aware embeddings.

• In any aggregation based method, as discussed in GCN and GAT, each layer
increases the radii of influence distribution by aggregating information from the
prior layer.

• Large radii aggregate too much information, whereas small radii aggregate inade-
quate information. As depicted in Fig. 4.3, at each layer l, new features hli of node i
are computed, and as l increases, hli hasmore information for larger neighborhoods
centered around i .

• Thus, JK-Net combines information from different locality neighborhoods lever-
aging skip connections from all the layers to the last layer and selective but adaptive
attentionmechanism. Further, thesemodels include various aggregations at the last
layer of JK-Net to selectively combine information for each node.

• As Fig. 4.3 describes, in JK-Net, all layers’ outputs are skipped to the last layer,
where Jk-Net applies layer aggregation (concatenation, LSTM) to select different
neighborhood ranges for each node.

• Thus, at the last layer, JK-Net chooses from all the intermediate embeddings that
jump to the layer for every node. This is done independently for each node, and
thus, JK-Net adaptively selects the effective size of the neighborhood on which
the node’s representation depends.

• Let {h1i , h2i , . . . , hK
i } be the representations of node i (node i’s jumping represen-

tations) at all layers, 1, 2, . . . , K . JK-Nets have three different ways to aggregate
the jumping representations, i.e., to perform layer aggregation: (1) Concatenation,
(2) Max-Pool, and (3) LSTM-attention.

1. In concatenation, the final vector of a node i is formed by combining representa-
tions from all the layers [h1i , h2i , . . . , hK

i] and applying a linear transformation.

4.4 Graph Neural Networks 81

But if the transformation weights are shared across all the nodes, then this
operator is not node-adaptive.

2. Max-Pooling selects element-wise maximum max(h1i , h
2
i , . . . , h

K
i). For every

feature dimension, it picks the most significant layer. Thus, this operation is
adaptive and also does not include any additional trainable parameters.

3. In LSTM-attention, {h1i , h2i , . . . , hK
i } are fed to a bi-directional LSTM, which

returns two latent representations (forward and backward LSTM), denoted by
xki and yki , respectively, ∀k ∈ {1, . . . , K }. Next, a scalar rki is generated for
each kth layer by linearly mapping the concatenated features [xki ||yki]. These
scores are normalized by applying softmax on {r1i , r2i , . . . , r Ki } to determine
the importance of node i on the neighborhoods of various ranges. Finally,
the embedding of node i is formed by taking a weighted sum of [xki ||yki] with
weights being the normalized scores. This operation is too adaptive as attention
scores vary for each node.

• JK-Nets can further be employed in other models such as GraphSAGE, Graph
ConvolutionalNetworks, andGraphAttentionNetworks for performance enhance-
ment.

4.4.5 Deep Graph Infomax

Deep graph Infomax (DGI) is an unsupervised learning algorithm, based on an objec-
tive of mutual information maximization for node representation learning.

Suppose G = (V, E) is the input graph with a set of N nodes V and a set of edges
E . G is augmented with the node features matrix X ∈ RN×F , where F is the feature
dimension and an adjacency matrix A ∈ RN×N .

• DGI aims to learn an encoder, E : RN×F × RN×N ↪→ RN×F ′
, such that E = Z ,

where Z ∈ RN×F ′
denotes the node (i.e., local) representations matrix with zi ∈

RF ′
representing node i .

– The encoder is GCN encoder for transductive setting as shown in the below
equation:

E(X, A) = σ(D̂− 1
2 ÂD̂− 1

2 XW) (4.19)

– The encoder is a mean-pooling propagation rule (GraphSAGE-GCN) for induc-
tive learning and is described as follows:

E(X, A) = σ(D̂−1 ÂXW) (4.20)

In both these Eqs. (4.19 and 4.20), Â = A + IN , i.e., the adjacency matrix after
adding a self loop to each node of G. D̂ ∈ R

N×N is the diagonal degree matrix,
σ is ReLU activation, and Wl ∈ R

F×F ′
is a trainable parameter matrix, where

F is the input dimension, and F ′ is the output dimension.

82 4 Node Representations

As the node representations, {zi ,∀i ∈ {1, . . . , N }}, are generated by aggregating
information in the node’s local neighborhood and can outline a patch centered at
the i th node, thus are also referred to as patch representations.

• To learn the encoder, DGI maximizes the local/global mutual information. For-
mally, the aim is to learn the node embeddings that encode global information
about the whole graph. DGI uses a READOUT layer Q : RN×F −→ RF to learn
a graph representation, denoted by a summary vector s, from node representations
that captures global information for the whole graph.

– In DGI, the READOUT layer is a simple averaging of all the patch (node)
representations.

Q(Z) = σ

N∑

i=1

zi (4.21)

• These operations can be summarized as s = Q(E(X, A)).
• As a substitute for MI maximization, DGI introduces a discriminator T : RF ×
RF −→ R, where the i th entry, T (zi , s), denotes the score given to the i th patch
representation (zi) and summary vector (s) pair. A higher probability score implies
the corresponding patch is contained within the summary.

– For discriminator T , the negative samples (represented by z′
i) are made by pair-

ing s of graph (X,A) with node representations of a different graph (X ′, A′)
from the graph collection dataset. When the input is a single graph, the neg-
ative samples are generated by a corruption function K : RN×F × RN×N −→
RM×F × RM×M such that (X ′, A′ = K(X, A)).

– For discriminators, DGI uses a simple and effective bilinear scoring function.
That is,

T (zi , s) = σ(zTi Ws) (4.22)

Hereσ is a sigmoid activation function that converts scores into the probabilities,
and W is a parameter matrix.

• DGI uses a noise contrastive type objective with a standard binary cross-entropy
loss function between the positive samples and the negative samples. The objective
function is explained as:

L = 1

N + M

(N∑

i=1

E(X,A)

[
log T

(
zi , s

)]

+
M∑

j=1

E(X ′,A′)

[
log

(
1 − T

(
z′
i , s

))])
(4.23)

• Consequently, all the patch representations preserve mutual information with the
summary vector, which further maintains the similarities between patches.

4.5 Experimental Evaluation 83

To summarize:

• First, the negative samples are generated using the corruption function such that
(X ′, A′) = K(X, A).

• Second, patch representations are learned by using the encoder on the input graph,
Z = E(X, A). Similarly, patch representations for the negative samples are com-
puted, Z ′ = E(X ′, A′).

• Following this, a summary vector s for the input graph is generated using the
READOUT layer on the learned patch representations Z .

• Finally, parameters of the model are trained by applying gradient descent.

4.5 Experimental Evaluation

As stated earlier, these learned node representations are used for various network
analysis tasks such as node classification, node clustering, link predictions, etc. Any
traditionalML tool can be used for these downstream tasks using the learned embed-
dings as the input features. Further, the performance on these tasks can be used to
evaluate the quality of these learned embeddings or the learning algorithms’ efficacy.

In this section, we compare the results of the discussed algorithms on citation
networks i.e., cora, citeseer, and pubmed on node classification and node clustering
tasks. To give more insights into the performance of these algorithms, we further
show t-SNE visualization of the representations generated by these algorithms.

4.5.1 Node Classification

A standard split is introduced for node classification in GCN. We report the results
for all the algorithms on the same set-up to have a fair comparison between different
representation learning algorithms.Nodes of a graph are divided into train, validation,
and test sets as follows:

• 20 nodes are randomly selected from each class as labeled nodes for the training
set, 100 nodes are used for the test set, and 500 nodes are selected for the validation
set for hyper-parameter optimization.

