Chapter 13 ®)
Digital Earth for Sustainable e
Development Goals

Graciela Metternicht, Norman Mueller and Richard Lucas

Abstract Sustainable development is nothing new, but it has proven notoriously
difficult to implement in practice. The 2030 Agenda for Sustainable Development,
with 17 goals, 169 targets and 232 associated indicators, was approved at the 2015
UN General Assembly and addresses the economic, social and environmental pillars
of development, aspiring to attain by 2030 a sustainable future that balances equitable
prosperity within planetary boundaries. While the goals are universal (i.e., applicable
to both developing and developed countries), it is left to individual countries to
establish national Sustainable Development Goal (SDG) targets according to their
own priorities and level of ambition in terms of the scale and pace of transformation
aspired to.
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13.1 Fundamentals of Digital Earth for the Sustainable
Development Goals

The Digital Earth (DE) exists in parallel to the physical Earth along with some
translating elements between them (Sudmanns et al. 2019). Chapter 1 describes the
origin, evolution and main elements of Digital Earth, and the links between Digital
Earth, Big Data (Chap. 9) and big Earth data. Guo (2017) argues that, from the
perspective of big data, big Earth data inherits big data’s ‘Vs’ (volume, velocity and
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variety) and, in this context, DE can be considered to be big Earth data. Furthermore,
as big Earth data research focuses on synthesis of systematic observations of the
Earth, as well as data-intensive methods for studying Earth system models, based on
the premise of increased knowledge discovery (Chap. 1), Digital Earth can support
countries in their implementation of the 2030 Agenda for Sustainable Development.

Through analysis of recent literature and a case study, this chapter collects and
presents evidence of the potential and limitations of Digital Earth for systematic
generation of information and knowledge for use in measuring progress towards
the Sustainable Development Goals (SDGs). We frame the analysis and discussion
around priorities for implementation (ICSU, ISSU 2015), including:

(a) the design of SDG indicator metrics at national levels and how Digital Earth,
through the Analysis Ready Data (ARD) concept, can contribute to that end

(b) harmonized national metrics for SDG implementation, including for baseline
determination and target setting

(c) setting up monitoring platforms for tracking progress towards the SDGs

(d) knowledge needs for assessing implementation of actions and strategies towards
achieving set SDG targets

(e) governance and institutional arrangements, including multi-stakeholder partic-
ipation.

The remainder of the chapter is structured as follows. Section 13.2 identifies the
information needs of countries for the implementation of the SDGs, including for the
SDG Global Indicator Framework (GIF). Section 13.3 summarizes the findings of
recent research and practice on the use of Digital Earth (including Earth Observation!
and social sensing) in support of the SDGs. Section 13.4 presents a national case
study of multi-stakeholder engagement in the operationalization of the Indicator
Framework of the Sustainable Development Goals with Earth Observations. The
chapter closes (Sect. 13.5) with an outlook on the prospects of Digital Earth and big
Earth Data in relation to the SDGs.

13.2 Information and Knowledge Relevant to National
Implementation of the SDGs

The SDGs provide a coherent, evidence-based framework for development planning
and programming at a national level (Allen et al. 2017a). The goals and targets
essentially set the desired destination for development through to 2030 and provide
a framework for monitoring progress. This section introduces the metrics agreed for
monitoring and reporting of the SDGs, and broadly identifies data and information
requirements for their implementation.

I'The Earth Observation data in this chapter refers to the definition provided by Nativi et al. (2019).
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13.2.1 How the SDGs Are Monitored and Reported

The Global Indicator Framework (GIF) was established in March 2016 to monitor
progress towards achieving the SDGs (UN Statistical Commission 2016). The SDG
indicators have been grouped into three different tiers according to the level of data
availability and methodological development. Of the 232 SDG indicators that make
up the GIF, as of March 2019, 101 are classified as being Tier I. This means that
the indicator is conceptually clear, has an internationally established methodology
and standards, and the data are regularly compiled for at least 50% of participating
countries. The remaining indicators are Tier II (94 indicators), which are conceptually
clear but for which the data are not regularly produced by participating countries,
or Tier III (34 indicators), for which no internationally established methodology
or standards are yet available. Six indicators are determined as having several tiers
(Inter-Agency and Expert Group on Sustainable Development Goals 2019). Hence,
three years after the adoption of the GIF, less than half (44%) of the SDG indicators
can be confidently populated.

It is worth noting that the SDG indicators are essentially performance metrics
and, as such, are reported regularly at national levels through National Voluntary
Reports (NVRs) (UNGA 2015, paras. 79 and 84), and annually at the global level.
The latter is undertaken by the UN Secretary General to inform the High-Level
Political Forum based on a selection of indicators from the GIF for which data are
available, as mandated by the General Assembly (UNGA 2015, para. 83). For Tier I
and II indicators, the availability of data at national levels may not necessarily align
with the global tier classification, and countries can create their own tier classification
for implementation.

13.2.2 Information Needs for Implementation of the SDGs

Recent research (Allen et al. 2018, 2019) has identified challenges for implementing
the SDGs that, in turn, influence information and knowledge needs.

(a) The comprehensiveness of scope makes prioritization essential.

(b) The goals are integrated, with very complex feedback and dynamics. This is a
significant change from prior narrow, linear approaches to development.

(c) The SDG targets have complex trade-offs and synergies, and conflict can emerge
from the interactions between targets and goals (Lusseau and Mancini 2019;
Nilsson et al. 2016; Le Blanc 2015; Allen et al. 2019).

(d) Currently, there is a weak conceptual understanding of these interlinkages,
which limits the ability to respond with coherent policy and management across
sectors (Allen et al. 2018; Spangenberg 2017).

