Chapter 8 ®)
Transformation in Scale for Continuous Check for
Zooming

Zhilin Li and Haowen Yan

Abstract This chapter summarizes the theories and methods in continuous zooming
for Digital Earth. It introduces the basic concepts of and issues in continuous zooming
and transformation in scale (or multiscale transformation). It presents the theories of
transformation in scale, including the concepts of multiscale versus variable scale,
transformation in the Euclidean space versus the geographical space, and the the-
oretical foundation for transformation in scale, the Natural Principle. It addresses
models for transformations in scale, including space-primary hierarchical models,
feature-primary hierarchical models, models of transformation in scale for irregular
triangulation networks, and the models for geometric transformation of map data.
It also discusses the mathematical solutions to transformations in scale (including
upscaling and downscaling) for both raster (numerical and categorical data) and vec-
tor (point set data, line data set and area data) data. In addition, some concluding
remarks are provided.
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8.1 Continuous Zooming and Transformation in Scale:
An Introduction

8.1.1 Continuous Zooming: Foundation of the Digital Earth

Continuous zooming is a fundamental function of a Digital Earth, as the demand for
such a function has been vividly portrayed by then-US Vice President Al Gore in
his famous speech “The Digital Earth: Understanding Our Planet in the twenty-first
Century” (Gore 1998):

Imagine, for example, a young child going to a Digital Earth exhibit at a local museum.
After donning a head-mounted display, she sees Earth as it appears from space. Using a
data glove, she zooms in, using higher and higher levels of resolution, to see continents,
then regions, countries, cities, and finally individual houses, trees, and other natural and
man-made objects.

The cascade scene seen by the young child is a result of continuous zooming. Such
zooming can be realized by continuously displaying a series of Earth images taken
at a given position and changing the focal length of the camera lens continuously or
displaying images taken at different heights continuously but with at a fixed camera
focal length.

In theory, to make the display visually smooth, the differences between two images
should be sufficiently small, thus the number of images in such a series is very large,
which demands huge data storage. Thus, it is a very difficult, if not impossible,
problem.

8.1.2 Transformation in Scale: Foundation of Continuous
Zooming

In practice, Earth images are acquired and stored at discrete scales (e.g., 1:500,000,
1:100,000, 1:10,000) or different resolutions (e.g., 100, 10, 1, 0.5 m), leading to the
term multiscale representation. Figure 8.1 shows a series of satellite images covering
Hong Kong Polytechnic University at six different scales, extracted from Google
Maps. If such images at discrete scales are displayed in sequence, there will be a
visual jump between two images. The obviousness of the visual jump is dependent
on the magnitude of the scale difference. The smaller the difference between the two
scales is, the less apparent the visual jump will be.

To minimize the effect of such visual jumps, some techniques are required to
smooth the transformations from one scale to another scale to make the display appear
like continuous zooming. This transformation in scale is the foundation of continuous
zooming. Thus, transformation in scale, also called multiscale transformation, is the
topic of this chapter.
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Fig. 8.1 A series of images covering HK Polytechnic University at different scales (from Google
Maps)

8.1.3 Transformation in Scale: A Fundamental Issue
in Disciplines Related to Digital Earth

Transformation in scale is one of the most important but unsolved issues in various
disciplines related to Digital Earth, such as mapping, geography, geomorphology,
oceanography, soil science, social sciences, hydrology, environmental sciences and
urban studies. Typical examples are map generalization and the modifiable areal unit
problem (MAUP). Although transformation in scale is a traditional topic, it has been
a critical issue in this digital era.

Transformation in scale has attracted attention from disciplines related to Digital
Earth since the 1980s because a few important publications on the scale issue in
that period awakened researchers in relevant areas. Openshaw (1984) revisited the
MAUP. Abler (1987) reported that multiscale representation was identified as one
of the initiatives of the National Center for Geographic Information and Analysis
(NCGIA), and noted that zooming and overlay are the two most exciting functions
in a geographical information system. Since then, the scale issue has been included
in many research agendas (e.g., Rhind 1988; UCGIS 2006) and has become popular
in the geo-information community.

The first paper on the scale issue in remote sensing was also published in 1987
(Woodcock and Strahler 1987). Later, in 1993, the issue of scaling from point to
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regional- or global-scale estimates of the surface energy fluxes attracted great atten-
tion at the Workshop on Thermal Remote Sensing held at La Londe les Maures,
France from September 20-24. Scale became a hot topic in remote sensing as well.

As a result, many papers on the scale issue have been published in academic
journals and at conferences related to Digital Earth. Other papers have been p in the
form of edited books, such as Scaling Up in Hydrology Using Remote Sensing edited
by Stewart et al. (1996), Scale in Remote Sensing and GIS edited by Quattrochi
and Goodchild (1997), Scale Dependence and Scale Invariance in Hydrology edited
by Sposito (1998), Modelling Scale in Geographical Information Science edited
by Tate and Atkinson (2001), Scale and Geographic Inquiry: Nature, Society and
Method edited by Sheppard and McMaster (2004), Generalisation of Geographic
Information: Cartographic Modelling and Applications edited by Mackaness et al.
(2007), and Scale Issues in Remote sensing edited by Weng (2014). Authored research
monographs have also been published by researchers, e.g., Algorithmic Foundation
of Multi-Scale Spatial Representation by Li (2007) and Integrating Scale in Remote
Sensing and GIS by Zhang et al. (2017).

8.2 Theories of Transformation in Scale

Transformation in scale is the modeling of spatial data or spatial representations
from one scale to another by employing mathematical models and/or algorithms
developed based on certain scaling theories and/or principles. This section describes
such scaling theories and/or principles.

8.2.1 Transformation in Scale: Multiscale Versus Variable
Scale

To facilitate zooming, not necessarily continuous, a common practice of service
providers such as Google Maps, Virtual Earth and Tianditu is to organize maps and
images into nearly 20 levels (scales or resolutions), from global level to street level.
Figure 8.2 shows a series of maps covering Hong Kong Polytechnic University at six
different scales (extracted from Google Maps). This follows the tradition of organiz-
ing maps by national map agencies. For example, the United States Geological Survey
(USGS) produces topographic maps at scales of 1:500,000, 1:250,000, 1:100,000,
1:50,000 and 1:24,000; the Chinese State Bureau of Surveying and Mapping pro-
duces maps at scales of 1:4,000,000, 1:1,000,000, 1:250,000, 1:50,000 and 1:10,000;
the Ordnance Survey of the UK produces maps at scales of 1:50,000, 1:25,000 and
1:10,000; and the German federal states produces maps at 1:1,000,000, 1:250,000,
1:100,000, 1:50,000, 1:25,000 and 1:10,000 scales. These maps at different scales
contain information at different levels of detail, and thus are suitable for different
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Fig. 8.2 A series of maps covering Hong Kong Polytechnic University at different scales (extracted
from Google Maps)

applications. Such a scale is also called the cartographic ratio. Similarly, image data
and digital elevation models (DEMs) are also produced and stored at discrete scales.
In these two cases, the scale is normally indicated by resolution.

