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Abstract
With the advent of high-resolution/high mass accuracy instrumentation, sophis-
ticated informatic approaches, and advances in liquid chromatography, mass 
spectrometry-based proteomics has emerged as an indispensable and widely 
used tool for the identification, characterization, and quantification of proteins on 
a large scale. Deep proteome analyses can now sequence over 14,000 protein 
isoforms for a single human cell line rivaling the depth of next-generation RNA 
sequencing technology. Without additional enrichment steps, highly sensitive 
MS-based proteomic studies yield comprehensive identification of major post- 
translational modifications (PTMs). Isotopic labeling techniques enable the com-
parison of multiple samples in a single mass spectrometry experiment, while 
data-independent acquisition strategies provide comprehensive protein coverage 
and quantification against complex backgrounds.
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Proteins are the essential mediators of cellular function: Their biological activities 
and interactions catalyze biochemical reactions and thereby facilitate physiological 
and pathological processes. Characterization of the functional state of proteins as 
well as measuring changes in protein abundances reveals fundamental insights into 
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these processes and ultimately deepens our understanding of the underlying bio-
chemistry and molecular biology. While gene expression analysis by real-time PCR 
or via transcriptome sequencing provides valuable insights into biological path-
ways, it can only infer protein abundance information. There is a growing consensus 
that correlation between mRNA and protein levels is in general modest (Gygi et al. 
1999b; Schwanhäusser et al. 2011; Skelly et al. 2013; Lundberg et al. 2010). The 
protein phenotype appears to be buffered against transcriptional variation (Fu et al. 
2009) Correlations of transcripts and proteins depend on cellular location and bio-
logical function (Conrads et  al. 2005) and are controlled by tissue-specific post- 
transcriptional regulation (Franks et al. 2017). Therefore, direct measurements of 
proteins are preferable since they will more accurately reflect cellular status and 
provide insights into the molecular mechanisms that underlie physiological and 
pathological processes. Mass spectrometry-based proteomics has emerged as the 
method of choice for the identification, characterization, and quantification of pro-
teins (Picotti et  al. 2013; Aebersold and Mann 2016). Protein identification and 
characterization is critical to identify alternatively spliced proteins, proteolytic pro-
cessing, and post-translational modifications that alter the composition and func-
tional status of proteins at the post-transcriptional level. It is estimated that the 
diversity of the roughly 20,300 protein-coding genes is increased to over 500,000 
proteoforms by alternative splicing and post-translational modifications (phosphor-
ylation, glycosylation, proteolytic truncations) (Smith et al. 2013).

The ability to identify proteins at a large scale has been primarily driven by the 
advances in mass spectrometric instrumentation, informatic workflows, and separa-
tion of complex protein mixtures. Liquid chromatography (LC) and two- dimensional 
polyacrylamide gel electrophoresis (2D-PAGE) are two of the most commonly 
applied separation techniques prior to mass spectrometric analysis. Quantitative 
proteomics has developed into an indispensable tool for cancer research to analyze 
disease-related tissues and body fluids in order to identify proteins, protein post- 
translational modifications, or protein complexes that can be used to detect the dis-
ease early, prognose disease outcome, and monitor response to therapeutic 
intervention and for the elucidation of molecular mechanisms for the development 
of novel therapeutics. Oncoproteomics has been extensively reviewed, from pro-
teomic studies of tumor tissue and cancer cell lines to profiling of plasma and other 
body fluids for cancer biomarkers (Huang et al. 2017; Belczacka et al. 2018; Tan 
et al. 2012; Cantor et al. 2015; Veenstra 2013; Faria et al. 2017). Here, we highlight 
the most promising quantitative proteomics approaches in the context of studying 
cancer signaling pathways.

4.1  Differential Analysis by 2D-PAGE

In 2D-PAGE, proteins are initially resolved by isoelectric focusing followed by a 
separation based on molecular mass. After protein staining, specialized image 
analysis software is used to identify differentially expressed protein spots. Spots 
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of interest are excised, and proteins are in-gel digested with exogenous proteases 
(i.e., trypsin). The resulting peptides are recovered and their molecular masses 
measured by mass spectrometry. In the early stages of proteomics, subsequent 
peptide identification was performed by peptide mass fingerprinting (PMF) using 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS), in which peptide masses were matched against theoretically 
predicted peptide masses in a database of candidate proteins (Monteoliva and 
Albar 2004). Nowadays, with the ubiquity of LC-MS/MS instrumentation, protein 
identification is typically performed in higher throughput and with higher accu-
racy through the matching of peptide fragmentation data obtained from tandem 
mass spectrometry experiments (MS/MS) to theoretically predicted peptide frag-
ment masses. 2D-PAGE is a classical proteomics workflow that provides a 
straightforward visual and quantitative comparison of differences in protein com-
position. It has been extensively employed in cancer research, including for the 
detection of tumor-associated proteins in colorectal cancer tissue samples (Wang 
et al. 2007; Stulík et al. 1999; Xing et al. 2006) and in the combination with laser 
capture microdissection (LCM) (Shi et  al. 2011). However, the application of 
2D-PAGE has been declining in recent years due to its limitations in throughput 
and reproducibility, sensitivity, dynamic range, and its laborious nature (Belczacka 
et al. 2018). The detection limits of the most commonly used stains range from 
500 ng/mm2 (colloidal Coomassie Brilliant Blue) to 0.1 ng/mm2 (silver stain and 
fluorescent dyes). Some of these drawbacks can be overcome by the usage of 
narrow-range IPG strips to increase the resolving power in the initial isoelectric 
focusing dimension. To increase reproducibility and improve comparative analy-
ses, difference gel electrophoresis (DIGE) was developed, a form of multiplexed 
2D-PAGE where up to three different protein samples are fluorescently labeled 
prior to gel separation. DIGE-based differential proteomics analysis has been suc-
cessfully used in the discovery phase of cancer biomarker studies (colorectal, 
prostate cancer) when the proximal tissue samples are being analyzed at greater 
depth before validation of potential markers by ELISA in serum (Hamelin et al. 
2011; Pang et al. 2010).