• The Cora dataset has seven distinct node labels; therefore, the sizes of train/val/test
sets are 140/500/100. The Citeseer dataset has six distinct classes; thus, the sizes
of train/val/test sets are 120/500/100, and the PubMed dataset has three distinct
classes; hence, the sizes of train/val/test sets are 60/500/100.

84 4 Node Representations

Table 4.1 Classification accuracy (%) of different algorithms for node classification

Dataset Cora Citeseer Pubmed

DeepWalk 67.3 41.50 66.4

node2vec 70.8 47.90 71.80

TADW 71.40 58.20 70.00

GraRep 70.50 46.90 70.80

GCN 81.5 70.3 79.0

GAT 83.0±0.7 72.5±0.7 79.0±0.3

GraphSAGE 82.9 71.4 78.60

JK-Net 82.7±0.4 73.0±0.5 77.9± 0.4

DGI 82.3±0.6 71.8±0.7 76.8±0.6

4.5.1.1 Performance Analysis

Table 4.1 shows the classification accuracy of seven algorithms for node classification
on cora, citeseer and pubmed datasets.

• We can observe that on Cora and PubMed datasets, GAT is outperforming all
unsupervised and supervised algorithms. Whereas on the citeseer dataset, JK-Net
achieves the best performance. Also, JK-Net is highly competitive to GAT on cora
dataset with performance gap of less than 1%.

• Further, it is interesting to note that other supervised algorithms (GCN and Graph-
SAGE) are also able to outperform the random walk and the matrix factorization
based unsupervised approaches on all the datasets but are outperformed by DGI
(an information maximization based unsupervised approach) on some datasets.

• This observed performance gain in supervised algorithms over unsupervised algo-
rithms depicts the importance of leveraging label information during the training
stage.

• Moreover, Deep Graph Infomax (DGI, an unsupervised algorithm) is performing
better than all other unsupervised algorithms.

4.5.2 Node Clustering

We further demonstrate the performance of the unsupervised algorithms on the node
clustering task.

• We use the same embeddings which are used for the node classification task.
• The learned node embeddings from any algorithm are fed to the K-Means algo-
rithm, which returns the clusters.

• We use the unsupervised clustering accuracy to assess the quality of the generated
clusters. The unsupervised clustering metric can be defined as below:

4.5 Experimental Evaluation 85

Table 4.2 Clustering accuracy (%)

Algorithms Cora Citeseer Pubmed

DeepWalk 59.84 45.68 67.15

node2vec 62.14 42.76 68.21

TADW 67.78 68.42 60.79

GraRep 49.23 36.49 58.02

DGI 69.01 67.48 51.52

ClusteringAccuracy(L̂,L) = max
Q

N∑
i=1

1(Q(L̂i) = Li)

N
(4.24)

Here,Li represents the ground truth label of sample point i and N is the number of
samples. The permutation of labels is denoted by Q, and L̂ symbolizes the output
assignments of an algorithm, i.e., the clustering assignments. 1 denotes the logical
operator that returns 1 if the argument is true otherwise 0.

• The unsupervised clustering accuracy metric uses different orderings of the labels
and selects the label permutation which outputs the best accuracy for the clustering
task.

4.5.2.1 Performance Analysis on Clustering Task

Table 4.2 shows the clustering accuracy of the unsupervised algorithms for clustering
task on three real-world datasets (cora, citeseer and pubmed).

• We can observe that DGI is outperforming all algorithms on cora dataset.
• While on citeseer dataset, TADW is giving state-of-the-art performance, and on
pubmed dataset, node2vec performs the best among the selected algorithms.

• Further, DeepWalk is competitive to node2vec on pubmed dataset, but node2vec
outperforms DGI with a good margin. In contrast, DGI is able to perform well on
the citeseer dataset with <1% performance gap with the best algorithm.

4.5.3 Visualization

We further show the visualization of the nodes as another downstream task to assess
the quality of the node representations.

• We fed the learned node embeddings to t-SNE,which outputs the 2-D embeddings.

86 4 Node Representations

• For this task, we use the same embeddings generated in the node classification task
for unsupervised algorithms, and we keep the hyperparameters’ tuning fix as in
node classification for supervised algorithms to generate the node representations.

• We select a subset of approaches for the visualization task. Figures 4.4 and 4.5
show the t-SNE visualizations of the nodes of Cora and Citeseer datasets by the
embeddings learned by different algorithms, respectively.

• We select three unsupervised algorithms; in Figs. 4.4a and 4.5a, we use the
node2vec model. In Figs. 4.4b and 4.5b, we pick node representations generated
by TADW, and in Figs. 4.4c and 4.5c, we pick DGI algorithm.

Fig. 4.4 t-SNE visualization of cora dataset (different colors depicts different node labels) by the
embeddings produced by different algorithms

Fig. 4.5 t-SNE visualization of citeseer dataset (different colors depict different node labels) by
the embeddings produced by different algorithms

4.5 Experimental Evaluation 87

• Further, we also select two supervised algorithms; Figs. 4.4d and 4.5d depict the
t-SNE visualizations by the embeddings generated by GCN, and Figs. 4.4e and
4.5e depict the performance of embeddings learned by the GAT algorithm.

• In these plots, different colors denote separate node labels. The performance is
optimal when the different colors are separated the most, i.e., generate distinct
clusters in the plot.

4.5.4 Performance Analysis

• We can observe that the best performance on Cora dataset is achieved in Fig. 4.4e
in which the representations are generated using GAT.

• Also, the performances of the supervised algorithms are better than the unsuper-
vised algorithms.

• On the other hand, comparing only unsupervised algorithms, performance in Fig.
4.4c is better than in Figs. 4.4a and 4.5a for Cora dataset.

• A similar observation of the enhanced performance of GAT over all algorithms
(unsupervised and supervised) and the improved performance of DGI over other
unsupervised algorithms are also prominent in Fig. 4.5 on citeseer dataset.

Bibliography

1. Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and
applications. arXiv preprint arXiv:1709.05584

2. Zhang D, Yin J, Zhu X, Zhang C (2018) Network representation learning: a survey. IEEE Trans
Big Data

3. Kipf TN,WellingM (2016) Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907

4. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention
networks. arXiv preprint arXiv:1710.10903

5. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In:
Advances in neural information processing systems, pp 1024–1034

6. Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi KI, Jegelka S (2018) Representation learning
on graphs with jumping knowledge networks. arXiv preprint arXiv:1806.03536

7. Veličković P, FedusW, HamiltonWL, Liò P, Bengio Y, Hjelm RD (2018) Deep graph infomax.
arXiv preprint arXiv:1809.10341

8. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pp 855–864

9. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations.
In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 701–710

http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1806.03536
http://arxiv.org/abs/1809.10341

88 4 Node Representations

10. Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015) Network representation learning with rich
text information. In: IJCAI, vol 2015, pp 2111–2117

11. Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural infor-
mation. In: Proceedings of the 24th ACM international on conference on information and
knowledge management, pp 891–900

Chapter 5
Embedding Graphs

Graphs are of vital importance in many application domains. Different components
of a graph are embedded in the vector space. The previous chapter discussed some
node embedding algorithms and presented comparisons based on empirical results.

In this chapter, we consider graph level representations. Graph embedding aims at
embedding the entire graph in a low-dimensional vector space. Embeddings are such
that the properties of the whole graph are captured using similarity between graphs.
These representations are used for many graph level analysis tasks, including graph
classification, graph visualization, etc. They have many critical applications, such as
finding anti-cancer activity, finding the molecule toxicity level, and many more.

