
Chapter 3
Select Equations to Be Solved

3.1 Fluid Mechanics Analysis System: Reynolds Transport
Theorem

Fluidmechanicsmainly applies three conservation laws ofmass, energy, andmomen-
tum to the fluid flow (called governing equations of flow) and predicts the flow
characteristics and the interactions among fluids as well as with solids. The mass,
momentum, and energy conservation laws can be applied using two different analysis
systems—closed system and open system.

(1) Closed system (fixed mass or control mass system): Lagrangian System

In a closed system, objects with fixed mass (e.g., a solid ball) are isolated and their
changes in energy and momentum are tracked along with relevant properties such
as pressure, velocity, temperature, etc (Fig. 3.1). The size and shape of the system
may change during a process but there is no mass transfer in or out through the
boundaries of this control mass. Closed systems are mostly used in thermodynamics
and solid mechanics, where the state and movement of a certain object are the focus.
For fluid mechanics, most cases are interested in the flow characteristics contained
in a confined space rather than the pre- and post-fates of fluid before entering and
after leaving the container. For instance, in indoor environment quality study, one
may concentrate on the temperature and velocity distributions in a room caused by
supply and exhaust diffusers, while ignoring where the air comes from and exhausts
to. On the other hand, tracking the boundaries and movement of a fluid mass is
much more challenging than tracking a solid mass due to irregularity and sometimes
discontinuity of fluid geometry (such as when splattering). Nevertheless, a closed
system may be used for some fluid flow problems such as tracking the trajectories
of virus transportation in a space, where the specific objects (virus in this case) are
the focused interest of the study.

(2) Open system (fixed volume or control volume system): Euler System

In an open system, the volume of a space is isolated and studied for the changes of
mass, energy, and momentum in this volume during a process. The system allows the
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Fig. 3.1 Illustrations of using closed system for solid (left) and fluid (right)

flow in and out of mass, energy and momentum across the boundaries (called control
surfaces) of the control volume. A control volume may also move and deform during
a process, although most real-world applications utilize fixed and non-deformable
control volumes to simplify the problems in study.

Another analogy to distinguish the controlmass from the control volume system is
tomonitor students in a classroom. If the goal is to track themovement and properties
of every student during the whole process (even before and after the class), one needs
to track individual students (fixed mass) before they enter or after they leave the
classroom. This is a closed system analysis. If the goal is to simply count student
number in the classroom (without interest in where they come from and leave for),
the classroom is the fixed or control volume to be explored and thus an open system
should be used to allow students enter and leave the room.

(3) Conversion from closed system to open system with Reynolds Transport
Theorem

Although different systems can be used to analyze the status of objects, the physics
in conservation laws is uniform and independent of the analysis system selected. The
Reynolds transport theorem (RTT) provides the link between the control mass and
the control volume approaches, converting the conservation equations in one system
to the other. The following provides the general format of the RTT:

dBCM

dt
= dBCV

dt
− Ḃin + Ḃout (3.1)

where B can be any variable (such as mass, energy, and momentum). CM stands for
control mass and CV stands for control volume. Ḃ is the flow rate of variable in and
out of the control volume.

3.2 Fluid Mechanics Conservation Equations in Integral
Form

(1) Mass Conservation

If B = M (mass), Eq. (3.1) becomes
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dMCM

dt
= dMCV

dt
− Ṁin + Ṁout (3.2)

Since for a control mass, M does not change with time,

dMCM

dt
= 0 = dMCV

dt
− Ṁin + Ṁout (3.3)

The mass conservation equation for a control volume is thus

dMCV

dt
= Ṁin − Ṁout (3.4)

The mass change in a control volume is attributed to the imbalance between the
mass flow in and the mass flow out. For a steady flow, d/dt = 0 for any variable,

Ṁin = Ṁout (3.5)

This Ṁ may imply the sum of multiple inlets and outlets to the control volume.

(2) Energy Conservation

If B = E (total energy), Eq. (3.1) becomes

dECM

dt
= dECV

dt
− Ėin + Ėout (3.6)

where E is the total energy (including both mechanical and thermal energy); E = H
+ EP + EK = U + PV + EP + EK. H = U + PV = mCPT is enthalpy; U = mCVT is
internal energy. CP andCV are specific heat at constant pressure and constant volume,
respectively. T is temperature, P is pressure and V is volume. EP = mgz is potential
energy, and Ek = mv2/2 is kinetic energy (v is velocity). Ė is the flow rate of total
energy in and out of the control volume.

The first law of thermodynamics states

dECM

dt
= Q̇ + Ẇ + Ṡ (3.7)

where Q̇ is the heat transfer (rate) imposed on the volume, Ẇ is the mechanical work
(rate) conducted on the volume, and Ṡ is any additional energy (rate) occurred during
the process (such as from chemical or nuclear reactions etc.). Hence, for a control
volume (Fig. 3.2),
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Fig. 3.2 Illustration of
energy conservation in a
control volume

dECV

dt
= Ėin − Ėout + Q̇ + Ẇ + Ṡ (3.8)

(3) Momentum Conservation

If B = M �V(momentum), Eq. (3.1) provides

d(M �V)CM

dt
= d(M �V)CV

dt
− (Ṁ �V)in + (Ṁ �V)out (3.9)

where �V is the velocity vector, and Ṁ is the mass flow rate at inlet and outlet.
The Newton’s second law for a control mass states:

d(M �V)CM

dt
=

∑ �F (3.10)

where the force �F includes various body and surface forces such as gravity (body),
pressure (normal stress at surfaces), and friction (shear stress at surfaces) forces.
Combining Eqs. (3.9) and (3.10) yields

d(M �V)CV

dt
− (Ṁ �V)in + (M �V)out =

∑ �F (3.11)

For a steady flow,

(Ṁ �V)out − (Ṁ �V)in =
∑ �F (3.12)

Again, Ṁ �V here implies the summary of momentum forces at various inlets and
outlets of the control volume in study.



3.3 Fluid Mechanics Conservation Equations in Differential Form 55

3.3 Fluid Mechanics Conservation Equations
in Differential Form

The section above presents the fundamental flow governing equations in the integral
form, which clearly reveals the principles of the conservation of mass, energy and
momentum in fluid flow in a control volume. The integral expression of the governing
equation is good for manual calculation for simplified flow problems, such as with
steady, one-dimensional assumptions, and for computing average flow properties
(e.g., one single temperature and velocity for the entire volume). To predict complex
fluid flows with adequate spatial and temporal resolutions using a computer, the
differential form of flow governing equations must be introduced and used.

