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Abstract The main focus of this report is to explore methods to laser scan objects
by mapping the locations of the scanned pixels into real-world coordinates through
an algorithmwith the use of a projected laser plane. This report presents two different
approaches: A simplified method to laser-assisted 3D scanning using Geometrical
Relations and a proposed Linear Regression Models method that was based on the
simplified one and compares the differences between the two. The general form of the
regression models was chosen after observation of the main mathematical constructs
used in the stackmodel and planemodel of the line-based laser triangulation method.
These geometrical concepts, utilizing mainly the equations and intersections of lines
and planes were inspiration for the regression model. The process follows that a laser
plane is generated using a laser diode and cylindrical lens and cast onto an object.
After taking images of the object at different angles, image analysis is carried out
using Python 2 and OpenCV2. Then, the Linear Regression Models are trained with
pre-existing data before making predictions while the Geometric Relations method
uses the measurements of the mechanism in the equipment to map the red pixel
location detected in the images to the point cloud of the object.

Keywords 3D scanning · Linear regression models · Generating a point cloud

1 Introduction

Both physical, as well as digital 3D models are useful for a wide variety of appli-
cations such as industrial design, prototyping, and even in the production of movies
and video games. [1] Our purpose is to develop a precise simple set of procedures
with algorithms that when coupled with a cheap set-up can allow us to seamlessly
scan objects, find the coordinates of red laser points in an image, and generate a 3D
digital model of the object, which is the point cloud. For the sake of comparison,
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an overall projected cost of a possible setup we can build is about USD$85 (Rasp-
berry Pi 3modelB—USD$45, Picamera—USD$30, steppermotor—USD$5, acrylic
cutouts—USD$5) [2] which is less than those found in themarket currently at around
USD$200–$700 for simple ones and USD$10000–$20000 for much advanced 3D
scanners [3]. That being said, our algorithm can be coupled with any image captur-
ing device, a projected laser plane and Python 2 to work. This will open up future
avenues for anyone with a smart phone to be able to carry out 3D scanning with a
simple algorithm. Currently, some methods that have been adopted include the stack
model and plane model of using the line-based laser light triangulation method [4],
which gave rise to our method that makes use of the plane equations and intersection
of lines and planes. Our report will only focus on different ways of making use of a
projected laser plane in image analysis for 3D scanning and how to map the features
extracted from the analysis to actual 3D points in space.

2 Engineering Goal

To design a set of algorithms and procedures thatwill work in tandemwith a projected
laser plane and a cheap setup that will make 3D scanning less costly. This will make
it easier to generate accurate point clouds and 3D models of objects.

3 Methodology and Materials

A brief description of the Geometric Relations (GR) method will be covered first
and will be followed by reason for the Linear Regression Models (LRMs) method
of choice. The essence of the GR method is to figure out how to map pixel locations
in pictures to actual positions of points in 3D space and reconstruct a surface.

3.1 Image Analysis

Let there be a bright red point P(Px, Py) on the image. We split the image into
channels, use a sliding w by DimensionX window (as seen from the dotted line) and
run the cv2.minmaxLoc function on the window, which would detect the brightest
point P(Px, Py) in the window.

Following that, we took 2 features of the image: The distance, Xp of the red pixel
from the center of DimensionX and Yp which is that from the center of DimensionY.

X p = Px − DimensionX

2
(1.1)
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Yp = DimensionY

2
− Py (1.2)

w

DimensionX

DimensionY

Equation (1.2) is opposite as the origin in an image and the origin that the function
will give its output is at the top-left hand corner.