A particular strength of 2D-PAGE is the ability to detect and visualize proteo-
forms – the different molecular structures that the protein products of a single gen 
can assume due to genetic variations, alternatively spliced RNA transcripts, and 
post-translational modifications (PTMs) (Smith et al. 2013). PTMs including pro-
teolytic processing, deamidation, glycosylation, acetylation, alkylation, cysteine 
oxidation, tyrosine nitration, and phosphorylation regulate many cellular signaling 
pathways. PTMs alter the molecular mass and/or the isoelectric point of the protein. 
For example, different phosphorylation states of a protein are observable as hori-
zontal spot trains in a 2D gel, whereas glycosylation can alter both the pI and the 
molecular weight of proteins resulting in clusters shifted both horizontally and ver-
tically (Löster and Kannicht 2008). ProMoST (http://proteomics.mcw.edu/promost.
html) is a webtool that can be used to calculate gel shifts introduced by PTMs to 
facilitate more detailed analyses (Halligan et al. 2004).
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4.2  Top-Down Proteomics

Ideally, intact proteins would be analyzed directly by mass spectrometry without the 
need for proteolytic digestion; protein identification, in turn, would be achieved by 
MS/MS fragmentation of the whole protein. As a liquid phase-alternative to 
2D-PAGE, “top-down” proteomics has made substantial progress in the last decade, 
and it is now feasible to measure over 3000 proteoforms using a four-dimensional 
LC separation system that is integrated with high-resolution electrospray mass 
spectrometry analysis (Tran et al. 2011). However, similar to 2D-PAGE, the high 
complexity and dynamic range of protein concentrations encountered in proteome 
research currently limit the applicability of the top-down approach to large-scale 
discovery analyses. Nonetheless, “native mass spectrometry” experiments in which 
biological analytes are ionized by electrospray from nondenaturing solvents to pre-
serve noncovalent interactions in the gas phase, have been used to analyze specific 
macromolecular assemblies including protein-protein and protein-ligand complexes 
(Hernández and Robinson 2007; Zhou et al. 2011; Leney and Heck 2017).

4.3  Bottom-Up (Shotgun) Proteomics

Instead of top-down intact protein analysis, “bottom-up” proteomics has been the 
more practical approach and has been widely adapted in the field (Aebersold and 
Mann 2016). In the bottom-up strategy, peptides are generated by enzymatic diges-
tion of proteins with sequence-specific, exogenous proteases such as trypsin. The 
resulting peptides are separated by reversed-phase liquid chromatography (LC) and 
injected into the hyphenated tandem mass spectrometer. Peptides are isolated in the 
gas phase and subjected to fragmentation, thereby generating tandem mass spectra 
(MS/MS; MS2). Collision-induced dissociation (CID) and higher-energy collisional 
dissociation (HCD) are two of the most commonly used fragmentation techniques 
to generate sequence information for peptide identification. Electron-transfer dis-
sociation (ETD) and electron-capture dissociation (ECD) can be useful alternative 
strategies for the identification of larger and post-translationally modified peptides. 
Post-translational modifications (PTMs) such as phosphorylation and glycosylation 
are labile and readily lost over peptide backbone fragmentation (Mikesh et al. 2006; 
Syka et al. 2004; Zubarev et al. 2000). The resulting MS/MS fragmentation data are 
submitted to database search engines (i.e., MASCOT (Perkins et  al. 1999), 
SEQUEST (Eng et al. 1994), X!Tandem (Craig and Beavis 2004), MyriMatch (Tabb 
et  al. 2007), and OMSSA (Geer et  al. 2004)) for protein/peptide identification. 
These search engines match and score the empirically acquired spectra against theo-
retically predicted fragmentation patterns of peptides derived from in silico diges-
tions of proteins stored in protein sequence databases (Nesvizhskii 2010; Eng et al. 
2011). Alternatively, MS/MS spectra can be matched via correlation analysis to 
previously observed and identified spectra using spectral library search engines 
such as SpectraST (Lam et al. 2007), X!Hunter (Craig et al. 2006), and BiblioSpec 
(Frewen et al. 2006). Though spectral library searching is typically considered to be 

M. Hardt



93

a more sensitive approach than sequence database searches, its adaption in the field 
has been fairly limited (Deutsch et al. 2018). PeptideAtlas (Desiere et al. 2004), the 
Global Proteome Machine Database (Craig et  al. 2006), and the MassIVE 
Knowledge Base (Wang et al. 2018) are efforts to leverage the large number of pep-
tide identifications contained in public proteomics datasets to create spectral library 
resources that can support future proteomics experiments.

Peptide sequences can also be derived from MS/MS fragmentation data by de 
novo sequencing approaches using algorithms including PEAKS (Ma et al. 2003), 
PepNovo (Frank and Pevzner 2005), Novor (Ma 2015), and Lutefisk (Taylor and 
Johnson 2001) that do not rely on reference databases (Allmer 2011). De novo 
sequencing frameworks designed for top-down proteomics can be advantageous in 
the analysis of high-resolution bottom-up MS/MS datasets (Vyatkina et al. 2017).

Combining the results of multiple search engines with tools such as iProphet 
(Shteynberg et al. 2011) can improve the confidence of peptide-spectrum matches 
and increase the overall number of distinct peptides and proteins identified since 
each search engine has its own specific strengths which can be complementary to 
others (Shteynberg et al. 2013).