To ease the writing and reading of a lengthy mathematic equation, the Einstein
notation is often used in mathematics. The Einstein notation or Einstein summation
convention is a notational convention that implies summation over a set of indexed
terms in a formula, thus achieving notational brevity. It was introduced by Albert
Einstein in 1916. According to this convention, when an index variable appears twice
in a single term it implies summation of that term over all the values of the index
(e.g., 1, 2, and 3 for a 3-D problem while 1 and 2 for a 2-D problem). Below are a
few examples that are commonly seen in fluid mechanics:

• UiUi = U1U1 + U2U2 + U3U3 (U1 = U, U2 = V, U3 = W in a 3-D flow)
• dUi

dxi
= dU1

dx1
+ dU2

dx2
+ dU3

dx3
(x1 = x, x2 = y, x3 = z in a 3-D flow)

• Uj
dUi
dx j

= U1
dUi
dx1

+U2
dUi
dx2

+U3
dUi
dx3

(where i can be any one but only one of 1, 2, 3)

• ∂2τi j
∂xi ∂x j

= ∂2τ11
∂x1∂x1

+ ∂2τ12
∂x1∂x2

+ ∂2τ13
∂x1∂x3

+ ∂2τ21
∂x2∂x1

+ ∂2τ22
∂x2∂x2

+ ∂2τ23
∂x2∂x3

+ ∂2τ31
∂x3∂x1

+ ∂2τ32
∂x3∂x2

+ ∂2τ33
∂x3∂x3

(Here one pair of i and one pair of j appear and thus each of i and j should expand
over all the values of the index).

For a single-phase Newtonian fluid (where viscosity does not depend on flow
velocity and stress state), the general governing equations of flow may be expressed
as below, in a Cartesian coordinate system.

(1) Continuity Equation (Mass Conservation)

∂ρ

∂t
+ ∂

∂xj

(
ρuj

) = 0 (3.13)

where, ρ is the air density, uj is the instantaneous velocity component in three per-
pendicular coordinate directions (xj, j = 1, 2, 3), and t is the time.

The following presents the derivation of the continuity equation. For an infinite
small volume (or cell/mesh) dv, the cell center holds the velocity u, v, w at the
coordinate of (x, y, z). The mass flow rate at the surface of (x − 0.5dx) (called west
surface) into the cell is thus:
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Fig. 3.3 Illustration of mass
conservation over a control
volume dv = dxdydz

dx 
dy 

(u, v, w) 

(x, y, z) 

dz 

ṁx−0.5dx =
[
ρu − ∂

∂x
(ρu) · 1

2
dx

]
· dydz (3.14)

And the mass flow rate at the surface of (x + 0.5dx) (called east surface) out of
the cell is:

ṁx+0.5dx =
[
ρu + ∂

∂x
(ρu) · 1

2
dx

]
· dydz (3.15)

dydz is the area of west and east surfaces as illustrated in Fig. 3.3. The net mass flow
rate on the X coordinate is then:

ṁx−0.5dx − ṁx+0.5dx

=
[
ρu − ∂

∂x
(ρu) · 1

2
dx

]
· dydz −

[
ρu + ∂

∂x
(ρu) · 1

2
dx

]
· dydz

= − ∂

∂x
(ρu) · dxdydz (3.16)

Similarly, the net mass flow rate on the Y and Z coordinates can be obtained,
respectively:

ṁy−0.5dy − ṁy+0.5dy

=
[
ρv − ∂

∂y
(ρv) · 1

2
dy

]
· dxdz −

[
ρv + ∂

∂y
(ρv) · 1

2
dy

]
· dxdz

= − ∂

∂y
(ρv) · dxdydz (3.17)

ṁz−0.5dz − ṁz+0.5dz

=
[
ρw − ∂

∂z
(ρw) · 1

2
dz

]
· dxdy −

[
ρw + ∂

∂z
(ρw) · 1

2
dz

]
· dxdy
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= − ∂

∂z
(ρw) · dxdydz (3.18)

The total mass change in the control volume dv = dxdydz over the time is thus
equal to:

∂ρ

∂t
dxdydz = −∂(ρu)

∂x
dxdydz − ∂(ρv)

∂y
dxdydz − ∂(ρw)

∂z
dxdydz (3.19)

∂ρ

∂t
= −∂(ρu)

∂x
− ∂(ρv)

∂y
− ∂(ρw)

∂z
(3.20)

Equation (3.20) is the same as Eq. (3.13), a general expression of the mass con-
servation of fluid flow.

For steady flows, Eq. (3.13) becomes:

∂
(
ρuj

)

∂xj
= 0 (3.21)

If considering incompressible fluids [i.e., the fluid density in the volume does not
change during a flow process; however, the density may still be a function of space
(x, y, z)], Eq. (3.13) can be expressed as:

∂
(
ρuj

)

∂xj
= 0 (3.22)

Note that Eqs. (3.21) and (3.22) are exactly the same; however, Eq. (3.22) does
not imply a steady state flow, i.e., other variables such as velocity and temperature
may still be able to vary with time. If assuming a constant fluid density, Eq. (3.22)
can be further simplified as:

∂uj
∂xj

= 0 (3.23)

(2) Momentum Equations (Momentum Conservation)

∂

∂t
(ρui) + ∂

∂xj

(
ρujui

) = − ∂p

∂xi
+ ∂tji

∂xj
+ ρFi (3.24)

where, ui and uj are, respectively, the instantaneous velocity component in xi and
xj direction; p is the instantaneous pressure; tij is the component of viscous stress
tensor; and Fi is the volume force working on the fluid.

The equation can be better understood in physics if a control volume dv =
dx1dx2dx3 is multiplied to each term in Eq. (3.24). Using i = 1 as a demonstra-
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tion, the first term on the left is called dynamic term, which represents the change of
the momentum (dm × u1 = ρdv × u1) over the time in the control volume in the x1
(or X) direction,

∂

∂t
(ρu1)dv = ∂

∂t
(ρdv · u1) (3.25)

The second term on the left can be rewritten as:

∂

∂xj

(
ρuju1

)
dv = ∂(ρu1u1)

∂x1
dx1dx2dx3 + ∂(ρu2u1)

∂x2
dx1dx2dx3

+ ∂(ρu3u1)

∂x3
dx1dx2dx3

= ∂[(ρu1 · dx2dx3) · u1] + ∂[(ρu2 · dx1dx3) · u1]
+ ∂[(ρu3 · dx1dx2) · u1]

= ∂(ṁ1 · u1) + ∂(ṁ2 · u1) + ∂(ṁ3 · u1) (3.26)

This represents the differences of the momentum entering and leaving the control
volume, respectively, through the west (x − 0.5dx) and east (x + 0.5dx) surfaces,
the south (y − 0.5dy) and north (y + 0.5dy) surfaces, and the bottom (z − 0.5dz)
and top (z + 0.5dz) surface. ṁ1, ṁ2, ṁ3 are the actual mass flow rates entering and
leaving the cell (calculated using the velocity normal to the surfaces) at x, y, and z
directions. Each of these mass flow rates may bring the momentum impacts to the
control volume on the x1 (or X) direction via the x1 direction velocity component u1
at each surface. The same physics is shown in the integral Eq. (3.11). This term is
called convection or advection term as it is directly related to fluid flow.

