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Abstract This chapter describes the state-of-the-art of the potential of Digital Earth
for progressively better solutions for disaster mitigation. The chapter illustrates the
use of strong Digital Earth tools for data sharing and important potential for users,
such as 2D or multi-D visualizations. Milestones of developments in early warning,
disaster risk management and disaster risk reduction concepts are highlighted as a
continuous movement between sustainable development and original concepts of dis-
aster risk reduction. Improved solutions have been based on new research directions
formulated in Sustainable Development Goals tasks and by expanding the possibil-
ities of new effective solutions via newly organized data ecosystems generated by
the United Nations Global Geospatial Information Management, the Group on Earth
Observations and the Group on Earth Observations System of Systems, Copernicus
and, more recently, the Digital Belt and Road initiative. The new trends in spatial
big data are emphasized; the most important for disaster risk reduction are the basic
theses of the U.N. Conference in Sendai. This chapter describes three aspects: inno-
vative Digital Earth development, national and local disaster risk assessment and
the benefits arising from the use of maps and dynamic data, and analyses of the
contributions of cartography to disaster risk reduction.
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15.1 Introduction

In this chapter, we describe the state-of-the-art potential of Digital Earth (DE) for
progressively better solutions for disaster mitigation.
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For over 20 years, DE has witnessed an ebb and flow in interest from the world’s
scientific community. Initially, it sought a place between activities focused strictly
on maps, data and information (Global Map—GM, Global Spatial Data Infrastruc-
ture—GSDI, etc.). Later, it began to push through with a comprehensive concept and
an emphasis on the need to share and integrate data and information, and impetus and
knowledge from the scientific realm, the private sector, and the needs of people in
different parts of the Earth. Today, novel solutions are expected from DE, which will
also significantly help realize disaster risk reduction (DRR) and Disaster Mitigation
projects. Al Gore (former vice president of the USA) described a concept and defi-
nition of Digital Earth in his speech in Los Angeles on January 1998, saying it is: “A
multiresolution, three-dimensional representation of the planet, into which we can
embed vast quantities of geo-referenced data” (Gore 1998). In 2008, Goodchild noted
that “Digital Earth includes four aspects: visualization, ease of use, interoperability
and mashups, modelling and simulation” (Goodchild 2008). Some of the best anal-
yses of the potential of the DE concept in the European Union (EU) are the SWOT
analyses by De Longueville et al. (2010a, b). Studies showed positive and attractive
aspects based on the political and economic support of influential countries such as
the USA, China and, more recently, Russia. They also found obstacles originating
from overly complex DE approaches that did not fit the research concepts of the EU.
Clarification of DE leadership was also an issue. These aspects are all important for
finding more successful approaches to solve disaster mitigation and DRR problems
that are natural, societal or economical, as well as complex ones including known
and unidentified factors. In addition, knowledge and new technologies are develop-
ing. We now have access to new near- to real-time information resources such as
Prevention Web, the knowledge platform for disaster risk reduction managed by the
U.N. Office for Disaster Risk Reduction (U.N. DRR), and research analyzing some
of the unsuccessful efforts in developed countries such as those during Hurricane
Katrina and recommending adequate steps in the future.

Section 15.2 describes the terminology used in disaster mitigation and this chapter
and as well as some of the supportive efforts of international scientific organizations.
Section 15.3 describes the development of early warning (EW), disaster risk man-
agement (DRM) and disaster risk reduction (DRR) concepts. Section 15.4 describes
Digital Earth for the future of disaster mitigation and DRR and innovative support of
the implementation of the Sendai Framework and existing geospatial projects, includ-
ing the U.N. Global Geospatial Information Management (U.N. GGIM), Copernicus,
Global Earth Observation System of Systems (GEOSS) and Digital Belt and Road
(DBAR). Section 15.5 introduces national and local disaster risk assessment and
the benefits arising from the usage of maps and dynamic data. Section 15.6 ana-
lyzes and shows the development of selected disaster risk mapping approaches and
technologies with examples of adaptation principles, context map composition and
existing symbol systems. Studies have attempted to recognize how users and inhab-
itants understand information from databases, maps and specialized models. The
final Sect. 15.7 discusses expected developments in the research and technology
background in the near-future. It will be necessary to accelerate the creation of new
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concepts from new knowledge (like from the Hyogo Framework) and new environ-
ments created by the realization of ideas of the U.N. GGIM and Chinese DBAR. All
these approaches were developed on the same background as part of new data and
information media, demonstrating how the potential is open to all of society as well
as specialists and decision makers. Some of the approaches, such as mobile tools and
digital maps, are described in this chapter.

15.2 Terminology and Research Organization Efforts

A very important aspect of new approaches is the terminology. The United Nations
International Strategy for Disaster Reduction (U.N. ISDR) created the first terminol-
ogy from the fields of early warning, disaster risk management and disaster reduction,
which has been updated according to development the field. In this chapter, selected
terminology from the U.N. ISDR is used.

The definitions of disaster mitigation, emergency, disaster damage, disaster
impact, disaster management, emergency management, disaster risk, acceptable risk,
residual risk, disaster risk assessment, disaster risk management, disaster risk reduc-
tion, early warning system, multi-hazard early warning system, and vulnerability can
be found in the U.N. ISDR (2009).

There are two globally operating organizations, the U.N. ISDR and Integrated
Research on Disaster Risk (IRDR), which formulate global tasks in the disaster risk
reduction (DRR) area. There are also activities in important world organizations and
by members of the International Science Council (ICSU). The first working group
and later the Commission Cartography for Early Warning and Disaster Risk Man-
agement were founded within the International Cartographic Association—ICA (in
2004 and 2007, respectively, arranged by Konecny). The activities of the Interna-
tional Society for Photogrammetry and Remote Sensing (ISPRS), which started the
GI4DM organization, were also very fruitful as well as those of the International
Federation of Surveyors (FIG), which was organized during Working Week 2016 in
Christchurch, New Zealand, at the Recovery from Disaster conference.

