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Abstract
The demand for nanotechnology in biomedical science is escalating rapidly as 
novel nanomaterials help in rebuilding the life of patients suffering from serious 
health conditions. Nanomaterials are widely used for biomedical applications 
such as drug delivery carriers, diagnostic agents, image-contrasting agents, tissue 
engineering, targeted cancer therapy, and so on. However, due to poor under-
standing of mechanisms at the nanoscale, nature had to deal with the negative 
face of the nanotechnology broadly called as nanotoxicity. Nanotoxicology is 
therefore the study of the toxicity of nanomaterials at the cellular, organism, and 
environmental levels. Variety of nanoparticles (NPs) prepared from sources like 
metals, semiconductors, polymers, and lipids behave differently in cells due to 
the difference in their surface functionality, size and shape anisotropy, charge 
and dispersity in polar or nonpolar solvents, etc. Therefore, since the last decade, 
the scientific community has shown keen interest to understand the NPs toxicity 
at different biological levels of the organization. Cellular toxicity is mainly due 
to the intervention of NPs in cellular processes leading to oxidative stress, altered 
signaling, proliferation, and death pathways. Nanotoxicity in organism level 
causes defects in physiological functioning, behavior, and reproduction. Herein, 
this chapter enlightens various effects of commonly used NPs at cellular level as 
well as in organisms that may have implications linked to serious abnormal con-
ditions such as cancer, diabetes, neurodisorders, cardiovascular, and 
hepatotoxicity.
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Abbreviations

Ag	 Silver
Al2O3	 Aluminum oxide
ALCL	 Anaplastic large cell lymphoma
Au	 Gold
Bi2O3	 Bismuth oxide
Ca	 Calcium
CAT	 Catalase
CdSe	 Cadmium selenide
CeO2	 Cerium oxide
CNP	 Carbon nanoparticles
CNT	 Carbon nanotube
Cu	 Copper
CuO	 Copper oxide
DNA	 Deoxyribonucleic acid
Fe3O4	 Iron oxide
GPx	 Glutathione peroxidise
GSH	 Glutathione
HaCaT	 Human keratinocyte cell line
Hb	 Hemoglobin
HepG2	 Liver hepatocellular carcinoma cells
Hsps	 Heat shock proteins
IL-6	 Interleukin 6
JNK	 c-Jun N-terminal kinase
MCN	 Mesoporous carbon nanoparticles
miRNA	 MicroRNA
MRC-5	 Medical Research Council cell strain-5
mRNA	 Messenger ribonucleic acid
MSN	 Mesoporous silica nanoparticles
MT	 Metallothionein
NPs	 Nanoparticles
p38MAPK	 p38 mitogen-activated protein kinase
pax	 Paired box gene
PCL	 Polycaprolactone
PEG	 Poly ethylene glycol
pH	 Potential of hydrogen
PLA	 Polylactic acid
PLGA	 Polylactic-co-glycolic acid
PNIPAM	 Poly(N-isopropylacrylamide)
QD	 Quantum dot
RNA	 Ribonucleic acid
ROS	 Reactive oxygen species
SOD	 Superoxide dismutase
TiO2	 Titanium dioxide
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TLRs	 Toll-like receptor signaling
TNFα	 Tumor necrosis factor α
WC-Co	 Tungsten carbide cobalt
ZnO	 Zinc oxide
ZrO2	 Zirconium dioxide

21.1	 �Introduction

Today with emerging trends, the transformation of technology overlooks harmful 
effects aggravated by the exposure of nanotoxicants that normal eyes fail to pick in 
a day’s routine. Advances in nanotechnology in the field of health and biomedical 
science have improved the quality of life of patients suffering from various dreadful 
diseases. Molecules in the nanodimension interact with cells and their microenvi-
ronment and induce a therapeutic effect. Currently, there is no concurrence among 
the scientific community regarding what feature is most important in highlighting 
response for each type of nanomaterial even though a range of findings is available. 
Various nanoparticles (NPs) have been successfully used for several biomedical 
applications such as drug delivery carriers (Koo et  al. 2005), tissue engineering 
(Gorain et al. 2017), cancer therapy (Peer et al. 2007), contrasting imaging agents 
(Koo et al. 2005), gene delivery (Xiao et al. 2019), biosensing, and environmental 
applications (Sanvicens et al. 2009). Using the bottom-up approach, bulk materials 
are chemically reduced into smaller nuclei followed by growth results in nanomate-
rials. Due to the high surface to volume ratio, individual NPs can able to interact 
with each biomolecule independently which aids to enhancement in functional attri-
butes essential for biomedical applications. Further, various material properties 
including solubility, scattering, fluorescence, magnetization, reflectance, drug tar-
geting, and thermal properties are significantly affected. Biomedical applications 
entail interaction of nanodrug carriers with target tissues. Therefore, desirable prop-
erties of nanocarriers should oblige a) encapsulation or entrapment of drug mole-
cules in a nanosystem, b) biocompatibility and biodegradability of NPs, c) long 
circulating drug delivery with minimal burst effect, d) site-specific and selective 
tumor targeting, e) stability of NPs in aqueous solvents, f) high surface area for 
enhanced accumulation into the tissue site, and g) controlled drug delivery which 
includes ultrasound, pH, magnetic hyperthermia, and photothermal and enzyme-
triggered drug release (Brigger et al. 2012; Cao and Wang 2011; Chen et al. 2018; 
Cuenca et al. 2006; Koo et al. 2005; Logothetidis 2006; Mohanraj and Chen 2006; 
Patravale et al. 2004; Peer et al. 2007).

