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Abstract The present work explains about the vibration response of a viscoelastic
sandwich beam with functionally graded material constraining layers. These layers
are formed by varying the ceramic (Al,03) and stainless steel (SUS304) composition
along the thinness direction. The basic kinematics is considered from Timoshenko
beam theory due to inertia effect. The sandwich beam is formulated. Three-layered
sandwich beam is modelled using the finite element method. The top and bottom lay-
ers are FGM layers and the middle layer as a viscoelastic core. The linear displace-
ment field is assumed to model the FGM layers and also the core layer displacement
field as non-linear. Hamilton’s principle is used to derive the governing equation of
motion of the viscoelastic sandwich beam. The vibration analysis has been carried
out by using the derived governing equation of motion with cantilever and fixed—fixed
boundary conditions. The obtained results are compared with the available literature
results. The natural frequencies are calculated with different boundary conditions by
varying the core thickness. The influence of core thickness and FGM constraining
layer index value on natural frequencies are observed.

Keywords Sandwich FGM beam * Timoshenko beam theory - Viscoelastic core *
Finite element method - Free vibrations

Nomenclature

h Thickness of FGM face sheet

u Displacement in x direction

w Displacement in transverse direction
N Shape function

K

} Final displacement vector
@} Element displacement vector
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[K] Final stiffness matrix

[K©]  Element stiffness matrix

[Kc]®  Element stiffness matrix of a viscoelastic core

[Krg]® Element stiffness matrix of a constraining layer of FGM
[M] Final mass matrix

[M©]  Element mass matrix

[Mc]®  Element mass matrix of a viscoelastic core

[Mpg]© Element mass matrix of a constraining layer of FGM

PFG Density of FG

oc Density of viscoelastic core
Ve Volume fraction of ceramic
Vu Volume fraction of metal

n Loss factor

1y Core loss factor

1 Introduction

Vibration characteristics of sandwich structures are vital precise to study the dynam-
ics analysis of structural members. The sandwich beam is one of the important
structural members which is made up of two face sheets joined by viscoelastic core
member as a middle layer. To reduce vibration, damping mechanism of a viscoelas-
tic core is introduced for a sandwich beam. These sandwich structures have many
applications such as railways, bridges, satellites, aeroplane wings and robotic arms
etc.

Sandwich beam vibration analysis with exact solutions has been studied by Rao
[1], and the various boundary conditions are used to calculate the frequency result,
loss factors and the shear modulus assumed as a complex in the core model. Ganapathi
et al. [2] studied the dynamic analysis of laminated composite and sandwich beam
with loss factors. Arikoglu and Ozkol [3] examined the effect of viscoelastic core
thickness on natural frequencies of three-layered sandwich beam model. A meshless
method using penalty approach was studied by Chehel Amirani et al. [4] for vibration
analysis of FG core sandwich beam with various boundary conditions. Abdoun et al.
[5] studied the harmonic response of sandwich viscoelastic beam using an asymptotic
numerical method.

Bilasse et al. [6] proposed a numerical solution using finite element approach
for linear and non-linear vibration analysis of viscoelastic sandwich beam. Multi-
layered sandwich beam modelled using finite element formulation for free vibration
analysis has been presented by Mohanty [7]. Long et al. [8] where the finite element
formulation is explained for sandwich structure and compared the obtained numerical
simulation results of ANSYS with the reference results. Kpeky et al. [9] examined the
solid-shell finite element formulation for sandwich structures modal analysis. Long
[10] studied the active constraining layer of FG beam using finite element approach.
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In the literature, there is no survey on bounds and soundness assortment of the
sandwich structures damping responses. The numerical assessment related to this
work is to improve a vibrant representation for vibration characteristics of damped
sandwich beams. The main aim of the present work is to develop a finite element
approach of a three-layered sandwich beam with cantilever and fixed—fixed boundary
conditions and to investigate its vibration responses. The bottom and top face sheets
are assumed to be FGM sheets, while the core is assumed as a viscoelastic layer. The
FGM face sheets are made up of two materials, i.e. stainless steel and alumina, the
viscoelastic core is assumed as polyurethane foam. The frequency response curves
are obtained for various core loss factors, boundary conditions and different thickness
ratios.

2 Mathematical Formulation

Sandwich beam with viscoelastic core as a middle is illustrated in Fig. 1. Timoshenko
beam theory is adopted to model the bottom and top face FGM constraining layers.
The FGM constraining layer field variables are expressed as

ulx,z,t) =ulx,t) — z¢(x,t)
w(x,z,t) =w(x,t) (1)

The displacement vector of an element can be represented as:

Ul Wil Pr1 Ued,1 U3l We,l Up 1 Wh1 @i 1
T
q, = | wio w2 Wi 2)
U3 W3 Pr3 Ued3 Ue3 3 We3 Up3 Wp3 $p 3

The axial displacement of the viscoelastic core layer is denoted with a cubic
function and the displacement of transverse direction is incorporated by the quadratic
function.