15.3 Development of Early Warning (EW), Disaster Risk
Management (DRM) and Disaster Risk Reduction
(DRR) Concepts

In the past, DRM was solved together with problems of the environment, subse-
quently developed relatively separately, and a new DRR trend enhanced their close
cooperation in contemporary sustainable development efforts. There are two lines of
development in U.N. documents in approaches to crisis situations, both natural and
anthropogenic. They are:
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(1) Environmental, linked to finding the most appropriate environmental approaches
to solve planet Earth’s problems. They are mainly oriented around concepts of
sustainable development (SD). As a first important document mentioning natural
disasters in the Report on Approaches to Crisis Management Issues Related to
Development, U.N. environmental policies were created at the United Nations
Conference on the Human Environment in Stockholm on 5-16 June 1972 (http://
www.biblebelievers.org.au/gc1972.htm). Later, this approach was documented
at the United Nations Conference in Rio de Janeiro in 1992, in Johannesburg in
2002 and at many others.

(2) Crisis risk management (early warning, disaster management and disaster risk
reduction). The second line of development includes the Yokohama and Hyogo
World Conferences (1994 and 2005), the Global Platform for Disaster Risk
Reduction in Geneva in 2010 and the key concept of the “U.N. International
Strategy for Disaster Reduction” (ISDR—United Nations International Strat-
egy for Disaster Reduction). Another concept was developed in disaster risk
research, which addresses the problem of natural and human-induced environ-
mental hazards in IRDR (Integrated Research on Disaster Risk) (Konecny et al.
2010).

Three United Nations Conferences focused on DRR have been held. First, the
World Disaster Reduction Conference in Yokohama in 1994, which defined the
Yokohama Strategy and Plan of Action for a Safer World: guidelines for natural
disaster prevention, preparedness and mitigation. The Second World Conference on
Disaster Reduction was held in Kobe, Japan from 18 to 22 January, 2005. The Hyogo
Framework for Action (2005-2015) (HFA): Building the Resilience of Nations and
Communities to Disasters was an outcome of the 2005 conference. The HFA set
five specific priorities for action: (1) making disaster risk reduction a priority; (2)
improving risk information and early warning; (3) building a culture of safety and
resilience; (4) reducing the risks in key sectors; and (5) strengthening prepared-
ness for response (WCDRR 2016). The third conference was the Third U.N. World
Conference on Disaster Risk Reduction in Sendai, Japan in 2015 (United Nations
General Assembly 2015). The goals and role of research in the realization of these
topics are described in Sect. 15.4 of this chapter. The Sendai Framework materials
highlighted the need to tackle disaster risk reduction and climate change adaption
when setting the Sustainable Development Goals, particularly in light of the insuffi-
cient focus on risk reduction and resilience in the original Millennium Development
Goals (WCDRR 2016).
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15.4 Digital Earth for the Future of Disaster Mitigation
and DRR: Innovative Support of the Implementation
of the Sendai Framework

15.4.1 Sendai Disaster Reduction Conference Targets

In the Third U.N. World Conference (U.N. DRR) on March 14, 2015 in Sendai,
Japan, the Sendai Framework for Disaster Risk Reduction 2015-2030 was adopted
(United Nations General Assembly 2015). The U.N. DRR conference is a culmi-
nation of contemporary state-of-the-art approaches to solve the problems of risks
and disasters on our planet. The conference materials mentioned the role of Infor-
mation and Communication Technologies (ICT), geographical information system
(GIS), remote sensing, mapping, sensors, and volunteered geographic information.
The document does not mention explicitly Digital Earth, but the proposed solutions
follow lines defined by Digital Earth pioneers and updated according to research
frontiers in the world. The necessity of design for deep integration of data and infor-
mation and the necessity of offering products to specialists, customers and all society
in an understandable way were emphasized.
The Sendai Framework defined four new priorities of action:

Priority 1: Understand disaster risk;

Priority 2: Strengthen disaster risk governance to manage disaster risk;

Priority 3: Invest in disaster risk reduction for resilience;

Priority 4: Enhance disaster preparedness for effective response and “Build Back
Better” in recovery, rehabilitation and reconstruction (United Nations General
Assembly 2015).

The priorities are equally important to find better solutions, and the Digital Earth
concept should be useful in addressing all of them. We discuss the priority 1 intentions
here. Researchers know enough about individual disasters, but are weak in their
knowledge when disasters are combined, as in the Fukushima nuclear power station
collapse or the Wenchuan earthquake. It is very valuable that solutions are being
accepted at global, national, regional and local levels. In priority 1: Understanding
disaster risk, on national and local levels, there are requests to develop, periodically
update and disseminate location-based disaster risk information such as risk maps to
decision makers, the general public and communities at risk of exposure to a disaster
in an appropriate format by using applicable geospatial information technology. In
addition, local and national organizations promote real-time access to reliable data,
make use of space and in situ information, including geographic information systems
(GIS), and use information and communication technologies innovations to enhance
measurement tools and the collection, analysis and dissemination of data.

The DRR framework defined in Sendai is inextricably linked with the main U.N.
document defining the Sustainable Development Goals 2015-2030 (SDGs).
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15.4.2 Global Development Policy Framework (GDPF)

With other U.N. documents such as the Sendai Framework for DRR 2015-2030, the
SIDS Modalities of Action (SAMOA) Pathway, the Addis Ababa Action Agenda,
the Paris Agreement on Climate Change and the HABITAT III Urban Agenda, the
SDGs created a newly formulated Global Development Policy Framework (GDPF)
(Fig. 15.1).

In addition to natural disasters, there are new issues connected with problems
of cities or megacities from the geospatial information perspective in particular and
for DE in general. These problems are defined in another activity of the GDPF—
HABITAT III. Its key document “The New Urban Agenda” was adopted at the United
Nations Conference on Housing and Sustainable Urban Development (Habitat IIT)
in Quito, Ecuador (United Nations 2016) and represents a shared vision for a better
and more sustainable future. If well-planned and well-managed, urbanization can
be a powerful tool for sustainable development for both developing and developed
countries. The conference reached a critical point in understanding that cities can be
the source of solutions to, rather than the cause of, the challenges that our world is
facing today.

The New Urban Agenda presents a paradigm shift based on the science of cities;
it lays out standards and principles for the planning, construction, development,
management, and improvement of urban areas. The agenda also incorporates a new
recognition of the correlation between good urbanization and development. The New
Urban Agenda realizes the 2030 Agenda for Sustainable Development, especially
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Goal 11 on Sustainable cities and communities. It also planned to adopt and imple-
ment DRR and management, reduce vulnerability, build resilience and responsive-
ness to natural and human-made hazards and foster the mitigation of and adaptation
to climate change. DRR is aimed at preventing new risk, reducing existing disaster
risk and managing residual risk, all of which contribute to strengthening resilience
and therefore to the achievement of sustainable development. DRR is the policy
objective of disaster risk management, and its goals and objectives are defined in
disaster risk reduction strategies and plans.