Currently, there are two major data acquisition strategies used in bottom-up pro-
teomics: The preferred method for proteome discovery is data-dependent acquisi-
tion (DDA), which aims to maximize the number of protein and peptide 
identifications per experiment to achieve comprehensive proteome coverage. 
Hallmarks of this approach include the 1-h yeast proteome (Hebert et al. 2013b) and 
draft maps of the human proteome with coverages of up to 92% of the protein- 
coding sequences (Wilhelm et al. 2014; Kim et al. 2014). To achieve this level of 
proteome coverage, additional fractionation techniques (strong anion exchange; off- 
gel electrophoresis) were employed to distribute sample complexity across addi-
tional data acquisitions. Applied on single cell lines (i.e., HeLa human cervical 
carcinoma), over 10,255 proteoforms stemming from 9205 genes can be identified 
by deep proteomics analysis (Nagaraj et al. 2011). Proteomics analyses of a panel 
of 11 commonly studied cell lines (Geiger et al. 2012) and the NCI-60 panel of 59 
cancer cell lines (Gholami et al. 2013) suggests that at least ~10,000 proteins are 
about the average proteome coverage of a human cell line. A more recent study 
showed that adding an off-line high pH peptide fractionation step prior to low pH 
LC-MS/MS analysis can deepen the protein coverage even further to over 12,000 
proteins for HeLa cells (Bekker-Jensen et al. 2017). A key strength of the described 
DDA methods is the fact that no a priori knowledge about the identity of the expected 
proteins is required and therefore unanticipated proteins and PTMs can be discov-
ered, potentially providing new biological understanding.

Data-independent acquisition (DIA) also referred to as SWATH (Sequential 
Windowed data-independent Acquisition of Total High-resolution) is a more 
recently developed methodology that aims to obtain complete fragment ion cover-
age across samples (Ludwig et al. 2018). In DDA experiments, a full precursor ion 
spectrum of all co-eluting peptides is acquired at the MS1 level, after which as many 
as possible precursor peptides are isolated, fragmented, and MS2 spectra acquired 
within the instrument cycle time. In DIA experiments by contrast, predetermined 
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windows of m/z values are sequentially isolated for fragmentation (Gillet et  al. 
2012). In each instrument cycle, the entire precursor ion m/z range gets fragmented, 
resulting in highly multiplexed fragment ion spectra. Precursor-fragment ion rela-
tionships can be reconstructed with bioinformatic tools such as DIA-Umpire (Tsou 
et  al. 2015, 2016) to create “pseudo”-spectra that are conventionally searched 
against protein databases to create internal spectral libraries that contain peptide 
identifications. These internal spectral libraries or external spectral libraries built 
from DDA data are then used to perform targeted extraction (Röst et al. 2014). Key 
advantage of the DIA approach is its unbiased nature: All precursor and all fragment 
ions are acquired all the time without losing low abundant ions; the identities of 
quantified peptides do not need to be specified a priori, which is ideal when the data 
is acquired over the course of a multi-year study. DIA measurements comprise an 
archival record of the sample content that can be re-interrogated when new proteins, 
proteoforms, or post-translational modifications sites of interest emerge.

4.4  Relative Quantitation in Bottom-Up Proteomics

In bottom-up proteomics, quantitation is achieved by either label-free or stable iso-
tope labeling methods (Bantscheff et al. 2012). Stable isotope-based methods are 
the gold standard for quantification; however they require metabolic labeling or an 
additional chemical labeling step during sample preparation. Label-free approaches 
are simpler and more economical, providing relative quantitation for an unlimited 
number of samples (including clinical specimens) and can be based on either DDA 
or DIA datasets (Nahnsen et al. 2013). State-of-the-art mass spectrometers provide 
the necessary high mass resolution and high mass accuracy that are required for the 
accurate extraction of ion chromatograms (XICs; elution profiles) of precursor ions 
at the MS1 level that are used to determine peptide quantities. In the past, when 
bottom-up proteomics was mostly performed on low-resolution ion trap instru-
ments, the number of identified MS/MS spectra for a given peptide (spectral counts) 
was used as a surrogate measurement for peptide abundance (Ishihama et al. 2005). 
While the spectral count approach has been used to create one of the drafts of the 
human proteome (Kim et al. 2014), XIC-based approaches are now the most com-
monly employed label-free methodology due to their superior sensitivity. By align-
ing the retention times of XIC areas and propagating MS/MS-based peptide 
identifications across data acquisitions (“matching between runs”), the overall num-
ber of detectable peptides between samples can be boosted which leads to more 
comprehensive comparative analyses (Bateman et al. 2013). Numerous academic 
and commercial proteomics data analysis packages including PEAKS (Ma et  al. 
2003) and Scaffold (Searle 2010) offer label-free quantitative workflows in addition 
to their identification pipelines (Nahnsen et  al. 2013; Mueller et  al. 2008). 
Particularly noteworthy is the continuously expanding proteomics software tool 
suite under the MaxQuant umbrella which is freely available and has become one of 
the most widely used proteomics data analysis platforms. MaxQuant incorporates 
the peptide database search engine Andromeda (Cox et al. 2011) and the MaxLFQ 
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workflow for label-free quantitation (Cox et al. 2014) and supports as well other 
MS1- and MS2-level (isobaric) labeling approaches (Tyanova et al. 2016).