Challenges related to aspects of target-setting are that the system of SDGs is not
coherent, but rather a network of interlinked targets and a reflection of the political
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mapping of development priorities rather than a reflection of how the Earth Sys-
tem works (Le Blanc 2015). Furthermore, the SDGs do not reflect the cause—effect
relationships that are needed to understand how the achievement of one target could
impact on the other targets. Hence, national implementation of the SDGs requires
more than information on performance metrics. For example, timely data in support
of policy formulation and targeted interventions may be of much greater impor-
tance for countries aiming to advance the implementation of the SDGs according
to their national circumstances than simply providing a metric around an agreed
global indicator. Furthermore, implementation of the SDGs at national levels also
requires determining a baseline for 2015, deciding on targets for 2030, as well as a
system for tracking the progress towards the set targets, monitoring the performance
of decisions (actions, policies and strategies) and reporting advances using the GIF.

Building an evidence-based framework for national implementation, monitoring
and reporting of the SDGs requires government agencies (including National Statis-
tics Offices) to address the what, why and how of data and information provision
(Fig. 13.1).

(a) What is happening requires baseline assessment of indicators related to SDG
targets, identifying priorities (e.g., what SDG targets or goals a country is lagging
behind) and the identification of data and information gaps needed for such
assessment, as summarized in Allen et al. (2017b).

(b) Why it is happening (e.g. drivers of and pressures leading to (un)sustainable
development) relates to the need for systems analysis of interlinkages between
SDG targets, understanding of cause—effect relationships, feedbacks and
dynamics, and the identification of leverage points for actions and strategies
to accomplish the transformational changes that the SDGs aim for.

(c) How to accomplish changes, demands that countries answering the above ques-
tions also understand how data and information are to be obtained and integrated.
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Fig.13.1 National implementation of the SDGs requires evidence-based approaches for monitoring
and reporting. As implementation will largely rely upon national action, government actions, through
their policy, planning, regulatory and expenditure functions—i.e. the ‘plan, do, check, act’ planning
cycle are central to the delivery

Requirements

S

National implementation of the SDGs



13 Digital Earth for Sustainable Development Goals 447

13.3 State of the Art for the SDGs in DE

Whether 3Vs, 5Vs (including volatility and veracity, as suggested by Hammer et al.
2017) or 6Vs (including volatility, veracity and value: Fig. 13.2), big data may offer
new cost-effective or efficient ways of compiling indicators, improving timeliness,
and compiling linkable datasets, and also open the way for cross-cutting analyses
that may help with better understanding of the causation and identification of relevant
and coherent policy interventions (see Fig. 13.1).

When adopting the SDGs, the United Nations (UN) Assembly recognized the
contribution that could be made by Earth Observation (EO) and geospatial infor-
mation (i.e., big Earth data) in supporting and tracking progress towards the SDGs
(UNGA 2015, para. 76). Analysis and interpretation of big Earth data, including
Earth Observation, have much to offer the SDGs and other multi-lateral environmen-
tal agreements (Sudmanns et al. 2019). However, MacFeely (2019) makes a case for
the challenges that big data face (legal, technical and ethical) concerning their use in
compiling SDG indicators. National statistical offices, government agencies and UN
agencies, which are the custodians of specific SDGs tasked with implementing the
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Fig. 13.2 The 6Vs of big data for official statistics. Modified from Hammer et al. (2017)
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GIF, face concerns about whether big data are representative and stable enough to be
used consistently for compiling the SDG indicators and also their operationalization.
For example, in the Big Data Project Inventory compiled by the UN Global Working
Group on Big Data, 34 national statistical offices from around the world registered
109 separate big data projects and their potential contribution to the SDG imple-
mentation. Most data projects focus on goals 3, 8, 11 and, with a lesser emphasis,
goals 2, 15 and 16. Though promising, most projects have not yet moved beyond
the planning stage, and others are dealing with legal issues related to data protection
(MacFeely 2019). Specific to the EO community are challenges for consistently and
systematically turning satellite and other remote sensing data into valuable global
information layers in support of effective implementation of the SDGs.

In late 2018, the Committee on Earth Observation Satellites (CEOS) compiled
a report on the potential of satellite EO for the SDGs (Paganini et al. 2018), and
their findings suggest that EO data has a role to play in quantifying around 40 of the
169 Targets, and around 30 of the 232 Indicators. The CEOS argues that there is an
unrealized potential for EO data to contribute to the Indicator Framework, with only
a third of its data being routinely exploited today. This is based on the premise that
only 12 out of the 30 indicators identified are listed as Tier I.

Moreover, the report points to the importance of EO in relation to Goal 6 (Clean
water and sanitation), Goal 11 (Sustainable cities), Goal 14 (Life below water), and
Goal 15 (Life on land). Most of the perceived contribution of EO towards these goals
has been around the provision of information in relation to the mapping of land cover,
land productivity, above ground biomass, soil moisture content, and water extent or
quality characteristics, as well as air quality and pollution parameters (Table 13.1). A
2016 compilation of the Group on Earth Observation (GEO) appraised the potential
of EO and geospatial information for informing all SDGs, although the document
was vague in terms of specific contributions to SDG targets and indicators. A sub-
sequent joint GEO-CEOS report (CEOS-GEO EO4SDG 2017) further investigated
the potential of big Earth Data (EO and geo-information) for supporting countries in
the implementation of the 2030 Agenda for Sustainable Development, arguing that it
could contribute to the implementation of 29 indicators (through direct measurement
or indirect support) and 71 targets of 16 goals (but not all indicators of these targets).
By referencing national-scale satellite datasets (e.g. Terra/Aqua MODIS, Landsat,
and Sentinel), Metternicht et al. (2018) concluded that EO satellite-derived infor-
mation tends to have a more indirect contribution to the SDG targets and indicators
(i.e. use as proxies). Using data available from the Australian Terrestrial Ecosystem
Research Network platform (TERN), the study ascertained that EO-derived infor-
mation was most relevant to Goal targets 15, 14, 13, 11, 6, 3, 2 and 1, and, to a lesser
extent, Goal 9 (Fig. 13.3).