3.2 Geometric Relations (GR) Method

Light reflects from an object and passes through the lens of the camera we use and
hits the CCD Array, with length L = 3.68 mm. For every unique ray of light that is
reflected from the object shines on a unique point on the CCD Array, a discrete pixel
is formed on the image. Therefore, it is possible to introduce a dependent variable, l,
that is the unknown distance in mm from the center of the CCD Array. We can then
say that l is dependent on the distance in pixels of the red pixel from the center of
the image, Xp which can be calculated using (1.1) because of the discrete nature of
the pixel and light. This relationship is given by the following:

l

L
= X p

DimensionX
(2)

where L is the known length of the CCD Array, DimensionX is the known total
number of pixels along the x-axis of the image and Xp is the calculated distance in
pixels using (1.1) between the middle of the image and the pixel in pixels. By using
the concept of similar triangles (Appendix), l, Xp, fL and z can be found to have the
following relationship:

z

f L
= Xm

l
(3)

where Xm is Xp converted from pixels into mm and is also our final aim. By making l
the subject in (3) and substituting into (2), we can write out Xm and Ym- (in a similar
fashion) in terms of z:

Xm = L

DimensionX · f L
· X p · z (4.1)
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Ym = H

DimensionY · f L
· Yp · z (4.2)

where H is the known width of the CCD Array, DimensionY is the known total
number of pixels along the y-axis of the image and Yp is the calculated distance in
pixels using (1.2) between the middle of the image and the pixel in pixels. The red
laser light can be expressed as a plane with the following general equation:

ax + by + cz = d (5)

where x, y and z are variable pointswhich lie on theplane anda,b, c andd are constants
that have already been determined using a real-life coordinate system. Value of z can
be obtained by substituting in (4.1) and (4.2) into (5) to get the following equation:

a

(
L · X p

DimensionX · f L
· z

)
+ b

(
H · Yp

DimensionY · f L
· z

)
+ z = d (6)

Rearranging (6), z can be expressed as the following:

z = d

λ
(7)

where

λ = a

(
L · X p

DimensionX · f L

)
+ b

(
H · Yp

DimensionY · f L

)
+ 1 (8)

and (8) and (a, b, c, d) are the Plane’s constants. Thus, the coordinates of the red
pixel can be obtained for plotting inside a 3D coordinate system by using (4.1), (4.2)
and (7) after taking the required measurements of our equipment.

Notably, there are 2 things that this original method fails at. Firstly, if the camera
does not use a CCD Array, or uses a non-uniform, non-linear type of image sensor
[5], the similar triangles property that we use for our calculations falls apart and we
are unable to take the sensor length as a measurement. Secondly, the wide variety of
measurements we have to take while absorbing the effect of manufacturing defects
will result in inaccuracy. By looking at the expression (4) alone, there are a lot of
unknowns we have to measure about the setup (a, b, d, L, H, fL), and it may not even
be possible for us to manually measure the internal hardware of the camera at times.

3.3 Linear Regression Models (LRMs) Method

In order to combat the limitations of the GRmethod, we proposed our Linear Regres-
sion Models(LRMs) method. Our LRMs method takes advantage of the fact that no
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matter what type of image sensor is used, the red pixel location within the image is
the same due to the mechanics of a camera [6]. Regardless of image sensor type, we
can train the parameters in our LRMs to fit the images taken by the camera as long
as we have pre-existing data. An intuitive way to think of our LRMs method is that
we are finding the specifications of an arbitrary CCD Array in a camera that could
have took the exact same images in some arbitrary position. Rather than taking the
manual hardware measurements, we train these measurements by telling our models
what to output given a certain input.

3.4 Initialising Linear Regression Models (LRMs)

Our LRMs method consists of the input matrix, the input that will be gathered using
our code from a single image, in the following form:

I =
⎛
⎜⎝
x11 x12 1
...