To improve the quality of solutions in disaster mitigation and DRR, U.N. member
states should facilitate the strengthening and normative capacity-building of global
geospatial information management in support of the implementation of the 2030
Agenda. Efforts include promoting the use of geospatial information systems and
services for modern mapping, methodological development, national and regional
capacity-building, setting of standards, data collection, dissemination and sharing,
and better integration of geospatial and statistical information systems of U.N. Mem-
ber States.

15.4.3 U.N. GGIM

A newly established Global Data Ecosystem by the U.N. Global Geospatial Infor-
mation Management (U.N. GGIM) will support realization of the SDGs, including
all aspects linked with DRR, to respond to global data ecosystem needs. It helps to
develop the global understanding of geospatial information and, in a second step,
its coordination, coherence and implementation. The vision is to position geospatial
information to address global challenges and missions to ensure that geospatial infor-
mation and resources are coordinated maintained, accessible, and used effectively
and efficiently by member states and society to address key global challenges in a
timely manner.

In the U.N. GGIM, Scott defined the data needs for the 2030 Agenda as follows
(Scott 2018): “The scope of the 2030 Agenda requires high-quality and disaggregated
data that are timely, open, accessible, understandable and easy to use for a large range
of users, including for decision making at all levels. There is a need for a reporting
system on the SDGs that would have benefit from the subnational (local) to the
national level; and allow for global reporting that builds directly on the data shared by
countries. It is important to create an opportunity for countries to directly contribute
to the global reporting. While the challenges are immense, the digital technology that
is available today allows the necessary transformation. An aspiration is to strengthen
countries’ national geospatial and statistical information systems to facilitate and
enable a ‘data ecosystem’ that leverages an accessible, integrative and interoperable
local to global system-of-systems.”
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The U.N. GGIM is the newest initiative to qualitatively improve the potential
to solve the problems of the world, including disaster mitigation. In addition, other
important initiatives have the same aim in specific regions of the World—e.g., Coper-
nicus for Europe and the Digital Belt and Road (DBAR) initiative in Asia.

15.4.4 Copernicus—A European Contribution to GEOSS

Copernicus (formerly Global Monitoring for Environment and Security—GMES)
is a European project based on data received from Earth observation satellites and
ground-based information. These data are coordinated, analyzed and prepared for
end users. Through Copernicus, the state of our environment and its short-, medium-
and long-term evolution are monitored to support policy decisions and investments.
Copernicus plays key role in EU EW, DRM and DRR efforts. Copernicus mainly
supports decision making by institutional and private actors. Decisions can concern
new regulations to preserve our environment or urgent measures in the case of natural
or man—-made catastrophes (i.e., floods, forest fires, water pollution) on a global
scale. The services are used by environmental agencies, local, regional and national
authorities, and civil protection organizations. The new observation techniques and
analysis of data will allow for these actors to better anticipate potential threats,
to intervene in a timely manner and to increase the efficiency of the intervention.
Figure 15.2 shows the structure and purposes of Copernicus.
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Copernicus (and its INSPIRE component) is the European contribution and par-
ticipation in the worldwide monitoring and management of planet Earth organized
by the Group on Earth Observation (GEO). The global community acts together for a
synergy of all techniques of observation, detection and analysis. At the World Summit
on Earth Observation in Washington in July 2003, the Group on Earth Observations
(GEO) was established with the goal of addressing the information requirements for
the environment on a global scale. In Brussels in February 2005, a 10-year imple-
mentation plan of an integrated global earth observation system of systems (GEOSS)
was defined. A number of operational systems for supporting disaster response have
made steady to strong progress. Collaborative supersites have been established for
the scientific community to monitor and analyze volcanoes and earthquakes more
rapidly and effectively; for example, supersites have improved the assessment of
earthquakes in Haiti, China, Chile, and Indonesia. One example is SERVIR that pro-
vides mapping for disaster response and has assisted countries in Central America
and the Caribbean in responding to hurricanes, earthquakes and other extreme events
(GEOSS 2019).

15.4.5 Digital Belt and Road Program—Disaster Efforts

The Digital Belt and Road (DBAR) program and Digital Silk Road Alliance (DSRA)
are relatively new activities initiated by the Silk Belt and Road (BAR) initiative. The
DBAR is a pioneering international venture to share expertise, knowledge, technolo-
gies and data to demonstrate the significance of Earth observation science and tech-
nology and applications for large-scale sustainable development projects. The exten-
sive geographical scope of the “BAR” initiative calls for smart uses and applications
of big Earth data in the design, development and implementation of diverse projects
related to infrastructure improvement, environmental protection, disaster risk reduc-
tion, water resource management, urban development, food security, coastal zone
management, and the conservation and management of natural and cultural heritage
sites. DBAR is committed to implementing projects and actions relevant to the 17
Sustainable Development Goals (SDGs) adopted by the United Nations in Septem-
ber 2015 (United Nations Brussels Team 2018). In the DBAR, natural hazards are an
important issue. Belt and Road nations experience approximately 85% of the world’s
major earthquakes, tsunamis, typhoons, floods, droughts and heatwaves. For exam-
ple, more than 86,000 people were killed or reported missing in a massive earthquake
in Wenchuan, China in May 2008 and the 2004 Indian Ocean earthquake and tsunami
killed hundreds of thousands of people. Seven of the top ten countries that saw major
losses from disasters between 1995 and 2014 are in this region (Guo 2018, p. 26).
The program monitors different types of ecosystems and their evolution, including
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grasslands, forests, glaciers, urban areas, farmland and coastal regions. Environmen-
tal and socioeconomic information will be shared through a platform for big Earth
data, scheduled for roll-out between 2016 and 2026. This open-access gateway will
allow for researchers, policy makers and the public to track changes, development
and trends. The program will investigate indices and indicators to feed into the UN’s
2030 Sustainable Development Goals (Guo 2018).

Working group 6 of the DBAR says that DBAR disaster aims to integrate Earth
observations (EO) and social vulnerability data to promote implementation of the
Sendai Framework in countries along the BAR region. The approach taken by
this WG covers satellite information and communication technologies as well as
implementation-oriented technologies that involve hardware solutions for risk reduc-
tion challenges. “If we do nothing, sensitive environments will be lost and exposure
to risks will rise” (Guo 2018).