Many graph kernels were introduced to map graphs in to the Hilbert space to
preserve the graphs’ implicit/explicit properties.

• They compute the similarity between graphs in the Hilbert space. They have
attained state-of-the-art performance on various datasets.

• To learn the similarity between graphs, they compare the substructures of the
respective graphs. Different graph kernels were proposed depending on the sub-
structures such as the Kernels based on rooted subtrees, the random walk based
kernel, the shortest path based kernels, the graphlet counting based kernel, and the
WL isomorphism test based kernel known as Weisfeiler-Lehman subtree kernel.

• However, all these kernels exploit the handcrafted features, and hence they are not
skilled in generalizing to the data.

Recently, many pooling techniques and GNNs are introduced to learn graph vec-
tors. For instance, Infograph is a recently introduced an unsupervised algorithm that
uses mutual information maximization to learn graph embeddings. This chapter dis-
cusses some of these state-of-the-art algorithms for embedding graphs into a vector
space, i.e., graph representation learning algorithms.

Graph Pooling: Earlier, trivial pooling operations are being used, for instance,
first learning node representations and applying aggregation operations (max, sum,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_5&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_5

90 5 Embedding Graphs

and mean) on these learned vectors to generate a representation of the entire graph.
But these operations destroy the graph structure and cannot be used for graphs with
varying structures. Recently,many trainable poolingmechanisms are proposedwhich
learn structure or feature dependent clusters to form a coarser version of the graphs.
There are two types of graph pooling techniques, global pooling and hierarchical
pooling:

• Hierarchical pooling: This technique learns a hierarchical representation of the
graph by recursively mapping the graph into a smaller graph and maintaining the
implicit hierarchical structure of the graph.

• Global pooling: This technique directly pools the representations of all the nodes
of a graph by using some simple aggregation to generate a single representation
of the graph, irrespective of the graph structure, and hence is inherently flat. This
works better when aggregating all the nodes using a single function is a more
suitable option.

5.1 SortPool

Graphs, unlike images, do not have an ordered sequence of nodes; consequently, the
neural network cannot be exploited on the graph domain. The Deep Graph Convo-
lutional Neural Network (DGCNN) (Sortpool), a global pooling architecture, solves
this problem and learns from the graph’s global topology. This architecture has three
sequential stages:

1. The first stage consists of the Graph Convolution Layers, which abstract local
substructure features and explicate ordering among the nodes of the graph. The
graph convolution layer aggregates node features to draw information about local
substructures. GCN equation can be described as follows:

Hl+1 = σ(D̂−1 ÂHlWl) (5.1)

• Here, Â = A + IN is the adjacency matrix of the graph after adding a self loop
to each node of G. D̂ ∈ R

N×N is the diagonal degree matrix. Wl ∈ R
K×K is

a trainable matrix, where K is the feature dimension of the hidden layers of
GCN (exceptW 0 ∈ R

D×K) and H 0 = X . Hl ∈ RN×K is the output at lth graph
convolution layer.

• Multiple layers are stacked, and the outputs of all L layers (l = 1, . . . , L) are
concatenated horizontally, which forms the output of this stage, denoted by
H 1:L = [H 1, H 2, . . . , HL]. According to the authors, the graph convolution
layers are analogous to two efficient kernels, Weisfeiler-Lehman subtree and
propagation kernels, which explains its performance on classification. Further,
the last layer output, HL , can be exploited to order the nodes of a graph accord-
ing to the structural roles of nodes.

5.1 SortPool 91

2. The next stage is the SortPooling layer.

• This layer sorts the nodes’ feature descriptors according to the node’s structural
roles.

– The final colors inWeisfeiler-Lehman algorithm (WL) for isomorphism test
can arrange the nodes in a consistent order based on their structural roles.
That is, if two nodes from different graphs have similar structural roles,
then those nodes are assigned the same relative position in their correspond-
ing graphs. As a result, neural networks can read nodes in a meaningful,
consistent order.

– According to DGCNN, the graph convolution layers’ outputs (Hl ,∀l =
1, . . . , L) are the continuousWL colors; thus DGCNN algorithm uses these
outputs to order the nodes of a graph. The input to the SortPooling layer
is H 1:L ∈ RN×K L , where each row represents a node, and each column
represents a feature channel.

– As the last layer output, HL , is regarded as the most refined continuous WL
colors; thus, the nodes are first sorted in descending order according to the
values in the last channel of HL . If two nodes have the same values in this
channel, then the nodes are distinguished based on their values in second to
last channel, and this is continued till the nodes have the same values. This
arranges the nodes of a graph in a consistent order; hence, traditional neural
networks can be applied to the sorted output.

• The next role of the SortPooling layer is to unify the sizes of the outputs. More
precisely, the aim is to make the first dimension equal to M for all the graphs,
making all the graphs of the same size, i.e., M nodes. This is done either by
adding zero rows if N < M or if N > M , then deleting N − M rows from the
last. Thus, the output of the SortPooling layer is a tensor Hs ∈ RM×K L where
each row represents a node.

3. Third and the last stage is to train CNN and fully connected layers followed by
a softmax layer. Convolution layers learn local patterns of the sequence, and the
rest helps generate predictions for graph classification.

There are two significant advantages of DGCNN:

• First, the SortPooling layer of DGCNN behaves as a bridge between the first and
last layers and can remember the sorted input. Hence, the loss gradients can flow
back to the initial layers, and consequently, the parameters of these initial layers
are also trained.

• Moreover, the complete DGCNN makes possible the use of traditional neural
networks on graphs (Fig. 5.1).

92 5 Embedding Graphs

Fig. 5.1 An overview of SortPool architecture. First, two GCN layers are used to abstract local
substructures features. Features of two GCN layers are concatenated and fed to the SortPooling
layer, which sorts the nodes and selects K nodes. The output of this layer is passed through CNN
and dense layers to perform graph classification

5.2 DIFFPOOL

Many real-world graphs have an inherent hierarchical graph structure. For example,
in molecular graphs, both the local molecular and the coarse-grained structures are
crucial to investigate the molecular graph structure. This hierarchical structure is
important when the aim is to label the entire graph (Fig. 5.2).

A differentiable graph pooling (DIFFPOOL) module was proposed, which can
maintain the hierarchical structure and can learn graph embedding for graph classi-
fication tasks in an end-to-end fashion.

• They generalize the pooling operation in CNN to the graph domain. Graphs, unlike
images, have some challenges whichmake defining a graph pooling operator more
demanding.

– First, the node does not follow the spatial locality definition, which means the
nodes in a patch cannot be pooled together. Moreover, the graphs in a graph
collection dataset can have a different number of nodes and edges.

Fig. 5.2 An overview of DIFFPOOL architecture. At each layer, the input graph is coarsened using
a GNN layer which pools the nodes. This process is continued until the graph is left with only one
node, and this representation is used as input to the classifier for graph classification

5.2 DIFFPOOL 93

• DIFFPOOL, an end-to-end differentiable strategy, overcomes these challenges
and hierarchically stacks multiple GNNs. That is, it is a model to cluster the nodes
to build a hierarchical multi-layered architecture and can be adapted to graphs of
different sizes and with different structures.

• Each layer of deep GNN learns node embeddings, and based on these embeddings,
determines the assignment of the current layer nodes to a set of clusters (differen-
tiable soft assignment). Nodes at the lth layer of the DIFFPOOL are the same as
the clusters generated at the l − 1th layer.

Suppose the input graph is denoted by G = (V, E)with a set of N nodes V and a set
of edges E and is described by an adjacency matrix A ∈ RN×N and node features
matrix X ∈ RN×F where F is the feature dimension.