The first term on the right of Eq. (3.24) is named pressure term, which represents
the pressure forces acted on the cell surfaces that drive the flow. Equation (3.27)
shows the pressure forces on the west and east surfaces that affect the momentum
ρdv · u1 in x1 direction,

− ∂p

∂x1
dv = − ∂p

∂x1
dx1dx2dx3 = −∂

(
pdx2dx3

)
(3.27)

The second term on the right of Eq. (3.24) is the impact from viscous
stresses/forces at the surfaces of the volume and tij is viscous stress tensor.

∂tj1
∂xj

dv = ∂(t11dx2dx3) + ∂(t21dx1dx3) + ∂(t31dx1dx2) (3.28)

where the first term on the right is the normal stress influence and the other two are
the shear stress influence on the momentum ρdv · u1 in x1 direction.

According to the Stokes’ law, the viscous stress tensor tij can be represented as:
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tij = μ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3
μ

∂uk
∂xk

δij (3.29)

whereμ is themolecular dynamic viscosity. δij = 1 if i= j (otherwise zero). Note that
the relationship of Eq. (3.29) only works for Newtonian fluids (e.g., air and water).
The general expression of the momentum Eq. (3.24) is applicable for all fluids but
may have different stress-strain correlations that are attributed to inherent properties
of fluids.

The last term on Eq. (3.24) represents the body force on each volume/cell, which
can be gravity or magnetic force etc. If gravity is considered, this source term can
be written as

ρFidv = ρdv · gi (3.30)

where Fi = gi is the gravitational acceleration in the xi direction.

(3) Energy Equations (Energy Conservation)

∂

∂t

[
ρ
(
e + uiui

2

)]
+ ∂

∂xj

[
ρuj

(
e + uiui

2

)]
= ∂

∂xj

(
uitij

)

− ∂

∂xj

(
puj

) + ρFiui − ∂qi
∂xi

+ ρqsource (3.31)

where e is the internal energy of the fluid (unit: kJ/kg), ui ui
2 is the instantaneous

kinetic energy of the fluid, qi is the heat flux in in xi direction, and qsource is the
energy source in the fluid.

The first term on the left of the equation is the dynamic term and is the total energy
change within the control volume over the time. The second term is the convection
term, representing the energy with flows entering/leaving the volume through the
surfaces. The first term on the right is the energy from the mechanical work caused
by surface stresses (e.g., frictions); the second term is the energy from themechanical
work by pressure (e.g., either pressure changes at the cell surfaces or cell volume
change); the third one is the energy from themechanical work done by the body force
(e.g., gravity); the fourth one is the heat transfer across the surfaces of the volume;
and the last one represents other energy sources in the volume (e.g., from chemical
reactions inside the volume).

If using the enthalpy h to replace the internal energy e (i.e., the PV work is
considered in the fluid total energy, which is common), Eq. (3.31) becomes

∂

∂t

[
ρ
(
h + uiui

2

)]
+ ∂

∂xj

[
ρuj

(
h + uiui

2

)]
= ∂

∂xj

(
uitij

) + ρFiui

− ∂qi
∂xi

+ ρqsource + ∂p

∂t
(3.32)
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Typically, the following terms are grouped as a source term for the energy equation,

φ = ∂

∂xj

(
uitij

) + ρFiui + ρqsource + ∂p

∂t
(3.33)

The right term 1, 2 and 4 are generally smaller than the heat transfer term − ∂qi
∂xi

and thus neglected by many practical CFD software and simulations. Hence, φ =
ρqsource. The change of instantaneous kinetic energy

uiuj
2 is also smaller compared

to either internal energy or enthalpy, and hence often ignored in the energy equation.
The refined energy equation then becomes:

∂(ρh)

∂t
+ ∂

(
ρujh

)

∂xj
= −∂qi

∂xi
+ φ (3.34)

For ideal gases and incompressible fluids, the enthalpy of fluid can be calculated
by:

h = CpT (3.35)

where Cp is specific heat at constant pressure (and usually treated as a constant),
and T is the instantaneous fluid temperature. According to the Fourier’s law, the
conductive heat transfer in the fluid can be expressed as:

qi = −κ
∂T

∂xi
(3.36)

where k is the thermal conductivity of fluid. Substituting (3.35) and (3.36) into (3.34)
yields

∂
(
ρCpT

)

∂t
+ ∂

(
ρCpujT

)

∂xj
= ∂

∂xk

(
κ

∂T

∂xk

)
+ φ (3.37)

The flow governing Eqs. (3.13), (3.24) and (3.31) are generally called the Navier-
Stokes equations. Equations (3.13), (3.24) and (3.37) forms a complete set of flow
governing equations for ideal gases and incompressible fluids—two commonly
encountered flows in fluid engineering applications, with five (5) equations for six (6)
variables: u1, u2, u3, p, T, ρ. Additional equation is required to enclose this problem
mathematically. For ideal gases, it is the state equation,

p = ρRT (3.38)

where R is the ideal gas constant.
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(a) Instantaneous Governing Equations for Ideal Gas Flows

∂ρ

∂t
+ ∂

(
ρuj

)

∂xj
= 0 (3.39)

∂(ρui)

∂t
+ ∂

(
ρujui

)

∂xj
= − ∂p

∂xi
+ ∂tji

∂xj
+ ρgi (3.40)

∂
(
ρCpT

)

∂t
+ ∂

(
ρCpujT

)

∂xj
= ∂

∂xk

(
κ

∂T

∂xk

)
+ φ (3.41)

p = ρRT (3.42)

(b) Instantaneous Governing Equations for Incompressible Fluid Flows

Equations (3.13), (3.24) and (3.37) can also be closed by using the incompressible
assumption for fluids, where the fluid density ρ is assumed to be constant.