In contrast to the stochastic precursor ion selection in DDA, DIA systemically 
parallelizes the fragmentation of all detectable ions, thereby minimizing selection 
bias, which in turn results in improved dynamic range and sensitivity. Specific pep-
tides can be identified and quantified by applying targeted extraction of either MS1 
precursor or MS2 fragment ion intensities using spectral library-based OpenSWATH 
(Röst et al. 2014), Skyline (Maclean et al. 2010), or commercial software (PeakView 
SWATH 2.0, SCIEX; Spectronaut, Biognosys). The performance of these “peptide- 
centric” query tools in terms of identification precision, robustness, and specificity 
has been benchmarked against reference datasets and compared to the “data- centric” 
DIA-Umpire approach (Tsou et al. 2015) that does not rely on existing assay librar-
ies (Navarro et al. 2016). Targeted extraction relies on the generation of sample- 
specific assay libraries that contain precursor and fragment ion m/z values, 
normalized retention times, and relative ion intensities of targeted peptides. 
Retention times are typically normalized using a set of reference peptides (Escher 
et al. 2012). DIA studies often rely on sample-specific libraries that are acquired on 
the same instrument in DDA mode prior to the DIA analysis (Gillet et al. 2012; Röst 
et al. 2014; Hüttenhain et al. 2013). Alternatively, repositories of assay libraries for 
human proteins have been created that are optimized for specific MS instruments. 
These resources contribute to simplified and reproducible targeted SWATH/DIA 
analysis across laboratories (Rosenberger et al. 2014). A multi-laboratory evalua-
tion study across 11 sites demonstrated that SWATH acquisitions are capable of 
reproducibly detecting and quantifying a large-scale protein set (Collins et al. 2017).

4.5  Multiplexed Quantitation Using Stable Isotope Labeling 
Methods

The analysis of cancer signaling networks requires the ability to quantify proteins 
across multiple conditions so that temporal dynamics can be captured. A broad vari-
ety of chemical and metabolic stable isotope labeling methods have been developed 
that allow for multiplexing (Gevaert et al. 2008). Stable isotope labeling strategies 
can provide relative and absolute quantitation; however, the specifics of the labeling 
reactions can limit the number of samples that can be interrogated in contrast to 
label-free approaches. Isotope-coded affinity tags (ICAT) are one of the first stable 
isotope chemical labeling reagents that became widely adapted in proteomics (Gygi 
et al. 1999a). ICAT reagents are comprised of a reactive group specific toward cyste-
inyl residues, a stable isotope label (heavy/light), and a biotin affinity tag for selec-
tive enrichment to reduce sample complexity. ICAT allows for the duplex analysis 
for comparison of protein levels across two biological states. The exclusive reliance 
of ICAT on cysteine-containing peptides limits its general applicability as quantita-
tion approach, and it has been mostly replaced by a new generation of isobaric label-
ing strategies based on N-hydroxysuccinimide (NHS) chemistry. The TMT (tandem 
mass tag) (Thompson et al. 2003) and iTRAQ (isobaric tags for relative and absolute 
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quantitation) (Ross et al. 2004) labels share isobaric stable isotope moieties as design 
features, which render differentially labeled samples “silent” – indistinguishable dur-
ing chromatographic separation and in precursor MS1 acquisition. Only upon MS/
MS fragmentation the low molecular weight reporter ions are released, and their rela-
tive ion abundances are used for quantitation. Currently, there are up to eight reporter 
ions available for iTRAQ (Choe et al. 2007) and up to ten for TMT (Erickson et al. 
2017), each allowing for multiplexed analysis in single LC-MS/MS experiments. For 
projects entailing larger sample numbers, one of the isotope channels is typically 
used for a control reference mixture.

The dynamic range of isobaric multiplex quantitation methodologies can be lim-
ited by isotopic contamination, background interference, low signal-to-noise ratio, 
and ratio compression (Ow et al. 2009; Karp et al. 2010). Applying an additional 
isolation and fragmentation event (MS3 scan) (Ting et al. 2011) and gas-phase puri-
fication through proton transfer ion-ion reactions (Wenger et  al. 2011) has been 
shown to eliminate interferences. Co-isolating and co-fragmenting of multiple MS2 
fragments (MultiNotch MS3) can boost sensitivity and improve the dynamic range 
of the isobaric tagging approach (Mcalister et al. 2014).

Dimethyl labeling using different isotopomers of formaldehyde provides a more 
economical triplex stable isotope quantitation method at the peptide level (Boersema 
et  al. 2008). Chemical isotope labels are typically introduced late in the sample 
preparation process, which makes these labeling strategies broadly applicable; how-
ever, at the same time, they are more susceptible to variability introduced during 
processing.

SILAC (stable isotope labeling by amino acids) is a metabolic labeling method 
alternative to chemical isotope tags (Mann 2006). SILAC relies on the in  vitro 
incorporation of essential amino acids that feature substituted stable isotope nuclei 
(e.g., Arg or Lys labeled with 13C or 15N). SILAC labeling is insensitive to variability 
introduced at the sample processing and analysis stage since all sample handling 
issues affect all proteins and peptides equally. SILAC and 15N metabolic labeling 
has been used for comparative proteomics analysis in cell culture systems (Ong 
et al. 2002; Everley et  al. 2004, 2006) and model organisms including yeast (de 
Godoy et al. 2008), C. elegans and D. melanogaster (Sury et al. 2010), and rodents 
(Kruger et al. 2008; Wu et al. 2004). Full incorporation into the entire organisms 
requires feeding more than one generation exclusively with the essential, stable 
isotopically labeled lysine amino acids. A comprehensive analysis employing triple 
SILAC-based proteomics (using Arg0, Lys0; Arg6-L-13C6 and Lys4-L-2H4; Arg10- 
L- 13C6

15N4 and Lys8-L-13C6
15N2), RNA-seq-based transcriptomic profiling, and 

antibody- based confocal microscopy revealed that three functionally different 
human cancer cell lines shared expression levels for more than half of their expressed 
genes, while close to 20% were substantially altered (Lundberg et al. 2010).

In the super-SILAC method, lysates from multiple SILAC-labeled cancer cell 
lines are combined to serve as internal, isotopically labeled peptide standards to 
measure fold change ratios between human tumor proteomes (Geiger et al. 2010). 
By combining SILAC and TMT labeling in the same experiment, a strategy termed 
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“hyperplexing,” it is possible to extend the number of samples that can be quantified 
in the same LC-MS run (Dephoure and Gygi 2012).