Each successive GNN layer of DIFFPOOL learns a coarser version of the input
graph. More precisely, given the output of GNN, Z = GNN (A, X), and matrix A,
DIFFPOOL determines how to learn a coarser version with less number of nodes
defined by the weighted adjacency A′ and the node embedding Z ′ matrices which are
further fed to the next GNN layer. This process is continued for L times generating
L layers of GNN, each one hierarchically pooling the nodes of the graph.

Suppose we denote the adjacency matrix and the feature matrix at layer l by
Al ∈ RNl×Nl and Xl ∈ RNl×F where Nl is the number of nodes in graph at layer l.
We now discuss the lth layer of DIFFPOOL.

• The lth GNN embedding layer (between level l and l + 1) is defined as:

Zl = GNNl,embed(Al , Xl) (5.2)

Here, Zl ∈ R
Nl×F is the embedding matrix of the nodes in lth level graph.

• Similarly, the assignmentmatrix is learned using theGNNpooling layer. This layer
aims to assign the nodes from the previous layer to the clusters where each cluster
is considered as a node in the next level graph. The output feature dimension of this
layer is different from that of the embedding layer and is equal to the number of
the nodes in the next level graph. Also, softmax is applied after the GNN pooling
layer. The following equation describes this layer:

Pl = softmax(GNNl,pool(Al , Xl)) (5.3)

Here, (i, j)th element of Pl ∈ R
Nl×Nl+1 is the probability of mapping node vli to

node (cluster) vl+1
j . The softmax is used row-wise.

• Next, the adjacency and feature matrices are generated for the coarsened graph.
The adjacency matrix Al+1 and node feature matrix Xl+1 are constructed as:

Al+1 = PT
l Al Pl ∈ R

Nl+1×Nl+1 (5.4)

Xl+1 = PT
l Zl ∈ R

Nl+1×F (5.5)

94 5 Embedding Graphs

– Matrix Pl contains information about how nodes in Gl are mapped to the nodes
ofGl+1, and the adjacency matrix Al contains information about the connection
of nodes in Gl .

– These equations coarsen the graph. Al+1 represents the adjacency matrix for the
next layer with Nl+1 nodes. Each node in Al+1 is the cluster of the nodes in the
lth level, and the i th row of matrix Xl+1 represents cluster node i .

• This process is repeated until a graph with a single node is reached whose repre-
sentation is used as the graph embedding.

• This representation is passed through a linear classifier to output the predictions for
graph classification, and the parameters of the model are trained using stochastic
gradient descent.

5.3 SAGPool

Self-Attention Graph Pooling (SAGPool) is a hierarchical pooling based model for
GNNs. The model learns hierarchical representation for graph classification in an
end to end-setting. The self-attention layer of SAGPool decides the nodes to be
retained and the nodes to be dropped from the graph to output a smaller graph. Thus,
each layer of SAGPool coarsens the graph by dropping some fraction of the nodes.
SAGPool has four important layers:

1. A Self-attention graph pooling layer: This layer has two components.

• ASelf-attentionmechanism to learn attention scores,whichhelps to decide the
nodes to be kept for the next coarser version of the graph. The graph convolution
layer is exploited to learn the self-attention scores SN×1, which can be described
as:

S = σ(D̂− 1
2 ÂD̂− 1

2 XW) (5.6)

Â = A + IN and D̂ ∈ R
N×N is the degree matrix. W ∈ R

D×1 is a convolution
parameter and X ∈ R

N×D is the node feature matrix with N nodes and D
feature dimension. S ∈ R

N×1 is the vector of attention scores where si is the
attention of node i .
Next, SAGPool selects a fraction of nodes even when graphs in a graph clas-
sification dataset are of varying sizes. A hyperparameter, pooling ratio r ,
0 < r ≤ 1, determines the portion of the nodes to keep, i.e., r N . The nodes
are selected or discarded according to the learned self-attention scores, S. This
can be described as follows:

topk = top − idx(S, r N)

Smask = Stopk (5.7)

5.3 SAGPool 95

Here top − idx function returns the indices corresponding to the top r N values,
and .idx denotes the index selection. Smask represents the feature attention
mask.

• The next component is the graph pooling layer. This layer coarsens the graph
and generates the new adjacency matrix A′ and the node features matrix Xout :

A′ = Atopk,topk

X ′ = Xtopk,:
Xout = X ′ � Smask (5.8)

Here, Xidx,: is the row-wise indexing. Amask,mask is the row and column wise
selections. � is the element-wise dot product.

2. SAGPool also has a convolution layer to learn node embeddings, which again is
a graph convolution layer as follows:

Hl+1 = σ(D̂−1 ÂHlWl) (5.9)

Here, Wl ∈ R
D×F ′

is a trainable matrix, where D is the input feature dimension
and F ′ is the output feature dimension. Hk ∈ RN×F is the node representation at
kth graph convolution layer. σ is the ReLU activation function.

3. Finally, there is a READOUT layer. This layer aggregates the node features to
generate a fixed size graph representation as below:

HG = 1

N

N∑

i=1

xi ||maxN
i xi (5.10)

Here, N is the number of nodes, || is the concatenation and xi is the i th node feature
vector. HG represents the summary output of the READOUT layer (Fig. 5.3).

SAGPool has two variants; the global and the hierarchical pooling architectures,
which combine these four layers as follows:

• In global pooling, multiple graph convolution layers are stacked. All the outputs
are concatenated, and a graph pooling layer is used to pool the nodes, followed by
a READOUT layer to aggregate all the node embeddings.

• The hierarchical architecture contains multiple blocks where each block has a
graph convolution and a pooling layer. Each block is followed by a READOUT
layer to form a summarized output of the corresponding block. Lastly, the outputs
of all the READOUT layers are summed together to generate a single vector,
which is then passed through the classifier for graph classification.

96 5 Embedding Graphs

Fig. 5.3 A high-level illustration of global pooling and hierarchical pooling architecture. Graph
Conv is graph convolution layer and the dense layer takes as input the graph representation and
performs the graph classification

5.4 GIN

GNNs have achieved state-of-the-art performance on many node and graph classifi-
cation tasks. They are revolutionizing the graph representation learning, but there is
a limited theoretical understanding of representational power and shortcomings of
GNNs. Existing GNNs are designed based on the empirical intuition or experimental
trials. Graph Isomorphism Network (GIN) is a theoretical framework. Its discrimi-
native or representational power is better than the existing GNNs and is equal to the
WL test of graph isomorphism.

• GIN framework is motivated by the connection between GNNs and the WL iso-
morphism test, an efficient and powerful test for differentiating a wide range of
graph structures.

– The naive vertex alignment in the WL test is similar to the neighborhood aggre-
gation in GNNs.

– It is a two-step process: first, it aggregates the label information of the node and
its neighbors, and second, it maps the new aggregated label to a new unique
label.

– Finally, if the labels of the nodes in the two graphs are not the same, they
conclude that the graphs are non-isomorphic.

– The injective behavior of its aggregation rule that maps different neighborhoods
to different vectors makes WL so powerful test.

5.4 GIN 97

• Following the WL test, GIN proposes that if the aggregation step of GNN too is
tremendously expressive and can model the injective function, then GNN can be
as powerful as the WL test.

– Precisely, the representational power of a GNN is proportional to the discrimi-
native power of the aggregation function of the GNN. If the set of node features
is represented as a multiset (a multiset can have repeating elements), then a dis-
criminative GNNmust map or aggregate different multisets to different vectors.