By substituting the tij expression (3.29) into Eq. (3.24) and taking into account
the continuity Eq. (3.23) for incompressible fluids and assuming gravity is the only
body force, the momentum Eq. (3.24) can be rewritten as

∂

∂t
(ρui) + ∂

∂xj

(
ρujui

) = − ∂p

∂xi
+ ∂

∂xj

(
μ

(
∂ui
∂xj

+ ∂uj
∂xi

))
+ ρgi

= − ∂p

∂xi
+ μ

∂

∂xj

(
∂ui
∂xj

)
+ μ

∂

∂xj

(
∂uj
∂xi

)
+ ρgi

= − ∂p

∂xi
+ μ

∂

∂xj

(
∂ui
∂xj

)
+ μ

∂

∂xi

(
∂uj
∂xi

)
+ ρgi

= − ∂p

∂xi
+ μ

∂

∂xj

(
∂ui
∂xj

)
+ ρgi (3.43)

Since the fluid density is treated as constant, the influence of fluid temperature
variation on the density and then on the flow momentum, in terms of buoyancy, is
decoupled. As a result, the Boussinesq buoyancy approximation is suggested to cou-
ple the momentum and energy equations. As a first order truncation, the Boussinesq
buoyancy approximation presents the relationship between gas density and temper-
ature as

ρ = ρo[1 − β(T − To)] (3.44)

where ρo is the reference density at the reference temperature To. β = 1/T is the
coefficient of volume expansion of the fluid (unit: 1/K). Taking this into Eq. (3.43)
and absorbing the constant ρogi into the pressure term (because only the pressure
difference matters), the momentum equation for incompressible fluids becomes
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∂

∂t
(ui) + ∂

∂xj

(
ujui

) = ∂

∂t
(ui) + uj

∂

∂xj
(ui)

= − ∂p

ρ∂xi
+ μ

ρ

∂

∂xj

(
∂ui
∂xj

)
− giβ(T − To)

= − ∂p

ρ∂xi
+ ν

∂2ui
∂xj∂xj

− giβ(T − To) (3.45)

where ν = μ/ρ is the kinematic viscosity (unit: m2/s).
Energy Eq. (3.37) can also be revised as

∂T

∂t
+ ∂

(
ujT

)

∂xj
= ∂T

∂t
+ uj

∂T

∂xj
= 1

ρcp

∂

∂xk

(
κ

∂T

∂xk

)
+ φ

ρcp
(3.46)

The following is the complete set of governing equations for incompressible fluid
flows with five (5) equations for five (5) variables: u1, u2, u3, p, T.

∂ui
∂xj

= 0 (3.47)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

ρ∂xi
+ ν

∂2ui
∂xj∂xj

− giβ(T − To) (3.48)

∂T

∂t
+ uj

∂T

∂xj
= 1

ρcp

∂

∂xk

(
κ

∂T

∂xk

)
+ φ

ρcp
(3.49)

(4) General Scalar Transport Equation (Mass Conservation)

If a concentration of particular species (other than the domain fluid) is concerned in
the flow, such as the concentrations ofmoisture and pollutant in the air, the concentra-
tion transport equation need be resolved. The concentration equation fundamentally
is a mass transport or conservation equation, which can be expressed in a general
scalar transport equation form as below:

∂(ρC)

∂t
+ ∂

(
ρujC

)

∂xj
= ∂

∂xk

(
α

∂(C)

∂xk

)
+ qsource (3.50)

where, C is the instantaneous scalar variable such as species concentration, α is the
molecular diffusion coefficient for the scalar, and qsource is the source term. Note that
Eq. (3.50) is very similar to the energy Eq. (3.37). Using contaminant concentration
as an example, if the unit of C is kgc/kgair, the integration of the first term over the
volume dv provides

∂

∂t
(ρC)dv = ∂

∂t
(ρdv · C)

(
unit: kgc/s

)
(3.51)
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This is the change rate of the contaminant mass in dv. This change is due to

(1) the contaminant mass entering and leaving dv with the flow:

∂

∂xj

(
ρujC

)
dv = ∂(ρu1C)

∂x1
dx1dx2dx3 + ∂(ρu2C)

∂x2
dx1dx2dx3

+ ∂(ρu3C)

∂x3
dx1dx2dx3

= ∂[(ρu1 · dx2dx3) · C] + ∂[(ρu2 · dx1dx3) · C]
+ ∂[(ρu3 · dx1dx2) · C]

= ∂(ṁ1 · C) + ∂(ṁ2 · C) + ∂(ṁ3 · C)
(
unit: kgc/s

)
(3.52)

(2) the dispersion (or diffusion) at the volume surfaces due to the concentration
gradient:
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(3.53)

The molecular diffusion coefficient α has the same unit as dynamic viscosity μ,
kg/(m s). α ∂C

∂xi
dA is the diffusion at the surfaces due to the concentration gradient,

and the unit of this is

kgair
m · s · kgc

kgair
· 1

m
· m2 = kgc

s
(3.54)

(3) the source term qsource · dv in unit of kgc/s (i.e., either source or sink of the
contaminant within the volume dv. Note that the scalar unit will vary according
to the unit of the source term.

(5) Uniform Expression of Flow Governing Equations

The governing equations of incompressible flow (3.47)–(3.49) and the scalar trans-
port Eq. (3.50) can be generalized into the following form:

∂(ρφ)

∂t
+ ∂

(
ρUjφ

)

∂xj
= ∂

∂xj

(
�φ,eff

∂φ

∂xj

)
+ Sφ (3.55)
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Table 3.1 Formula for the
general form Eq. (3.55)

Equation φ �φ,eff Sφ

Continuity 1 0 0

Momentum Ui μ − ∂p
∂xi

− ρβ(T − T∞)gi
Temperature T μ

Pr ST

Concentration C μ
Sc SC

where φ represents the physical variable in question, as shown in Table 3.1. The
equation has dynamic, convection, diffusion and source terms.

When selecting proper equations to be computed, appropriate assumptions (e.g.,
steady state and/or impressible state) and case simplifications (e.g., 2-D and constant
coefficients) should be determined first. This will identify how many variables and
equations to solve. Additional equations for temperature and concentrations should
be included whenever the physics of flow requires so. More equations selected will
impose extra computing sophistication and costs. Boundary (and initial) conditions
are mandatory for all these equations as will be described in Chap. 6.

3.4 Transport Equations for Particle and Droplet

Predicting particle and droplet transport behaviors in the air is essentially a simula-
tion of air-particle two-phase flows with continuous gas phase of air and dispersed
solid/liquid phase of particles/droplets. To simulate the movement of continuous air,
the flow governing Eqs. (3.47)–(3.49) in Eulerian-form are solved. To predict the
transport of dispersed particles and droplets in the air, three kinds of models are
usually available (Liu and Zhai 2007):

• Lazy particle model
• Isothermal particle model
• Vaporizing droplet model.

The lazy particle model does not solve the particle trajectories directly and thus
does not produce individual particle velocities. It simply follows the continuous-
phase velocity (streamline) at each point of the flow field—amodel that is tracer-like
(hence also called the ‘tracer’ model). The model does not handle either size or
temperature of particles, and cannot undergo any physical process (e.g., solidifica-
tion and vaporization) except turbulent dispersion. Lazy particles will not affect the
continuous-phase solution. The distributed concentration of lazy particles can be
simulated by solving the same transport equation for gas-phase contaminants, i.e.
Eq. (3.50). Lazy particle model may be appropriate for small particles with quasi-
gaseous compounds that have similar molecular weights to the elements in air and
when particle-particle interaction is not concerned. Due to its simplicity, the model
has been broadly used for indoor and outdoor particle study.

https://doi.org/10.1007/978-981-32-9820-0_6
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The isothermal particle model predicts particle trajectories and velocities by
solving additional Lagrangian transport equations for particles without consider-
ing particle thermal effect. As a result, simulated particles do not change their sizes
during the transport and there is no exchange of heat and mass between continuous
and dispersed phases. The model can be applicable to many solid particle pollutants,
such as, tobacco smoke particulates, soot, and fibers.