The advent of mass spectrometers capable of ultra-high mass resolution 
(>200,000) made it possible to reveal the small mass differences (milliDaltons) 
introduced by the differences in the neuron-binding energetics of isotopes such as 
2H (+ 1.0062), 13C (+ 1.0034), and 15N (+ 0.997). The neuron encoding (NeuCode) 
method (available as amine-reactive labels and SILAC reagents) takes advantage of 
the ability to embed these mass defect-based neutron signatures into isotopologues. 
At standard resolution, these isotopologues are concealed during MS1 and MS/MS 
analysis and therefore do not increase spectral complexity (Hebert et al. 2013a). The 
multiplexed quantitative information is only revealed at high-resolution scans. 
NeuCode is applicable to DDA (Overmyer et  al. 2018) and DIA approaches 
(Minogue et al. 2015) as well as targeted proteomics (Potts et al. 2016) and top- 
down applications (Rhoads et al. 2014; Shortreed et al. 2016).

4.6  Quantitation by Targeted Proteomics

Targeted proteomics provides accurate and quantitative measurements of protein 
abundances and thereby enables hypothesis-driven research using mass spectrome-
try (Picotti et al. 2013). In contrast to DDA- and DIA-based proteomics analyses, 
the identities of the proteins of interest are known a priori in targeted proteomics 
experiments. For any given protein, peptides are selected that are “proteotypic,” 
meaning that each peptide has a unique sequence, is readily detected by MS, and 
has been repeatedly and consistently identified in previous studies (Mallick et al. 
2007). By selectively subjecting these proteotypic peptides to precursor ion isola-
tion and continuous fragmentation, characteristic fragment (product) ion abun-
dances for the most intense transitions can be recorded over the chromatographic 
elution profile, and this information is then used to estimate relative protein abun-
dances. These types of experiments are typically performed on triple quadrupole 
instruments operating in multiple reaction monitoring (MRM) mode, which is also 
referred to as selected reaction monitoring (SRM). To increase specificity, typically 
multiple product ions are measured. Absolute protein abundances can be deter-
mined by using spike-in, isotopically labeled reference peptides (Gerber et al. 2003) 
or mTRAQ chemically labeled standards (Desouza et al. 2008) or in label-free for-
mat when anchor proteins are used to create a quantitation model (Ludwig et al. 
2011). An efficient method to define custom MRM assay conditions in high- 
throughput format is through the usage of crude synthetic peptide libraries (Picotti 
et al. 2010). To achieve proteome-wide coverage for absolute protein quantification, 
an in  vitro protein expression system has been used to synthesize over 18,000 
recombinant proteins from full-length human cDNA libraries, which were then 
digested and labeled with mTRAQ (Matsumoto et  al. 2017). Alternatively, 
ProteomeTools is a brute force project to create a resource comprised of the 
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comprehensive LC-MS analysis of over 1.4 synthetic million peptides that cover 
tryptic and non-tryptic peptides representative of the canonical human proteome, as 
well as additional peptides covering splicing variants, post-translational modifica-
tions, and other sequences representing interesting biology such as disease-associ-
ated mutations (Zolg et al. 2017).

Compared to shotgun proteomics approaches, MRM assays provide higher sen-
sitivity, specificity, and a broad dynamic range. Once established, individual MRM 
assays can be multiplexed at the peptide level (Picotti and Aebersold 2012). 
Measurements have been shown to be highly reproducible across laboratory sites 
(Addona et al. 2009). SRMAtlas (www.srmatlas.org) and PASSEL (www.peptideat-
las.org/passel) both host freely accessible proteome-wide assay libraries along with 
empirical performance data that facilitate the design of targeted MRM assays 
(Farrah et al. 2012; Kusebauch et al. 2014, 2016). MRM assays for 1157 cancer- 
associated proteins have been developed, of which 182 were detected in depleted 
plasma and 408  in urine across a cohort of cancer patients and healthy controls 
using a label-free MRM strategy (Hüttenhain et al. 2012).

By combining peptide immunoaffinity enrichment with stable isotope-labeled 
standards and MRM-MS, it is possible to create automated, multiplexed assays with 
sufficient sensitivity to quantify low-abundance target proteins in plasma as an alter-
native to traditional enzyme-linked immunosorbent assay (ELISA)-based testing 
(Whiteaker et al. 2010).

The advent of high-resolution/accurate mass (HRAM) instrumentation has 
enabled the development of the parallel reaction monitoring method (PRM), in 
which the monitoring of a single product ion in an MRM assay is substituted with 
the parallel detection of all target product ions in a high-resolution MS/MS analysis 
(Peterson et al. 2012; Bourmaud et al. 2016). While MRM and PRM provide the 
best quantitation performance, both are throughput limited in terms of how many 
proteins can be quantified in a single MS experiment. SWATH/DIA provides a com-
pelling alternative for reproducible quantitation in which a targeted data analysis 
strategy is employed to extract specific fragment ion abundances out of the compre-
hensive fragment ion map provided by the DIA dataset. Similar to MRM/PRM, 
reference libraries containing SWATH assay conditions can be built (Schubert et al. 
2015) and shared via repositories (Rosenberger et al. 2014). SWATH/DIA assays 
have been shown to perform well across multiple laboratory sites (Collins et  al. 
2017). Additional throughput can be achieved for targeted proteomics assays when 
multiplexing is extended to the sample level by utilizing isobaric labels. In the 
TOMAHAQ method, synthetic TMT0-labeled spiked-in peptides trigger the 
MultiNotch MS3 acquisition of co-eluting TMT10-labeled endogenous peptides, 
which allowed for the quantitation of 69 target proteins across 180 cancer cells 
within 48 h (Erickson et al. 2017). The setup and data analysis for this approach 
have been simplified by the recent development of the TomahaqCompanion tool 
(Rose et al. 2018).