Shape functions are represented as

Ceramic

FGM face sheet

oW, @

Viscoelastic
W W Wy

u, W, @

Metal

Metal
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Fig. 1 Viscoelastic sandwich beam with FGM constraining layers
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2.1 The Material Properties of FGM Face Sheet

The material properties of FGM face sheets are varying in the thickness direction,
the effective material properties such as (Erg) Young’s modulus, (prg) mass density
and (Ugg) Poisson’s ratio is obtained as.

Erg(z) = EcVe + EyVy
Prc(z) = pcVe + pu Vu
Vrg(2) = 9c Ve +OuVu “4)

The relationship between the (V),) metal and (V) ceramic volume fractions is
represented using simple rule of mixture obtained as

Ve+Vy =1 (5)
The volume fraction of ceramic varies by using the simple power-law function is

obtained as
z+h\F
Ve = 6
c <2xh> (6)

In which, & is an index of the power law and 4 is the thickness of face sheet. The
variation of index value k varies the ceramic volume fraction content. It causes to
change the material properties of the FGM constraining layer.

2.2 FGM Face Sheet

The constraining elemental FGM beam layer kinetic energy is expressed as:

2 272
@ 1 ou ow
KErG = 5 ra a) T\a) |
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=lb/pFGauFGi’iFde +lbf,0FG3WFGWFde +Ollb/PFGa¢FG¢;FGdX

(7

The kinetic energy of constraining layer of FGM beam element is expressed as

le
KE! :lb/)OFG(SQ(Te)[NFG]T[IFG][NFG]Sé(e))dx
0

= 5(]({,) [MrG1“8G e (8)

where [Mpg]© is mass matrix of FGM face sheet of beam element.
The stiffness matrix of FGM face sheet is expressed from the potential energy

Lo

PE;EG) —/// e’ o) lb/ 56](6) Brgl [DFG][BFG]5Q(e))

0
= 8/, [ Krc] i) )

where [Krg]© is element stiffness matrix of FGM face sheet.

2.3 Viscoelastic Core

Viscoelastic core element kinetic energy can be represented as

Le
KEY = Ic / pe(3aio[NCI"UcINE 1) dx
0

= 8q,[Mc1“8e) (10)

where [M] is element viscoelastic core mass matrix.
The elemental strain energy of viscoelastic core is expressed as

PEY =1y | (8q%,[Bcl"[Dc1[Bc18q e )dx

o

= 89, [Kc1“8Ge) (11)

where [K ] is viscoelastic core element stiffness matrix.
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2.4 Governing Equation of Motion

Hamilton’s principle is used to derive the governing equation of motion of viscoelastic
sandwich beam element.

15}
b f (KE® —PE“)dr =0 (12)

3

The equation of motion of sandwich beam element is represented as
() + [K ]} =0 a3)

Sandwich beam element’s potential energy is equal to the sum of the potential
energy of the constraining layers and viscoelastic layer. Similarly, the kinetic energy
of sandwich beam element is the sum of a viscoelastic element and FGM face sheets.

The equation of motion of sandwich beam by assembling of mass and elastic
stiffness matrix is obtained as

[M1{G}+ [K){q} =0 (14)

3 Results and Discussion

Vibration response of sandwich beam with viscoelastic core can be studied using
finite element method. The viscoelastic behaviour of a core material is assumed in a
simple way by considering Young’s modulus £ = Ev (1 4 inv), where Ev and nv are
constant. The derived equation of motion is used to determine the natural frequencies
and loss factors for various modes. The first six modes of natural frequencies of a
viscoelastic sandwich beam with a clamped-free boundary condition for various
core loss factors are presented in Table 1. These results are reasonably good of
those provided by the literature of references Bilasse et al. [6] and Abdoun et al. [5]
observed in Table 1.
Material properties which are used for this analysis are presented below.