The potential of EO to support the SDG indicator framework appears in the
biosphere cluster (Fig. 13.4) and to a lesser the SDG indicators related to society
and the economy. This concurs with the argument of Plag and Jules-Plag (2019)
that very few indicators can currently be quantified based on information extracted
from EO alone because of the strong focus of the SDGs on human needs and the
bias toward social and economic information and the built environment. Traditional
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Fig. 13.3 SDG targets that TERN Auscover products contribute to are listed in the table; the table
cells are color-coded according to whether the contribution is more direct (green) or more indirect
(yellow) (Metternicht et al. 2018)

EO techniques are designed for extracting information on environmental variables,
with only a few being related to the built environment and associated infrastructure
(e.g., built-up areas and roads). Hence, there are limitations on the possibility of
EO alone producing reliable metrics for SDG indicators (see Table 13.1); however,
approaches underpinned by big Earth data do have some potential, as evidenced in
recent research by Kussul et al. (2019), Foody et al. (2019), Freire et al. (2018), and
Corbane et al. (2017). Specifically:

e meta-optimization of EO with external data-intensive infrastructure has led to
improved mapping of built-up areas in support of the global human settlement
layer (Corbane et al. 2017)

e national mapping of SDG indicators 15.1.1, 15.3.1 and 2.4.1 has been achieved
through synergy of in situ and multi-resolution satellite data (Kussul et al. 2019)

e big Earth Data (global census data and satellite-derived built-up area maps) has
enabled enhanced mapping of population distribution along coastlines (Freire et al.
2018)

e EO and machine learning have enabled mapping of sites associated with slavery,
in support of SDG target 8.7 (“fake immediate and effective measures to eradicate
forced labour, end modern slavery and human trafficking and secure the prohibition
and elimination of the worst forms of child labour”) (Foody et al. 2019).
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Fig. 13.4 Clustering of the SDGs that relate to the biosphere (earth life supporting system), society
and economy. lllustration Azote for Stockholm Resilience Centre, Stockholm University

In summary, EO data does not directly deliver the SDG indicators agreed by the
Inter-Agency and Expert Group (IAEG) on SDGs; rather, it provides a diversity of
spatio-temporal information that can then be related to the indicator framework. For
example, directly observed indicators can be specific biophysical aspects of entities
(e.g., land cover status and type) that provide evidence for monitoring advances
towards SDG targets. As an example, changes in land-cover states can be an indication
of land improvement or land degradation in SDG target 15.3. Indirect cues derived
from EO data can provide evidence for SDG domains related to human health, cities
and infrastructure, ecosystem health and so on (Paganini et al. 2018; Sudmanns et al.
2019). Few studies, howeyver, refer to specific SDG indicator metrics; many papers
and reports highlight the potential of Earth Observation for targets and goals but fall
short of being specific regarding the operationalization of Digital Earth for the SDG
target or indicator.

For the full information potential of big EO data in support of the SDGs to be real-
ized, approaches are needed that broaden the use of EO beyond specialized scientific
communities and that support decision makers with the knowledge required by sys-
tematically analyzing all available observations by converting them into meaningful
geophysical variables. Data Cubes (see Chap. 21) apply the concept of satellite ARD
and are facilitating access to large spatio-temporal data (Giuliani et al. 2017). This
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enables the coupling of EO with other big data such as demographic, economic,
climatic, or administrative data, which are needed to make indicators and analysis
more relevant and targeted to the SDGs. Furthermore, some of the proposed SDG
targets relate to the so-called ‘means of implementation’, namely technology transfer
and capacity building (i.e. SDG17; SDG targets 13.1, 1.3.3 and 16.8). In this regard,
Digital Earth and EO infrastructure, as currently offered by Australia’s TERN Land-
scape initiative (TERN 2017) and other major international and national systems for
big Earth data (e.g. Google Earth Engine, Amazon Web Services, Earth Server, Earth
Observation Data Centre, Copernicus Data and Exploitation Platform-Deutschland,
United States Geological Survey Earth Explorer, Swiss Data Cube, Digital Earth
Australia, Chinese Academy of Sciences Earth, and GEOEssential of the Group on
Earth Observations), could serve as ‘methodological frameworks’ and examples of
good practice for cross-institutional governance models, thus indirectly contributing
to progress towards these targets.

The case study presented hereafter is an example of how EO can be a promising
complement to traditional national statistics. Digital Earth Australia (DEA) aligns
with the current trends in EO of having open data policies and using cloud comput-
ing and data cubes for improving big Earth data integration and analysis, thereby
strengthening environmental data and indicators (Dhu et al. 2017). In particular, this
case shows how the analysis capabilities of DEA (see Chap. 21 for infrastructure)
can be used to draw together and effectively link data from multiple domains in
support of the implementation of the 2030 Agenda for Sustainable Development in
Australia.

13.4 Case Study of Australia: Operationalizing
the Indicator Framework of the SDGs Through DE
and a Participatory Process

In July 2018, Australia produced its first Voluntary National Review (VNR) of the
SDGs (Australian Government 2018). Australia’s consideration of the SDG Indi-
cators has been a whole-government exercise. The Australian Bureau of Statistics
(ABS) undertook a data-mapping exercise for the SDGs, in conjunction with lead
agencies, exploring both ABS and other government-held data sources to identify
those germane to supporting monitoring and reporting on the SDGs. A Reporting
Platform? was created to: (a) house identified Australian government datasets rel-
evant to the development of the country’s SDG indicator framework; (b) assist in
identifying new datasets; and (c) refine the SDG indicators, particularly as the move
from a Tier III to a Tier I or II occurs and where additional datasets may be needed.
An inter-agency governance agreement assigned the responsibility for following up
and completing additional data sets to individual agencies (particularly those that
hold datasets relevant to the SDG indicator framework).