When liquid particles (droplets) are simulated, the evaporation effect could be
important so that the Lagrangian particle transport equations must consider the
exchange of mass and heat (besides momentum) between dispersed and continuous
phases. This vaporizing droplet model represents the true physics of droplet disper-
sion but also complicates the simulation. Evaporation is commonly included in fire
extinguishing modeling when water sprinklers are used, but very few researchers
take this into account in air quality study because usually less mass and heat trans-
fer occur during regular room-temperature droplet transport process. However, this
small mass and heat transfer could be significant, such as for predicting the fate of
droplets carrying viruses or bacteria.

Most studies take the liberty of deciding appropriate (or convenient) simulators
to predict particle and droplet transport behaviors. Generally, lazy particle model is
employed if one thinks that the particle size is relatively small and the distributed con-
taminant concentration is the major concern; otherwise, isothermal particle model
will be utilized. Vaporizing droplet model is the least usedmodel due to the complex-
ity of themodel unless special considerations need be taken into account. It is unclear
which model is the most effective and efficient for a certain particle or droplet or how
large is the difference in the results predicted by different models. It is also uncertain
under what circumstances the air-particle interaction and droplet mass change must
be considered as they influence the motion of particles and droplets in the space.
The answers to these questions are affected by many factors, such as, simulation
accuracy requirement, computing cost affordability, particle sizes, and environment
conditions, etc. The following sections attempt to provide some practical particle-
size-based criteria for selecting an appropriate particle simulation method.

(1) Theoretical Analysis

• General Particle Transport Equation

When using the Lagrangian method, the trajectory of each particle in the air can be
computed by solving the momentum equation based on Newton’s second law,

d(m�v)
dt

=
∑ �F (3.56)

and

d
−→
X p

dt
= �v (3.57)
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where �v is the particle velocity, m is the particle mass,
∑ �F stands for the total

forces acted on the particle, and
−→
X p is the co-ordinates of the particle. Momentum

is transferred between air and particles through inter-phase drag and lift forces that
can be divided into, but not limited to, the following parts: the drag force, pressure
gradient and buoyancy forces, unsteady forces that include Basset force and virtual
mass force, Brownian force, and body forces such as gravity force (Crowe et al.
1998). For particles with a certain size and density, some of the forces may be very
small compared to others, and thus can be ignored. For most spherical particles, the
particle motion equation can be simplified as (Crowe et al. 1998):

d(m�v)
dt

= 1

2
CD

πD2

4
ρa(�u − �v)|�u − �v| + m �g (3.58)

where �v is the particle velocity, �u is the local air velocity, D is the particle diameter,
ρa is the air density, and CD is the drag coefficient. Equation (3.58) only includes the
most important drag force and gravity force acted on a particle, which is appropriate
for particles with size above 1 μm and density above the order of 1 03 kg/m3 (Jiang
2002).

By introducing the particle Reynolds number Rer = ρaD|�u−�v|
μa

and the spherical

particle mass m = 1
6ρpπD

3, Eq. (3.58) can be written as

d�v
dt

= 18μa

ρpD2

CDRer
24

(�u − �v) + �g = 18μa

ρpD2
f (�u − �v) + �g (3.59)

whereμa is the air viscosity and ρp is the particle density. f = CDRer
24 is defined as drag

factor. One accurate correlation for f over the entire sub-critical Reynolds number
range was developed by Clift and Gauvin (1970):

f = 1 + 0.15Re0.687r + 0.0175 × (
1 + 4.25 × 104Re−1.16

r

)−1
(3.60)

Figure 3.4 illustrates the relationship between f andRer in Eq. (3.60), which shows
that f approaches to 1 as Rer < 1.
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Fig. 3.4 Relationship between f and Rer in Eq. (3.60)
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• Movement of Particle without Evaporation

For spherical particles without considering mass change, particle diameters remain
constant during the transmission. This analyze discusses the transport behaviors of
such particles of different sizes in both low and high Reynolds flows.

(1) Low Reynolds Flow (Rer < 1)

Since the drag factor f in Eq. (3.59) approximates to one when Rer < 1, Eq. (3.59)
can be expressed as:

d�v
dt

= (�u − �v)
τv

+ �g (3.61)

where τv = ρpD2

18μa
is defined as the particle momentum (velocity) response time

(second) and is constant for a certain particle with constant diameter.
To simplify the theoretical analysis, a two-dimensional air-particle flow is assumed

in a x-y Cartesian coordinate system. Equation (3.61) then becomes

{
dvx
dt = ux−vx

τv
dvy
dt = uy−vy

τv
− g

(3.62)

By assuming a constant airflow velocity �u = ux�i + uy�j and a zero initial particle
velocity, the analytical solutions to Eq. (3.62) can be obtained

{
vx = ux

(
1 − e−t/ τv

)

vy = (
uy − τvg

)(
1 − e−t/ τv

) (3.63)

As a result, vx = ux and vy = uy − τvg if t = ∞, and vx = 63%ux and vy =
63%

(
uy − τvg

)
if t = τv. Hence, the particle momentum response time τv indicates

how fast the particle can reach the air velocity and respond to the air velocity changes.
Figure 3.5 presents the change of particle momentum response time with particle
diameters in the air. If τv is adequately small, particles can easily follow the air
velocity so that lazy particle model is appropriate. Conversely, if τv is significantly
large, the time needed to reach the air velocity is much longer than the time needed
for particle to fall on floor and thus a free dropping calculation may be sufficient.

To find the critical particle momentum response times or particle diameters, the
Stokes Number is introduced

Stv = τv

τF
(3.64)

where τF is the characteristic time of a flow field that represents the shortest time for
a certain particle to be caught by obstructions. For indoor particles dispersing in a
ventilated space as illustrated in Fig. 3.6, τF can be calculated via
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Fig. 3.5 Relationship
between τv and particle
diameter D
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T

τF = min
(
DT /U,

√
2H/g

)
(3.65)

where DT is the depth of the room, U is the vent inlet air velocity, H is the height of
the room, g is the gravitational acceleration.

If the Stokes Number is far less than one, i.e., the particle momentum response
time is much less than the characteristic time associated with the flow field, the
particles will have ample time to respond to and follow the changes in flow velocity.
As a result, the particle and fluid velocities can be treated as velocity equilibrium
and lazy particle model can be applied. In contrast, if the Stokes Number is far larger
than one, the particle will essentially have no time to respond to the fluid velocity
changes before they are caught by building envelopes. For particles with Stv number
in between, Lagrangian particle transport equation must be solved.