...
...

xn1 xn2 1

⎞
⎟⎠ (9)

where xi1 denotes the Xp (see (1.1)) of the i-th red pixel detected and xi2 denotes the
Yp of the i-th red pixel detected. Upon observation of the type of expressions that the
x, y and z coordinates hold, namely (4.1), (4.2) and (7), we see that the expression
for z, (7) can be manipulated to give the following form:

1

z
= a

d

(
L

DimensionX · f L

)
· X p + b

d

(
H

DimensionY · f L

)
· Yp + 1

d
(10)

where (a, b, c, d) are the Plane’s constants, L and H are the length and the height
of the CCD Array, fL is the focal length of the camera and Xp and Yp are shown in
(1.1) and (1.2). Observation of (10) can tell us that 1

z can be modelled as an output
of the following linear regression model:

Z = 1

hα(I )
(11.1)

hα(I ) = IαT (11.2)

where α = (
α1 α2 α0

)
is the parameters vector to be trained and Z ∈ �n is the

output vector of dimensions, (z1 . . . zn) and all z coordinates that correspond to the
red pixels in Imagewith input I in (9).We can note that (11.1) looks very similar to (7)

and (11.2) very similar to (10) with a certain group of constants, a
d

(
L

DimensionX · f L
)

and b
d

(
H

DimensionY · f L
)
are weights to X p and Yp and 1

d as an intercept term. Two
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Fig. 1 Example of an image
with a red pixel

other similar models are constructed based on observations of (4.1) and (4.2) and are
modelled based on the following (Fig. 1):

X = hβ(x1, Z) = (
Zx1

)
βT (12.1)

Y = hγ (x2, Z) = (
Zx2

)
γ T (12.2)

where β = (β1, β0) and γ = (γ1, γ0) are parameters to be trained and Zxk =⎛
⎜⎝

x1k z1 1
...

...

xnk zn 1

⎞
⎟⎠ for k = 1 and 2. For both cases however, an intercept term is added.

Figure 2. is a simple flowchart showing our algorithm once we have trained our
parameters.

Fig. 2 Flowchart of
algorithm Image Get input matrix 
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3.5 Training Linear Regression Models (LRMs)

In prediction using regression, it is important that our training data and input follow
the same distribution [7]. In this case, our images have to follow the same “distri-
bution”. We define this “distribution” by the position of our laser plane with respect
to our camera and the resolution of the image. As long as the “distribution” of our
input and training data are consistent, the model is valid.

Upon setting our regression models, the parameters then have to be trained using
real data. Our training data, D = {

I, τ = (
τx , τy, τz

)}
where the input matrix I for

the images on the left and is the collection of (x, y, z) ground-truths. For training of
parameter α in (11.2), two images (Fig. 3) were taken where a piece of graph paper
was fixed a distance away, z= 60 and z= 30 on a flat surface and stood perpendicular
to the ground with origin on the graph paper labelled at the same (x, y) position as the
camera. Next, we design a cost function to determine how well fits the truth value of
30 and 60. For this, we adopt the mean-square error (MSE) [8] as our cost function:

Jz(α) = (
IαT − τz

)(
IαT − τz

)T
(13.1)

where τz = (
1
30 , . . . ,

1
30 ,

1
60 , . . . ,

1
60

)
, τz ∈ �2n is the truth vector, and there are n

1
30 ’s and n 1

60 ’s. We can use the normal equation method to train the parameters. In
our case, it is the following:

α = (
I T I

)−1
I T τz (13.2)

For training of γ in (12.2), the truth-vector τy was gathered by finding the dif-
ference y-coordinates of the pixels both at the bottom, B and the top of the graph
paper, A (Fig. 4) and divide it by the actual length of the paper. This gives us the
change in length for every pixel, δ = L

L ′ . Next, we identified the of the y-coordinate
of A laser at bottom of the graph paper, as well as the real-world y-coordinate of

Fig. 3 At z = 60 (Left); z =
30 (Right)
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Fig. 4 Example of graph
paper

L

AC

D B

that position to be our starting, s0. Then, our truth vector, τy , was generated in the
following form: ti = s0 + iδ f or i = 0, . . . , n. Afterwards, we use the same normal
equation method similar to (12.2) minimise a new cost function:

Jy(γ ) = (
hγ (x2, Z) − τz

)(
hγ (x2, Z) − τz

)T
(14.1)