The general synthesis of NPs involves two approaches: the top-down approach 
and the bottom-up approach. Generally, the top-down approach is a technique where 
large materials are broken down by external forces into small nanoscale structure in 
a precise pattern, whereas in bottom-up approach, the force of chemical oxidation 
or reduction is in total control with the formation of nanoparticle. Here crystal 
growth takes place, growth species like atoms, ions, and molecules impinging on 
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the surface assemble into crystal structures. Hence this approach is building up of 
materials from the bottom. In general bottom-up approach involves the principle of 
supersaturation and nucleation followed by growth. Supersaturation involves an 
increase in concentration as a function of time. Nucleation does not occur even 
above equilibrium. Nucleation would start when the minimum supersaturated con-
centration is attained that overcomes the critical energy barrier. Uniform monodis-
persed nuclei formed grows subsequently. When the solute concentration decreased 
below supersaturated concentration, no new nuclei would form, and growth pro-
ceeds further (Cao and Wang 2011). Thus, NPs formed in solution are monodis-
persed. However, size, shape, and dispersion in aqueous or organic solvents can be 
controlled by varying the concentration of solvents, temperature, types of surfac-
tants, and pH.  Major challenges in synthesis are huge surface energy, acquiring 
mono-dispersed particle, stabilization, and prevention of agglomeration.

Depending on the specific applications, NPs are fabricated into metallic, semi-
conductor, lipid, protein, and polymeric structures. For example, metallic gold (Au), 
silver (Ag), and copper (Cu) NPs have plasmonic characteristics which upon excita-
tion with laser induce surface plasmon resonance (SPR). Therefore, surface func-
tionalization with monoclonal or polyclonal antibodies can be probed for the 
detection of biomolecules such as cells, proteins, enzymes, growth factors, and so 
on. Further, the bactericidal activity of AgNPs makes them a prominent player in 
developing antimicrobial surfaces. The semiconductor quantum dots (QDs), also 
known as “zero-dimensional” NPs, display inherent fluorescence with high photo-
stability and high quantum yield. The photoluminescent QDs encapsulated in bio-
compatible polymeric NPs have been widely used for bioimaging and fluorescent 
resonance energy transfer (FRET) applications (Beija et al. 2012; Kini et al. 2018, 
2019; Van Vlerken and Amiji 2006). Use of biocompatible polymers like polylactic 
acid (PLA), poly(N-isopropylacrylamide) (PNIPAM), chitosan, alginate, polylactic-
co-glycolic acid (PLGA), polyethylene glycol (PEG), polycaprolactone (PCL), and 
respective copolymers is highly promising and demanding for therapeutic applica-
tions (Uhrich et al. 1999). Nanocarriers fabricated from such polymeric materials 
for drug delivery not only induce the therapeutic efficacy but also enable selective 
targeting and enhance the cellular uptake efficiency. Other nanocarriers including 
liposomes (lipid-based NPs), dendrimers (hyperbranched polymeric macromole-
cules with the central core from where polymeric branches originated for drug 
entrapment), polymeric micelle formed by oil in water or water in oil emulsions, 
and fullerenes (spheroidal carbon nanostructures) are used as drug carriers for drug 
delivery applications. NPs such as QDs (semiconductor-based fluorescent nano-
crystals), iron oxide-based superparamagnetic NPs (IO for magnetic hyperthermia), 
Au NPs (for photothermal therapy), AgNPs (for water disinfectant), and titanium 
oxide (TiO2) and zinc oxide (ZnO) NPs are mainly used for imaging and diagnostic 
purposes (Beija et al. 2012; Van Vlerken and Amiji 2006), and carbon-based NPs 
like graphene and carbon nanotubes (CNTs) are extensively used for drug delivery 
and biosensing applications. Liposome-based doxorubicin (Doxil) (Mousa and 
Bharali 2011) and albumin-based paclitaxel (Abraxane) are clinically approved and 
marketed for cancer treatment (Hawkins et al. 2008; Li and Wallace 2008). Some of 
the PLGA NPs for the delivery of anticancer agents such as leuprolide acetate, 
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buserelin acetate, and triptorelin pamoate were successfully used for prostate cancer 
therapy (Mundargi et al. 2008).

Nanotoxicology deals with the study of the toxicity of nanomaterials at the cel-
lular, organism, and environmental levels. So the serious concern is about the effects 
of NPs exposure because individual NPs are highly reactive due to high surface 
energy which means a significant mass of NPs can pose a serious threat to health 
compared to the equivalent mass of bulk material. Earlier evidence and current 
knowledge on NPs suggest that one of the main reasons for nanotoxicity in cells is 
oxidative stress (Aguilar 2012; Stone and Donaldson 2006). Tiny NPs such as car-
bon black, fullerenes, CNTs, asbestos, etc. causing ambient pollution in the atmo-
sphere generate radicals with unpaired electrons which makes them highly reactive 
species (Elsaesser and Howard 2012; Oberdörster 2010). Therefore, the interaction 
of such free radicals with cells disturbs the balance maintained by antioxidants such 
as vitamins, glutathiones (GSH), and peroxidases. Industrial production of NPs 
derived from metals and semiconductors like silicon, titanium, gold, zinc, silver, 
and their respective oxides has shown a link between oxidative damage and diseases 
like asthma, cancer, cardio- and hepatotoxicity, and immune-related disorders (Baky 
et al. 2013; Chen et al. 2018; Gaiser et al. 2013; Khanna et al. 2015; Lanone and 
Boczkowski 2011).