(2) High Reynolds Flow (Rer > 1)

When Rer > 1, f = CDRer/24 is not equal to one any more. Equation (3.59) becomes

d�v
dt

= (�u − �v)
τ ′
v

+ �g (3.66)
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(
ρpD2/18μa

) = 1/f with Rer = ρaD|�u − �v|/μa

where τ ′
v = ρp D2

18μa

1
f is defined as the modified particle momentum (velocity) response

time. Because f > 1 for the entire subcritical Reynolds number range according
to Eq. (3.60), τ ′

v is always smaller than τv. Figure 3.7 illustrates the variation of
τ ′
v/

(
ρpD2/18μa

) = 1/f with Rer = ρaD|�u − �v|/μa. When particle and air have
relatively large velocity difference thus largeRer, a large drag factor f occurs to change
the particle velocity to follow the air speed, which corresponds to a small “local”
modified particle momentum response time τ ′

v. When the particle speed approaches
the air velocity, less drag force is imposed on the particle, which leads to longer
time to further alter its speed towards that of the free air. To be consistent with low
Reynolds flow and produce a simple justification criterion, a “local” τ′

V=63%U is used
to represent the total time for a particle released from rest to achieving 63%of the free
stream velocity. This number overestimates the real time but reflects its magnitude.
By using the Stokes number Stv = τ ′

V=63%U/τF, the same conclusions as for low
Reynolds flows can be reached for high Reynolds flows.

• Movement of Particle with Evaporation

For spherical particles with evaporation, their diameters keep varying due to evapora-
tion during the transmission. Besides the particlemomentumEq. (3.59), an additional
equation that describes such mass change of the droplet must be solved. One of the
representative droplet mass change equationswas developed by Ludwig et al. (2004):

dmp

dt
= −πDp

Kv

Cpv
Nu ln(1 + Bm) (3.67)

wheremp is the dropletmass,Dp is the droplet diameter,Kv is the thermal conductivity
of droplet vapor, Cpv is the specific heat capacity of droplet vapor. Nu is the Nusselt
number, determined from the following correlation:

Nu = 2
(
1 + 0.3Re0.5r Pr0.33

)
F (3.68)
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Fig. 3.8 Evaporation constant λ versus water droplet diameter

where Pr is the laminar Prandtl number of air and F is the Frossling correction for
mass transfer given by F = ln(1 + Bm)/Bm. BM is the mass transfer number, which
represents the “driving force” in the mass transfer process, and is defined by:

BM =
[
Yvs − Yv∞
1 − Yvs

]
(3.69)

where Yv∞ is the mass fraction of droplet vapour in the air surrounding the droplet,
and Yvs is the mass fraction of droplet vapour at the surface of droplet and can be
calculated via:

Yvs =
[
1 +

(
P

Pvs
− 1

)
Wa

Wv

]−1

(3.70)

where P is the total pressure of air surrounding droplet, Pvs is the partial pressure
of droplet vapour at the surface of droplet at the saturation conditions defined by
the droplet temperature, Wa is the molecular weight of air, and Wv is the molecular
weight of droplet vapour.

Equation (3.67) can be rewritten as

Dp
dDp

dt
= −2

Kv

Cpv

Nu

ρp
ln(1 + Bm) = −λ

2
(3.71)

Numerical experiments show that λ = 4 Kv
Cpv

Nu
ρp

ln(1 + Bm) is almost constant for
a certain droplet vapor under typical room conditions (and so called the evaporation
constant). Figure 3.8 verifies that λ increases less than 1.7 times when water droplet
diameter changes from nearly 0 to 1500 μm with a droplet temperature of 310 K.
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Integrating Eq. (3.71) with the evaporation constant thus provides

D2 = D2
0 − λt (3.72)

This is a popular form of the evaporation equation that has been extensively used
in the past. The evaporation lifetime of a droplet is then defined as the time needed
to change droplet diameter from D0 to D = 0

τm = D2
0

λ
(3.73)

To quantify the relative evaporation speed of a droplet, a new index—evaporation
effectiveness (EE) number—has been introduced

EE = τm

τF
= D2

0

λτF
(3.74)

If EE � 1, i.e., the droplet evaporation time is much less than the characteristic
time associated with the flow field, the droplet evaporates and disappears very fast.
Therefore, suchdroplets canbe treated as airborne.Conversely, if EE � 1, the droplet
will be caught by building enclosures before it barely changes its diameter through
evaporation. In this case, the evaporation-free particle model will be sufficient. For
all other cases with EE numbers falling in between, a particle model with evaporation
has to be considered.

(2) Numerical Experiments

• Case Descriptions

Figure 3.9 shows the two-dimensional ventilated roommodeledwith CFD. The room
is 10 m long and 3 m high with supply inlet at the top left corner of the room and
exhaust vent at the bottom right corner. The supply air velocity is 0.1 m/s. A still
particle or droplet is released from the center of the room at height = 1.8 m (nose
level). The flow characteristic time for this case is 0.6 s, which is the dropping time
of a free object from 1.8 m.

Fig. 3.9 Simulated flow pattern of the ventilated room
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• Particle without Evaporation

Figure 3.10 shows the predicted trajectories of isothermal particles with different
diameters by CFD. For comparison, the 1500 s trajectory of lazy particles released
at the same location is illustrated, which represents the streamline of airflow through
the source location. The 20 μm particle can be seen as airborne because it never
falls onto the floor and tends to follow the airflow. The 40 μm particle will hit the
floor after 37 s while the 100 μm particle will do so after 7.2 s. For both cases, the
influence of airflow on particle trajectories is perceivable. The trajectories and falling
time of the 1500μmparticle and 10,000μmparticle are almost identical. The 10,000
μm-particle is almost like an object in free-fall since the dropping time is very close
to 0.6 s—the flow characteristic time. Therefore, for typical room conditions, 20 and
1500 μm can be used as critical diameters between airborne particles, Lagrangian
isothermal particles and free dropping particles, which correspond to the Stokes
numbers of 0.001 and 10, respectively, as demonstrated in Table 3.2.