By carefully selecting protein targets based on their involvement in particular 
biochemical pathways, it is possible to quantitatively investigate the response of 
cellular systems to external stimulation (Matsumoto and Nakayama 2018). The 
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multiplex MRM approach has been used to study the protein expression in major 
metabolic energy pathways of breast cancer cells in response to hypoxia, glucose 
deprivation, and estradiol stimulation (Drabovich et  al. 2012; Murphy and Pinto 
2010). Leveraging their in vitro proteome-assisted MRM assay library (iMPAQT) 
that covers over 18,000 proteins, Matsumoto et al. were able to explore the global 
impact of oncogenic transformation on fibroblasts (2017). Alternatively, by inte-
grating detailed information about biological processes on the basis of literature 
evidence and computational predictions, it is possible to carefully select protein 
quantitation targets that can serve as sentinels or proxies for system responses (Soste 
et al. 2014).

4.7  Characterization of Post-translational Modifications

With continued improvements in mass accuracy, resolution, and sensitivity of mass 
spectrometry instruments, proteomic expression analyses feature deeper proteome 
and higher protein sequence coverages that enable more exhaustive characteriza-
tions of post-translational modifications (PTMs). PTMs including phosphorylation, 
glycosylation, and ubiquitination are important modulators of protein function: For 
example, most proteolytic enzymes are activated from their inactive precursor 
(zymogen) state by proteolytic cleavage (Klein et al. 2017). Many phosphorylations 
lead to protein conformational changes that modulate protein activity, i.e., protein 
binding. Ubiquitination marks proteins for degradation. Glycosylation often regu-
lates protein function and enzymatic activities, alters protein-protein interactions, 
and changes the subcellular localization of numerous proteins. In mass spectromet-
ric analyses, most PTMs lead to characteristic mass shifts in MS1 spectra, and their 
location on specific amino acid residues can be determined by fragmentation analy-
sis. However, the combinatorial nature of post-translational modifications creates a 
heterogeneity that constitutes a formidable analytical challenge as the vast struc-
tural diversity that can be generated via oligomerization and branching of glycans 
(complex carbohydrates) illustrates (Laine 1994). Hundreds of protein modification 
kinds (biological and artificial) have been reported in the Unimod (Creasy and 
Cottrell 2004) and RESID (Garavelli 2004) databases. The most actively studied 
post-translational modifications include phosphorylation, methylation, ubiquitina-
tion, methylation, acetylation, and O-GlcNAcylation (Doll and Burlingame 2015). 
Together, over 260,000 PTM sites have been identified in the human proteome so 
far (Doll and Burlingame 2015). Comprehensive information on empirically 
observed in vivo and in vitro post-translational modifications can be found in online 
bioinformatic resources including PhosphoSitePlus (PSP) (www.phosphosite.org), 
iPTMnet (https://research.bioinformatics.udel.edu/iptmnet/), and Phospho.ELM 
(http://phospho.elm.eu.org/) along with additional tools useful for PTM analysis 
(Hornbeck et al. 2012; Huang et al. 2018; Dinkel et al. 2011).

4 Advances in Mass Spectrometry-Based Proteomics and Its Application in Cancer…

http://www.phosphosite.org
https://research.bioinformatics.udel.edu/iptmnet/
http://phospho.elm.eu.org/


100

4.8  Phosphorylation

Protein phosphorylation is one of the central means by which cells transiently mod-
ulate protein function as exemplified by signal transduction pathways. The localiza-
tion, the extent of phosphorylation, and the site-specific occupancy or stoichiometry 
are important determinants of protein functional modulation. Phosphorylation states 
are mediated by a network of kinases that phosphorylate serine, threonine, and tyro-
sine residues and phosphatases that remove phosphorylations. Deregulated kinase 
activities have been associated with the ability of cancer cells to circumvent physi-
ological constraints on cell proliferation. Kinase inhibition (i.e., of the serine/threo-
nine kinase mammalian target of rapamycin (mTOR)) has emerged as one of the 
most heavily pursued classes of drug targets in oncology (Dowling et  al. 2010). 
With over 518 genes identified, protein kinases are one of the largest protein fami-
lies in eukaryotes (Manning et al. 2002). It is estimated that a typical eukaryotic cell 
harbors between 700,000 and 1000,000 potential phosphorylation sites (Ubersax 
and Ferrell 2007; Boersema et al. 2010). Analysis of 50,000 phosphopeptides in 
HeLa S3 cancer cells revealed that at least three-quarters of the 11,000 identified 
proteins were phosphorylated (Sharma et  al. 2014). Interestingly, the 150 most 
abundant phosphopeptides accounted for 20% of the cumulative phosphopeptide 
signal (Sharma et  al. 2014). Phosphoproteomics analysis of nine mouse tissues 
(12,000 proteins; ~36,000 phosphorylation sites) revealed that most phosphopro-
teins are widely expressed but display tissue-specific phosphorylation to adapt to 
tissue function (Huttlin et al. 2010).

Phosphotyrosine accounts for only 1% of phosphorylations, owing to its primary 
regulatory and not structural role in proteins and a short half-life due to the presence 
of highly active phosphotyrosine phosphatases (Sharma et al. 2014). Many phos-
phoproteins such as transcription factors and protein kinases have low copy num-
bers. Combined with the substoichiometric levels observed for many regulatory 
protein phosphorylations, enrichment strategies are necessary to comprehensively 
profile protein phosphorylations (Macek et al. 2009). Enrichment can be performed 
at the phosphoprotein level prior to digestion using immobilized metal affinity chro-
matography (IMAC) (Collins et al. 2005) or after digestion using phosphopeptide 
enrichment by metal oxide affinity chromatography (e.g., using titanium dioxide 
(TiO2)) or IMAC.  In the case of phosphotyrosine, immunoaffinity purification 
using phosphotyrosine-specific antibodies is preferred (Boersema et  al. 2010; 
Kettenbach and Gerber 2011; Rush et al. 2005; Breitkopf and Asara 2012). Mass 
spectrometric characterization of phosphopeptides is challenging due to their over-
all low abundance, susceptibility to ion suppression, and limited fragmentation pat-
terns (Dreier et al. 2018). Phosphopeptide-selective mass spectrometric detection 
methods include precursor ion and neutral loss scanning based on the diagnostic 
PO3