Toxicological aspects of NPs are chasing technological developments like a 
shadow as by-products of nanosynthesis process, tissue accumulation, unpredict-
able and adverse consequences after exposure, systemic toxicity, enhanced reactiv-
ity due to high surface area, and toxic degradation products cause adverse health 
effects. Therefore, toxicological data of NPs at cellular as well as organ level is a 
prerequisite before taking into the field and also useful for safety and risk assess-
ment. In vitro studies are conducted in the presence of antioxidants present in the 
serum which may neutralize the oxidative effect of NPs leading to false positive 
estimation of biocompatibility. Nevertheless, there are several physical, chemical, 
and biological factors of NPs that influence the toxicity. For example, ultrafine par-
ticles with size <100 nm can penetrate the skin; deposit in the lungs, liver, and kid-
ney; and cause chemical and physical effects in cells (Borm et al. 2006; Buzea et al. 
2007). Chemical effects include solubility, reactive oxygen species (ROS) genera-
tion, lipid peroxidation, catalytic oxidation and reduction of functional proteins, 
ionic imbalance, and change in intracellular pH. Physically NPs can cause disrup-
tion of the membrane, protein aggregation and DNA damage, and barrier formation 
for cellular communications. Though these effects are dependent on the size, shape, 
charge, surface energy, and ligand functionalization, there is no accurate pattern in 
physicochemical parameters which could predict the toxicity of neither NPs nor 
epidemiological data available. For example, different NPs having the same struc-
tural backbone may cause variable toxicity due to different surface functionaliza-
tion. Sometimes lack of awareness about handling prepared NPs may cause direct 
exposure of NPs to human body or environment as most of the bottom-up methods 
do not require well-equipped clean rooms and aseptic conditions. Similarly, by-
products of purified nanomaterials also contain nanomolecules which contaminate 
water and air resources. Apart from physicochemical and cellular factors, 
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assessment of doses; systemic administration including nanodrug delivery to intra-
venous, transdermal, and blood-brain barrier; and pulmonary routes and biodistri-
bution are contributing to systemic toxicity. To counter such problems, internationally 
standardized protocols for handling NPs and safety protocols need to be developed 
and validated. However, monitoring long-term effects of engineered NPs which are 
already commercialized for applications like cosmetics, electronics, food additives, 
clothing, sports materials, etc. becomes challenging. Therefore, it requires strong 
earnestness to understand the basic scientific mechanism of toxicity of various 
anisotropic NPs at cellular levels both in vitro and in vivo before toxicants reach the 
alarming level. Further, accurately determining the toxicity limit of physicochemi-
cal parameters of NPs used for clinical studies could allow researchers to design 
nanomaterials in the future.

Considering the above facts, assessment of various NPs toxicity at cellular as 
well as organism level is indispensable. This knowledge of nanotoxicology would 
help the researchers and clinicians to set safety parameters for the usage of NPs in 
various biomedical applications. Herein, this chapter describes the toxic effects of 
various NPs on cellular processes involving signaling, proliferation, growth, divi-
sion, and death pathways. Similarly, the toxicity of NPs is associated with the physi-
ological functioning of the organisms such as development, reproduction, and 
behavior. Furthermore, it is well documented that cellular and organism toxicity 
leads to various lifestyle diseases. Henceforth, this study focuses on the potential 
dangers of diverse NPs and their associated health risks like cancer and other prob-
lems as described in the following (Fig. 21.1).

Nanotoxicity

Cellular Toxicity Organismal  Toxicity

• Hsps
• Metallothionine
• Oxidative stress
• ROS
• DNA damage
• Cell death

• Developmental toxicity
• Developmental delay, morphological alteration, 

egg mortality 
• Reproductive toxicity

• Reduction in fertility and fecundity, egg 
quality, decrease fertilization, decreased sperm 
viability

• Behaviour toxicity
• Defective locomotion 

• Cancer
• Diabetes 
• Cardiovascular 

disorders
• Liver disorder
• Neurodegeneration

Fig. 21.1  Schematic representation of nanotoxicity
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21.2	 �Cellular Nanotoxicity

Responses at the cellular level are one of the earliest reactions which help the cells 
to defend and recover from stressful events. The interaction of NPs with cells could 
trigger various cytotoxic effects  (Table 21.1). Therefore, illustrating the effect of 
NPs at the cellular level is a critical aspect of human risk assessment and has been 
receiving great interest in the process of implementation of NPs. NPs are different 
in nature due to their composition and conformation; therefore cellular toxicity 
could be assessed at the different level of regulations. Among the multiple cellular 
responses, upregulation of heat shock proteins (Hsps) is considered as an early tox-
icity biomarker (Gupta et al. 2010). Increased Hsps level in the cell prevents protein 
aggregation and other protein modifications (Chatterjee and Burns 2017; Takalo 
et al. 2013). Since the last decade, modulation in Hsps has been considered as an 
early sensor of NPs toxicity. Recently, Masouleh et al. (2017) and Krishnaraj et al. 
(2016) observed an increase in hsp70 mRNA levels in Ag NPs-exposed juvenile 
Caspian kutum and zebrafish, respectively. Similar upregulated levels of Hsp70 
were observed with ZnO and silica NPs exposure in Drosophila, TiO2 NPs in 
Caribbean reef-building coral, Au NPs in Daphnia magna, Cu NPs in Takifugu fas-
ciatus, and IONPs in mice (Dominguez et al. 2015; Jovanovic and Guzman 2014; 