This kind of representation is called multiscale representation. In such cases, the
cartographic ratio is uniform across a map and/or an image. Thus, such represen-
tations have multiple cartographic ratios. The cartographic ratio may vary across a
representation (e.g., oblique view), leading to the term variable scale representation;
the resolution may also vary across a representation, leading to the term variable res-
olution representation. As a result, the term multiscale might mean different things to
different people, i.e., multi cartographic ratio, variable cartographic ratio, multi res-
olution and variable resolution. This leads to nine different kinds of transformations
in scale, as shown in Fig. 8.3.

8.2.2 Transformations in Scale: Euclidean Versus
Geographical Space

In Euclidean space, an increase in scale will commonly cause an increase in length,
area and volume; and a decrease in scale will cause a decrease in length, area and
volume, accordingly. Figure 8.4 shows an example of scale reduction and increase in
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Fig. 8.4 Scale change in Euclidean space: a reversible process (Li 2007)
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Fig. 8.5 Scale change in 2D geographical space: lost complexity is not recoverable (Li 2007)

a 2D Euclidean space. In such a transformation in scale, the absolute complexity of
a feature or features remains unchanged. That is, the transformations are reversible.

However, the geographical space is fractal. If one measures a coastal line using
different measurement units, then different lengths will be obtained. The smaller the
measurement unit is, the longer the length obtained. Similarly, different length values
will be obtained when measuring a coastal line represented on maps at different scales
using identical measurement units at map scale. That is, the transformation in scale
in fractal geographical space is quite different from that in Euclidean space.

For a given area on a terrain surface, the size of the graphic representation (or map
space) on a smaller scale map is reduced compared with that on larger scale maps.
The complexity of the graphics on a smaller scale map remain compatible with larger
scale maps. However, the absolute complexity is reduced. As a result, if the graphics
on a smaller map are enlarged back to the size on the larger scale map, the level
of complexity of the enlarged representation will appear to be reduced. Figure 8.5
illustrates such a case. In a fractal geographical space, the level of complexity cannot
be recovered by an increase in scale. In other words, the transformations in scale in
such a geographical space are not reversible.

The transformation in scale is also termed scaling. The process of making the
resolution coarser (or making the map scale smaller) is called upscaling. In contrast,
the transformation process to make the resolution finer (or map scale larger) is called
downscaling.

8.2.3 Theoretical Foundation for Transformation in Scale:
The Natural Principle

One question that arises is “does such a transformation follow any principle or law?”
The answer is “yes”. Li and Openshaw (1993) formulated the Natural Principle for
such a transformation in scale in fractal geographical space.
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Li and Openshaw (1993) made use of the terrain surface viewed from different
height levels as an example to illustrate the Natural Principle, as follows:

e When one views the terrain surface from the Moon, all terrain variations disappear,
and one can only see a blue ball;

e When one views the terrain surface from a satellite, then the terrain surface
becomes visible, but the terrain surface looks very smooth;

e When one views the terrain surface from an airplane, the main characteristics of
the terrain variations become very clear, but small details do not appear; and

e When one views the terrain surface from a position on ground, the main charac-
teristics of the terrain variations become lost, and one sees small details.

When the viewpoint is higher, the ground area corresponding to the human eyes’
resolution becomes larger, but all detailed variations within this ground area can no
longer be seen, and thus the terrain surface appears more abstract. These examples
underline a universal principle, the Natural Principle as termed by Li and Openshaw
(1993). It can be stated as follows:

For a given scale of interest, all details about the spatial variations of geographical objects
(features) beyond a certain limitation cannot be presented and can thus be neglected.

It follows that a simple corollary to this process can be used as a basis for transfor-
mations in scale. The corollary can be stated as follows (Li and Openshaw 1993):

By using a criterion similar to the limitation of human eyes’ resolution, and, neglecting all
the information about the spatial variation of spatial objects (features) beyond this limitation,
zooming (or generalization) effects can be achieved.

Li and Openshaw (1992) also term such a limitation as the smallest visible object
(SVO) or smallest visible size (SVS) in other literature (Li 2007). Figure 8.6 illustrates

Fig.8.6 The natural principle: spatial variations within a smallest visible size (SVS) to be neglected
(Li 2007)
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the idea of this corollary, that is, that all spatial variations within the SVS can be
neglected, no matter how big they are on the ground.

Figure 8.7 illustrates the working example of applying the Natural Principle to
a terrain surface. Figure 8.7a shows the views of a terrain surface at two different
heights based on the Natural Principle, resulting in two quite different representations
in terms of complexity. Figure 8.7b, ¢ show the results viewed at levels L4 and Lg,
respectively. In these two Figures, the zooming (or generalization) effects are very
clear.

To apply the Natural Principle, the critical element to be considered is the value
of this “certain limitation” or SVS, beyond which all spatial variations (no matter
how complicated) can be neglected. Li and Openshaw (1992, 1993) suggested the
following formula:
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(a) The process of zooming at two viewing distances (scales)
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Fig. 8.7 Zooming effect of a terrain surface generated by the Natural Principle (Li and Openshaw
1993)
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where St and Sg are the scale factors of the target and source data, respectively; k is
the SVS value in terms of map distance at the target scale and K is the SVS value in
terms of ground distance at the target scale. Through intensive experimental testing,
Li and Openshaw (1992) recommend a k value between 0.5 and 0.7 mm, i.e.,

k = {0.5 mm, 0.7 mm} (8.2)

8.3 Models for Transformations in Scale

To realize a transformation in scale, some transformation models must be adopted
and algorithms and/or mathematical functions for these models are applied. The
former is the topic of this section and the latter are described in Sect. 8.4.

8.3.1 Data Models for Feature Representation:
Space-Primary Versus Feature-Primary

To record features in geographical space, two different viewpoints can be taken:
feature-primary and space-primary (Lee et al. 2000).

In a feature-primary view, the geographical space is considered as being tessellated
by features and the locations of these features are then determined. This kind of
model is also called feature-based. In such a model, features are represented by
vectors, leading to the popular term vector data model. Figure 8.8a—c show the
representation of points, a line and an area using a vector model.

In a space-primary view, the geographical space is considered as being tessellated
by space cells. In such a tessellation (partitioning), square raster cells are popularly
employed, leading to the popular term raster data model. In each raster cell, there
could be a feature or there might be no features. A point is represented by a pixel
(picture element); a line is represented by a string of connected pixels and an area
is formed by a set of connected pixels, as shown in Fig. 8.8d—f. The cells can be
in any form, regular or irregular. Irregular triangular networks are another popular
tessellation.