There are efforts to find solutions using newly defined ideas about big Earth
Data. There are four main obstacles to a strategy for the Belt and Road region: poor
access to data; a digital divide between developed and developing countries; a lack
of awareness of the potential of Earth observations among some policy makers, local
scientists and practitioners; and a lack of collaboration. These are long-standing
problems—they also slowed emergency responses during and after the Indian Ocean
tsunami in 2004, for example.

Important consequences of DBAR strategies necessitate research on new
approaches and knowledge improvements. There should be proof of concept for the
data. Guo is developing a new concept of big Scientific data and big Earth Data (Guo
2017, p. 4): “Big data is a revolutionary innovation that has allowed the development
of many new methods in scientific research. This new way of thinking has encour-
aged the pursuit of new discoveries. Big data occupies the strategic high ground in the
era of knowledge economies and also constitutes a new national and global strategic
resource. “Big Earth data”, derived from, but not limited to, Earth observation, has
macro-level capabilities that enable rapid and accurate monitoring of the Earth, and
is becoming a new frontier contributing to the advancement of Earth science and
significant scientific discoveries. ... Big data research is different from traditional
logical research. It uses analytical induction applied to a vast amount of data to sta-
tistically search, compare, cluster, and classify. It involves correlation analysis and
implies that there may be certain a regularity in the relation between the values of
two or more variables; it also aims to uncover hidden correlated networks.”

The substantive characteristics of big data computing comprise a paradigm shift
from model-driven science to data-driven science, as well as the establishment of a
data-intensive scientific approach.

As a branch of big data, scientific big data is a typical representative of data-
intensive science. Scientific big data has a number of characteristics, including com-
plexity, comprehensiveness, and global coverage, as well as a high degree of inte-
gration with information and communication technology. The approaches used in
science are also being transformed—from single-discipline to multidisciplinary and
interdisciplinary approaches, from natural science to the integration of natural and
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social sciences, and from work carried out by individuals or small research groups
to projects coordinated by international scientific organizations.

In addition to helping scientists solve hard or previously unsolvable problems
through real-time dynamic monitoring and analysis of various related data, the data
itself can become an object and tool of research: scientists can conceive, design, and
implement research based on the data (Hey et al. 2009 in Guo 2017).

Earth science research, including the atmosphere, land and ocean, has produced
huge datasets derived from satellite observations, ground sensor networks, and other
sources. This is collectively called big Earth data. Big Earth data has features in
common with scientific big data and also has unique characteristics. Big Earth data
is characterized as being massive, multisource, heterogeneous, multitemporal, mul-
tiscale, high-dimensional, highly complex, nonstationary, and unstructured. It pro-
vides support for data-intensive research in the Earth sciences. Modern Earth sci-
ence requires globally established, quasi real-time, all-weather Earth data acquisition
capabilities, and has developed an integrated space-air-ground observation system
with high spatial, temporal, and spectral resolutions (Guo 2017).

To realize the above-mentioned efforts, the ISDE organization initiated the Digital
Silk Road Alliance (DSRA), established in Sydney in April 2017 with the support of
the China Association for Science and Technology (CAST), with the aim of building a
network of scientists involved in the Digital Belt and Road initiative and using Digital
Earth and geospatial information technologies to solve the scientific problems facing
human beings, and to address problems related to the U.N. Sustainable Development
Goals.

The DSRA wants to develop Digital Earth in the fields of cartography, remote
sensing and geo-information sciences, which are essential for socioeconomic devel-
opment. Further development of cooperation mechanisms and frameworks toward
the development of Earth observation systems and Digital Earth is expected. It is
important to use such approaches on global and regional levels in the realms of Earth
observation and Digital Earth.

15.4.6 GGIM and DBAR Comparisons and Potential

Comparing the contemporary differences between the U.N. GGIM and the DBAR,
the U.N. GGIM is a mature project connected with stable governmental and public
infrastructures aiming to address the needs of the SDGs and Sendai DRR and con-
temporary needs of civil society and its organizations. DBAR has similar ambitions
but primarily originated from the countries where spatial data infrastructure (SDI)
and national data infrastructure (NSDI) were still not fully developed according to
the Silk Belt and Road. The DBAR has a new approach to look for and elaborate big
data, mainly based on satellite images. There are still missing concepts regarding
delivery of data to interesting groups, the private sector and individual inhabitants
(such as the U.N. GGIM using INSPIRE knowledge and experiences). Along the Belt
and Road, countries have different political and economic systems and different data,
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information and knowledge policies. There has been great investment in the DBAR,
which created hopes for fast improvement of the situation, but data and information
are only part of the efforts, including DRR. In many countries, geoinformatics and
cartography are unappreciated. Maps are created without knowledge of how they will
be accepted by users (context and adaptive maps) and how the information should
be delivered for professionals and public users. This is very important in EW, DRM
and DRR.

It is difficult to say which areas will benefit more from Digital Earth. Because
the problems are very complex, their solutions require powerful and adaptable tools.
Digital Earth is based on integration of various streams and determination of adequate
decisions. Informed decisions also rely on the wishes, opinions and reactions of
societies, which can be collected via information from social media or volunteers in
the field.

It is likely that the main tasks of the U.N. GGIM will be realized incrementally.
DBAR activities elaborating important and new aspects of the big data reality will
create new situations in data policies in the countries along the Silk Road and Belt.
Convergence of both streams will be inevitable and will lead to realization of the
dreams of the founders of SDI and NSDI as well as appreciation of modern visual-
ization methods, mainly cartographical ones. Those methods will help experts and
the contemporary public to understand problems and cooperate to create solutions
for disaster mitigation problems.

15.5 Digital Earth for National and Local Disaster Risk
Assessment

Digital Earth is suitable for reporting practices that have been already tested and
implemented in one locality and can be successfully adapted in another. Sharing of
practices is important in any field of human activity, including disaster risk manage-
ment. As noted by Amaratunga et al. (2015), sharing of sound practices is intended
to improve knowledge sharing for exchange of data and experiences between users
on every level—global, national and local.