• Particle with Evaporation

Figure 3.11 shows the predicted trajectories of vaporizing particles (droplets) with
different diameters by CFD. In the simulation, the room air temperature remains
293 K, while the initial droplet temperature is the same as the normal human body
temperature of 310K. The results show that the 40μmdroplet completely evaporates
to the air after 2.18 s before it starts to spread while the 100 μm droplet takes 12.2
s to fully evaporate. The 300 μm droplet falls on the floor after 2.31 s during which
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Fig. 3.10 Predicted trajectories of isothermal particles with different sizes in a ventilated room

Table 3.2 Model selection criteria for simulating isothermal particle movement in the air

Stokes number Category Critical Stv Corresponding D

Stv � 1 Lazy particle Stv,cr = 0.001 Dcr = 20 μm

Stv ≈ 1 Isothermal particle 0.001 < Stv,cr < 10 20 μm < D < 1500 μm

Stv � 1 Free dropping particle Stv,cr = 10 Dcr = 1500 μm

Note The corresponding D is calculated with typical building parameters DT = 10 m, H = 3 m, U
= 0.1 m/s, ρp = 1000 kg/m3
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Fig. 3.11 Predicted trajectories of vaporizing particles with different sizes in the ventilated room

time the droplet diameter is barely changed. The 1500 μm droplet further exhibits
the characteristics of an object in free-fall with less influence from airflow. Table 3.3
calculates the corresponding evaporation effectiveness numbers to the critical droplet
diameters under typical room conditions and indicates the appropriate models for
simulating droplet with different sizes.

(3) Summary

Different particle and droplet CFD models provide different simulation results in
which the size of particle and droplet is a critical justification factor. By analyzing
the particle and droplet momentum and mass conservation equations, two practical
indices—the Stokes number and the Evaporation Effectiveness number are proposed
to be applied as simple criteria to determine appropriate CFD models for particle
and droplet prediction. The case studies provide the rules of thumb that can be used
by building application engineers to guide their engineering simulations of indoor
air quality under typical room conditions, as summarized in Fig. 3.12.

According to Fig. 3.12, the bacteria and viral particles can be represented fairly
accurately by the lazy model because their diameters are far less than 20 μm as
shown in Fig. 3.13. Bio-aerosols with nuclei that are free from evaporation, such as
droplets produced during coughing or sneezing, can also be reasonably simulated
by the lazy model due to their small sizes. For larger-size solid particles such as
pollens and plant spores that usually have diameters of over 20 μm, the isothermal
particle model may be necessary. The vaporizing droplet model is imperative for

Table 3.3 Model selection criteria for simulating vaporizing particle movement in the air

EE number Category Critical EE Corresponding D

EE � 1 Lazy particle EE = 0.01 Dcr = 40 μm

EE ≈ 1 Vaporizing particle 0.01 < EE < 10 40 μm < D < 1500 μm

EE � 1 Isothermal particle EE = 10 Dcr = 1500 μm

Note The corresponding D is calculated with typical building parameters DT = 10 m, H = 3 m, U
= 0.1 m/s, ρp = 1000 kg/m3, RH = 40%, T = 20 °C
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Fig. 3.12 Rules of thumb for selecting models to predict indoor particle and droplet transport
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Fig. 3.13 Typical size ranges (in micron) of indoor air pollution particles

modeling droplets from sprinklers during fire extinguishing scenarios because of the
large water droplet sizes. In practice, to be safe/accurate, 5 μm is also commonly
used as a critical size to judge whether a Lagrangian model is needed. Although
the rules of thumb provides the initial guidance on model selection, identifying a
suitable model may still require specific (and sometime iterative) investigations that
consider simulation goals, computing cost and affordability, and actual particle and
environment conditions.

Practice-3: Indoor Airflow and Heat Transfer

Example Project: Air distribution inside a hospital operating room (OR)

Background:

The goal of the air distribution inside a hospital operating room (OR) is to protect
the patient and staff from cross-infection while maintaining occupant comfort and
not affecting the facilitation of surgical tasks. However, a source of contamination
bypasses HEPA installations in every OR, this source being the surgical staff them-
selves and the particles stirred up by their movement (Cook and Int-Hout 2009).
Therefore, air motion control must be used to maximize air asepsis.

In hospital ORs, using HEPA-filtered air and vertical (downward) laminar airflow
is typical. ASHRAEStandard 170-2008 (ASHRAE2008) requires that ventilation be
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Table 3.4 Laboratory
experiment specifications

Room dimensions 6.1 m × 5.8 m × 2.9 m

Diffuser dimensions 2.44 m × 3.05 m

Diffuser coverage area 7.06 m2

Air change rate 31.6

Nominal face velocity 0.127 m3/s m2

Room air temperature 20 °C

Supply air temperature 18.3 °C

Room pressurization +2.5 Pa

provided from the ceiling in a downward direction concentrated over the patient and
surgical team. The area of the primary ventilation air diffusers must extend at least
305 mm beyond each side of the surgical table. It also requires that air is exhausted
from at least two grilles on opposing sides of the room near the floor. It requires
the use of non-aspirating, Group E outlets that provide a unidirectional flow pattern
in the room (aka laminar flow diffusers). This study applied a computational fluid
dynamics (CFD) tool to predict the flow pattern in a representative OR environment
with standard air flow settings (Zhai and Osborne 2013).

Simulation Details:

TheCFDmodelwas built according to the full-scale laboratory experiment. The same
diffuser specifications and air change rate per hour (ACH) as tested in the experiment
were used in the CFD model, as well as the same room and equipment and occupant
conditions, as shown in Table 3.4 and Fig. 3.14. These objects and heat gain values
were chosen based on detailed on-site OR studies and measurements (Zhai et al.
2013). The equipment thermal loads as well as temperature of the patient’s wound
and skin can be seen in Table 3.5. Table 3.6 indicates the sizes of all of the objects
in the room.

Fig. 3.14 Base CFD model setup
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(a) Geometry Generation:

Melikov and Kaczmarczyk (2007) discussed the importance of detailed indoor
objects such as human body on indoor airflow characteristics and indicated the local
impacts of most details of indoor objects. Focusing on the general indoor airflow pat-
terns and interactions between patient and medical staffs, this study simplified the
simulation of indoor subjects such as human bodies and equipment as rectangular
geometries (except the surgical lighting) with exact heat sources as tested. This prac-
tice facilitates the generation of high-quality meshes and therefore improves both
speed and accuracy of the simulations.

(b) Mesh Generation

The example OR case was modeled using a rectangular Cartesian grid, which maps
well to typical OR geometry. Local grid refinement was implemented near critical
spaces and objects such as walls, inlets and persons. The results of a CFD simulation
are highly dependent on the quality of the computational grid. The grid refinement
study was conducted on the following grids: 70 × 58 × 45 (180 k cells), 87 × 73 ×
57 (362 k cells), 106 × 91 × 70 (675 k cells), 124 × 111 × 86 (1.2 M cells), 155 ×
142 × 108 (2.4 M cells). Figure 3.15 demonstrates the finest grid distribution.