On a spherical surface, longitude/latitude is the coordinate system for feature-
primary representation. The cells with an equal interval in latitude/longitude (e.g.,
6’ x 6') are the raster equivalent of spherical tessellation (Fig. 8.9a). However, the
actual area size of such a cell varies with the latitude. To overcome this problem,
the quaternary triangular mesh (QTM) (Fig. 8.9b) has been used (e.g., Dutton 1984,
1996). The cells can be any shape (e.g., triangle, hexagon), regular or irregular.
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Fig. 8.8 Feature-primary and space-primary representations of spatial features: vector and raster
models

(a) Long./latitude (b) Triangular (c) hexagon (d) Voxel in 3D space
cells cells cells

Fig. 8.9 Spatial tessellation of a spherical surface and a 3D space

Figure 8.9c shows the use of a regular hexagon diagram for such a tessellation. For
3D space, the voxel (volume element) is the raster equivalent for space tessellation
(Fig. 8.94).

As the natures of the raster and vector data models are quite different, the model
for transformation in scale in these two data models might also differ. Thus, separate
subsections are devoted to these topics.
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8.3.2 Space-Primary Hierarchical Models
Jor Transformation in Scale

Hierarchical models are popular for the multiscale representation of spatial data
at discrete scales. For example, Google Maps, Virtual Earth and Tianditu have all
adopted hierarchical models for the representation of images and maps. Figure 8.10
shows the first three zoom levels of the hierarchical model used by Google Maps
(Stefanakis 2017). This model has a special name, the pyramid model, which is a
result of aggregating a 2 x 2 pixel into one pixel. The number of pixels (squares) at
the nth level is 4"~ !. A more general form of aggregation is to transform any N x N
pixels into one pixel.

A more general form of transformation to create a hierarchical representation is
to transform N x N pixels into M x M pixels, e.g.,a5 x Sintoa2 x 2ora3 x 3
into a 2 x 2. In such cases, a resampling process (instead of simple aggregation) is
required.

With a hierarchical model, the resolution and cartographic ratio at each level
are not necessarily uniform. Typical examples of hierarchical models with variable
resolutions are shown in Fig. 8.11, i.e., the quadtree and binary tree models.

With the pyramid and quadtree models, the hierarchical levels are fixed and the
transformation in scale jumps from one level to another like stairs. To make the
transformation absolutely smooth, we need to make the difference between two
steps of the stairs infinitely small, to make the stairs become a continuous linear
slope (see Fig. 8.12).

For hierarchical representation on a spherical surface, the Open Geospatial Con-
sortium (OGC) approved a new standard called the Discrete Global Grid System
(DGGS) (OGC 2019) The hierarchical representation of QTM as shown in Fig. 8.9b
is an example of such a DGGS.
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Fig. 8.10 Pyramid model used in Google Maps: the first three zoom levels (Stefanakis 2017)
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Fig. 8.11 Hierarchical representations of area features with quadtree and binary tree models

b

(a) Discrete scales, like stairs (b) Continuous scales, like a slope

Fig. 8.12 Discrete and continuous transformations in scale: steps and a linear slope

8.3.3 Feature-Primary Hierarchical Models
Jor Transformation in Scale

Hierarchical models have also been used to represent point, line and area features in
feature-primary models. Figure 8.13 shows such a representation for the points on a
line. At level 1, only two points, i.e., points (1, 1) and (1, 2), will be used to represent
the line; at level 2, in addition to the two points at level 1, point 2 will also be used;
and at level 3, points (3, 1) and (3, 2) will also be used. This kind of model has been
employed for progressive transmission of vector data.

Figure 8.14 shows the hierarchical representation of a river network by the Hor-
ton and Shreve models. Figure 8.14a is a hierarchical representation based on river
segments. The formation of such a representation starts from the level 1 branches. A
segment of level 2 is formed by two or more segments of level 1. Similarly, a segment
of level 3 is formed by two or more segments of level 2. All higher level segments
are formed by following this principle. Figure 8.14b is a hierarchical representation
formed by the Horton model based on a river stroke, which is a concatenated seg-
ment. Figure 8.14c¢ is a hierarchical representation formed by the Shreve model. The
numbering in this hierarchy is formed by adding the numbers of upstream branches.
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Fig. 8.13 Hierarchical representations of points on a line
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Fig. 8.14 Hierarchical representation of a river network using the Horton and Shreve models (Li
2007)

For example, the ranking value for the segment with the highest ranking is 13, which
is a result of adding 9 and 4. Such a numbering of ranking is not continuous.

Figure 8.15 shows the hierarchical representation of two transportation networks.
In this case, the importance of each road is evaluated based on geometric information
and/or thematic information. A ranking value is assigned to each road.

Figure 8.16 shows a hierarchical representation of area features. The area features
in the whole area are first connected by a minimum spanning tress (MST) as a
whole group, i.e., Group A. Group A is then subdivided into subgroups B and C
by breaking the tree at the connection with the largest span. Similarly, Group B is
broken into D and E, and Group C is broken into F and G. The subdivision goes on
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Fig. 8.16 Hierarchical representations of area features (Ai and Guo 2007)
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until a criterion is met or until the complete hierarchy is constructed. In the end, a
hierarchical representation is formed.

8.3.4 Models of Transformation in Scale for Irregular
Triangulation Networks

An irregular triangulation network is an irregular space tessellation that has been
widely used for digital terrain models (DTMs). In such a representation, the resolution
is variable across the space. Therefore, special models should be used to make the
resolution transformable from one to another. Four basic transformation models have
been developed for such a purpose (Li 2005):

e Vertex removal: A vertex in the triangular network is removed and new triangles
are formed.

e Triangle removal: A complete triangle with three vertices is removed and new
triangles are formed.

e Edge collapse: An edge with two vertices is collapsed to a point and new triangles
are formed.

e Triangle collapse: A complete triangle with three vertices is collapsed to a point
and new triangles are formed.

Figure 8.17 illustrates these four transformation models.

8.3.5 Models for Geometric Transformation of Map Data
in Scale

The hierarchical model described in Sect. 8.3.2 is suitable to represent raster image
data because images are numerical data that naturally record the earth and such a
recording follows the Natural Principle described in Sect. 8.2.3. Figure 8.18 shows
four images with different resolutions, the result of a “2 x 2 into “1 x 1” aggrega-
tion. These images appear to be very natural. However, for the categorical data of
topographic maps, such a simple transformation does not work well, and there is a
need for other transformation models.