Zhttps://www.sdgdata.gov.au/.
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For the first VNR, a total of 118 indicators were reported online using data drawn
from a national indicator dataset. For 57 indicators, potential data sources were
identified. However, further analysis is needed to ensure the data are suitable for
reporting and are comparable to the globally agreed methodology for each UN SDG
indicator. 12 indicators were not reported either because the indicator was not relevant
to Australia or because no suitable Australian government data source exists for
the indicator. Another 57 were not considered because, at the time of reporting, a
globally agreed methodology for these UN SDG indicators is lacking (i.e., Tier III).
Therefore, Australia did not investigate potential data sources. In summary, the first
Australian VNR took a narrative approach, addressing each of the SDGs, though
no baseline was created. Targets were not specified and Australia had complete and
relevant datasets for only half of the SDG indicators. The Australian government
has acknowledged that EO technology can help progress towards the completion of
datasets and, in tandem, inform decision-makers about performance against SDG
targets and indicators (Australia Government 2018).

In this regard, EO-derived information could help in setting baselines against
which SDG targets could be set and, in turn, measure progress against agreed goals—
aspects that the first VNR did not tackle. Germane to this point is the DEA initiative
led by Geoscience Australia, which has enabled the compilation, analysis and inter-
pretation of decades of satellite sensor (largely Landsat) data into information and
insights about Australia’s terrestrial and marine ecosystems using ARD standards
(Dhu et al. 2017; Lewis et al. 2016). Building on the DEA infrastructure (see Chap.
21), Geoscience Australia is leading an inter-institutional initiative to produce reli-
able, standardized, continental-scale maps of land cover and land-cover dynamics
across Australia at 25 m spatial resolution using multi-scale time series of Landsat
and Copernicus Sentinel datasets. This approach builds on the Earth Observation
Data for Ecosystem Monitoring (EODESM; Lucas and Mitchell 2017), which is
fully described in Lucas et al. (2019a) and which provides multi-scale and temporal
land-cover and evidence-based change maps by integrating environmental variables
retrieved from EO data and utilizing the framework of the Food and Agriculture
Organisation (FAO) Land Cover Classification System (LCCS; Version 2, Di Gre-
gorio 2016). The approach is based on the requirement for information about land
cover and its change over time, as both are essential input metrics to several SDG
targets (Fig. 13.3) and indicators (e.g. 6.6, 11.3.1, 15.2.1, 15.3.1). This information is
also useful to other national and international reporting requirements on the state of
the environment (e.g. United Nations Convention to Combat Desertification, Aichi
Targets, and the Paris Agreement).

13.4.1 DEA to Map Land Cover and Dynamics Over Time

The DEA land cover product has been optimized for high-performance computing
within the Open Data Cube (ODC) framework and is generating continental maps of
land-cover datasets from environmental variables (thematic and continuous), with a
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focus on those that are generated at a national level within DEA’s ODC environment
(Lucas et al. 2019a) and for multiple points in time. These include the vegetation
cover fraction of the Joint Remote Sensing Research Program (Gill et al. 2017),
Water Observations from Space (WOfS) (Mueller et al. 2016), surface reflectance
Median Absolute Deviation (MAD) (Roberts et al. 2018), and national mangrove
distribution (Lymburner et al. 2019) (Fig. 13.5). Additional layers generated through
DEA are also used (e.g., the InterTidal Elevation Model (ITEM) of Sagar et al.
(2017). The mapping is undertaken at 25 m resolution and the initial focus has been on
generating land-cover classifications according to the LCCS Level 3 taxonomy, which
differentiates 8 classes relating to aquatic and terrestrial (semi) natural vegetation,
cultivated and managed terrestrial and aquatic vegetation, artificial and natural (bare)
surfaces, and natural and artificial water bodies (Fig. 13.5 and Table 13.2). More
detailed classifications are being generated at what is termed Level 4 (e.g., vegetation
canopy cover and height, and water hydroperiod), which are further described using

FAO Land Cover Classification System Aquatic vs Terrestrial

Vegelalion vs Non-Vegetation

Fractional Cover
(Vegetation/Non-Vegetation)

]
i
i
i
i

L)

5.9

v
Vegetation Height and Cover

DEA Water Observations from Space
(WOFS)

DEA InterTidal Extents (ITEMS)

DEA Australian Mangroves

i S e |
Terrestrial: cultivated Artificial Terrestrial
and managed surfaces

Fig. 13.5 Examples of data inputs for the application of the FAO LCCS level 3 within Digital Earth
Australia used to produce standardized land cover maps at 25 m resolution

Table 13.2 Level 3 FAO

land-cover classification Class name Acronym

(FAO LCCS) classes Cultivated terrestrial vegetation CTV
Natural terrestrial vegetation NTV
Cultivated aquatic vegetation CAV
Natural aquatic vegetation NAV
Artificial terrestrial non-vegetated AS
Natural terrestrial non-vegetated BS
Artificial waterbodies AW
Natural waterbodies NW
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environmental variables that are external to the LCCS taxonomy (e.g., soil moisture
and crop type), examples of which are given in Fig. 13.6.