Table 21.1  Nanoparticles toxicity at cellular and organismal levels

Nanoparticles Cellular effect Organismal effect
Ag NPs Hsp70, metallothionein, 

oxidative stress and ROS
Decrease body proportion and 
depigmentation

MSN and 
silica NPs

Hsp70, Hsp22, Hsp27, Hsp60, 
Hsp90, metallothionein, 
oxidative stress and ROS

Sperm abnormalities, malformation, and 
impairment in swimming activity

ZnO NPs Hsp70, metallothionein, ROS, 
DNA, and protein damage

Decreases the developmental stage, 
increases egg mortality, and small size of 
organism

TiO2 NPs Hsp70, apoptosis and TLR 
signaling, ROS, and JNK 
activation

Defective larval crawling and climbing 
behavior

Au NPs Hsp70, Hsp90, apoptosis, 
inflammatory response

Inhibition of ectodermal differentiation, 
abnormal embryonic development and 
abortion, abnormal reproduction, reduced 
swimming activity

Fe3O4NPs Hsp 70, cytokine production, 
oxidative stress

Embryo mortality, delay in hatching and 
malformation

QD NPs Metallothionein, oxidative 
stress, and ROS

Decrease heart and hatching rate, pericardial 
and yolk sac edema

CuO NPs Hsp70, metallothionein, and 
oxidative stress

Developmental delay and structural changes 
such as skeletal rods and shorter arms