− and H3PO4 ion losses that are caused by the lability of the O-phosphate bond 
in collision-induced dissociation (Le Blanc et al. 2003; Carr et al. 2005). Compared 
to pSer and pThr, phosphorylations of tyrosine (pTyr) are relatively stable and 
remain attached to MS/MS fragments, which facilitates their analysis. Also, pTyr 
yields characteristic immonium ions that can be used as an alternative means to 
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identify phosphorylation sites (Steen et al. 2003). In ion trap instruments, detection 
of neutral losses can be used to trigger the acquisition of MS3 spectra in which the 
neutral loss precursor ion undergoes an additional round of isolation and fragmenta-
tion to yield better fragmentation coverage (Gruhler et al. 2005). Peptide fragmenta-
tion by ETD or ECD yields more extensive peptide backbone cleavages without 
shedding the labile phosphate groups first which, in turn, also facilitates phospho-
peptide identification (Chi et al. 2007; Stensballe et al. 2000). Large-scale, quantita-
tive phosphoproteomics has been used to define the downstream signaling networks 
of mTOR, identifying Grb10 as a potential mTORC1-regulated tumor suppressor 
(Hsu et al. 2011; Yu et al. 2011). The dynamic nature of the phosphoproteome man-
dates the acquisition of temporal profiles of the in vivo phosphoproteome to capture 
the cellular response upon stimulation (Olsen et al. 2006). By streamlining conven-
tional multi-step phosphoproteomics workflows into a simplified parallel 96-well 
plate format protocol, sufficient sample throughput is now achievable to perform 
global profiling of phosphorylation in a time-resolved fashion (Humphrey et  al. 
2015). The NCI Clinical Proteomics Tumor Analysis Consortium (CPTAC) recently 
provided an optimized, highly reproducible workflow for proteome/phosphopro-
teome analysis that utilizes TMT-10 for multiplexed quantitation of over 10,000 
proteins in a breast cancer xenograft model (Mertins et al. 2018).

An inherent challenge in large-scale phosphoproteomics analyses is the fact that 
changes in phosphoprotein expression levels can interfere with the interpretation of 
site-specific phosphorylation stoichiometries (Wu et  al. 2011). Measuring the 
degree of phosphorylation requires the quantification of the cognate phosphorylated 
and non-phosphorylated peptides. This can be accomplished by splitting samples 
into two and forcing dephosphorylation in one fraction by phosphatase treatment 
and leaving the other fraction untreated. After differential stable isotope labeling, 
the two fractions are combined, and the degree of phosphorylation can be estimated 
by comparing the intensities of the differentially labeled unphosphorylated peptides 
(Zhang et al. 2002; Hegeman et al. 2004). Alternatively, spike-ins of synthetic iso-
topologues of the phosphorylated/non-phosphorylated peptides in conjunction with 
targeted mass spectrometry (MRM or PRM) can be used for absolute quantification 
of site-specific phosphorylation stoichiometry (Dekker et al. 2018; Jin et al. 2010). 
By normalizing for total phosphoprotein amount using multiple unmodified pep-
tides, it is possible to estimate the degree of phosphorylation by calculating the 
ratios of phosphorylated/unphosphorylated peptide intensities for phosphoproteins 
of interest without stable isotope labeling (Steen et al. 2005). For large-scale phos-
phoproteomics studies that rely on phosphopeptide enrichment, parallel proteomics 
analyses can provide the necessary information on total phosphoprotein abundances 
to determine phosphorylation site stoichiometries (Wu et  al. 2011; Olsen et  al. 
2010). Typical signaling pathway analysis is performed by collapsing discrete site 
measurements to the protein level. The curated PTMsigDB database aims to lever-
age site-specific post-translational modification information to capture signaling 
events more accurately as demonstrated in the phosphoproteome analysis of PI3K- 
inhibited breast cancer cells (Krug et al. 2018).
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4.9  Ubiquitination

The ubiquitin-proteasome pathway controls the degradation of 80–90% of intracel-
lular proteins. Ubiquitination is a process by which one or multiple ubiquitin mono-
mers are covalently attached to the amino group at the protein N-terminus or at 
lysine side chains of substrate proteins, thereby forming branched proteins. 
Eukaryotic ubiquitin consists of 76 amino acids and is evolutionary conserved. 
Ubiquitination is catalyzed by a ubiquitin-activating enzyme (E1), a ubiquitin- 
conjugating enzyme (E2), and a ubiquitin ligase (E3), which confers substrate spec-
ificity. De-ubiquitinating enzyme can reverse the ubiquitin conjugation, creating a 
steady state with poly-ubiquitinated proteins (n > 4) targeted for degradation by the 
26S proteasome. As an important regulator of cell proliferation, differentiation, and 
survival, alterations of the ubiquitin ligase pathways have been linked to cancer 
(Ding et al. 2014; Mani and Gelmann 2005). Characterization of ubiquitination sites 
by mass spectrometry is commonly performed after antibody enrichment of pep-
tides containing the Lys-GlyGly sequence that is formed during tryptic digestions of 
ubiquitinated proteins (Xu et al. 2010). More recently, an immunoaffinity strategy 
based on the recognition of the C-terminal 13 amino acids of ubiquitin has allowed 
for the identification of over 63,000 unique ubiquitination sites, including N-terminal 
ubiquitination, across 9200 proteins in 2 human cell lines (Akimov et al. 2018).