The availability of multi-temporal land-cover layers enables change matrices (e.g.
T1—Tpuseiine) to be generated between land covers obtained for any two time-separated
periods. When only the LCCS Level 3 is considered, the temporal comparison
between two land-cover maps results in 64 different change categories (Fig. 13.7a).
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Fig. 13.6 Examples of environmental variables, class modifiers and derived measures required to

implement the LCCS at level 3 and level 4 in Australia
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Fig. 13.7 a The 64 change categories generated through comparison of 2 LCCS Level 3 clas-
sifications (each with 8 classes) in the vicinity of Lake Ross (area of Townsville, Queensland)
based on multi-temporal classification of Landsat images using LCCS level 3. The key changes
are NAV-NTV: denoting changes from Natural Aquatic Vegetation (2014) to Natural Terrestrial
Vegetation (2016); NW-NAV: Natural Waterbodies to Natural Aquatic Vegetation; and NW-NTV:
Natural Waterbodies to Natural Terrestrial Vegetation. b The corresponding change map indicating
a progressive loss of open water area, the retreat of aquatic (wet) vegetation and a transition to drier
vegetation on the outer margins of the lake basin (Lucas et al. 2019a)
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Diagonal cells represent areas where the land cover (e.g. natural/semi-natural terres-
trial vegetation, natural water, artificial water, etc.) remains stable between the two
time periods and unique codes can be assigned for the From — To changes in land
cover. Figure 13.7b provides an example of a land-cover change matrix and map that
result from applying FAO LCCS level 3 on an inland water ecosystem in the State
of Queensland between two time periods.

One aspiration of DEA’s land cover product is to better inform management and
interventions in order to advance assessment and monitoring of progress towards the
SDGs at national levels. In this regard, research is being undertaken to concurrently
develop a change alert system (historically and when new data and data products
become available) that can associate changes in states (i.e., environmental variables)
with the causative mechanisms (i.e., human activities and climatic variability) and
the impacts that such changes produce (e.g. defoliation, land clearing, and increases
in built-up area). Such changes are based on evidence, and exploit a newly developed
change taxonomy (Lucas et al. 2019b). Geoscience Australia is extending the idea
to integrate, within DEA’s land cover product, EODESM with the Drivers-Pressure-
State-Impact-Response (DPSIR) framework (Lucas et al. 2019b; Metternicht et al.
2019). In doing so, links are—between economic and climate drivers and pressures of
change and detailed information on states, state changes and environmental impacts
(based on the change taxonomy). The drivers-pressure-state links can subsequently
inform impacts on management and policy (from local to international l-levels).
The ultimate ambition is to generate options for context-based policy and manage-
ment responses related to the SDGs (Fig. 13.8). Through this approach, responsible
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Fig. 13.8 Conceptual framework that links the DPSIR framework with the LCCS-derived land-
cover maps within the DEA environment. Pressures (center of the wheel) are identified and state
indicators derived from the LCCS comparison between To—T; provide an estimation of state change.
Cumulative information on state change builds evidence on impacts (outer part of the wheel)
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authorities can make informed and timely decisions on interventions (e.g. manage-
ment decisions, new regulations).

As an illustration of the application of the integrated EODESM-DPSIR frame-
work, Fig. 13.9a shows the impact of rising sea levels (between 1991 and 2011)
on water and vegetation variables in Kakadu National Park, located in Australia’s
Northern Territory. An increase in water depth, salinity and hydroperiod and a cor-
responding rise in vegetation biomass, height and cover, along with an associated
transition from shrubs to trees (i.e., lifeform state change) was observed during this
period. Such changes might lead to an increase or a decrease in mangrove species.
In 2015, a substantive drop in sea level in the Gulf of Carpentaria (Duke et al. 2017)
was also noted in the Northern Territory (Lucas et al. 2018), which led to changes
in water conditions and a substantive dieback of mangroves. A loss of canopy cover
(%) and above-ground biomass (Mg ha~!') were the EO-derived state-change indi-
cators of short-term change; they were mapped through multi-temporal comparison
(2014-2016) of vegetation indices (primarily a Normalized Difference Vegetation
Index (NDVI) and a Plant Senescence Reflectance Index (PSRI)) derived from Rapid-
Eye satellite imagery. Dieback-affected mangroves were not removed and their height
(m) did not change (at least in the short term). A reduction in moisture content (%)
of woody vegetation was the proxy applied to differentiate dieback from defoliation
(Fig. 13.9b). Information on this proxy indicator can be discerned from, for example,
time series of Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band
Synthetic Aperture Radar (SAR) data. Figure 13.9 shows further aerial images of
sea-water encroachment along creeks and the associated colonization by mangroves
(9e), as well as mangrove dieback along the eastern and western shores of the West
Alligator River (9f).

The combination of the EODESM and DPSIR frameworks enables mapping of
where and how much change has occurred (extent and magnitude), the root causes
(sea-level change), and impacts (e.g., regrowth and dieback). Furthermore, likely
impacts on policy (e.g., the United Nations Framework Convention on Climate
Change or the Convention on Biological Diversity) and land management (e.g.,
associated with Kakadu National Park) can be indicated and future interventions
suggested. In the case of SDG 6.6 (“By 2020, protect and restore water-related
ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes”), main
policy actions to advance this target should address drivers of climate change (Met-
ternicht et al. 2018; Asbridge et al. 2018), including also environmental monitoring
through Digital Earth platforms (Lymburner et al. 2019).

Ongoing research is focusing on the use of DEA’s land cover product to derive
Australia-wide indicators for SDGs 6.6.1 (change in the extent of water-related
ecosystems over time), 11.3.1 (ratio of land consumption rate to population growth
rate), 15.1.1 (forest area as a proportion of total land area) and 15.3.1 (proportion of
land that is degraded compared to total land area). For example, the 2018 Australia
VNR mentions that the country is ‘exploring data sources’ for the implementation
of Indicator 15.3.1.