Topographic maps are produced via a complicated intellectual process that con-
sists of abstraction, symbolization, generalization, selective omission and simplifica-
tion. During this process, small details are ignored (or grouped together). All features
are represented by symbols (geometric or pictorial). The colors of the symbols are
not necessarily the natural colors of features. The graphic symbols are annotated
with text (e.g., name of a street/town/city). There are requirements for minimum
size, minimum separation and minimum differentiation for graphic elements. Thus,
when a map at a larger scale (Fig. 8.19¢) is simply reduced by 4 times (equivalent to
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(a) Vertex removal

& =

(b) Triangle removal

=

(c) Edge collapse

_

(d) Triangle collapse

Fig. 8.17 Basic models for geometric transformation in scale for a triangular network (Li 2005)

Image resolution becomes coarser with a

“2x2” into “1x1” aggregation

Fig. 8.18 Four images with the same cartographic ratio but different resolutions
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Fig. 8.19 Kowloon Peninsula represented on maps at two different scales, via generalization and
simple scale reduction (extracted from Google Maps)

a‘“2 x 2 into 1” aggregation), the graphics (Fig. 8.19b) become unclear because the
minimum requirements can no longer be met. Figure 8.20 illustrates such a situation
with the aggregation of buildings as an example. A set of special models is needed
for the transformation of map data from one scale to another to make the graphics at
the smaller scale clear (Fig. 8.19a).

The transformation of maps from a larger scale to a smaller scale is called map
generalization and has long been studied in the cartographic community. Some trans-
formation models have been identified by researchers. In the traditional textbook by
Robinson et al. (1984), only four models are listed, i.e., classification, induction,
simplification and symbolization. In the 1980s, more models were identified, and
a list of 12 models was produced by McMaster and Shea (1992). Many of these
models were still too general to be precisely implemented in a computer system.
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Results of maps with simple scale reduction to different scales

More recently, Li (2007) produced 40 detailed models for implementation. These
models are divided into six sets: three sets for individual points, individual lines and
individual areas and the other three sets for a class of points, a class of lines and a
class of areas. Tables 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 list the six sets of models.

Table 8.1 Models for geometric transformations in scale of individual point features (Li 2007)

Transformation model

Large-scale

Photo-reduced

Small-scale

Displacement
(move because it is too close to another
feature)

i

F

i

Elimination I E— —
(too small to represent, thus removed) ‘ﬂ - ‘ ‘
Magnification [ [ ] [

(enlarged due to importance)

Table 8.2 Models for geometric transformations in scale of a set of point features (Li 2007)

Transformation model Large-scale Photo-reduced | Small-scale
Aggregation LX) I °
(group points and make a new one) M ° [ % L4

(1]
Regionalization [ 3
(delineate a boundary outlined by points .... fss*' O
and make a new area feature) g .. [}

e%’

(continued)
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Table 8.2 (continued)
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Transformation model Large-scale Photo-reduced | Small-scale
Selective Omission [ .8 Y
(retain more important points and omit less | o ‘e | R d °
important ones)
[ ]

(Structural) Slmplzﬁcatlon ' . : . gi: g .
(cluster complexity; the main structure is o0, 13 8: e
retained) g 0o _©

4%

[ X )
Typification EEEEN ammmn EEE
(typical pattern kept while points removed
for clarity)

Table 8.3 Models for geometric transformations in scale of individual line features (Li 2007)

Transformation model

Large-scale

Photo-reduced

Small-scale

Displacement

(to move a line away from the
position because it is too close to
another feature)

Elimination
(to remove the line because it is too
minor to be included)

v

N

~

(Scale-driven) generalization
(main structure suitable at target
scale retained but small details
removed)

Z

Partial modification
(to modify the shape of a segment
within a line)

Point reduction
(to reduce the number of points by
removing less important points)

Smoothing
(to make the
data appear
smoother)

Curve-fitting
(to fit a curve
through a set of
points)

Filtering

(to filter out the
high-frequency
components or

small details of
a line)

SIREIDIES

S

(continued)
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Table 8.3 (continued)
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Transformation model

Large-scale

Photo-reduced

Small-scale

Typification

(typical patterns of the line bends
retained while removing some of
them)

DAvivie

MNWL

AVAVAN

Table 8.4 Models for geometric transformations in scale of a set of line features (Li 2007)

Transformation model

Large-scale

Photo-reduced

Small-scale

Selective omission
(to select more important points and
remove less important points)

el
4

Collapse Ring-to-point
(to reduce the ﬁ*
dimension)

Double-to-single | ———~_ —_
Enhancement 1

(to keep the characteristics clear)

Merging
(to combine to two or more close
lines together)

——

Displacement
(to move one away from others or
both away from each other)

—
D ——

L
=5
_I'I_

Table 8.5 Models for geometric transformations in scale of individual area features (Li 2007)

Transformation model

Large-scale

Photo-reduced

Small-scale

Collapse Area-to-point a ®
(to reduce the ‘
dimension of
features) Area-to-line | = _
/\/
Partial : : :
Displacement I:I I:l I:l

(to move the area to a slightly
different position to solve the
conflict problem)

(continued)
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Table 8.5 (continued)
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Transformation model

Large-scale

Photo-reduced

Small-scale

Exaggeration
(to enlarge one
or two
dimensions of a
small area)

Directional
thickening

(to enlarge an
area feature in
a direction)

-

[ -

Enlargement

(to uniformly
magnify in all
directions)

0

Widening

(to widen the
bottleneck of
an area feature)

0T

Elimination
(to eliminate data that is too small
to represent

(Shape) Simplification
(to reduce the complexity of a
boundary)

Split

(to split an area into two because
the connection between them is
too narrow)

i

d =

Table 8.6 Models for geometric transformations in scale of a set of area features (Li 2007)

Transformation model Large-scale Photo-reduced | Small-scale
Aggregation m -

(to combine area features, e.g., buildings | [l Il

separated by open space)

Agglomeration 10

(to make area features bounded by thin |:||:||:| ood

area features into adjacent area features)

L

Amalgamation

(to combine area features, e.g., buildings
separated by another feature such as
roads)

=

=

Dissolving
(to split a small area into pieces and
merge these pieces into adjacent areas)

s

oI

(continued)
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Table 8.6 (continued)
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Transformation model

Large-scale

Photo-reduced

Small-scale

Merging
(to combine two adjacent areas into one)

8

g

Relocation EE L 1]

(to move more than one feature around to | [l ™ an"

solve the crowding problem) HE

(Structural) Simplification o
(to retain the structure of area patches by Q% OO g%sj g&O
selecting important ones) { jo

Typification 11 H- —
(to retain the typical pattern, e.g., a group = = = === -
of areas aligned in rows and columns) 11

8.3.6 Models for Transformation in Scale of 3D City

Representations

For 3D representation of digital cities, the CityGML, which was officially adopted
by the OGC in 2008, specifies five well-defined consecutive levels of detail (LOD)
as follows, an example of which is shown in Fig. 8.21 (Kolbe et al. 2008):

LOD 0—regional, landscape
LOD 1—city, region
LOD 2—ity districts, projects

LOD 3—architectural models (outside), landmarks
LOD 4—architectural models (interior)

For the transformation in scale of 3D features, a set of models is listed in Table 8.7,
which is a summary of models proposed in the literature.