γ = (
ZT
x2 Zx2

)−1
ZT
x2τy (14.2)

where (14.1) is the MSE of our regression model, hγ (x2, Z) against the truth-vector,
y. For training of β in (12.1), two separate lines, (Fig. 4) AB and CD were taken
at different distances. AB being the line captured at z = 60 and CD being the line
captured at z = 30. Then, the difference in x-coordinates between point A and B
as well as C and D were computed. Then, we repeat the procedure similar to the
training of where we find the change of length for every pixel, δx and generate our
training data in a similar fashion as γ . Then, the same normal equation method is
used to minimise a similar cost function:

Jx (β) = (
hβ(x1, Z) − τx

)(
hβ(x1, Z) − τx

)T
(15.1)

β = (
ZT
x1 Zx1

)−1
ZT
x1τx (15.2)

3.6 Translation and Rotation of Points

After the eventual cloud of (x, y, z) coordinates are generated for a particular image,
the object was rotated on a makeshift turntable by degree (radians). A total of 2π

θ

images are taken this way. The points obtained will also have to be translated and
rotated to fit the rotation of the turntable. This procedure consists of the following:
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Fig. 5 Test result of X, Y and Z

p f inalr =

⎛
⎜⎜⎝

cos(ϕ) 0 sin(ϕ) dx
0 1 0 dy

−sin(ϕ) 0 cos(ϕ) dz
0 0 0 1

⎞
⎟⎟⎠pTr , ϕ = θr (16)

where pr = (
x y z 1

)
and (x, y, z) is a coordinate output from the r th Image taken.

4 Results and Discussion

We tested the accuracy of our LRMs against the GR method by taking a test input
at a distance of z = 47. The results (Fig. 5) show the accuracy of the LRMs method
against the GR method. It can be seen visually that the LRMs method follows more
closely to the Truth than the GRmethod.We then applied hypothesis testing and used
a z-test to compare between the mean differences of the two methods with the Truth.
The method that has a smaller difference is considered to be more accurate than the
other as its output coordinates are closer to the ground truths. Since p-value is smaller
than 0.05, we conclude that at 5% significance level, there is sufficient evidence that
Ē < D̄. Therefore, the LRMs were more accurate in reproducing the point cloud of
the object. We then tried scanning two different 3D objects and took 16 images of
both input objects, the cardboard pyramid and the cube with θ = π

8 in (16). Figure 6
shows the visual difference in results for the original method against the alternative
method. Visually, the point cloud produced by the LRMsmethod follows the original
structure better.

5 Conclusions and Recommendations for Future Work

In this report, we have presented 3D scanning with LRMs method along with the
geometrical relations method. There is a significant improvement made from the
original method as shown in the results obtained as well as in terms of usability,



132 S. Chenglei et al.

Fig. 6 Table of comparison

Actual Object
Point Cloud under

Geometric 
Relations Method

Point Cloud under 
Linear Regression

Model Method
Pyramid

Cube

where there is no need for the user to know the specifics of the camera-capturing
device, which may be hard to find, unlike for the geometrical relations method where
variables must be known. We have constructed an integrated setup coupled with
procedures and algorithms which involves rotating the object on a platform linked to
a stepper motor controlled via a Raspberry Pi 3 module. It also takes images using
the Picamera controlled through a pattern of outputs to the GPIO (General Purpose
Input/Output) pins.

While our results are still a far-cry from the state-of-the-art and nowhere near
suitable for industrial use, the LRMs approach shows great promise given that we
were able to replicate the shape of objects with just 2 images used as training data
and a simple linear model.

We suggest training theLRMswith data from slopes instead of a blank graph paper
so as to provide more variance of ‘z’s for the LRMs to be trained. Future works can
also include using Anomaly detectionmethods first to rid the input of noise as well as
varying the resolution of the image. More sophisticated models (Neural Networks,
Support Vector Machines) can also be used, however, the original geometric basis
will then be lost. Other methods of optimizing the cost (e.g. Gradient descent with
regularization) can also be used.
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Appendix: Similar triangle

z

x

fL

l

Lens

Top view of setup
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