Young’s modulus of elastic face sheet = 6.9 x 10'° Nm—2
Poisson ratio of elastic face sheet = 0.3

Density of elastic face sheet = 2766 kg m™>

Viscoelastic material properties:

Young’s modulus E = 1.794 x 10° Nm~2

Poisson ratio v, = 0.3

Density p. = 968.1 kg m™3

The material properties of the ceramic and metal are as follows:
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Table 1 Cantilever viscoelastic sandwich beam natural frequencies and loss factors

383

Core’s loss | Bilasse et al. [6] Abdoun et al. [5] Present
factor (1) Frequency | Loss factor | Frequency | Loss factor | Frequency | Loss factor
() ) ()
0.1 64.1 0.281 64.5 0.281 64.2 0.281
296.7 0.242 298.9 0.242 297.4 0.242
744.5 0.154 746.5 0.154 749.0 0.153
1395.7 0.089 1407.7 0.089 1412.1 0.088
2264.5 0.057 2286.2 0.057 2308.8 0.056
3349.8 0.039 3385.7 0.039 3448.1 0.037
0.6 65.5 0.246 65.9 0.247 65.7 0.246
299.2 0.232 303.1 0.224 300.6 0.232
746.3 0.153 752.3 0.150 751.5 0.152
1396.6 0.089 1412.7 0.088 1413.5 0.087
2265.2 0.057 2290.6 0.057 2309.47 0.056
3350.2 0.039 3389.5 0.039 3448.7 0.037
1 67.5 0.202 67.8 0.204 67.8 0.203
303.1 0.218 309.1 0.201 305.5 0.218
749.4 0.150 761.1 0.142 755.9 0.149
1398.3 0.088 1420.6 0.086 1416.0 0.086
2266.3 0.057 2297.9 0.057 2311.4 0.055
3350.9 0.039 3395.9 0.037 3449.8 0.037
1.5 69.9 0.153 70.3 0.155 70.4 0.153
309.1 0.198 317.4 0.176 313.1 0.198
755.2 0.146 777.2 0.131 764.0 0.145
1401.4 0.087 1432.8 0.083 1420.6 0.086
2268.5 0.057 2310.1 0.056 2314.5 0.055
3352.3 0.039 3307.0 0.039 3451.8 0.037

SUS304, p. = 7800kg/m®, E = 201 GPa, 9 = 0.3
AL O3, pp = 2707 kg/m®, E = 380 GPa, 9 = 0.3

Figure 2a, b represents the frequency variation with respect to the loss factor of the
viscoelastic sandwich beam with FGM face sheets of a cantilever and both sides fixed
boundary conditions, respectively. It is noticed that the first three mode frequencies
are reduced with an increase of loss factor. The increase of loss factor reduces its
overall stiffness matrix of the sandwich beam, which may cause marginally reduces
its frequencies.

The variation of loss factor with respect to the core loss factor is shown in Fig. 3a,
b, correspondingly. The loss factor is decreased with an increase of core loss factor.
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Fig. 2 a First three-mode frequencies variation with loss factor for cantilever beam. b First three-

mode frequencies variation with loss factor for fixed beam
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Fig.3 a Firstthree-loss factors variation with a core loss factor of cantilever beam. b First three-loss

factor variation with core loss factor of both sides fixed beam

This is because of increase of core loss factor. The first mode loss factor decrease of
variation can be observed in these figures. Similarly, the other two modes are also

varied to a certain extent.

Figure 4a, b illustrated the frequency versus thickness ratio (FGM face sheet to
the core) for cantilever and both sides fixed boundary conditions. It indicates that
the increase of thickness ratio reduces the first three mode frequencies. There is
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Fig. 4 a First three-mode frequencies variation with thickness ratio of cantilever beam. b First

three-mode frequencies variation with thickness ratio of both sides fixed beam
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Fig. 5 a Loss factor versus thickness ratio of cantilever beam. b Loss factor versus thickness ratio
of both sides fixed beam

no effect of the bending moment and displacement for fixed—fixed condition on the
frequencies. Hence, higher frequency values.

The variation of loss factor against thickness ratio of a sandwich beam for can-
tilever and both sides fixed boundary conditions is shown in Fig. 5a, b. Here, the
increase of thickness ratio may decrease the first mode frequency; similarly, the
increase of thickness ratio increases the second and third mode frequencies of FGM
constraining layer sandwich beam. The reasons might be the effect of eigenvalues.

4 Conclusions

Vibration responses and loss factors are obtained for a viscoelastic sandwich beam
with various boundary conditions by using the present developed finite element
modal. Timoshenko beam theory is assumed for basic kinematics. In the presently
developed modal of the finite element method with three layer sandwich beam. The
governing equation of motion of viscoelastic sandwich beam is derived by Hamilton’s
principle. The influence of loss factor on the natural frequencies is observed. The
natural frequencies are reduced with an increase of loss factor. The effect of loss factor
on the thickness ratio also calculated. An increase of core thickness will decrease
the first mode and correspondingly, increase the second and third mode frequency
of cantilever sandwich beams.
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