Bi2O3 Hsp70, metallothionein, and 
oxidative stress

ZrO2 Glutathione peroxidase and 
oxidative stress

Reduction in the climbing activity
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Pandey et al. 2013; Siddique et al. 2014; Sundarraj et al. 2017; Wang et al. 2018b). 
Such upregulation of Hsp70 has been proposed as an early bioindicator of cellular 
stress. Nevertheless, researchers raised the concern that one class of gene/protein 
cannot work as universal bioindicator as chemicals are different in nature (de 
Pomerai 1996; Gupta et  al. 2010). In  accordance with this concern, significant 
induction in the other class of hsps such as hsp22 in Drosophila larvae after expo-
sure to silica NPs has been observed (Pandey et  al. 2013). Similarly, increased 
Hsp90 expression along with Hsp70 has been recorded after polystyrene nanoplas-
tic and Au NPs exposure in Daphnia pulex and Sparus aurata, respectively (Liu 
et al. 2019; Teles et al. 2018). However, Petrache Voicu et al. (2015) observed down-
regulation in Hsp27, Hsp60, and Hsp90 protein expression in silica NPs-treated 
MRC-5 cell lines. Along with Hsps, metallothionein is also considered as a promi-
nent biomarker of cellular toxicity. Metallothioneins are intracellular cysteine-rich, 
metal-binding proteins found from bacteria to human (Ruttkay-Nedecky et  al. 
2013). Increased metallothionein levels in the cell enhance detoxification, scavenge 
free radicals, and inhibit pro-apoptotic mechanisms (Thirumoorthy et  al. 2007). 
Thus, the expression of metallothionein was examined in the metal NPs. Horie et al. 
(2018) and Miyayama and Matsuoka (2016) showed upregulation of metallothio-
nein 2A (MT2A) in ZnO, copper oxide (CuO), bismuth oxide (Bi2O3), and AgNPs-
exposed A549 cells due to release of metal ions in the cell. Rocha et  al. (2018) 
investigated the effect of QDs on metallothioneins (MTs) isoforms (mt10IIIa and 
mt20IV) expression using mussel Mytilus galloprovincialis. Same group observed 
concentration and time-dependent changes in mt20IV mRNA levels and suggested 
its role in QDs metabolism. Parallel to Hsps and metallothionein induction, antioxi-
dant defense mechanism and generation of ROS of an organism have been also used 
as an indicator of cellular toxicity (Auten and Davis 2009; Fu et al. 2014). ROS are 
unstable molecules containing unpaired oxygen (superoxide anion, hydroxyl radi-
cals, peroxynitrite) atom. This unstable form of oxygen is collectively called free 
radicals. Excess formation of ROS due to the stressor toxicants may cause protein, 
lipid, and DNA damage in the cell that may lead to many disease conditions 
(Schieber and Chandel 2014; Sharma et al. 2012). As a protective mechanism, cells 
have universal conserved enzymatic (e.g., superoxide dismutase (SOD), catalase 
(cat), glutathione reductase, glutathione peroxidase (GPx)) and nonenzymatic (e.g., 
glutathione, vitamins C and D) antioxidant defense mechanism that helps in ROS 
detoxification. In this line, an ample number of reports highlight oxidative stress 
due to NPs exposure. Zhang et  al. (2018b) studied the effect of AgNPs on soil 
nitrogen-fixing Azotobacter vinelandii bacteria. AgNPs exposure caused oxidative 
cellular damage to bacteria due to excess ROS and hydroxyl radical generation. 
Rossner Jr. et al. (2018) studied the effect of inhalation of acute and sub-chronic 
ZnO NPs by mice using next-generation sequencing and found modulation of splice 
junction genes associated with oxidative stress, immunity, and DNA repair. 
Similarly, increased ROS level was observed in ZnO NPs-exposed human umbilical 
vein endothelial cell line (Qiao et al. 2018b). Mesoporous silica NPs (MSNs) are 
extensively used as a drug delivery carrier. Hozayen et al. (2019) found that MSNs 
exposure to rats for 30 days causes cardiac and pulmonary toxicity due to increase 
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in ROS generation and malondialdehyde and decline in antioxidant defense mecha-
nism in the heart and lung of rats. Likewise, several other NPs have been shown 
oxidative stress (changes in antioxidant enzyme activities) and ROS generation in 
various in vivo and in vitro model systems (Abdelhalim et al. 2018; Gallo et al. 
2018; Kong et al. 2019; Soltani et al. 2018; Yue et al. 2018). The immune system 
provides the first-line defense against infection. In addition immune toxicity is the 
sensitive area under chemical toxicants exposure (Vos et al. 1989). Dhupal et al. 
(2018) exposed RAW 264.7 cells (macrophage) to TiO2 NPs and observed concur-
rent induction of macrophage-mediated apoptosis and Toll-like receptor (TLR) sig-
naling through ROS-mediated JNK and p38MAPK pathways. Similarly, apoptosis 
and inhibition of TNF-α and IL-6 were found in T lymphocytes after exposure to 
mesoporous carbon NPs (MCN) (Li et al. 2018). Another study by Shah et al. (2018) 
showed human T lymphocytes exposed to IONPs decreased the cytokine production 
and proliferation of mitogen-activated T cells due to a redox imbalance. The effect 
of ZnO NPs was assessed by Abass et al. (2017) on albino mice spleen and thymus. 
The group observed an increase in total leucocytic count and decrease in RBCs, 
platelet counts, and Hb % due to the oxidative or inflammatory pathway. Recently, 
Manzo et al. (2017) exposed sea urchin with nanosized ZnO via food and observed 
DNA damage (through comet assay) in their coelomocytes (immune effector cells). 
Alaraby et  al. (2015) examined the effect of cadmium selenide (CdSe) QDson 
Drosophila hemocytes. They found CdSeQDs cross the intestinal barrier and cause 
oxidative stress and DNA damage in hemocytes. Asadpour et  al. (2014) found 
reduction in cell viability and glutathione peroxidase activity in ZrO2-exposed N2a 
and PC12 cells. Similar to immunotoxicity, NPs also interfere with hematopoiesis 
that leads to several blood disorders. Due to high metabolic activity, the hematopoi-
etic system is highly prone to biological and physical stress. In this line, several 
reports underline the negative impact of NPs on hematopoiesis process such as inhi-
bition of erythrogenesis process in zebrafish after exposure to AgNPs (Cui et al. 
2016). Liu et al. (2014) demonstrated the shrinkage and apoptosis of hematopoietic 
organs via an increase in ROS due to cadmium QDs exposure to Bombyx mori. 
However, melanin NPs exposure restores hematopoietic homeostasis in γ-radiation-
treated mice (Rageh et al. 2015). Toxicomics study gives a broad idea to understand 
the toxicity in totality and to unravel the associated molecular mechanism. Analysis 
of global gene, protein, and metabolic changes associated with NPs helped environ-
mental researchers to predict adverse responses to NPs. In this context, transcrip-
tomic data identified differentially expressed genes associated with oxidative stress, 
detoxification, endocytosis, intestinal integrity, and iron homeostasis in IONPs-
exposed Caenorhabditis elegans (Gonzalez-Moragas et al. 2017). In another toxi-
cogenomic study, AgNPs  exposed HepG2 cells revealed misregulation of genes 
related to metabolism, stress response, cell differentiation, cell death, and develop-
ment (Sahu et al. 2015). Kumar Babele (2019) did the total protein and metabolite 
profiling in ZnO NPs-exposed budding yeast and found changes in 40% of total 
proteins and metabolites involved in energy metabolism, oxidative stress, DNA and 
protein damage, and membrane integrity. Mirzajani et  al. (2014) studied AgNPs 
toxicity in Oryza sativa L. through proteomic approach. The results revealed that 
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AgNPs exposure to O. sativa L. root affects oxidative stress tolerance, Ca2+ regula-
tion and signaling, cell division, apoptosis, and nucleic acid damage. Yang et al. 
(2010) identified 16 differentially expressed proteins in silicon dioxide NPs-exposed 
HaCaT cells that were linked to oxidative stress, cytoskeleton, energy metabolism, 
apoptosis, and tumor-associated proteins. In the past decade, miRNA has been 
established as a promising biomarker for toxicological studies. In this line, Qiao 
et al. (2018a) identified miRNAs associated with inflammation and vesicle-mediated 
transport, oxidative stress, apoptosis, and autophagy in ZnO  NPs-exposed rats. 
Similarly, 202 microRNAs were differentially expressed in Au NPs-exposed human 
dermal fibroblast cells. These microRNAs are involved in 71 different biological 
pathways such as metabolic process, cell-cell communication, cell cycle, apoptosis, 
and inflammatory response (Huang et al. 2015). In conclusion, risk assessment of 
NPs has been found to be crucial as they can affect the cellular homeostasis in dif-
ferent ways.