15.5.1 National Level

The goal of every state is to identify and minimalize risks in its territory. In the
Czech Republic, a group of emergency management experts studied the emergency
threats and vulnerabilities (Paulus et al. 2016) and identified and categorized the most
typical emergency situations. From this analysis, 22 typological emergency situa-
tions were pinpointed. A detailed and typified plan for each emergency was defined,
including the responsible public administrative organization and the administrative
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level on which the plans are used (central, regional, local). An indispensable part of
each typified plan is the list of recommended spatial data and maps necessary for
a successful reckoning of a particular emergency. Public administration bodies are
responsible for the development of action plans on the regional and local levels and
for identification of key stakeholders.

15.5.2 Local Level—Cities and Urban Areas

A report titled “State of Disaster Risk Reduction at the Local Level: A report on
the Patterns of Disaster Risk Reduction Actions at Local Level” (Amaratunga et al.
2015) focuses on disaster risk reduction in urban areas: “Fast growing cities and
urban areas of the world increase disaster risk due to economic growth and fast
population expansion. ... Sound practices that have been tested and implemented
by different cities around the world aid knowledge sharing opportunities for future
disaster risk reduction. ... The intent is to provide local governments and other
institutions learn from one another by effectively facilitating the sharing of sound
practices and disseminating these established sound practices in risk reduction.”

Ten essential goals and examples of well-functioning solutions for local govern-
ments to make their cities more disaster-resilient were defined and are listed below
(U.N.ISDR 2012).

15.5.3 Existing Methodologies for Risk Assessment

Overviews of how to map and estimate risk have been presented by several scholars
(Kappes et al. 2012; Klucka 2014; Forzieri et al. 2016). The European Commission
published the Risk Assessment and Mapping Guidelines for Disaster Management
(EC2010), but it was not the first draft of such a pan-European manual. For example,
the output of the European project Interreg ITIIC Interregional Response to SIPROCI,
to which seven countries contributed, is even wider and more thorough than the above
mentioned EU final document but was never fully implemented at the European
level (SIPROCI 2007). An example of a major non-EU agency that deals with risk
discovery and estimation is the Federal Emergency Management Agency (FEMA)
from the USA. FEMA announced the release of the State Mitigation Plan Review
Guide in 2016 (FEMA 2016) that aids state, tribal, or local governments in developing
hazard mitigation plans.
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15.5.4 Using Maps for Risk Assessment

An important part of any methodology for identifying and estimating risks is the
design of presentations to professionals and the general public. The ideal way to view
the risk estimates clearly is a map. The significance and role of maps is described in
the book Successful Response Starts with a Map (National Research Council 2007),
prepared as a Hurricane Katrina analysis. The creation of maps for risk identification
was also described by the above mentioned SIPROCI project (2007) and by other
authors including Carpignano et al. (2009) and Winter (1993) described in Dymon
(1994). Carpignano et al. (2009) described the development of a decision support
system based on a multirisk approach that can overcome difficulties in the overall
risk assessment for a territory. To define multirisk maps, a multirisk perspective and
stakeholder’s perceptions were integrated into a classical risk assessment frame. The
specific purpose of this work is to describe the methodological framework built at
this stage of the project and discuss the initial results.

Dymon (1994) describes a hazard management map taxonomy offered by Winter
(1993) that regards hazard, risk and emergency as the three major categories:

e Hazard maps identify and display the location of hazard zones, areas where there
are dangers to humans and their property.

e Risk maps (vulnerability) require calculation of the conditional probability that
a given area will experience a particular hazard or a combination of hazards and
portray the spatial distribution of those risk computations.

e Emergency maps comprise three additional types: planning, evacuation and crisis
maps.

The SIPROCI report (2007) provides a comprehensive method for risk mapping.
However, specific proposals were not included in the official final methodology
(EC 2010). However, conclusions and recommendations were incorporated into the
methodology, such as the by the Fire Rescue Service in the Czech Republic (Kromer
et al. 2010), which recommends creating the following types of maps:

e Hazard map—a summary map of the different types of hazards, i.e., a digital map
of the manifestations of individual types of emergencies.

e Vulnerability map—the indicator of accumulated vulnerability of the territory as
a sum of partial elements of vulnerability.

e Preparedness map—readiness in the territory can be expressed as the availability of
forces and means (components of the integrated rescue system) and the availability
of means of protection of the population (e.g., coverage of the territory by end
elements of the warning).

e Risk map—a summary of all the above map types.

In its official methodology, the EU Risk Assessment and Mapping Guidelines for
Disaster Management (EC 2010) only include general recommendations for prepar-
ing these types of maps:
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e Maps of the spatial distribution of major hazards show the spatial distribution of
all relevant elements that need to be protected, such as population, infrastructures,
and naturally protected areas.

e The spatial distribution of vulnerability in terms of the susceptibility to damage
for all relevant subjects.

e These maps can then provide the basis for the preparation of risk maps in terms of
showing the combination of the likelihood and impact of a certain event, as well
as for creating of aggregated hazard maps.

However, specific mapping requirements for risk assessment only appear in EU
directives for flood mapping such as the Floods Directive (EC 2007). Flood risk
mapping is the area of disaster management in which mapping methodologies have
advanced the most. The EU directive on the ‘Assessment and management of flood
risks’ requires Member States to conduct an initial assessment for flood hazard maps
and flood risk maps:

e The hazard maps should cover geographic areas that could be flooded according to
different scenarios. Flood hazard maps show the extent of floods at high- (optional),
medium- (at least a 100-year return period) and low-probability floods or extreme
events.

e Risk maps should show the potential adverse consequences associated with floods
under those scenarios.

15.5.5 The Benefits of Digital Earth for Risk
Assessment—Using Dynamic Data

Creating maps with the standardized content and symbolism mentioned in the previ-
ous section is necessary for preparing the components of an integrated rescue system
for crisis situations and for managing them. However, the basis of the Digital Earth
concept is not the creation of printed and static maps, but the dynamic sharing of
different types of data, including near-real time data sharing. The development of
electronics, networks, databases, data sharing (included in Digital Earth) brings new
possibilities for risk assessment.