LoD 0 LoD 1

Fig. 8.21 The five levels of detail (LoD) defined by CityGML (Kolbe et al. 2008)

LoD 2
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Table 8.7 Models for transformation in scale of 3D features

Transformation model Photo-reduced | At small scale

Elimination Geometric
elimination

Thematic
elimination

Exaggeration | Thematic
exaggeration

Geometric
exaggeration

Simplification | Vertical
simplification

Flattening

Squaring

Thematic
simplification

Displacement

5 9% @ty Q Qe
5 9° €1y 9 98

L

ERlE YRR

Typification

2
4
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8.4 Mathematical Solutions for Transformations in Scale

In the previous section, several sets of models for the transformation in scale were
described. These models express what is achieved in such transformations, e.g., the
shape is simplified, important points retained, and/or the main structure is preserved.
To make these transformations work, mathematical solutions (e.g., algorithms and
mathematical functions) must be developed for each of these transformations. A
selection of these solutions is presented in this section.

8.4.1 Mathematical Solutions for Upscaling Raster Data:
Numerical and Categorical

For raster-based numerical data such as images and digital terrain models (DTMs),
aggregation is widely used to generate hierarchical models. In recent years, wavelet
transform (e.g., Mallat 1989), Laplacian transform (Burt and Adelson 1983) and other
more advanced mathematical solutions have also been employed. The commonly
used aggregation methods are by mode, by median, by average, and by Nth cell
(i.e., Nth cell in both the row and column). Figure 8.22 shows a “3 x 3to 1 x 1”7
aggregation with these four methods. The 6 x 6 grid is then aggregated into a2 x 2
grid.

If the new cell interval is not multiples of the original cells, then interpolation
must be applied to resample the data. Bilinear and weighted averaging interpolations
are widely used for resampling. Figure 8.23 shows the resampling of a 3 x 3 grid
into a 2 x 2 grid using weighted averaging interpolation.

Bilinear interpolation can be performed for any four points (not along a line). The
mathematical function is as follows:

417165 41]°¢6 715 71 6
5171949195 2 |2 413
1 [ 8] 78615 (b) by mode (c) by median
214136145
215162 3]|2 415 6] 6
21516 2|3]2 2|6

(a) Original data (d) N cell (N=3) (e) by average

Fig. 8.22 “3 x 3to 1 x 1” aggregation of numerical data
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+—>
sl1lels]als ‘
‘ s{7]16]6
Geteti———1 9 | 9 | 5 Pe
ldladslels| [ 1 oM RN I I
2lalslelals 3|44 ]4
215164121542 Hy=(1x4+0.5x7+0.5xs > 1 ¢ 1212
2(slel2]3]> +0.25%7)/2.25 =5

(a) Original data (6x6 grid) (b) Area-weighted interpolation  (c) Result: 4x4 grid

Fig. 8.23 “3 x 3 to 2 x 2” resampling of numerical data

z=ayp+ a1x +ayy + asxy (8.3)

where ag, a;, az, as is the set of four coefficients, which are to be determined by four
equations that are formed by making use of the coordinates of four reference points,
i.e., the centers of the four grid cells in Fig. 8.23b: P (xy, y1, 21), P2(x2, ¥2, 22),
P53(x3, y3, z3) and P4(x4, Y4, z4). The mathematical formula is as follows:

-1

ap I x1 y1 x1y1 21
ap | _ | 1x2y2 %2y 22 (8.4)
a 1 x3 y3 x3y3 23
a3 1 x4 y4 X4y4 24

Once the coefficients ay, a;, ay, az are computed, the height Zp of any point P
with a given set of coordinates (Xp, yp) can be obtained by substituting (Xp, yp) into
Eq. (8.1).

The mathematical expression of weighted averaging interpolation is as follows:

Dimi Wili
Z:’l:l Wi

where w; is the weight of the ith reference point; z; is the height of the ith reference
point; and n is the total number of the reference points used. In the case of Fig. 8.23b,
n=4.

Weights may be determined by using different functions. The simplest weighting
function assigns an equal weight to all reference points. However, it seems unfair to
those reference points that are closer to the interpolation point, as such points should
have a higher influence on the estimate. As a result, distance-based or area-based
weighting are more commonly used. The inverse of distance is most popularly used:

. (8.5)

W= —-0rw= — (8.6)
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where d is the distance from a reference point to the interpolation point. In the case
of interpolating the height of P in Fig. 8.23b, the four distances from the four (old)
cell centers to point P will be used. Figure 8.23b also shows that the distance of
each cell center to the interpolation point P is directly related to the size of the area
contributed by each (old) cell to the new cell. If the area size is denoted as A, the
weighting function is

w; = A; (8.7)

For example, if the area of the new cell is composed of 100% of the upper left
cell, 50% of the upper right cell, 50% of the lower left cell and 25% of the lower
right cell, the weights of these four cells are 1.0, 0.5, 0.5 and 0.25, and the result of
the interpolation is:

zp =1x4405x74+05x5+4+025 x 7)/225~5

For the raster-based categorical data, the averaging and median are no longer
applicable. The mode (also called the majority in some literature) is still valid and
widely used. Figure 8.24b shows such a result. However, the value for the upper
right cell is difficult to determine as there is no mode (majority) in the 3 x 3 window
at the upper right corner of the original data (Fig. 8.24a). Notably, some priority
rules or orders are in practical use. For example, a river feature is usually given a
priority because thin rivers are likely to be broken after aggregation. Figure 8.25
shows the improvement in the connectivity of river pixels with water as the priority.
Figure 8.24c-e show the results with different options, e.g., random selection and
central pixel. It is also possible to consider the statistical distribution of the original
data (e.g., A=8,T=10,W =6,S = 11) to try to maintain the distribution as much
as possible.

In the aggregation/resampling process, as illustrated in Figs. 8.22, 8.23 and 8.24,
a moving window is used but the question of the most appropriate window size
has rarely been addressed. Li and Li (1999) suggested that the size of the moving
window for aggregation/resampling should be computed based on the resolutions

AlA|TRET|T]|W ? Al W
AlA|TYIT]| W[ S TS TY] S
AlALTEW[S]|S (b) by majority rule (c) With W as the priority
A|T|TLIW|S]|S

A|T|W]LS|S]|S W A
T|W|s|sS|[S]S T|s T

(a) Original data (d) using the central pixel value  (e) by random selection

Fig. 8.24 Aggregation of raster-based categorical data
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=S

(a) Original data (b) “3x3 to 1” aggregation (c) “3%3 to 1” aggregation

with water as the priority

Fig. 8.25 Aggregation of landcover data with priority (extracted from Tan 2018)

(scales) of the input and output, following the Natural Principle (Li and Openshaw
1993) described in Sect. 8.2.3. Mathematically,

W=— (8.8)
Rin
where R;, is the resolution (scale) of the input data; K is the SVS value in terms of
ground distance at the target scale computed by Eq. (8.1), and W is the size of the
window’s side in terms of pixel numbers (of input data).