– A powerful GNN should map two nodes with identical neighborhood struc-
tures having identical features to the same representations and should not map
two different multisets of features (i.e., different graph structures) to the same
representation vectors, i.e., should have an injective aggregation rule.

• Moreover, if a GNN maps two different graphs to different representations, the
WL test will also decide the graphs as non-isomorphic.

• Further, to summarize, a GNNmust satisfy the following constraints to be equally
discriminative as the WL test:

1. The neighborhood aggregation function (i.e., a multiset of features) should be
injective.

2. The graph-level readout function,which also operates over themultiset of features
of the vertices, should also be injective.

Graph Isomorphism Networks (GIN):

• The proposed algorithm, Graph Isomorphism Network (GIN), satisfies the condi-
tions above and has the maximum power of discriminating different graph struc-
tures.

• GIN proposes to use the MLP (multi layer perceptron) and the sum of the rep-
resentations to map a multiset of node representations to new representations of
nodes. GIN update rule is as follows:

zl+1
v = MLPl

(
(1 + εl)zlv +

∑

u∈N(v)

zlu
)

(5.11)

– Here, zl+1
v ∈ R

K is the representation of the node v in l + 1th layer ofGIN and K
is the dimension of the representation.N(v) is the neighbors of the node v; ε is
a trainable parameter which learns the significance of the node’s representation
relative to the aggregated features of its neighbors.

– The Universal Approximation Theorem states that any function together with
the injective function, can be approximated by the MLP . Thus, when the sum
of node representations and the multi layer perceptron are injective, GIN is as
powerful as the WL test of isomorphism.

• For graph classification, a READOUT function is further proposed, which oper-
ates over these learned representations of individual nodes and generates a single
embedding representing the graph.

98 5 Embedding Graphs

– At the later GIN layers, the node representation becomes more global, whereas
sometimes previous layers’ outputs may generalize better.

– Thus, to learn the graph embedding, GIN uses information from all the layers
as follows:

ZG = CONCAT
(
RE ADOUT

(
zli |i ∈ V

)|l = 0, . . . , L
)

(5.12)

Here, V (G) is the set of vertices of graph G, L is the total number of layers in
GIN.

5.5 Graph U-Nets

Graph U-Nets are encoder-decoder architectures based on the proposed graph pool-
ing and graph unpooling layers. This model can be used for both node and graph
classification tasks .

Unlike images, nodes of a graph are unordered and have no spatial locality because
of which the existing pooling operations from the image domain cannot work on the
graphs. Graph U-Nets provide a solution for this and propose gpool (graph pooling)
and gUnpool (graph unpooling) layer (defined below).

gpool Layer: Pooling layers in CNN help in shrinking the size of the feature
maps and increase the receptive fields. But because nodes have no spatial locality,
these operations cannot be used on the graph domain.

Let us denote the adjacency matrix of a graph G as A ∈ RN×N and the feature
matrix as X ∈ RN×F with N number of nodes and F feature dimension.

• The gpool layer introduces a trainable projection vector (p) that projects features of
nodes onto 1-dimension. Using these projection scores, it performs k-max pooling
and selects nodes with top k projection scores.

• The scalar score for each node v is computed as sv = xv p
||p|| . This score describes

the information node v can preserve when projected on p. Hence, by selecting
the nodes with k largest scores, the gpool operation can retain the maximum
information from the current graph.

• The lth propagation rule of gpool layer can be described as below:

S = Xl pl

||pl ||
idx = rank(S, k)

ỹ = sigmoid(S(idx))

Xl = Xl(idx, :) � (ỹ1TF) , Xl ∈ Rk×F

Al+1 = Al(idx, idx) , Al+1 ∈ Rk×k (5.13)

– Here k denotes the number of nodes in the smaller new graph. S is the vector
where each entry is the projection score for a node on the vector p.

5.5 Graph U-Nets 99

– In the next equation, the rank function ranks these scores in S and outputs the
node’s indices with k-largest scores.

– S(idx) selects the scores from S at idx indices. 1F is the unit vector of size
F . � denotes the element-wise multiplication. Xl(idx, :) and Al(idx, idx) are
row and column selection steps using indices set idx to generate the smaller
graph’s feature and adjacency matrices.

– Next, the gate operation is used,which brings eachof the selected values between
0 and 1 by applying the sigmoid activation function. The vector of these scalars
is denoted as ỹ in the above equations.

– Finally, � operator is used to element-wise multiply the Xl(idx, :) and ỹ1TF
that forms new feature matrix with information being controlled by the sigmoid
gate.

gUnpool LAYER:

• An upsampling operation motivated by the up-sampling layers in encoder-decoder
architectures, used in the image domain, is also proposed. The encoders shrink the
sizes of the feature maps while the feature maps are up-sampled to the original
size in decoders.

• gUnpool restores the original graph structure by performing the inverse operation
of the graph pooling (gpool) layer.

• For this, the indices of the selected nodes are saved in the corresponding gpool
layer. And the gUnpool layer uses these node indices to set the nodes into their
actual place in the graph as follows:

Xl+1 = distribute(0N×F , Xl , idx) (5.14)

– Here idx ∈ Rk denotes the index set from the corresponding gpool layer which
reduces the number of nodes from N to k, 0N×F denotes a zero matrix of size
N × F and Xl ∈ Rk×F describes the features of the nodes in the current graph.

– The function distribute(.) places the matrix Xl in the empty node features
matrix (0N×F) corresponding to the new graph at the indices stored in idx set.
Thus, the rows of Xl+1 corresponding to the indices in idx are the same as the
rows of matrix Xl , and the remaining rows are zero.

The Complete Architecture of Graph U-Nets (g-U-Nets): The node classifica-
tion problem is similar to the pixel-wise prediction tasks as both tasks try to predict
for each input unit, such as pixel or node.

• In g-U-Net, a GCN embedding layer is first used to generate node embeddings in
a lower dimension.

• Following the embedding layer, g-U-Nets stack multiple encoding blocks. This
part is the encoder part of the g-U-Nets models.

– An encoding block consists of one gpool layer and one GCN layer.
– The graph pooling layer (gpool) decreases the graph size and captures higher-
order features.

100 5 Embedding Graphs

– The GCN layer aggregates features from each node’s first-order neighbors and
encodes the graph’s topological information.

• The third part is the decoder part, which consists of several decoding blocks.

– The number of decoding blocks is the same as the number of encoding blocks
in the encoder part, and each decoding block has a gUnpool and a GCN layer.

– The gUnpool layer, as discussed earlier, restores the original graph structure
by performing the inverse operation of the graph pooling (gpool) layer, and the
GCN layer performs the same operation as in the encoder part.

• g-U-Nets also consists of the skip connections, which are the addition or the
concatenation of the feature maps, from the encoding block in the encoder part to
the corresponding decoding block in the decoder part. These connections help in
transferring the spatial knowledge from the encoding block to the decoding block.

• Lastly, a GCN layer is added for the prediction task, which is followed by the
softmax layer.

As some fraction of nodes is selected, the rest of the nodes and the associated edges
are thrown away, making some of the retained nodes isolated.

Thus to improve the connectivity among the nodes, it is further proposed to use
the higher powers q, Gq . Graph-U-Nets set q = 2 i.e., Al+1 = (Al)2(idx, idx), the
2nd graph power. They also change the GCN propagation layer by assigning more
weights to the node’s features than the node’s neighboring nodes while computing
the feature aggregation. The node’s feature vector is more significant for making
a prediction at the node. And thus, instead of adding self-loops, they calculate the
adjacency matrix as Â = A + 2I before normalization, giving higher weights to the
node’s features.

