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Abstract Wireless sensor network (WSN) is defined as an autonomous network
composed of low power sensor nodes having limited computational, communica-
tion, and energy resources. Being short at resources they require efficient use of
each resource to prolong network lifetime. Sensor networks are exposed to noise,
compromised nodes, low battery levels, and damaged sensors, all these results in
anomalous readings or anomaly. Presence of anomaly in system deteriorates the per-
formance of WSN in terms of efficiency, accuracy, and reliability. Hence anomaly
detection becomes a major challenge to decide the performance of network. Support
vector machine (SVM) is a light weight, learning-based binary classifier that can
classify the raw data into normal and anomalous. SVM suffers from computational
complexity while handling large datasets, so sequential minimal optimization SVM
(SMO-SVM) is used to reduce the complexity. In this paper, a comparative study
is made on anomaly detection using SMO-SVM classifier utilizing different kernel
functions.
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1 Introduction

Wireless sensor networks (WSNs) is a network made up of small active devices
called sensor nodes which are used for monitoring or event detection purpose. Sen-
sor nodes are autonomous low powered devices with sensors that provide different
types of sensed data such as humidity, temperature, pressure, and vibrations. Nowa-
days WSNs have found intensive use in smart cities, smart grid, battlefields, medical
sensing, etc. [13]. WSNs are resource constraint networks and the nodes are suscep-
tible to noise, compromised nodes due to intrusion, low battery levels, and damaged
sensors giving rise to anomaly in sensed data. These anomalies contribute adversely
on the performance and lifetime of network. Hence detection of anomaly in WSN
becomes major concern for the efficient use of resources [5].

Anomaly detection techniques that are used for WSN data can be categorized
as machine learning, statistical, and signal processing-based approaches. Machine
learning approach for detection and classification of anomalies in WSN is gaining a
lot of interest by research community [2, 14].

Support vector machine is one of the efficient binary classification technique. The
use of SVM for detection and classification has been done in [12]. Although SVM
classifies data efficiently sometimes it possesses high computational complexity for
the larger datasets. An optimized technique for SVM known as sequential mini-
mal optimization SVM (SMO-SVM) is used in place of simple SVM for improved
classification [9].

This paper presents a comparative study of SMO-SVMs classifier by utilizing the
different kernel functions. The efficient use of kernel functions is governed by the
nature of dataset. The dataset of two standard laboratory has been used to analyze
the performance of different kernel functions for SMO-SVMs. The different types
of anomaly that exist practically in WSN are manually inserted in each dataset. The
performance of anomaly detection is compared using standard performance metrics
like accuracy and F1-Measure.
The paper is organized in four sections: Sect. 2 presents literature review and the-
ory of SMO-SVMs, results and discussion are presented in Sect. 3 followed by the
conclusion in Sect. 4.

2 Literature Review and Theory of SMO-SVM

2.1 Literature Review

The concept of SVMs has been empirically applied in various fields such as machine
learning, pattern recognition, and categorization of text. SVM as learning algorithm
work efficiently for low dimension data but sometimes restricts the researcher to train
the high dimensional data. So this becomes a problem while using this technique
for high dimensional dataset problems. A new optimized algorithm for SVM was



Comparative Study of Anomaly Detection … 83

proposed in [9] to overcome the difficulty of simple SVMs and to make the system
perform better. This techniquewas SMO-SVMswhich instead provides better results
for complex quadratic programmingproblems.Themainmotivation behind the use of
SMO-SVMs lies in its lesser computational complexity and hence lightweight. SMO-
SVM can be used using different learning kernel functions, and to select appropriate
kernel function is amajor challenge for the classification of different types of anomaly
present in WSN [1, 7].

The basic idea behind the SVMs is to fit the data into a hyperplane or hypersphere
between different classes. The hyperplane is subspace in which data is fitted accord-
ingly and the dimension is less than its ambient space. This hyperplane creates a
large separation between the different classes of data. The method involves mapping
of data into a higher dimensional space to make separation easier. After the data is
mapped, kernel functions are applied for approximating the dot products between
the mapped vectors into the feature space to find the hyperplane. This helps better in
identifying the class of normal data with the anomalous data.