8.4.2 Mathematical Solutions for Downscaling Raster Data

Downscaling produces a finer spatial resolution raster data than that of the input
data through prediction. It is possible to use simple resampling (as described in
Sect. 8.4.1) to achieve downscaling. However, methods based on spatial statistical
analysis are more theoretically grounded and have become popular (Atkinson 2008,
2013), particularly area-to-point prediction (ATPP). Double dictionary learning has
also been used (Xu and Huang 2014).

Area-to-point kriging (ATP Kriging or ATPK) (Kyriakidis 2004) is the typical
method. ATP Kriging can ensure the coherence of predictions, such as by ensuring
that the sum of the downscaled predictions within any given area are equal to the orig-
inal aggregated count. Some variants of ATP Kriging have also been developed, e.g.,
ATP Poisson Kriging (Goovaerts 2008, 2009, 2010), indicator cokriging (Boucher
and Kyriakidis 2006) and ATP regression Kriging (Wang et al. 2015). In this section,
the base version of ATP Kriging is described.

The basic principle behind Kriging is weighted averaging. The weights are opti-
mized by using the semivariogram computed from the original data.
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Zep=) wixZ (8.9)

where Z, , is the estimated (interpolated) value; Z; is the value of the ith reference
point; w; is the value of the ith reference point and ) w; = 1.

The interpolated value Z, , is very likely to deviate from the actual value at point
P, Za,p- The difference is called the estimation error. The variance of these deviations
is expressed by Eq. (8.10).

0,2 _ Z?:O(ZE,P - Za,p)i2

‘ n

(8.10)

The basic principle of Kriging is to produce the minimum estimation variance
by choosing a set of optimal weights. Such weights are obtained by solving a set of
simultaneous equations:

wi X y(di) +wr xy(dip) +--- - + W X Y(dim) +A = y(dp)
wi X y(dar) +wy X y(dn) 4+ + W X ¥ (dam) + A =y (dop)
Wim X V(dm]) + wip X y(dmZ) +oeeeee + Wi X V(dmm) + A= )/(de)
Wi+ wy e +w, =1

(8.11)

where w; is the weight of the ith reference point; )\ is the Lagrange multiplier;
and y (d) is the semivariogram value of points with distance d apart, which can be
expressed as follows:

Y MAZi — Zita)?
ng

y(d) = (8.12)

In ATP Kriging, the interpolation finds an estimate for a point at higher resolution.
In such a case, a cell point at coarser resolution corresponds to an area at higher
resolution. Therefore, the set of simultaneous equations is as follows:

wi X y(di) + w2 x y(dp) +------ + W X Y(dim) + A =y(dia)
wi X Y(da1) +wa X y(dan) +------ + Wi X Y(dom) + A = y(dra)
Wim X V(dml) + wip X y(dmZ) +oeeee + Wi X V(dmm) +A= y(dmA)
Wl + W2 + ...... +Wm — 1

(8.13)

where y (d; 4) is the point-to-block semivariogram value from the ith point to area A.
It is the same as the average of the point-to-point semivariogram value between the
ith point and the points within A.
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8.4.3 Mathematical Solutions for Transformation (in Scale)
of Point Set Data

As discussed in Sect. 8.3.5, a number of transformations are possible, such as region-
alization, aggregation, selective omission, structural simplification, and typification.
In both aggregation and regionalization, the clustering plays a central role. In aggre-
gation, a cluster is represented by a point; in regionalization, a cluster is represented
by an area. Thus, clustering is discussed here.

Clustering is one of the most primitive activities of human beings (Anderberg
1973; Xu and Wunsch 2005). Clustering of spatial points is one of the main tasks in
digital earth such as in spatial data mining and exploratory spatial analysis (Estivill-
Castro and Lee 2002; Miller and Han 2009; Openshaw et al. 1987). Numerous
clustering methods are available. The classic algorithms are the K-means algorithms,
and the ISODATA algorithm is an important extension of K-means (Ball and Hall
1967). Classification by K-means is achieved by minimizing the sum of the square
error over all K clusters (i.e., the objective function) as follows:

K
E=Y"Y |-Gl (8.14)

k=1 x;eCy

where C; is the mean of the cluster Cy. The procedure of this algorithm is as follows:

(1) arbitrarily select K points from data set (X) as initial cluster centroids;

(2) assign each point in X to the cluster whose centroid is closest to the point;
(3) compute the new cluster centroid for each cluster; and

(4) repeat Steps (2) and (3) until no change can be made.

However, Li et al. (2017) noted that (a) all clustering algorithms discover clusters in
a geographical dataset even if the dataset has no natural cluster structure and (b) quite
different results will be obtained with different sets of parameters for the same algo-
rithm. These two problems lead to the difficulty in understanding the implications of
the clustering results. Consequently, Li et al. (2017) proposed a scale-driven cluster-
ing theory. In this theory, scale is modeled as a parameter of a clustering model; the
scale dependency in the spatial clustering is handled by constructing a hypothesis
testing; and multiscale significant clusters can be discovered by controlling the scale
parameters in an objective manner. The basic model can be written as

C= f(D, A (8.15)

where C is the clustering result; f is the clustering model; A is the analysis scale (the
size of clusters or the degree of homogeneity within clusters); and D is the data scale
(e.g., resolution and extent).

The clustering consists of two major tasks, i.e., estimation of the density for each
point and detection of dense regions. The procedure is as follows:
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(a) 1: 110,000

(b) 1:60,000

i |

(c) 1: 50,000 (d) 1:30,000 (e) 1:15,000

Fig. 8.26 Scale-driven clustering: five results produced at five different scales from the same
simulated dataset (Li et al. 2017)

(1) Control the data scale: Determine the SVS (smallest visible size) based on input
and output data scales and following the Natural Principle, and ignore all the
points within an SVS in the calculation of point data density.

(2) Identify high-density points: The probability density function (PDF) of the
dataset is estimated with adaptive analysis scales. The PDF are statistically
tested against a null distribution. Points with a significantly higher density are
then identified.

(3) Group the high-density points into clusters: Clusters with different densities are
formed by adaptively breaking the long edges in the triangulation of high-density
points. The significance of clusters obtained at multiscales can be statistically
evaluated.

Figure 8.26 shows an example of transforming a set of point data into five different
scales. When the output scale decreases (or the resolution becomes coarser), fewer
classes can be identified by this clustering technique.

8.4.4 Mathematical Solution for Transformation (in Scale)
of Individual Lines

As discussed in Sect. 8.3.5, there are eight different types of transformation for
individual lines and the algorithms/mathematical solutions for the transformation
models are discussed in detail by Li (2007). In this section, two classic algorithms
are described in detail, i.e., the Douglas—Peucker algorithm (Douglas and Peucker
1973) and the Li-Openshaw algorithm (Li and Openshaw 1992).
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4,1 1,2

4,2
11 3,1
3,2

4,1

42
3,1
32

Fig. 8.27 Douglas—Peucker algorithm for generation of a point hierarchy

In Fig. 8.13, a hierarchical representation of the points on a line is presented.
The order of these points is sorted by the Douglas—Peucker algorithm. The working
principle of this algorithm is illustrated in Fig. 8.27. A curve line is given with an
ordered set of points, and a distance tolerance ¢ (> 0) is set. The basic idea is to
use a straight line connecting the first and last points to represent the curve line if
the deviations from all line points to the straight line are smaller than e. In this case,
only the two end points are selected and all middle points are regarded as being
insignificant and can be removed.