The following are examples of how multi-temporal land cover maps produced
within DEA using ARD satellite imagery (Landsat or Sentinel) and the combined
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(b)
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I Gain
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Fig. 13.9 Example of the application of the combined EODESM-DPSIR framework within DEA
for Kakadu National Park, NT, Australia, where the impacts of sea-level change (SLC; center) result
in a regrowth and colonization when rises occur and b dieback when drops in sea level follow.
These impacts are illustrated by ¢ high-resolution maps of change from time-series comparison of
aerial photography from 1991 and LiDAR from 2011 (Asbridge et al. 2016), and d comparison of
RapidEye data from 2014 and 2016. Aerial images of mangrove change taken in September 2016
show e landward colonization along small creeks and f dieback (see green box in d)
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EODESMDPSIR framework could be used to derive metrics needed for baseline set-
ting, target setting and/or monitoring and reporting of SDG Target 15.3, which aims
‘to combat desertification, restore degraded land and soil, including land affected by
desertification, drought and floods, and strive to achieve a land degradation-neutral
world by 2030’.

13.4.2 DEA in Support of SDG Indicator 15.3.1

In the SDG Global Indicator Framework, indicator 15.3.1 “Proportion of land that
is degraded over total land area” is based on the analysis of available data for three
sub-indicators: land cover, land productivity and carbon stocks; this indicator takes
a binary form (degraded/not degraded). Computing SDG Indicator 15.3.1 for the
baseline (i.e., Tpuserine) and subsequent monitoring years (T;-T,) requires adding
up all those areas where any changes in the sub-indicators (i.e. land cover, land
productivity and soil organic carbon) are considered negative (or stable if the baseline
or previous monitoring year labeled the area ‘degraded’) by national authorities. In
turn this involves:

i. assessing the land cover and changes in land cover (i.e., trends)

ii. analyzing the status of and trends in land productivity based on net primary
production

iii. determining carbon stock values and changes, with an initial assessment of soil
organic carbon as the proxy (Sims et al. 2017).

As a proxy for measuring progress towards SDG Target 15.3, indicator 15.3.1
presupposes that changes in land cover may point to land degradation if such change
implies a loss of ecosystem services considered desirable in a local or national con-
text. Hence, land cover information at the national level derived from a classification
system such as the FAO LCCS can be used to assess and quantify land cover and
trends in land-cover change (Step i from above) by disaggregating the landscape into
‘degraded/negative/declining’, ‘stable/unchanging’ or ‘improving/positive’.

Based on the example presented in Fig. 13.10, the change matrix (containing 64
possible types of land change), obtained by comparing two satellite images from
two different periods classified using LCCS Level 3, can be translated into descrip-
tors relevant to SDG indicator 15.3.1. Changes indicative of land degradation can
be decided by individual countries, according to their national circumstances. In
Fig. 13.10, changes highlighted in orange (e.g., agricultural and urban expansion,
wetland drainage and vegetation loss) are considered examples of land degradation.
Diagonal cells in blue denote areas of no change (i.e., the land cover remained stable
between periods 1 and 2).> Cells in green denote changes that the country would

31t is worth noting that land degradation can still occur within classes considered stable at LCCS
Level 3. For example, a landscape may remain classified as terrestrial semi-natural vegetation at
both T1-T> even though a loss of canopy cover may have occurred. This is described at Level 4 of
the LCCS (as illustrated in Fig. 13.9).
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Fig. 13.10 Example of deriving the sub-indicator ‘trend in land cover’ through a change matrix
that compares land-cover changes from time 1 to time 2. The land-cover layers are produced using
the FAO LCCS level 3 and EO ARD available within the DEA. Expert knowledge input is needed
to decide whether a change From To expresses an improvement (green cells), stability (blue cells),
or degradation (orange cells)

consider to correspond to a decrease in degraded areas (i.e., an improvement) as a
consequence of, for instance, sustainable land-management interventions that were
made during the time period T|—T5. Figure 13.10b shows the output of this EO-based
mapping process, summarizing the number of hectares of land that remained stable,
were improved or have been degraded further between T; and T,. This output can
then be overlain and integrated with national information on land productivity status
and trends, as well as soil organic carbon stocks, as suggested by the GIF metadata
and good practice guidance for Indicator 15.3.1 (Sims et al. 2017).

Although itis still at the proof-of-concept stage, these applications show the poten-
tial of Digital Earth to assist countries in meeting several of the SDGs (particularly
6.6, 13, 14, and 15) where land cover and its change dynamics are relevant to report-
ing on the approved indicator (metric), tracking progress towards their attainment
by 2030, helping to set targets according to national circumstances, and importantly,
setting baselines. The baseline year for the SDG indicators is 2015 and for those
related to land, its value (ty) should be derived from time-series data for the period



462 G. Metternicht et al.

2000-2015. The retrospective capacity of data provision by EO provides a unique
comparative advantage to the achievement of this ambition.

13.4.3 Digital Earth in Support of SDG 17: Strengthen
Means of Implementation

DEA is an example of big Earth data contributing to SDG 17 in aspects such as
multi-stakeholder partnership, and production of data and systems for monitoring
and accountability, and is also enhancing capacity-building support to developing
and least-developed countries. The capabilities of the ODC to provide EO ARD and
for scaling out across the world are significant contributions to Goal 17 in terms
of strengthening means of implementation through technology transfer, capacity
building and data, and monitoring and accountability.

The technology that lies beneath DEA, which was pioneered by Geoscience
Australia, The Commonwealth Scientific and Industrial Research Organisation, and
Australia’s National Computational Infrastructure, underpins ODC initiatives being
rolled out in developed (e.g. Switzerland) as well as developing countries (e.g. Viet-
nam) and regions (e.g. Digital Earth Africa: DEAfrica). DEAfrica is an example of
Australia fulfilling Goal 17’s aim of strengthening the means of implementation, as
it builds technical and policy expertise as well as data analysis capability in-country
with technical and operational guidance from DEA. A public—private investment
partnership will provide continuing investment for DEAfrica, and it is envisaged
that analysis, products and tools produced by DEAfrica will be accessible across the
continent to inform decisions about land and water.