As an example, for arisk assessment at a particular location and at a certain time, it
is possible to take advantage of the current location of mobile phones, from which the
present population can be estimated more accurately than using the standard census
data. Extensive studies focused on different aspects of human presence estimation
based on mobile phone data have been presented, particularly from Europe and Asia
(Ahas et al. 2010; Batista e Silva et al. 2013; Cao et al. 2017; Jdrv et al. 2017; Kang
et al. 2012). Kubicek et al. (2018) proposed analysis of human presence using data
from mobile operators. The analysis is based on a dataset describing the estimated
human presence (EHP) with two values—visitors and transiting persons—depending
on the overall time spent within a specific mobile cell.
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The advantage of using the EHP numbers over data from a census was analyzed
during the Integrated Rescue System training held in 2017 in Brno, Czech Republic.
The goal was to decide where to locate water tanks with supplies of drinking water
for inhabitants in case the standard water supply network becomes contaminated.

This emergency situation is demonstrated in Fig. 15.3. “The location-allocation
analysis on the leftmost side only takes into account census data and evenly dis-
tributed population throughout the administrative unit. Each water tank can supply
approximately 2000 people. The second analysis adjusts the water tank locations
according to the real locations of buildings and population in administrative units.
The third and fourth analysis quantifies the EHP for working days and weekends.
Using of EHP proposes a greater number of necessary water tanks in administra-
tive units, and their optimal locations change according population fluctuations”
(Kubicek et al. 2018).

Risk assessment is addressed at different levels (international, national and local),
and each of these levels has its own goals and uses. It is very useful to share expe-
riences and data between these levels. This allows for generalization of knowledge
and results from the local level to the national and international levels. Such analyses
can become an engine for developing better risk assessment methods and disaster
mitigation. The Digital Earth concept linking databases and enabling data sharing
provides a methodological and technological background for this goal.

DISTRIBUTION OF WATER TANKS IN SELECTED BRNO CITY DISTRICTS
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Fig. 15.3 The role of the spatiotemporal distribution of the population in the case of a water
shortage. Reprinted from Kubicek et al. (2018) by permission of Taylor & Francis Ltd.
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15.6 Digital Earth and Disaster Risk Mapping Technology

15.6.1 The Role of Cartography in Disaster Risk Mapping

In the frame of disaster risk mapping, geographic knowledge is crucial for making
proper decisions. The importance of spatial information and its potential support for
emergency actions were stressed and evaluated by several authors (Kevany 2008;
Zlatanova and Li 2008; and Konecny 2006). Among the various ways to transmit,
share, and visualize geographic knowledge, cartography is one of the most important.
Cartography and geoinformatics have experienced a huge technological shift over
the last 30 years. Digital Earth systems have become important foundations for data
management related to geographic phenomena.

The application of dynamic cartographic visualization opens the possibilities of
adaptive cartography. It allows for creating maps of current risks (e.g., current and
predicted flooded area or direction of fire spread), the location of nearby emergency
services, or escape routes for the population at risk.

The theory of using adaptive cartography for emergency management geographic
support was described by Reichenbacher (2003) and Meng (2005). This method
is based on the idea of geographic data visualization automation and adjustment
according to the situation, purpose and user’s background (Reichenbacher 2003).

The adaptation of maps can generally be defined by a number of “Ws”—what,
when, where, who, and how—as documented in Fig. 15.4. It illustrates the types of
contexts that can influence the conditions of disaster risk mapping.

type of context
What ? What happend? SITUATION EMERGENCY
What needs to be done? ACTIVITY CONTEXT
When? When the event occured? TIME
When the activity is realised? PHASE
Where the event occured? LOCATION
Where? (What area) is affected by the event? |
(What) is the extent of the activity? OPERATIONAL RANGE
Who is the user of the map? USER ABILITY
Who?
Who is the data manager? DATA MANAGEMENT
How the map is used? MAP FUNCTION
How?
(What) is the size of the display? TECHNOLOGY

Fig. 15.4 Possible contexts influencing map use and mapping. Adapted from Kozel et al. (2011)
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15.6.2 Use Case Examples

The adaptive mapping principles described in the previous section were demonstrated
in several scenarios, e.g., Talhofer et al. 2007, Mulickova et al. 2007. One of the
scenarios, called “FLOOD”, aims to improve flood management. A case study was
practically verified in the winter of 2011/2012, when one of the field experiments
was performed. Based on an analysis of the flood management system in the Czech
Republic (Kubicek et al. 2011), five main ACTIVITIES were defined for the Flood
Use case (SITUATION):

e PREDICTION AND PROGRESS—development and expected progress of the
flood

e TECHNICAL SUPPORT—technical support in the inundated area—support of
Flood Security Activities

e RESCUE—the evacuation of citizens

e ORGANIZATION—an organization of powers and means

e PUBLIC INFORMATION—information for the public on flood development,
evacuation, etc.

Some of the ACTIVITIES defined above are universal (e.g., organization) and
may be performed in different SITUATIONS whereas others (e.g., flood prediction)
are situation-specific.

There were a few principal operational ranges defined in the pre-
sented use case: FLOODPLAIN for detailed information on the inundation,
REGION/DISTRICT/MUNICIPALITY to comply with the hierarchical order of the
flood management system, CATCHMENT to monitor the flood at natural borderlines,
and SECTION for a detailed view of the municipality.

15.6.3 Use Case Adaptation Principles

The fact that an object is evaluated from the perspective of a defined context is
fundamental to the map symbol adaptation process. The most important aspect of
the geographic feature may not be the character of the object as defined by the data
source, but what ROLE it plays in the decision-making process. The map symbol is
an expression of such a ROLE. Because the data are typically collected for purposes
other than emergency management, semantic relations must be defined, and new
roles should be specified.

Based on context, the semantic relevance is assessed. Information on the geo-
graphic object is relevant if it is necessary for the decision-making process within
the context. The relevancy assessment is important from the cartographic point of
view since the large number of objects that are visualized on the map limit its legibil-
ity and thus the effectiveness of the cartographic visualization as a decision support
tool.
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When information is relevant, we can assess the degree of relevancy and use
other cartography means to increase/decrease the importance of a spatial object or
phenomena. The relevancy degree can be assessed for both the semantic and spatial
aspects, as illustrated in Fig. 15.5.

The activity and the crisis event itself undergo temporal changes and thus the
object properties change as well. For example, if the water level is rising and another
house is endangered or a house is already evacuated. These facts should be considered
during map symbol design.

15.6.4 Context Map Composition

The process of data model definition is illustrated in Fig. 15.6. The emergency context
defines the basic data model (e.g. the information content of the map), and relevant

relevancy criterion example parametres - symbols
SPATIAL location to house vs. inside r
important predicted flooded | . s
object/phenomea area ey
far from
SEMANTIC importance fire stations _ ‘
for activity according to high
category middle .

small .