The algorithm first selects two end points (i.e., the first and last points). It then
searches for the point that has the largest deviation from the straight-line segment
connecting these two end points, i.e., at point 2 in Fig. 8.27. If the deviation is larger
than ¢, then this point is selected; otherwise, all other points can be ignored. In this
example, point 2 is selected and it splits the line into two pieces. The search is then
carried out for both pieces. Then, points (3, 1) and (3, 2) are selected. These two
points split the whole line into four pieces, and the search will be carried out for
these four pieces. The process continues until all the deviations are smaller than e.

Visvalingham and Whyatt (1993) and Li (2007) noted that the Douglas—Peucker
algorithm may cause huge shape distortion. To overcome this problem, Visvalingham
and Whyatt (1993) believed that the size of an area “sets a perceptual limit on the
significance” and is the most reliable metric for measuring the importance of points
since it simultaneously considers the distance between points and angular measures.
They used the effective area of a point as the threshold, as illustrated in Fig. 8.28.
For example, the effective area of point 2 is the area covered by the triangle formed
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Fig. 8.28 Effective area as a metric in Visvalingham—Whyatt algorithm for generation of a point
hierarchy

by points 1, 2 and 3. The basic idea of this algorithm is to progressively eliminate
the point with smallest effective area from the list, and the effective areas of the two
points adjoining the recently deleted point should be immediately updated. In this
example, point 11 is first eliminated and point 13 is removed. The points are ranked
from least to most important according to the sequence of elimination.

Many researchers (Li and Openshaw 1992; Visvalingham and Whyatt 1993;
Weibel 1996) have noted that the Douglas—Peucker algorithm will create self-
intersection (with the line itself) and cross-intersections (between neighboring lines).
This problem is associated with all the algorithms with an objective of point reduction
or curve approximation. Li and Openshaw (1992) argued that these algorithms are not
suitable for generalization (i.e., transformation in scale) because they are normally
evaluated with the original curve line (but do not correspond with the curve line at
other scales) as the benchmark. To perform transformation in scale for line features,
the Li—-Openshaw algorithm should be employed as this algorithm, “by virtue of its
raster structure, implicitly (but not explicitly) avoids self-overlaps” (Weibel 1996).
Even for a very complex coastline, it can produce results that are extremely similar to
those manually generalized to various scales, as illustrated by Fig. 8.29. Many recent
evaluations also indicate that the Li-Openshaw algorithm produces reasonable and
genuine results (e.g., Zhu et al. 2007).

The Li—Openshaw algorithm follows the Natural Principle (Li and Openshaw
1993) described in Sect. 8.2.3, i.e., to neglect all spatial variations within the SVS
that is computed by using input and output scales. The SVS is mimicked by a cell or
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Fig. 8.29 A comparison of the results of manual generalization and the Li—-Openshaw algorithm
(Li 2007)

pixel although other geometric elements are also possible (e.g., hexagon by Raposo
in 2013). The cells can be organized in the form of a none overlapped tessellation or
with overlaps. If there is no overlap, it becomes a pure raster template. Figure 8.30
shows the generalization (transformation) process with a raster template. In this
example, each SVS is represented by a raster pixel and the result is represented by
pixels, as shown in Fig. 8.30b, or by its geometric center.

Three algorithms were developed by Li and Openshaw (1993) in different modes,
raster node, vector mode and raster-vector mode. The algorithm in raster-vector
mode was recommended. Figure 8.31 shows the generalization by the Li-Openshaw
algorithm in raster-vector mode. The first point to be recorded is the starting point.
The second point is somewhere within the second cell. In this implementation, the
middle point between the two intersections between cell grids and the line (Fig. 8.31b)
is used. If there is more than one intersection, the first (from the inlet direction) and
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Fig. 8.30 Li—Openshaw algorithm in raster mode; each cell is an SVS (Li 2007)
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Fig. 8.31 Li-Openshaw algorithm in raster-vector mode (Li 2007)
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Point displaced along segment
bisectors distance determined

by desired fractal dimension

Fig. 8.32 Downscaling of a line by fractal enhancement (Clarke 1995)

the last (outlet direction) intersections are used to determine the position of the new
point ((Fig. 8.31c). The final result of the generalization of a complete line is given
in Fig. 8.31d.

Similar to the algorithm in raster mode, overlap between SV Ss can also be adopted,
although it is not too critical. Notably, it is not necessary to take the average to
represent a cell. It does not matter what point within the cell is used, as the cell itself
is an SVS. Thus, it is also possible to take an original point, which is considered a
critical point to represent the cell.

Some work has also been carried out to downscale the lines, i.e., to add more
details to the lines. A typical example of such work is that by Dutton (1981), which
adds more details to the line by following the fractal characteristics of the line itself
(see Fig. 8.32).

8.4.5 Mathematical Solutions for Transformation (in Scale)
of Line Networks

In geographical space, three types of line networks are commonly used, contour line
networks, hydrological networks and transportation networks. Some hierarchical
models were presented in Sect. 8.3.3. The mathematical solutions for the transfor-
mation in scale of these networks are discussed in detail by Li (2007). Here, only the
construction of a hierarchy for transportation networks is described.

The first approach is based on the importance of roads. As road networks are
stored in segments and intersections in a database, two steps are required, to build
strokes and to order strokes, as illustrated in Fig. 8.33. To build strokes means to
concatenate continuous and smooth network segments (see Fig. 8.33a) into a whole
(see Fig. 8.33b). To order strokes means to rank the strokes in a descending order
based on their importance from high to low (see Fig. 8.33b). The importance of
each stroke can be calculated according to various properties, i.e., geometric prop-
erties such as length (Chaudhry and Mackaness 2005), topological properties such
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(a) Six road segments (b) building and ordering strokes

Fig. 8.33 Stroke formation and ordering

as degree, closeness and/or betweenness (Jiang and Claramunt 2004), and thematic
properties such as road class. A comparative analysis of the methodology for building
strokes was carried by Zhou and Li (2012). With each stroke, given an importance,
a stroke-based hierarchy of a line network can be built.

The importance of strokes can be evaluated by the connectivity of strokes in
the network. ego-network analysis and weighted ego-network analysis are possible
methods (Zhang and Li 2011). Figure 8.34 shows the basic structure of three types of
ego-networks and the weight of each link, also called the proportional link strength.