13.4.4 The Way Forward: Partnerships to Strengthen DEA
in Support of the SDGs

The Australian Bureau of Statistics and other lead agencies (e.g. Department of
Environment and Energy) that have contributed to the development of the Australian
Reporting Platform (Fig. 13.11) recognize the importance of partnerships and col-
laboration with data providers for collecting datasets relevant to the SDG indicator
framework. Big Earth data is needed to track the progress of Australia’s performance
on the goals and set targets, in addition to reporting to the United Nations High-Level
Political Forum on the SDG Indicators Framework. Multi-source, multi-temporal
data covering the socio-economic and environmental pillars of sustainable develop-
ment can also assist in identifying interlinkages, overlaps and interactions between
the SDGs, a key issue in the development of coherent policies and interventions, as
discussed in Sect. 13.1.
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Fig. 13.11 The Australian Government’s Reporting Platform for the SDGs adopts a participatory,
whole-government approach

As progress is made on identifying datasets and on refining the SDG Indicators,
particularly as they move from Tier III to Tier I or II, additional datasets will be
uploaded to the platform, offering new data for indicator metrics and enabling the
development of time-series of datasets. The government plans that the platform can
assist in streamlining reporting for other nationally and internationally agreed goals
(e.g. Aichi Targets, Sendai Framework, and implementation of the System of Envi-
ronmental Economic Accounts (SEEA) framework). In keeping with the intention of
the SDG indicator framework, the official GIF may be complemented by SDG indi-
cators that are relevant at the regional and national levels (Australian Government
2018).
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13.5 Big Earth Data for the SDG: Prospects

Measuring progress for the SDG targets through the Global Indicator Framework
requires metrics that rely on biophysical, social, and economic data and information.
This chapter has reviewed the current role of Digital Earth (EO as a sub-set of big
Earth data) in the SDGs. It can be seen that progress has been made on identify-
ing EO data and information for the SDG GIF (Sect. 13.3), and that participatory,
cross-institutional approaches developed under a “Digital Earth” umbrella can deliver
operational, standardized information that contributes to baseline and target setting,
and to tracking progress towards the SDGs (4). Opportunities, and associated chal-
lenges, exist in relation to the realization of the full potential of DE for the SDG. This
final section identifies and discusses these in terms of three main aspects: research
and development (R&D) and technology; governance, institutional and normative
aspects; and the science-policy interface.

13.5.1 R&D and Technology

Social sensing and other big data integrated within DE have the potential to meet cur-
rent information and knowledge gaps for SDG indicators focused on socio-economic
information (e.g. zero hunger, good health and well-being, and gender equality). Plag
and Jules-Plag (2019) and Dong et al. (2019) conclude that new geospatial informa-
tion for sustainability (e.g. on the built environment, land use and management),
could be derived from the integration of traditional EO approaches to data gathering
with citizen science, crowd-sourcing, social sensing, big data analytics and the Inter-
net of Things. Hence, further research is needed to better establish how countries
can profit from these new technologies for data gathering and analysis, embedded in
a DE framework, and advance the development of indicators complementary to the
core of the SDG GIF. This can support country-based interpretation and better, more
coherent, narratives of national progress towards the 2030 Agenda for Sustainable
Development (Metternicht et al. 2019).

Information on the use and management of land rather than land cover is needed
for many SDGs (see Sect. 13.3 and Wunder et al. 2018); hence, it is relevant and
pertinent to develop ‘Essential Land Variables’ or ‘Essential Land Use Variables’ to
better support the information needs of the SDG targets and indicators. Digital Earth
data, technology and analytics can underpin primary observations of the changes in
state of land-related variables (Dong et al. 2019), with the potential to be linked to
state-change indicators or to the pressures driving changes in state (see Sect. 13.4 and
Lucas et al. 2019b), thus contributing to tracking progress on SDG implementation.
Recent research (Plag and Jules-Plag 2019; Masé et al. 2019) has put forward ways
of improving the current SDG indicator framework through considering Essential
Variables. The Group on Earth Observation (GEO) and major international networks
such as the Biodiversity Observation Network (GEO-BON) and the Global Ocean
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Observing System (GOOS) have developed essential variables on climate (ECVs),
oceans (EOVs), the water cycle (EWVs), and biodiversity (EBVs). However, stan-
dardized essential variables related to land (ELV) (or land use: ELUVs) are lacking.
Global programs (e.g., Future Earth’s GLP*) and EU-funded initiatives (e.g., the
GEOEssential, ERA-PLANET® and ConnectinGEO projects) have started discus-
sions on the design and development of essential land variables; the research of
Reyes et al. (2017), Mas6 et al. (2019), Lehmann et al. (2019), Nativi et al. (2019),
and Plag and Jules-Plag (2019) provide the conceptual principles and the information
needs that these variables should fulfil in order to address current SDG policy and
the knowledge needs of indicators. A constellation of Essential Variables on land
cover/use, agriculture, biodiversity, water, and climate could better support imple-
mentation of the SDGs and the associated GIF, and also underpin systematic gen-
eration of sustainability-related knowledge from big Earth data. This would benefit
Agenda 2030’s global-change policy, as well as other major international agreements
and conventions (e.g. the Sendai Framework for Disaster Risk Reduction, and the
Paris Agreement on Climate Change).