21.2.1	 �The Organismal Nanotoxicity

Toxicity of acute exposure at the cellular level is usually associated with cells/tissue 
and used to establish the safety levels of toxicants (Gormley and Teather 2003). 
Moreover, accumulation of damage at cellular and tissue levels may pose a negative 
impact at the organismal level. However, sometimes due to physiological complex-
ity, changes at cellular do not reflect at organismal levels. Thus, evaluating long-
term/chronic effects on the basis of these acute tests may be multifaceted. Therefore, 
systemic studies of NPs at organismal levels are essential to deciphering the long-
term impact on the organisms fitness such as reproduction, development, and behav-
ior  (Table 21.1). Abnormal development due to chemical exposure such as 
malformation, growth retardation, low birth weight, and behavior deficit are the 
important defects in biomedical research which needs to be explored. In this line, 
Maisano et al. (2015) investigated the effect of CuO NPs on the development of sea 
urchin embryo. They observed that CuO NPs exposure causes developmental delay, 
morphological alteration such as absent of skeletal rods, and shorter arms in the 
exposed organism. Embryonic exposure of CuO NPs to zebrafish showed shorter 
body axis, smaller eyes, underdeveloped liver, and a delayed retinal neurodifferen-
tiation along with reduced locomotory ability. A similar study in zebrafish decreased 
the expression of pax2 and pax6 genes which are involved in neural differentiation 
and decreased sizes of neural structures. Studies involving cerium oxide (CeO2) 
NPs exposure in zebrafish larvae showed growth inhibition, decreased body weight, 
and delayed vertebral calcification (Lin et  al. 2014). The effect of ZnO  NPs on 
development was investigated in amphibians by Spence et  al. (2016). The result 
showed that ZnO NPs decrease the developmental stages, increase egg mortality, 
and reduce the body size of an organism. In another case, Hao et al. (2017) studied 
the effect on offspring of ZnO-exposed hens and found that ZnO NPs cause liver 
dysfunction due to inadequate lipid synthesis (15 genes were found downregulated 
after ZnO exposure). Developmental exposure of Ag NPs to Drosophila larvae 
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resulted in delayed and reduced developmental success and decreased body propor-
tion (Panacek et al. 2011; Posgai et al. 2011). Phenotypic defects such as depigmen-
tation and soft cuticle was also found when AgNPs were exposed in Drosophila 
(Gorth et al. 2011; Posgai et al. 2011). Administration of Au NPs to pregnant mice 
for over 3 days resulted in inhibition of ectodermal differentiation, uncharacteristic 
embryonic development, and abortion (Yang et  al. 2018). Likewise, Hong et  al. 
(2016) observed that TiO2 exposure to mice during pregnancy/lactation time poses 
negative effect on the development of the central nervous system (diminishing of 
cerebral and cerebellar cortex, reduction in neurons, edema, nuclear condensation, 
and decrease in learning and memory capacity) in mice offsprings. Another report 
by P et al. (2018) showed ZrO2NPs induced embryonic mortality, delay in hatching, 
axis and tail bent, and other malformation in zebrafish. In summary, these results 
show that exposure to NPs cause severe developmental problems, which might be 
responsible for various health adversities such as reproduction, neurological, and 
behavior abnormalities. In the last decade, several publications have shown the 
reproductive adversities of NPs. These include the effect on fertility and fecundity, 
fertilization, and egg quality, disrupting the balance of sex hormones and many 
more. Preaubert et al. (2016) investigated the effect of low CeO2NPs concentration 
on in vitro fertilization in mice and found decrease in fertilization along with oxida-
tive stress and DNA damage to spermatozoa and oocytes. However, supplementa-
tion of CeNPs at low concentration enhanced in  vitro embryo production of 
prepubertal ovine oocytes (Ariu et al. 2017). A study involving female mice exposed 
to Cu NPs showed adverse changes in the reproductive biology of the organism 
(Zhang et al. 2018a). Researchers exposed human extravillous trophoblast cells and 
mice to Cu NPs and found an imbalance in sex hormones and also induced apopto-
sis and cell cycle arrest at cellular levels. In another study CuO NPs exposure to sea 
urchin showed sperm toxicity. This effect could be linked to decreased sperm viabil-
ity, defective mitochondrial activity and increased ROS levels, lipid peroxidation, 
and DNA damage (Gallo et al. 2018). In Paracentrotus lividus, ZnO NPs exposure 
causes morphological alteration in the offspring, which may be due to sperm DNA 
damage. Wang et al. (2018a) observed lesser reproduction phenotype in Ag NPs-
exposed Daphnia similis. This could be associated with downregulation of fatty 
acid contents after Ag NPs exposure to the organism. Hong et al. (2015) demon-
strated that TiO2 NPs cross the blood-testis barrier, accumulate in the testis, and 
negatively affect spermatogenesis process in mice. The authors found downregula-
tion in the expression of several testis-specific genes (Cdc2, Cyclin B1, Dmcl, TERT, 
Tesmin, TESP-1, XPD, and XRCCI), which may be responsible for the reduced sper-
matogenesis process in TiO2-exposed mice. In addition to that, TiO2 NPs exposure 
(5–30μg/mL) in Sertoli cells showed cell inhibition, lactate dehydrogenase release, 
and induction of apoptosis (Hong et al. 2016). Kim et al. (2013) evaluated a multi-
generational transfer effect of Au NPs using C. elegans and observed no significa-
tion effect on the survival rate of the organism. However, their reproduction rate was 
significantly decreased and caused abnormalities in the bag of worms. Evaluation of 
an organismal behavior is an important rule to determine physiological homeostasis 
which is crucial for proper body functioning. Among various behavior, locomotion 
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is a vital behavior of an organism which affects various physiological processes 
such as reproduction, food intake, and predation. When the two Daphnia species 
Daphnia similis and Daphnia pulex were exposed to CeO2 NPs, they exhibited a 
decreased swimming velocity by 30% and 40%, respectively (Artells et al. 2013). 
The author also found some morphological changes like presence of reliefs on the 
cuticle and longer distal spine in D. similis, which may be the cause of CeO2 aggre-
gation. Michalec et al. (2017) observed a decreased swimming activity and lower 
velocity in Au NPs-exposed calanoid copepod. Sabat et al. (2016) demonstrated that 
TiO2 exposure to Drosophila larvae resulted in defective larval crawling and climb-
ing behavior due to impaired brain physiology. Similar reduced (25%) climbing 
activity was recoded in zirconium dioxide (ZrO2) NPs-exposed Drosophila (Mishra 
et al. 2017). Administration of silica NPs to mice showed negative effect on male 
reproductive biology such as damaged seminiferous epithelium, decreased sperm 
quality, and sperm abnormality (Zhang et  al. 2016). Another study on zebrafish 
demonstrated that silica and Fe3O4 NPs exposure causes tail and head malformation 
and delayed hatching along with impaired swimming behavior (Duan et al. 2013; 
Zhu et al. 2012). The effect of carbon QD was investigated by Xiao et al. (2016). 
They exposed rare minnow embryos/larvae to carbon QD and found decreased 
movement in minnow embryo, increased heart rate, decreased hatching rate, peri-
cardial and yolk sac edema, and malformation. The group suggested that these phe-
notypes might be mediated by increased oxidative stress and misregulation in 
development-associated genes.