The proportional link strength of each link (p;;) from node i to any of its immediate
neighbor nodes can be defined as the reciprocal of the degree of connectivity (k) of
node i. Mathematically,

1 ..
pPij =~ (J € ine) (8.16)
ki
alter] alter] alter]
€go alter2 ego alter2 ego alter2
O
~
S ¢
O@O
(a) complete ego-network (b) ego-control network (c) ego-passive network

Fig. 8.34 Ego-networks and proportional link strength
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For instance, in Fig. 8.34a, the ego is connected to both alterl and alter2, so its
degree of connectivity is 2; thus, the strengths of links from this ego to alter] and to
alter2 are both 1/2 = 0.5. The strengths of other links are also indicated in Fig. 8.34.

If node i and node j are not directly linked but are linked via another node ¢ in the
neighbor (ne), the strength of the link from node 7 to node j (i.e., p;;) is defined as:

Pij = PiqPqj (8.17)

The total link strength (C;;) from node i to node j is defined as the square of the
sum of the direct link strength and the indirect link strength from node i to node j.
Mathematically,

2

, 2 m
Cij = (Pij + ZPU) =|pij+ Zpiqqu (8.18)

g=1

The C;; value reveals the constraint of i by j. The larger the C value is, the larger
the constraint over i, and the smaller the opportunity for i.

To apply this concept to a transport network, the physical road network is first
concerted into a connectivity graph, and the link strength values are computed for
each node in the connectivity graph. Figure 8.35 shows an example. Roads can then
be ranked by the link strength values.

The ego-network is a feasible and effective solution for the formation of hierar-
chies for road networks. However, Zhang and Li (2011) identified two significant
limitations, the deviation of the link intensity definition from reality and the so-called
‘degree 1 effect’. They subsequently developed a weighted ego-network analysis
method.

Another important development is the mesh density-based approach proposed by
Chen et al. (2009). The so-called mesh is a closed region surrounded by several road
segments. In this approach, the density of each mesh in the road network is computed
according to the following formula:

(a) A regular road network (b) The connectivity graph

Fig. 8.35 Formation of a network hierarchy by ego-network analysis (Zhang and Li 2009)
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0.64
T 1044 0.44
0.20 ) | 02 | o032 m)| 020 | 032 |036
0421047 0.47
Fig. 8.36 Mesh density-based approach
P
D=— 8.19
n (8.19)

where P is the perimeter of the mesh and A is the area of the mesh.

Then, the meshes with the highest density are merged progressively, as illustrated
in Fig. 8.36. In this Figure, the mesh with density of 0.64 is first merged into the that
with a density of 0.42 and segment L is eliminated. The density (0.32) of the new
mesh is then updated. The process is iterated until only one mesh is left.

Generally, a road network is often a hybrid of linear and areal patterns, thus Li
and Zhou (2012) proposed the construction of hybrid hierarchies, i.e., an integration
of a line hierarchy and an area hierarchy.

8.4.6 Mathematical Solutions for Transformation of a Class
of Area Features

Section 8.3.5 described how a hierarchy of areas could be structured by a minimum
spanning tree. In that example, the centroid of a polygon was used to represent the
polygon. However, if the polygon is thin and/or irregular, then the edge length is not
necessarily a good measure for closeness. Densification of points along the polygon
edge will make the problem simpler. Figure 8.37 shows such an example. Figure 8.38
shows the transformation of buildings into suitable representations at different scales.

Li (1994) argued that the transformation in scale should be better performed in
raster space (because a scale reduction causes a space reduction and the raster format
takes care of space) and proposed the use of techniques in mathematical morphology
for transformation in scale. Li et al. have developed a complete set of algorithms for
such transformations based on mathematical morphology.

One such algorithm is the aggregation of areas into groups and transformation
into representations at different scales (Su et al. 1997). The mathematical model for
the aggregation is:

C=(A®B;) OB, (8.20)

where A is the representation (image) showing the original area features and B; and
B, are the two structuring elements.
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(c) Grouping for generalization to 1:100,000 (d) Grouping for generalization to 1:250,000

Fig. 8.37 Grouping of buildings at 1:10000 scale for generalization to various scales (Li et al.

2004)
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(a) 1:25,000, by typification (b) 1:50,000, by typification and
aggregation
oy
X4 L 4
() 1:100,000, by aggregation (d) 1:250,000, by aggregation

Fig. 8.38 Transformation of grouped buildings to various scales (Li et al. 2004)
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The success of applying this model to area combination depends on the proper
size and shape of the structuring elements B; and B,. Su et al. (1997) suggest that
the size of B and B, should be determined by the input and output scales, following
the Natural Principle described in Sect. 8.2.3. Figure 8.39 shows the combination of

For 7x reduction For 10x reduction

- (b) Two structuring elements

(a) A set of area features

(c) Combined for 7x reduction (d) Combined for 10x reduction
* -.-:- '-ﬁ.
. A b
(e) 7% reduced (f) 10x reduced
left: combined + reduced; left: combined + reduced;
right: photo-reduced right: photo-reduced

Fig. 8.39 Combination of area features at different scales (Extracted from Su et al. 1997)
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Fig. 8.40 Shape refinement
by the SLLM algorithm (Su
et al. 1997)

(a) A settlement with an ~ (b) Simplified by the SLLM
irregular shape algorithm

buildings using this model for two different scales: one for a scale reduction by 7
times and the other by 10 times. The results are also compared with those using simple
photoreduction. The combined results are very reasonable. However, the combined
results are very irregular and the simplification of boundaries could be discussed. A
detailed description of such a simplification is omitted here but can be found in the
work of Su et al. (1997) and the book by Li (2007). The result is shown in Fig. 8.40.

8.4.7 Mathematical Solutions for Transformation (in Scale)
of Spherical and 3D Features

In the previous sections, mathematical solutions for transformation of 2D features
have been presented. Mathematical solutions for transformation of spherical (e.g.,
Dutton 1999) and 3D features (e.g., Anders 2005) have also been researched, although
the body of literature is much smaller than that for map generalization. In recent years,
there have been more papers on the generalization of buildings-based CityGML (e.g.,
Fan and Meng 2012, Uyar and Ulugtekin 2017); details on such methodologies are
omitted here due to page limitations.

8.5 Transformation in Scale: Final Remarks

The beginning of this chapter emphasized that continuous zooming is at the core of
Digital Earth as initiated by Al Gore. Continuous zooming is a kind of transforma-
tion of spatial representation in scale. In this chapter, the theoretical foundation for
transformations in scale was presented in Sect. 8.2. Then, models for such transfor-
mations were described in Sect. 8.3 for raster and vector data, images, digital terrain
models and map data. A selection of algorithms and/or mathematical functions for
achieving these transformations was presented in Sect. 8.4.

Notably, the content of this chapter was concentrated on the theories and method-
ology to achieve continuous zooming and some important issues related to transfor-
mation in scale have been omitted, such as temporal scale, scale effect and optimum
scale selection. For the content of the models for transformation in scale, emphasis
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was on the representations. Thus, other models such as geographical and environ-
mental processes were excluded. However, these aspects are important but were
omitted due to page limitations.
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