13.5.2 Normativity, Governance and Institutional
Arrangements

Google Earth Engine and Amazon Cloud-based Web Services are among cutting
edge initiatives providing efficient solutions that lower the barriers to ARD products.
These allow users to concentrate on data analysis and interpretation for better use
of the growing volume of EO data (Giuliani et al. 2017), and expand the ecosys-
tem of ‘next users’ beyond specialized scientific communities. While this is a key
requirement for unlocking the informational power of big EO data and expanding the
number of potential EO data users, it presents normative and governance challenges
concerning big data veracity (Dong et al. 2019). Lowering access barriers for data
analytics by users beyond the scientific community could potentially deliver low-
quality information products. In this regard, the DE community needs to expand and
build upon existing norms, standards and guidelines that have been advanced in the
context of EO data storage and processing (see Sudmanns et al. 2019) to include data
validation and quality assurance for information products. For example, Hernandez
(2017) postulates that Digital Earth will need to consider how to store the proper
metadata so that any user can easily understand how accurate data are, and how the
quality of the data has been evaluated or validated. More to the point, he argues for
adequate e-infrastructure and standards.

4 An “Essential Land Use Variables world café’ session was held at the 4th Open Science Meeting
of the GLP, Bern, Switzerland, April 2019. https://www.conftool.com/osm2019/index.php?page=
browseSessions&cols=3&form_session=112&mode=table.

SERA PLANET: The European network for observing our changing planet.
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Normative challenges also remain regarding how best to determine the quality and
veracity of big data from a statistical perspective (e.g., ethical questions regarding
ownership of data and products). What is legally, ethically and culturally acceptable
for accessing and using big data? What should the governance of digital reposito-
ries, particularly those hosting globalized or multi-national big data sets, look like?
MacFeely (2019) rightly reflects that “open cloud, centralised statistical production
rather than replicating many times in countries is tempting, though it faces chal-
lenges of data and information sovereignty, as it places data owners and the data
themselves beyond the reach of national level systems”.

Institutional adaptation for transformative data and information acquisition is
needed as well. National Statistical Offices (NSOs) are tasked with assembling rele-
vant data for national voluntary reports on the SDGs. The big Earth data community
needs to understand how best to engage with this community to develop metrics
derived from EO data that can be used for reporting. Soulard and Grenier (2018)
summarize the challenges of using EO data for official statistics. Among the most
salient are that datasets created from EO were not designed for use as official statis-
tics. For integration of the EO datasets, and to better exploit the potential of big
Earth data, Soulard and Grenier argue that NSOs need to develop methodologies to
properly interpret existing datasets to provide estimates required by official statistics;
evaluate the pertinence of global datasets that are often designed without regional
considerations; keep up with the ever-increasing number of EO-generated datasets;
adjust the national or regional data where local data of better quality highlight impor-
tant shortcomings in the national or regional dataset; evaluate the complementarity
of using EO data where other data often does not exist; and influence EO producers
to integrate official statistical objectives into the EO processing workflow from the
beginning. It is a two-way communication process.

13.5.3 Science-Policy Interface

Operationalization of big Earth Data proof-of-concepts is relevant to the scientific
support for sustainable development policy strategies that are coordinated and coher-
ent across goals. Reflecting on the status of operationalization of big data for SDGs
from the perspective of NSOs, MacFeely (2019) argues that “Advances, such as, the
Internet of Things and biometrics will all surely present opportunities to compile
new and useful statistics. The implications of this ‘big (data) bang’ for statistics in
general, and the SDGs in particular, is not immediately clear, but one can envisage
a whole host of new ways to measure and understand the human condition and the
progress of development”. The UN Economic Commission for Europe (2016) reflect-
ing on their experiences, noted ‘High initial expectations about the opportunities of
Big Data had to face the complexity of reality. The fact that data are produced in
large amounts does not mean they are immediately and easily available for producing
statistics’. Simply put, the interface between science and policy needs enhancement
for context-based interpretation and communication as discussed below.
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The implementation of ‘transformational’ policies and strategies for achieving
the goals of the 2030 Agenda for Sustainable Development requires tracking the
progress of set targets to ensure that responses to interventions (e.g., land restoration
or sustainable cities) are as expected. In this regard, a major challenge of Digital
Earth is the linking of scientific results concerning knowledge derived from EO to the
policy decision space. On the one hand, multi-stake, whole-government, participatory
processes, as implemented by the Government of Australia in setting its National
Reporting Platform (see 4.1 and 4.4), contribute to bridging the gap between science
and policy. On the other hand, DE frameworks more focused on the ‘knowledge’
element of the Data-Information-Knowledge-Wisdom (DIKW) paradigm are needed.
SDG indicators should provide policy makers with the knowledge necessary for wise
decisions, drawn from information gathered from observed data, whether through
EO, social sensing, or other means. (Nativi et al. 2019). Most DE initiatives currently
focus on ‘Data’ (i.e., ARD) as shown in the review by Sudmanns et al. (2019) of
popular systems and portals for accessing or processing EO. This review makes clear
that many portals facilitate data access—although in the end users struggle to produce
information and ‘frame’ it according to context. This is an essential aspect of the
policy and political decision-making processes related to the implementation of the
SDGs, given that countries are to take into account their own national circumstances
and priorities (UNGA 2015) in defining SDG targets and, hence, one-size-fits-all
interventions do not exist.

13.6 Conclusion

The Sustainable Development Goals are highly ambitious and were adopted to stim-
ulate action over the next 15 years in areas of critical importance for humanity and
the planet (UNGA 2015). Digital Earth has untapped potential to improve the means
of implementing the SDGs at both national and global scales. Through an exten-
sive review of the recent literature and a case study of the operationalization of the
SDG Indicator Framework in Australia, this chapter discussed information needs and
promising operational initiatives underpinned by big Earth data and analytics, and,
as importantly, multi-stakeholder partnerships. Digital Earth Australia is an example
of the potential of Digital Earth to be an agent of ‘partnerships for the goals’, which
can increase the availability of high-quality, timely and reliable data that is relevant in
national contexts (SDG 17.18), and enhance regional and international cooperation
on, and access to, science, technology and innovation (SDG17.6).
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