5.6 Experimental Evaluation

As stated earlier, these graph representations are used for various downstream tasks
such as graph classification, graph clustering, visualization, etc. Any traditional ML
algorithm can be used for these tasks by exploiting these learned vector embeddings
as the input features. Further, the performance on these tasks can be used to assess
the quality of the graph embeddings.

In this section, we assess the embeddings on graph classification and visualization
tasks. We evaluate the performance of various algorithms on the publicly available
benchmark datasets such as MUTAG, PTC, NCI, etc.

5.6.1 Graph Classification

Experimental Set-Up: For graph classification task, we use datasets of the bioinfor-
matics domain and social network domain. MUTAG, PTC, PROTEINS, NCI1, and

5.6 Experimental Evaluation 101

NCI09 are bioinformatics graph datasets, and IMDB-BINARY and IMDB-MULTI
are social network datasets. The details of these datasets are discussed in Sect. 2.5.

We compare the performance of all the algorithms discussed in this chapter, along
with graph kernels. We perform 10-fold cross validation to compute the graph clas-
sification accuracy and record the standard deviation and averaged accuracy across
ten folds. For unsupervised algorithm, node2vec, we take the average of all the node
embeddings as the graph representation.

Performance Evaluation: Tables 5.1 and 5.2 show the graph classification per-
formance (accuracy and standard deviation) of graph kernels and all the algorithms
discussed in this chapter on different real-world graph datasets.

• We can observe that GIN achieves state-of-the-art performance on MUTAG and
PTC datasets.

• The best performing algorithm among all the selected baselines on PROTEINS
dataset is gpool.

• While on NCI datasets (NCI1 and NCI109), WL graph kernel is outperforming
all the other algorithms (including the GNN based approaches and with a good
margin (>1%)).

• On social network datasets (IMDB-BINARY and IMDB-MULTI), GIN is able to
achieve state-of-the-art performance with a good performance gap from all the
other selected algorithms (Table5.2).

5.6.2 Visualization

In this section, we choose the graph visualizations as another downstream task.

Table 5.1 Classification accuracy (%) of different algorithms on Bioinformatic datasets. NA
denotes the case when the result of a baseline algorithm could not be found on that particular
dataset from the existing literature

Algorithms MUTAG PTC PROTEINS NCI1 NCI109

GK 80.99±1.7 54.74±0.2 70.84±0.2 61.88±0.5 61.95±0.7

RW 78.17±2.1 55.23±0.4 58.73±0.2 NA NA

PK 75±2.7 59.0±2.5 72.89±1.0 83.19±0.4 NA

WL 83.97±1.9 58.29±3.2 74.23±0.3 84.04±0.8 85.32±0.4

node2vec 73.63±9.7 58.50±7.3 56.63±2.8 55.39±2.3 54.12±2.0

DGCNN 85.20±1.7 58.40±1.7 74.84±0.7 75.51±1.1 NA

DIFFPOOL 84.61 63.5 76.25 NA NA

SAGPool 80.9 62.3 71.4 74.2 74.5

gpool 79.84 NA 77.5 NA NA

GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 NA

102 5 Embedding Graphs

Table 5.2 Classification accuracy (%) of different algorithms on Social Network datasets. NA
denotes the case when the result of a baseline algorithm could not be found on that particular
dataset from the existing literature

Algorithms IMDB-B IMDB-M

AWE-DD 73.66±4.9 51.00±3.2

AWE-FB 73.20±2.9 51.23±3.8

DGCNN 71.03±0.9 48.21±1.2

DIFFPOOL 73.3 50.0

SAGPool 72.80 50.80

gpool 73.2 49.8

GIN 75.1±5.1 52.3±2.8

• The graph representations are learned using any graph representation learning
algorithm and fed to t-SNE, which converts them into 2D planes.

• Distinct colors denote different classes (labels) of the graphs. The performance is
better if distinct colors form separate clusters in the plot.

• We select a subset of algorithms, including pooling based and GNN based algo-
rithms (DIFFPOOL, SAGPool, and GIN) and a subset of datasets (MUTAG, PTC,
and IMDB-BINARY).

• Figure 5.4 shows the visualization of the graphs of the MUTAG dataset. Figure
5.5 shows the visualization of the graphs of the PTC dataset, and Fig. 5.6 depicts
the visualization of the graphs of the IMDB-BINARY dataset.

5.6.2.1 Performance Analysis

• On MUTAG and PTC, GIN (refer to Figs. 5.4c and 5.5c) achieves better perfor-
mance as compared to DIFFPOOL (Figs. 5.4a and 5.5a), and SAGPool (Figs. 5.4b
and 5.5b).

• Also, on theMUTAGdataset, the performance in Fig. 5.4b is slightly better than the
performance of DIFFPOOL in Fig. 5.4a. A similar observation is also prominent
in Fig. 5.5 on the PTC dataset.

• While on the social network (IMDB-BINARY) dataset, the best performance is
observed in Fig. 5.6b, which uses SAGPool algorithm. Further, the performance
of GIN in Fig. 5.6c is better than the performance of DIFFPOOL in Fig. 5.6a.

5.6 Experimental Evaluation 103

Fig. 5.4 t-SNE visualization of the graphs ofMUTAGdataset (distinct colors depict different graph
labels) by the embeddings produced by different algorithms

Fig. 5.5 t-SNE visualization of the graphs of PTC dataset (distinct colors depict different graph
labels) by the embeddings produced by different algorithms

Fig. 5.6 t-SNE visualization of the graphs of IMDB-BINARY dataset (distinct colors depict dif-
ferent graph labels) by the embeddings produced by different algorithms

Bibliography

1. Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and
applications. arXiv preprint arXiv:1709.05584

2. Zhang D, Yin J, Zhu X, Zhang C (2018) Network representation learning: a survey. IEEE Trans
Big Data

3. Zhang M, Cui Z, Neumann M, Chen Y (2018) An end-to-end deep learning architecture for
graph classification. In: Thirty-second AAAI conference on artificial intelligence

4. Lee J, Lee I, Kang J (2019) Self-attention graph pooling. arXiv preprint arXiv:1904.08082
5. Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical graph repre-

sentation learning with differentiable pooling. In: Advances in neural information processing
systems, pp 4800–4810

6. Gao H, Ji S (2019) Graph u-nets. arXiv preprint arXiv:1905.05178
7. Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks?. arXiv

preprint arXiv:1810.00826

http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1904.08082
http://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1810.00826

104 5 Embedding Graphs

8. Sun FY, Hoffmann J, Verma V, Tang J (2019) Infograph: unsupervised and semi-supervised
graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000

9. Maron H, Ben-Hamu H, Serviansky H, Lipman Y (2019) Provably powerful graph networks.
In: Advances in neural information processing systems, pp 2156–2167

http://arxiv.org/abs/1908.01000

Chapter 6
Conclusions

In this book we have examined social and information networks, and their analysis.
Specifically, we considered the following aspects.

1. A fundamental problem in data analysis is representation. So, representation
learning is the most important step in dealing with almost any large-scale prac-
tical problem.

2. In this book we have examined in detail different schemes for network represen-
tation learning (N RL).

3. There was more emphasis on social and information networks in the book.
However, the schemes discussed are generic and can be applied to any other
complex network.

4. It is important to note that data in the form of networks is either explicit or
implicit where the networks are typically represented as graphs.

5. The importance of networks in dealing with any application need not be over
emphasized. They are so important that the schemes considered in the book are
useful in both implicit and explicit cases.

6. The basic problem examined in detail in the book is embedding network entities.
Both node and graph embedding schemes are examined in detail. Further, state-
of-the-art embedding schemes are compared using several benchmark datasets.