21.3	 �Nanoparticles Affecting the Health

Recently emerging studies specifically concerning the behavior and toxicity of NPs 
that mediates health complications are gravitating. Moreover, not all toxicological 
studies to date deal with NPs. Hence, the pessimistic side of NPs is overlooked due 
to its huge impact on improving the technology. Health challenges are many; how-
ever, difficulties with inhalation, carcinogenicity, cardiovascular, neurodegenera-
tive, and hepatotoxicity are the main problems associated with toxic NPs. Further, 
the specificity of nanotoxicants that eventually effect health is described.

21.3.1	 �Nanoparticles Linked to Cancer Development

According to a report submitted by the American Association for Cancer Research, 
it is prudent to limit the introduction of NPs into the environment until we under-
stand which NPs are potentially harmful. For instance, Au NPs at an optimum nano-
size range is pertained to photochemically damage tumor cells (Khanna et al. 2015). 
However, the rogue size of Au NPs can cause adverse effects at the cellular level for 
normal cells by interacting with cellular components and damaging the DNA 
(Alkilany and Murphy 2010). Additionally, exposure and inhalation of tungsten car-
bide cobalt (WC-Co) dust composed of NPs in metal manufacturing, drilling, and 
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mining facilities can cause an increased risk of lung cancer (Armstead and Li 2016). 
Further, polyurethrane NPs-based breast implants are associated with causing ana-
plastic large cell lymphoma (ALCL), a rare form of cancer (Keith et  al. 2017). 
Epidemiological research concerning leukemia-specific cancer and bladder cancer 
reports that low-cost commercial hair dyes slog by the formation of nanocrystals 
from lead sulfide (Towle et al. 2017; Turati et al. 2014). With emerging concerns 
over NPs safety, the application of inorganic ceramic NPs such as silica, titanium, 
and alumina is not being used in cancer therapy due to their non-biodegradable 
nature. Hence, the inability to molecularly decompose ceramic NPs in the environ-
ment limits its extent of application.

21.3.2	 �Nanoparticles Linked to Diabetes

Recently, CeO2NPs have been implicated in diabetes-induced testicular sperm dam-
age by attenuating hyperglycemia oxidative damage in different organs (Artimani 
et al. 2018). In contrast to the results of the study, it is reported that the administra-
tion of different doses of CeO2NPs in healthy individuals causes oxidative damage 
in testes resulting in diminutive sperm quality, disruption of the endocrine system, 
and inflammation (Adebayo et al. 2018). In another approach, insulin-loaded aqua-
somes are fabricated with self-assembled nanocrystalline carbohydrate-coated cal-
cium phosphate dihydrate ceramic core to optimize blood glucose in the targeted 
site using parenteral delivery system (Cherian et al. 2000; Umashankar et al. 2010). 
However, intrinsic biophysical constraints of the three layered conformations of 
aquasome can lead to an adverse or allergic reaction with suboptimal pharmacologi-
cal activity (Collen et al. 2010).