Table 3.5 Laboratory
thermal loads

Object Qty Heat gain (W) Temperature
(°C)

Manikins—male 2 80

Manikins—
female

4 68

Anesthesia
machine

1 100

Surgical lights 2 250

Monitor 1 200

Ambient lights 6 128

Patient wound 1 25.6

Patient skin 2 27.4

Table 3.6 Room object
dimensions

Object Qty Dimensions (m)

Surgical table 1 0.54 × 1.88 × 0.66

Back table 1 0.76 × 1.52 × 0.76

Anesthesia machine 1 0.76 × 0.76 × 1.2

Surgical lighting 2 0.58 diameter

Misc. equipment (monitor) 1 0.76 × 0.76 × 0.76

Surgical staff 6 0.25 × 0.30 × 1.75

Patient body 1 0.30 × 1.60 × 0.25
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Fig. 3.15 Grid refinement case: 2.4 M cells

(c) Solver and Models

Both RANS and LES CFD methods were tested for this example case. While
advanced CFD modeling techniques such as Large Eddy Simulation (LES) pro-
vide substantial benefits, the currently available RANS technologies have proven to
be adequate for modeling the steady-state characteristics of the hospital operating
room air distribution. In the RANSCFD solutionmethodology, the RNG k − ε turbu-
lence model (Yakhot and Orszag, 1986) was employed as suggested by Zhang et al.
(2007). Details about these models will be introduced in Chap. 4 “Select Turbulence
Modeling Method”.

(d) Boundary Conditions/Object Modeling

Most indoor objects such as persons and equipment were specified straightforwardly
using the standard wall/block boundary condition methods. Inlet boundary condition
modeling is critical to accurate CFD modeling of indoor environments, as the inlet
boundary condition is the primary source of momentum that is responsible for the
overall room air distribution pattern. Srebric and Chen (2002) performed a compre-
hensive analysis of diffuser boundary conditions to determine appropriate simplified
boundary conditions, and the box and momentum method have been determined to
be the most appropriate models for the diffusers that were applied in this study. The
momentum method was used in this example since it was recommended by Chen
and Srebric (2002) for the grille diffuser that is similar to the non-aspirating diffuser
type.

Results and Analysis:

(a) Convergence/Grid Independence

The simulation was considered converged when the sums of residual errors in the
mass, momentum, energy, and turbulence-model equations, respectively, reach a
pre-defined level (i.e., 0.1%). The grids of different sizes were evaluated using the

https://doi.org/10.1007/978-981-32-9820-0_4
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normalized root mean squared error (NRMSE) of the CFDmodel results with differ-
ent grids (Wang and Zhai 2012) that will be described in Chap. 9 “Analyze Results”.
Figure 3.17 shows the NRMSE of the predicted U and W direction velocity at the
four measure poles (1–4) across the center axis of the room (2.88 m) (shown in
Fig. 3.16), between the 180 K (and 362 K) meshes and the 675 K mesh. It reveals
that there is generally a great improvement in error with the 362 K mesh, and the
computational error is typically below 10%, and absolutely below 30%. Based on
these, and in order to minimize the simulation time, the 362 K mesh could be used
for various engineering parametric simulations.

(b) Model Validation

The simulation replicates the airflow pattern as observed in the lab experiment (Zhai
et al. 2013): an inward curvature of the airflow to the center of the jet stream, as
seen in Fig. 3.18. This behavior reduces the overall coverage area and could pose a
contamination risk to the patient.

Fig. 3.16 CFD grid refinement measurement locations in central cross-sectional plane (1. center of
room; 2. interior edge of diffuser; 3. midpoint of diffuser; 4. exterior edge of diffuser; 5. midpoint
of outer region of room)
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Fig. 3.17 NRMSE comparison between 180 and 362 K meshes and 675 K mesh

https://doi.org/10.1007/978-981-32-9820-0_9
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Fig. 3.18 Velocity vectors and contours at the central cross section with 675 K grid

The quantitative comparisons of simulation and experimental results were plotted
in Figs. 3.19 and 3.20, for U (X) and W (Z) velocity component, respectively. Fig-
ures 3.19 and 3.20 show that the CFD simulations closely follow the experimental
results, with a few exceptions (e.g., right above the patient body at Pole 1). It also
appears that there is, in general, a large difference between the experimental results
and the 180 K mesh, but a smaller difference between the 362 and 675 K meshes.
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Fig. 3.19 Comparison of U-velocity in X direction
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Fig. 3.20 Comparison of W-velocity in Z direction

(c) Discussion of Results

This example was used to demonstrate the applicability of using CFD for modeling
and analysis of the surgical environment air flow. While CFD can be accurately used
for modeling indoor air distribution in operating rooms, CFD user must be extremely
careful in implementing these models to insure accurate simulation of air flow. The
sensitivity of air flow to thermal characteristics of the indoor environment makes
the model sensitive to heat gain input parameters. The heat gain and inlet boundary
conditions must be carefully selected to ensure that the resulting air distribution
patterns are correct.

The general indoor environment conditions place the operating room indoor air
distribution in the mixed convection regime, but high cooling loads can lead to
a strongly buoyancy-driven flow that is verified by the parametric study of the
Archimedes number of supply air jet in theOR. The study reveals that the dependence
of the room air distribution on the Archimedes number of supply air jet, instead of
face velocity of supply diffuser, is of significant importance.

Assignment-3: Simulating Wind Flow Pattern
across an Urban Environment

Objectives:

This assignment will use a computational fluid dynamics (CFD) program to model
the wind-driven airflow distribution over an urban environment.

Key learning point:

• Urban wind simulation with appropriate domain sizes
• Wind profile input.
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Simulation Steps:

(1) Build a (few) block(s) of buildings to represent a realistic community site (You
may use map tools such as Google Earth to find some info);

a. For those of you familiar with SketchUp (free tool), you may also consider
to download building block models from Google SketchUp 3D warehouse
for some specific real location in the world;

b. You need to convert the SketchUp model into a certain suitable format that
can be recognized and imported into the CFD software. Cleaning work is
needed most of time to correctly use SketchUp models in CFD tools.

(2) Select appropriate outdoor domain sizes to be modeled;
(3) Study localweather data and identify representativewind conditions (directions,

speeds, changes, frequencies, etc.);
(4) Establish corresponding boundary conditions, particularly the wind profile [iso-

thermal case only: no temperature];
(5) Select a turbulence model: the standard k-ε model;
(6) Define convergence criterion: 0.1%;
(7) Set iteration: at least 1000 steps for steady simulation;
(8) Determine proper grid resolution with local refinement: at least 400,000 cells.

Cases to Be Simulated:

(1) Steady flow of wind over the building complex.

Report:

(1) Case descriptions: description of the case
(2) Simulation details: computational domain, grid cells, convergence status

• Figure of the grid used (on X-Z, X-Y planes);
• Figure of simulation convergence records.

(3) Result and analysis

• Figure of airflow vectors at the middle plane of the buildings;
• Figure of pressure contours at the middle plane of the buildings;
• Figure of velocity contours at the middle plane of the buildings.

(4) Conclusions (findings, result implications, CFD experience and lessons, etc.).
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