7. The background required in terms of graphs, adjacency matrices, matrix factor-
ization, randomwalks, representing words as vectors, neural networks, and deep
learning schemes are discussed in detail in Chaps. 2 and 3.

8. Evaluation of various embedding schemes is typically done with the help of
downstream ML tasks including classification, community detection, link pre-
diction and visualization. We have explained these ML tasks in Chap. 2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4022-0_6&domain=pdf
https://doi.org/10.1007/978-981-33-4022-0_6

106 6 Conclusions

9. Different schemes for embedding nodes in a network are examined in Chap. 4.
In Chap. 5, various schemes for embedding an entire graph are considered.

10. A brief summary of the importance of networks and their representations is done
in the current chapter with a view that networks will play an important role, in
every practical application, in the near future.

Glossary

G Graph representing a network
V Set of vertices or nodes in a graph
E Set of edges in a graph
N Number of nodes in a graph
A Adjacency matrix of the graph
vi i th node of the graph
e − i j edge between nodes vi and v j

xi attribute associated with node vi
X Set of node attributes
li Label associated with node vi
L Set of node labels
G = {G1,G2, . . . ,GM } Set of graphs
Lg Set of graph labels
x − j i ∈ �D Attribute vector for the j th node in the i th graph

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0

107

https://doi.org/10.1007/978-981-33-4022-0

Index

A
Activation function, 37, 39, 46, 55, 63, 79
Adjacency list, 10
Adjacency matrix, 9, 10, 13, 21, 72, 76, 81,

90, 93, 98, 105
Aggregation function, 97
Alternating minimization, 26
Artificial Neural Network, Neural Network,

36
Attention coefficient, 77
Attention score, 94
Attribute, 7
Autoencoder, 62, 63

B
Backpropagation, 41, 44, 48, 49, 53, 63
Backpropagation Through Time (BPTT), 56
Bioinformatic dataset, 100
Biological network, 13, 20
Bottleneck, 62

C
Cell state, 59, 60
Centroid, 24
Chain rule, 42, 45
Citation network, 13, 19, 83
Citeseer, 83
Classification, 18
Classification accuracy, 15, 19, 84, 101
Classifier, 95
Cluster, 19
Clustering, 19
Coarse-grained structure, 92
Coarser, 90

Code, 62, 63
COLLAB, 14
Collaboration network, 14
Common neighbor, 9
Community, 19
Community detection, 7, 12
Complex network, 1, 105
Context, 27, 69, 72
Continuous bag of words, 28
Convolution, 50
Convolutional Neural Network (CNN), 46,

49, 54, 91
Convolution layer, 52
Convolution matrix, 76, 94
Cora, 83
Cora, Citeseer, PubMed, 13
Corruption function, 82
Cross-entropy loss, 76, 82
Cross-validation, 101
Curve fitting/regression, 43

D
Data analysis, 105
Dataset, 13
Decision boundary, 37, 38
Decoder, 62, 63, 100
Decoding block, 100
Deep autoencoder, 63
Deep feedforward neural network, 49, 58
Deep Graph Infomax (DGI), 81, 84, 85
Deep learning, 35, 67, 105
Deep Neural Network (DNN), 48
DeepWalk, 68, 72, 85
Degree, 9, 10, 72, 76

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
M. Aggarwal and M. N. Murty, Machine Learning in Social Networks,
SpringerBriefs in Computational Intelligence,
https://doi.org/10.1007/978-981-33-4022-0

109

https://doi.org/10.1007/978-981-33-4022-0

110 Index

Degree matrix, 76, 81, 90, 94
Delta rule, 41, 43
Denoising autoencoder, 64
Differentiable strategy, 93
DIFFPOOL, 92
Directed graph, 8
Directed network, 13
Discriminator, 82
Downstream task, 13, 14, 18, 101
Drug-disease network, 19, 20
Dynamic graph, 8

E
Edge, 7, 8
Edge embedding, 30
Edge label, 18
Edge level analysis, 13
Edge prediction, 30
Element-wise multiplication, 99
Embedding, 1, 12, 14, 100, 105
Embedding layer, 93
Encoder, 62, 63, 81, 100
Encoder-decoder, 98
Encoding, 11
Encoding block, 99
ENZYMES, 14
Epoch, 43
Evaluation dataset, 13
Evaluation metric, 13, 15
Exploding gradient, 46–48, 58

F
F1-macro, 16
F1-micro, 16
F1 score, 16, 19
False negative, 16
False positive, 16
Feature channel, 91
Feature map, 51, 98, 100
Feedforward network, 39
Filter, 51
First-order proximity, 12
Forget gate, 59
FRANKENSTEIN, 14
Friendship network, 9
Fully connected layer, 91

G
Gate, 59
Gate operation, 99
Global pooling, 90, 95

gpool, 98, 101
Gradient, 91
Gradient descent, 42, 49, 63, 79
Graph, 7–10, 89, 105
Graph Attention Network (GAT), 77, 84, 87
Graph classification, 12, 13, 89, 91, 92, 94,

95, 98, 100
Graph clustering, 13, 100
Graph Convolutional Network (GCN), 75,

83, 84, 90, 99
Graph convolution layer, 94, 95
Graph dataset, 101
Graph embedding, 13, 30, 89, 94, 100
Graph IsomorphismNetwork (GIN), 96, 101
Graph Kernel, 89, 101
Graph label, 18, 92
Graph level analysis, 89
Graph level tasks, 13
Graph Neural Network (GNN), 75, 93, 96
Graph pooling, 89, 95, 98
Graph representation, 89, 95, 100, 102
GraphSAGE, 78, 84
Graph structure, 31, 90
Graph U-Net, 98
Graph unpooling, 98
Graph visualization, 89, 101
GraRep, 73
gUnpool, 98

H
Hard clustering, 24
Heterogeneous graph, 8
Hidden state, 55, 59, 61
Hierarchical graph structure, 92
Hierarchical pooling, 90, 93, 95
Hierarchical representation, 94
Hierarchical softmax, 69
Higher-order proximity, 12
Hilbert Space, 89
Homogeneous graph, 8
Homophily, 12, 70
Hypergraph, 8
Hyperparameter, 74, 94
Hyperplane, 38

I
IMDB-BINARY, 14, 101
IMDB-MULTI, 14, 101
Indegree, 9
Inductive, 78, 81
Inductive matrix completion, 72
Infograph, 89

Index 111

Information networks, 105
Injective, 96, 97
Input gate, 60

J
JK-Net, 84

K
Kaiming initialization, 49
Kernel, 51
K-Means, 84
Knowledge graph, 8

L
Latent Dirichlet Allocation (LDA), 25
Latent representation, 63, 78
LeakyReLU, 48, 77
Linear classifier, 94
Linear combination, 77
Linear threshold function, 37
Link prediction, 11–13, 20, 30, 67
Log-likelihood, 29
Long Short Term Memory (LSTM), 59
LSTM aggregator, 79

M
Machine learning, 7, 100
Mask, 51
Masked attention, 77
Matrix factorization, 21, 67, 72–74, 84, 105
Matrix factorization based clustering, 23
Mean aggregator, 79
Memory unit, 55
Molecular graph, 92
Multi-head attention, 77
Multi-layered architecture, 93
Multi Layer Perceptron (MLP), 97
Multilayer perceptron network, 39, 54
Multiset, 97
MUTAG, 14, 100
Mutual information, 82, 89

N
NCI09, 101
NCI1, 100
Negative sample, 74, 79, 82
Negative sampling, 29, 72, 79
Neighborhood, 97
Neighborhood aggregation, 96
Neighborhood sampling, 70