21.3.3	 �Nanoparticles Linked to Cardiovascular Diseases

A leading cardiovascular disease, atherosclerosis is causing an increase in the mor-
tality rate worldwide. This is also promoted by certain calcifying NPs (calcium 
phosphate). These mineral chaperones augment calcification of arterial vascular 
smooth muscle cells in  vitro as suggested by many studies (Barba et  al. 2012; 
Hunter et al. 2014). Another in vitro study has also revealed that engineered carbon 
NPs (CNPs) and single-walled nanotubes induce the aggregation of platelets, thus 
enhancing vascular thrombosis in rat carotenoid artery (Radomski et  al. 2005). 
Recently Zhou et al. (2018) found the accumulation of CNPs in zebrafish after a 
long exposure. The study exhibited that the accumulation of CNP is responsible for 
structural changes in myocardial tissue and expression of inflammatory cytokines. 
Another study by El-Hussainy et al. (2016) showed that Al2O3 NPs exposure to rat 
for 14 days (30 mg/kg) altered ECG, disturbed serum markers, and enhanced 
inflammation and oxidative stress in myocardium. Altogether all these changes lead 
to myocardial dysfunction in the organism. Further, ceramic NPs used commonly 
for drug delivery exhibit carcinogenic effect as well as oxidative stress or cytotoxic 
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activity in the heart, lungs, liver, and brain (Grundmann et al. 1989; Singh et al. 
2016).

21.3.4	 �Nanoparticles Linked to Liver Diseases

The effect of ZnO  NPs has been studied on a specific population of mice with 
inflammatory bowel disease induced by indomethacin. Histopathological examina-
tion shows high hepatic zinc detection postexposure that causes punitive lesions in 
the liver (Du et al. 2018). Jia et al. (2017b) investigated the effect of TiO2 NPs on 
mice liver tissue and found adverse effects such as bulgy hepatocytes along with 
nuclear condensation and apoptosis. This could be associated with increased ROS 
levels and decreased expression of cytoprotective genes. Yu et al. (2017) demon-
strated that SiO2 NPs exposure in mice causes liver fibrosis. Further they explained 
SiO2 NPs cause oxidative stress and activate TGF-β1/Smad3 signaling, which pro-
motes liver fibrosis. Oral exposure of nontoxic doses of Ag NPs to normal and obese 
mice was studied by Jia et al. (2017a). The group found that AgNPs deposits only in 
the liver of obese mice which induce liver inflammation and suppresses fatty acid 
oxidation lead to steatohepatitis. Moreover, an evaluation of the toxic potential of 
AgNPs shows significant endoplasmic stress response in the liver, kidney, and lungs 
that can be avoided by rational use within safe dose (Huo et al. 2015).

21.3.5	 �Nanoparticles Linked to Neurodegeneration

The most common neurotoxic element on earth is aluminum with a plausible link to 
Alzheimer’s disease (Tomljenovic 2011). Incremental acquisition of aluminum NPs 
(Al2O3) over a lifetime favors selective accumulation in sufficient amounts to cause 
brain damage (Krewski et al. 2007). In another study, a single-dose of oral ingestion 
of TiO2, ZnO, and Al2O3NPs shows translocation of NPs to the central nervous sys-
tem. The accumulation of NPs leads to axillary toxicity, subsequently damaging the 
normal metabolism of the brain (Shrivastava et al. 2014). Pathological effects such 
as destruction of blood-brain barrier, cellular edema, and brain tissue necrosis are 
observed in the presence of differently sized TiO2 NPs in rat astrocytes (Liu et al. 
2013). Moreover, the learning abilities of rats are affected due to dopaminergic 
neuronal dysfunction in the presence of manganese dioxide (MnO2) NPs (Li et al. 
2014). A study reveals that susceptibility of pregnant mice to neuroendocrine 
changes intensifies twofold in the presence of NPs compared to a nonpregnant 
female. Here, QDs are transferred across the placental barrier with increasing dose, 
suggesting the transplacental transfer potential of NPs (Chu et al. 2010; Wick et al. 
2010). Further, neuropsychiatric complication was observed among patients due to 
flaking off of the metal shavings of the faulty hip implant followed by the release of 
chromium and cobalt toxicants into blood streams indicating possible dementia 
(Green et al. 2017).
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21.4	 �Conclusions

The use and production of NPs have been grown worldwide from the last decade, 
and their exposure to human beings and other organisms has created an alarming 
situation. Moreover, there are no accepted occupational and environmental levels of 
NPs causing toxicity. Therefore, the rapid risk assessment of NPs is very much 
essential in the present scenario. In this context, researchers have explored various 
biomarkers or readouts for early and rapid risk assessment of NPs exposure. These 
include induction of Hsps, metallothionein, ROS generation, DNA damage, and 
different developmental, behavioral, and reproductive parameters (Table  21.1). 
Moreover, all these changes at the cellular and organismal levels might be respon-
sible for various health emergencies. However, the mechanistic insight of NPs-
induced health adversities is still open for an investigation. We hope that the ongoing 
studies across the world might be helpful to decipher the molecular mechanisms 
associated with NPs-induced toxicity. Apart from this, the promotion and execution 
of nanosafety programs at social, academic, and economic levels might be helpful 
to render the NPs-associated health risks.
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