Fig. 15.5 Degrees of spatial and semantic relevance. Cartographic symbols prepared by L. Fried-
mannova. Adapted from: Brezinova et al. (2011)
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Fig. 15.6 Data model definition. Adapted from Mulickova (2011)
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features of the models BASETOPO, CRITICAL, and CONTEXT SPECIFIC are
selected. The basic model is then modified as the context is more precisely specified
(i.e., according to the PHASE). The model is generalized and further specified for
each level of detail within the operation range.

The examples of a context map for flood management in Fig. 15.7 document dif-
ferent context views of the spatial database. Context maps for three emergency con-
texts—PREDICTION (A), RESCUE (B, D) and ORGANIZATION (C) are shown.
The level of detail corresponds with the operation range “section”. Maps share the
same topographic background (i.e., BASETOPO) and, to a certain extent, flood-
SPECIFIC features (i.e., the flood extent and buildings in it). The visualizations
differ in activity-specific features—i.e., features specific to prediction (flood activity
degree, number of affected persons), to the organization (places of intervention and
its description) and to the rescue efforts (evacuation zones, routes). The features of
the CRITICAL model are not included.

Maps A and B in Fig. 15.7 illustrate the phase of preparation—there is no flooding
yet but there is a prediction of flooding. At that time, houses are endangered. In
the response phase (Maps C and D), houses are already affected. The visualization
changes are based on the progress of the disaster event.

Maps B and D support the same activity (i.e., rescue) but in different phases.
The maps display visualization changes based on the progress of the activity. In the
preparation phase, the zone of evacuation is marked and buildings for evacuation are
selected. In the response phase, all the buildings are already evacuated.

A possible technical implementation is described in detail by Kozel (2009) and
Kozel and §tampach (2010).

15.6.5 Existing Symbol Systems for Disaster Management

Cartography plays a key role in disaster management for a clear representation of
the necessary objects and phenomena to decision makers. Upon the occurrence of
disasters, crisis management actors need specialized maps to provide a clear idea
of the emergency, localization, distribution and characteristics. One of the objec-
tives of cartographers is to design effective representation of spatial information
through graphic symbols (Akella 2009). The symbols should indicate information
about depicted objects and phenomena without the use of a legend, especially in an
emergency. They should also provide users qualitative and quantitative information
for the presented object or phenomenon (Konecny and Bandrova 2006).

A number of agencies and organizations related to disaster protection have devel-
oped databases, geo-portals and cartographic products for crisis management and
adopted their own standards for symbols.

One of the most popular symbol systems for crisis management is the set of
500 humanitarian symbols of the United Nations Office for the Coordination of
Humanitarian Affairs (OCHA). The symbols are freely available at http://reliefweb.
int/ and aim to help disaster responders present information about crisis situations
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Fig. 15.7 Examples of context mapping for various phases of the emergency management cycle.
Source Mulickova and Kubicek (2011)

quickly and simply (United Nations Office for the Coordination of Humanitarian
Affairs 2012). The symbols can be used to produce humanitarian reports, maps, and
websites. The OCHA humanitarian icons are divided into 17 categories. The set of
symbols covers both disasters and activities, including the supply of water containers
and equipment shelter, access to people in need and protection of civilians. The icons
are associative and have a simple structure that allows for easy comprehension.
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The Emergency Mapping Symbology (EMS) in Canada was developed under the
auspices of GeoConnections, with participation from emergency management orga-
nizations across Canada. It was designed to be used by federal, provincial, regional
and local organizations involved in the management of major events, disasters, and
other incidents where emergency help and security are needed (GeoConnections
2010). The EMS contains a set of symbols and a four-level, hierarchical classifica-
tion of the entities. The categories include incidents, infrastructures, operations, and
aggregates. Symbols in the same category have similar colors. There is also a second
version of the symbols adapted for black and white printing.

The Association of Volunteer Emergency Response Teams developed a project
called Disaster Response Map Symbols (DRMS) as an effort to compile a standard set
of symbols aimed to support the creation of efficient maps for disaster management.
It comprises 285 symbols. The DRMS contains 5 families of symbols in a single font,
including vehicles, infrastructure, mobile/temporary services and teams, events, ships
and some special symbols (Association of Volunteer Emergency Response Teams
2009).

Another popular symbol system is the symbology developed by federal, state, and
local agencies in the USA working together under the auspices of the Federal Geo-
graphic Data Committee (FGDC) Homeland Security Working Group. The symbol
system includes symbols and their definitions for the categories of incidents, natural
events, operations, and infrastructures. The structure of each category and a damage-
operational status hierarchy were developed using color and frame shapes with line
patterns (Homeland Security Working Group 2017). The symbols are designed to be
presented in color or black and white formats.

The cartographic symbols should have clear and short definitions to be used in
a map legend. One very important characteristic is that they are situated on a map
and should indicate qualitative and quantitative information about the represented
object, phenomena or process to users.

Considering the advantages and disadvantages of existing emergency symbol
systems, a new symbol system for the needs of disaster management was developed
at the Laboratory on Cartography of the University of Architecture, Civil Engineering
and Geodesy in Sofia. The Symbol System for Disaster Management (SSDM) was
developed to support thematic mapping for early warning and crisis management
and operational activities of all participants in disaster management, as well as to
help citizens understand specialized emergency maps. The SSDM was designed to
be useful for the general public as well as for professionals.
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15.6.6 Opportunities for New Disaster Risk Mapping
Technologies

The technological shifts in cartography and geoinformatics were on the level of data
analysis and visualization, bringing new data sources from different sensors and
mapping strategies. One of the most notable examples of this is cell phone data.