4.10  Proteogenomics

In an effort to elucidate how somatic gene mutations impact the cancer proteome 
and the post-translational modification landscape, CPTAC used quantitative MS and 
phosphoproteomics to characterize hundreds of ovarian, breast, and colon/rectal 
tumors whose genome and transcriptome were previously defined by The Cancer 
Genome Atlas (TCGA) (Mertins et al. 2016; Zhang et al. 2014, 2016). Integrating 
genomic and proteomics/phosphoproteomics measurements allowed to explore the 
effect of copy number alterations on protein abundance and test whether 
transcriptome- derived subtypes are reflected in protein expression patterns. 
Proteogenomics promises to deepen our understanding of cancer biology and iden-
tify alterations in cancer signaling pathways and potential therapeutic targets with 
higher levels of confidence. The human cancer proteome variation cancer database 
(CanProVar) provides a bridge between genomic and proteomics data by compiling 
protein sequence alterations in different types of cancers (Zhang et al. 2017; Li et al. 
2010) along with extensive annotation, which can be used for the detection of vari-
ant peptides in shotgun and targeted proteomics experiments (Li et al. 2011).
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4.11  Ultrasensitive Proteomics via Cellular Pre-fractionation

Given the microheterogeneity of the cancer microenvironment, it can be of advan-
tage to analyze specific cell types individually in order to more accurately reveal 
their biochemical potentials. Cellular populations can be specifically purified by 
antibody-based methods such as fluorescence-activated cell sorting, CyTOF mass 
cytometry, or immune magnetic separation. CyTOF mass cytometry uses rare earth 
metals as unique antibody reporters that are monitored by inductively coupled 
plasma mass spectrometry (ICP-MS) in multiplex format to reveal marker expres-
sion in individual cells (Bandura et al. 2009). ICP-MS offers an extraordinary level 
of sensitivity which enables the detection of metal-labeled antibodies at levels cor-
responding to single cells. Alternatively, cellular subpopulations can be dissected 
from tissue using laser capture microdissection (LCM) prior to MS-based pro-
teomics analysis (Altelaar and Heck 2012). In-depth LC-MS analysis of approxi-
mately 3000 LCM-derived tumor cells can yield the identification of 1000–2000 
proteins (Umar et al. 2007; Wiśniewski et al. 2011), a number that can be boosted to 
over 4000 protein identifications from microdissected cells from formalin-fixed and 
paraffin-embedded human tissue specimens with the incorporation of additional 
off-line fractionation steps (Wiśniewski et al. 2011).

4.12  Imaging Mass Spectrometry

MALDI and secondary ion mass spectrometry (SIMS) imaging mass spectrometry 
(IMS) combine the parallel molecular detection by mass spectrometry with micro-
scopic imaging to visualize the spatial distribution of proteins and metabolites 
(Cornett et  al. 2007; Schwamborn and Caprioli 2010). MALDI-IMS yields 2D 
molecular maps that provide the localization and relative abundance of thousands of 
analytes in thin tissue sections with typical pixel size in the range of 50–200 μm in 
an untargeted manner (McDonnell and Heeren 2007; Schober et al. 2012). The dis-
covery nature of MALDI imaging can be complemented by imaging mass cytome-
try, which utilizes the multiplexing capability of CyTOF mass cytometry for the 
targeted multiplexed localization of up to 32 proteins with subcellular resolution. 
This approach was pioneered to characterize tumor cell subpopulations and high-
light the heterogeneity of human breast cancer microenvironments (Giesen et al. 
2014).

4.13  Outlook

The field of mass spectrometry-based proteomics continues to rapidly evolve and 
mature. Each new generation of mass spectrometers pushes the limits of perfor-
mance in terms of resolving power, mass accuracy, and sensitivity. Many of these 
improvements continue to trickle down into mainstream instrumentation available 
to the average user. How do these technological innovations impact the field? 
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Ultra-high resolution opens the window to investigate the fine structure of isotopo-
logues. This advancement has already led to the development of novel stable isotope 
labeling strategies that take advantage of mass defect-based neutron encoding for 
multiplexed quantitation (Hebert et al. 2013a). The resolved isotopologues struc-
tures could also be harnessed by a next generation of informatic pipelines that capi-
talize on the encoded elemental composition information in an effort to improve 
peptide/protein identification rates.

In terms of sensitivity, one promising approach entails a switch from serial to 
parallel accumulation of MS precursor and subsequent release and fragmentation 
based on ion mobility. The speed and sensitivity of MS/MS experiments can be 
increased by parallel accumulation and serial fragmentation (PASEF) that is 
employed on trapped ion mobility-mass spectrometry (TIMS)-mass spectrometers 
(Meier et al. 2015). Other opportunities exist to increase sensitivity by improving 
and better integrating sample preparation and data acquisition workflows (Specht 
and Slavov 2018). Increased sensitivity will open up the transformative potential of 
single-cell proteomics, in which the contribution of each cell type to complex 
microenvironments such as cancers can be determined.

Integration with other omics approaches and resolving the spatial distribution of 
proteins are key aspects to reveal protein function and elucidate their role in physi-
ology and pathology. The Human Protein Atlas project (www.proteinatlas.org) is a 
pioneering resource to study spatial proteomics across the major tissues and organs 
of the human body (Uhlen et al. 2015) and at the subcellular level (Thul et al. 2017) 
based on immunohistochemistry and complemented by RNA sequencing and mass 
spectrometry. The Human Pathology Atlas companion extends this groundbreaking 
system-level analysis to the transcriptome of the 17 major cancer types (Uhlén et al. 
2017).

Finally, live monitoring of data acquisition will provide opportunities to fine- 
tune workflows in real time so that qualitative and quantitative performance can be 
optimized. The MaxQuant.Live framework is a first example of how real-time mon-
itoring can be used for on-the-fly recalibration of mass and retention times which 
increases the efficiency of LC-MS experiments (Wichmann et  al. 2018). In the 
future, further integration of entire workflows from automated sample preparation, 
data measurements, and data analysis will make the development of adaptive and 
smart data acquisitions a reality.
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