Neighbour, 9
Network, 1, 7, 8, 11, 12
Network analysis, 7, 11
Network embedding, 11, 13, 27, 30
Network reconstruction, 21
Network Representation Learning (NRL), 1,

105
Network structure, 72
Neural network, 27, 55, 77, 90, 91, 105
Node, 7, 8
Node attributes, 12, 13, 31
Node classification, 11–13, 30, 67, 83, 98,

99
Node clustering, 30, 67, 84
Node embedding, 30, 67, 93, 95
Node features, 72, 76, 78, 81, 90, 93–95, 98
Node label, 7, 12, 13, 18, 76, 78, 84
Node level analysis, 13
node2vec, 70, 85
Noise contrastive estimation, 74
Non-Euclidean, 75
Nonlinear classification, 38
Nonlinear function, 37
Non-negative matrix factorization, 26
Normalization, 76, 100
Normalize, 77, 78
Normalized mutual information, 16

O
One-hot vector, 28
Outdegree, 9
Output gate, 61
Output state, 55
Overfitting, 46, 63

P
Perceptron, 36
Pooling aggregator, 79
Pooling layer, 52, 93
Pooling ratio, 94
Precision, 16
Precision at k, 16
Prediction, 91, 94, 100
Probabilistic Latent Semantic Indexing

(PLSI), 25
Projection vector, 98
Propagation rule, 76, 98
Protein-protein interactions network, 7
PROTEINS, 14, 100
Proteins-proteins interaction dataset, 13
Proteins-proteins network, 19
PTC, 14, 100
PubMed, 83
Purity, 17

112 Index

Purity, ARI, normalized mutual index, 20

R
Random walk, 12, 67, 68, 70, 79, 84, 105
Readout function, 97
Readout layer, 95
Real-world graph, 92
Real-world graph dataset, 101
Recall, 16
Recommendation, 7, 12, 67
Recommender system, 20
Rectified Linear Unit (ReLU), 47, 76, 81, 95
Recurrent, 54
Recurrent network, 54
Recurrent neural network, 54, 58
REDDIT, 14
Regularized autoencoder, 64
Representation, 12, 35, 94
Representation learning, 11, 62

S
SAGPool, 94
Second-order proximity, 12
Self-attention, 77
Self-attention layer, 94
Self-attention score, 94
Self-loop, 76, 81, 100
Semi-supervised classification, 76
Semi-supervised learning, 31
Sequence-to-sequence autoencoder, 63
Sigmoid activation, 46, 58, 59, 74, 78, 79,

82, 99
Sigmoid function, 46, 47
Single head attention, 77
Singular Value Decomposition (SVD), 22
Skip connection, 80, 100
Skip-gram, 28, 68, 69, 71, 74
Skip-gram model, 28
Social network, 1, 7, 14, 19, 20, 105
Social network dataset, 100
Soft assignment, 93
Soft clustering, 25
Softmax, 48
Softmax activation, 76, 78
Softmax function, 55, 93
Softmax layer, 91, 100
SortPool, 90
SortPooling layer, 91
Sparse autoencoder, 64
Spatial locality, 92, 98
Standard deviation, 101
State-of-the-art, 85, 101
Stochastic gradient descent, 94

Structural equivalent, 70
Structural role, 90
Substructure, 89
Supervised, 84, 87
Supervised learning, 19, 31, 77
Support Vector Machine (SVM), 39

T
Tanh activation, 58
Tanh function, 47
Text-Associated DeepWalk (TADW), 72, 85
Time step, 54
Topic model, 25
Topology, 90
Transductive, 75, 81
Transition matrix, 73
Transition probability, 70, 73
True negative, 16
True positive, 16
t-SNE, 83, 85, 102

U
Undercomplete autoencoder, 64
Undirected graph, 8, 10, 11
Universal approximation theorem, 97
Universal function approximation, 46
Unsupervised, 84, 87, 89
Unsupervised clustering accuracy, 84
Unsupervised learning, 19, 31
Unweighted network, 13

V
Vanishing gradient, 46–48, 58
Visualization, 12, 20, 67, 85, 100

W
Weighted graph, 11
Weisfeiler-Lehman algorithm, 91
WL color, 91
WL Graph Kernel, 101
WL isomorphism test, 96
Word embedding, 27, 28
Word representation, 27, 28
Word2Vec, 27

X
Xavier initialization, 49

Y
YouTube, Flickr, BlogCatalog, 14

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 Introduction
	1.2 Notation
	1.3 Contents Covered in This Book

	2 Representations of Networks
	2.1 Introduction
	2.2 Networks Represented as Graphs
	2.3 Data Structures to Represent Graphs
	2.3.1 Matrix Representation
	2.3.2 Adjacency List

	2.4 Network Embeddings
	2.5 Experimental Datasets and Metrics
	2.5.1 Evaluation Datasets
	2.5.2 Evaluation Metrics

	2.6 Machine Learning Downstream Tasks
	2.6.1 Classification
	2.6.2 Clustering
	2.6.3 Link Prediction (LP)
	2.6.4 Visualization
	2.6.5 Network Reconstruction

	2.7 Embeddings Based on Matrix Factorization
	2.7.1 Singular Value Decomposition (SVD)
	2.7.2 Matrix Factorization Based Clustering
	2.7.3 Soft Clustering as Matrix Factorization
	2.7.4 Non-Negative Matrix Factorization (NMF)

	2.8 Word2Vec
	2.8.1 Skip-Gram Model

	2.9 Learning Network Embeddings
	2.10 Summary
	Bibliography

	3 Deep Learning
	3.1 Introduction
	3.2 Neural Networks
	3.2.1 Perceptron
	3.2.2 Characteristics of Neural Networks
	3.2.3 Multilayer Perceptron Networks
	3.2.4 Training MLP Networks

	3.3 Convolutional Neural Networks
	3.3.1 Activation Function
	3.3.2 Initialization of Weights
	3.3.3 Deep Feedforward Neural Network

	3.4 Recurrent Networks
	3.4.1 Recurrent Neural Networks
	3.4.2 Long Short Term Memory

	3.5 Learning Representations Using Autoencoders
	3.5.1 Types of Autoencoders

	3.6 Summary
	Bibliography

	4 Node Representations
	4.1 Introduction
	4.2 Random Walk Based Approaches
	4.2.1 DeepWalk: Online Learning of Social Representations
	4.2.2 Scalable Feature Learning for Networks: Node2vec

	4.3 Matrix Factorization Based Algorithms
	4.3.1 Network Representation Learning with Rich Text Information
	4.3.2 GraRep: Learning Graph Representations with Global Structural Information

	4.4 Graph Neural Networks
	4.4.1 Semi-Supervised Classification with Graph Convolutional Networks
	4.4.2 Graph Attention Network
	4.4.3 Inductive Representation Learning on Large Graphs (GraphSAGE)
	4.4.4 Jumping Knowledge Networks for Node Representations
	4.4.5 Deep Graph Infomax

	4.5 Experimental Evaluation
	4.5.1 Node Classification
	4.5.2 Node Clustering
	4.5.3 Visualization
	4.5.4 Performance Analysis

	Bibliography

	5 Embedding Graphs
	5.1 SortPool
	5.2 DIFFPOOL
	5.3 SAGPool
	5.4 GIN
	5.5 Graph U-Nets
	5.6 Experimental Evaluation
	5.6.1 Graph Classification
	5.6.2 Visualization

	Bibliography

	6 Conclusions
	Appendix Glossary
	Index