Data derived from active cell phones or active SIM cards for some administra-
tive units are becoming available for various uses (see an example from the Czech
Republic, the O2 Liberty API, https://www.02.cz/podnikatel/liberty-api/). Analysis
of the number of SIM cards and existing demographic data has opened a novel set
of possible applications for emergency management and disaster risk mapping. The
availability of cell phone data enables the following:

e More accurate estimation of the actual number of inhabitants within the admin-
istrative unit and their temporal rhythms (example on Brno, Czech Republic in
Kubicek et al. 2018). Comparing such an analysis with the existing census data
and annual demographic reports (see Fig. 15.8), the administrative units can be
further divided into several typological units (with the maximum during working
days, weekends, etc.) In addition, the population estimations can be used to better
plan the evacuation and other inhabitant-sensitive activities during emergencies.

e The cell phone data analysis often reveals regular trends as described above and
some irregular peaks and peculiarities. These high concentrations of inhabitants
are connected with cultural and sports events such as concerts and music festivals.
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Fig. 15.8 Variability of the population in an administrative unit Ndmésti Svobody, Brno, Czech
Republic. Comparison of cell phone and census data. Reprinted from Kubicek et al. (2018) by
permission of Taylor & Francis Ltd.
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15.6.7 Future Directions—New Symbol System for Disaster
Management (SSDM)

The examples, approaches and case studies described above provide various oppor-
tunities for future development and applications such as the development of virtual
and augmented reality tools and devices. The Digital Earth concept can be also
understood as a virtual reality system (Coltekin et al. 2019).

The new cartographic Symbol System for Disaster Management (SSDM) was cre-
ated in Bulgaria after proposing a classification structure of represented objects and
phenomena, construction and design of symbols, implementation in real situations
and use in map compiling for disaster preparedness.

15.6.7.1 Classification Structure

The SSDM consists of a 4-level hierarchical classification of objects and phenomena
concerning disaster management and a set of 115 symbols. At the highest level,
the objects are divided into 5 categories: disasters, infrastructure, protection services
and safety infrastructure, affected people and infrastructure, and operational sites and
activities. Each category is divided into classes, which are divided into subclasses
that consist of objects and phenomena (Fig. 15.9).

15.6.7.2 Design of Symbols
The ability of symbols to transmit information and the way they are perceived by
map users are critically important. The design process of the SSDM started with

consideration of the rules of construction and use of symbol systems, examination
of the relations between objects and phenomena, their classification and specifics.

Subclass 1.1 je .
[—

Class1

N —————
Category Subclass 1.2
I
Subclass 2.1

Fig. 15.9 Classification structure Source Marinova (2018)
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The design was accompanied by optimal requirements to achieve readability, expres-
siveness and visibility, taking into account modern technologies and techniques in
cartography. It is challenging to choose graphical variables so that all the symbols
can be quickly and easily perceived and are associative and properly referred to their
respective categories.

All categories of the SSDM are distinguishable by their shape and color. The
symbols consist of white pictograms and shapes with various background colors.
The choice of background colors, except to achieve clear distinctiveness, depends on
the message that the symbols should express to the users. A psychological perception
of the colors was taken into account. The different shapes for the categories aim to
avoid potential problems resulting from low light or black and white printing.

Each category has an individual letter code for easy identification: A—disasters;
B—infrastructure; C—protection services and safety infrastructure; D—affected
people and infrastructure; and E—operational sites and activities. Each object and
its respective symbol have an alphanumeric code formed by the category code and
the serial number of the object in its category.

Figure 15.10 presents part of the symbol system, including the alphanumeric code,
graphic symbol and a brief description.

The status of objects in “infrastructure” and “protection services and safety infras-
tructure” in a crisis situation is represented by a combination of symbols in category
B (infrastructure) and category C (protection services and safety infrastructure), with
symbols representing destroyed, affected and unaffected objects of category D shown
in a reduced size (Fig. 15.11).

15.6.7.3 Maps for Disaster Protection

The new Symbol System for Disaster Management was applied in experimental
development of training maps supporting actions in emergencies and in a series of
maps for disaster protection at local and regional levels. The main tasks of local and
regional disaster protection plans are the analysis and assessment of disaster risks,
prevention and mitigation, early warning, and coordination of disaster management
activities. Participants in these activities need specialized geographic information to
support concrete actions.

The SSDM was applied in the production of base maps of the municipality of
Troyan, Bulgaria, at a scale of 1:50000 (Fig. 15.12) and Troyan at a scale of 1:10000
(Fig. 15.13). The maps were compiled according to predefined elements of map
content and aim to support activities described in the disaster protection plan of the
municipality.

The main features of hydrography, settlements, infrastructure (including trans-
port, telecommunication, energy, manufacturing and water infrastructure) as well as
services and facilities related to disaster protection (such as hospitals, shelters, and
helicopter pads) are represented by the SSDM. Based on the main disaster protec-
tion maps, a series of maps for disaster management in case of earthquakes, floods,
fire, and industrial accidents were created. Additional information was provided for
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Fig. 15.14 A map for evacuation planning Adapted from: Marinova (2018)

some features including the object name and description, number of beds in shelters,
dangerous industrial objects, type of stored materials, and fire-fighting equipment.
Infrastructure and services/facilities for protection are represented by the symbols
in Category B and Category C (Fig. 15.13). These maps also support predisaster
activities, including assessment and preparedness.

In a crisis situation base maps can be processed into rapid and reference maps pre-
senting the type and location of disaster(s) by adding symbols from Category A and
symbols for affected people and affected infrastructure in Category D (Fig. 15.14).
The symbols for operational sites and activities (Category E) could be useful for
damage assessment and recovery in the postdisaster stage.

The map content and displayed information of operational situations could help
support the responsible authorities and individuals to make timely and effective deci-
sions. Such maps could allow for identification of the affected areas in municipalities
or regions, and provide significant contributions to population protection, mitigation
and evacuation planning operations.

Cartography plays a key role in the main stages of disaster management. Efficient
and cooperative preventive and protective activities of authorities require appropri-
ate and easily understood geographic information. The use of a standard system
of associative symbols can facilitate significantly cooperative disaster management
strategies at local, regional and international levels.

15.7 Conclusion

Disaster mitigation and DRR are complicated processes, and solutions could be
improved by using powerful tools such as Digital Earth. The concept of DE covers
almost all activities occurring in ICT in the contemporary world. To be successful in
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employing the right solutions, we need to create improved concepts that consider the
newest knowledge about disaster mitigation and DRR. To realize this, we need well-
organized data and information such as in data ecosystems (as in the U.N. GGIM)
that reflect the complexity of the problems to be solved, defined by the SDGs. Shar-
ing data and information, visualization with the help of digital maps, cartographic
models and their combinations hold important promise to support decision makers
and society with true and understandable outputs to help to comprehend situations,
to create instructions and standards on how to behave in various situations, and to
be ready when risks transform into disasters. This chapter highlighted the newest
projects, including the U.N. GGIM and DBAR. In the future, these approaches with
commonalities and differences should be developed to support smart solutions for
human society.
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