2.2 Sequential Minimal Optimization SVM

Herewe consider a hypersphere in place of hyperplane, for SVMa set of training data
is considered in a feature space, X = (x1, x2, x3, . . . , xn) where xi ε Rd (1 ≤ i ≤ n)
represents the d-dimensional data and n is the size of the training data. The data from
the feature space is then trained. Considering this the optimization problem to be
solved is given below:

minR2 + C

n∑

i=1

εi (1)

s.t. ||xi − a||2 ≤ R2 + εi, i = 1, 2, . . . , n.

εi ≥ 0, i = 1, 2, . . . , n.

where a andR are the center and radius of the hypersphere, respectively, in the feature
space, εi is the slack variable which allows few training data outside the hypersphere
and the penalty parameter C controls the trade-off between the number of target data
outside and volume of the hypersphere [10, 12]. The mapping function φ(.) is used
to map the data of input class to feature space in terms of φ(xi).

This mapping variable φ(xi) replaces the value of xi. This allows the function to
calculate the inner product of two vectors in feature space. The inner product is given
by
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K(xi, xj) = φ(xi) ∗ φ(xj) (2)

Although simple SVM is computed in the form of linear classifier where x is input
and y is output, the objective function representing the linear classifier becomes

f (x) = wT x + b (3)

where w is a normal vector and b represents the threshold value. Since we are
using binary classification to judge the anomalous and non-anomalous data, the
value prediction will be in the terms of y = 1 if f (x) ≥ 0 and y = 0 if f (x) < 0. By
considering the inner product as given in (2), the function in (3) is given by

f (x) =
n∑

i=1

αiyiK(xi, xj) + b (4)

where αi represents the Lagrangian multiplier. Lagrange multiplier helps in finding
the local maxima and minima of provided function [4, 6].

To optimize the above function Lagrangian multiplier plays an important role.
This Lagrangian multiplier is to be optimized, and the constrained minimization
problem is to be solved. The initial value of lagrangian multiplier which is to be
updated is shown below:

αj = αj − yj(Ei − Ej)

η
(5)

In the above Eq. (5) Ek represents the error on kth value of training example and
η is the second order derivative of objective function. The individual representation
of the variable are shown below:

Ek = f (xk) − yk (6)

η = 2K(xi, xj) − K(xi, xj) − K(xj, xk) (7)

Thus depending upon the value (5) the new value of final Lagrangian multiplier
becomes αi, below value shows the new optimized value of the multiplier:

αi = αi + yiyj(αj−1 − αj) (8)

So the optimization problem is solved by replacing the new value of αi from (8)
to (4).

In this paper we have basically used the kernel functions value as mentioned in
(2) for different kernels which are shown below [3]:
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1. Gaussian Kernel

K(xi, xj) = eγ ||xi−xj ||2

2. Linear Kernel

K(xi, xj) = xTi xj

3. Sigmoid Kernel

K(xi, xj) = (γ (xTi xj + 1))d

4. Polynomial (poly3) Kernel

K(xi, xj) = tan(γ xTi xj + 1)

These four kernel functions are most commonly used as they perform better for
working set selections.

3 Results and Discussion

For the analysis of suitability of kernel function with anomalous data, we have used
SMO-SVM as a classifier to our paper. Data conditioning of data set from Labeled
Dataset collection [11] and IBRL Dataset [8] is done, and the different types of
anomalies are inserted to analyze the compatibility of different kernel function. Fol-
lowing are the datasets taken for analysis:

1. Multihop and Singlehop Datasets [11]:
This dataset is taken from the network containing both multihop and singlehop
scenario for anomaly detection. Both themultihop and singlehop network is setup
and depending upon that the readings from the sensor node are taken.

2. IBRL Datasets [8]:
This dataset was taken from thewell-known Intel Berkeley Lab experiment where
54 sensors were deployed. We have managed to take and conditioned the data
from node8 and node9 as they are close to each other and shows similar behavior.

Following types of noise are inserted to the dataset:

1. Random Noise:
This type of anomaly occurs where the sensor node supplies data and at the same
time transient disturbance happens depending upon the random time distribution.
This anomaly is used in multihop datasets from [11] example is shown in Fig. 1.

2. Regenerative Feedback Noise:
This type of anomaly occurs in the network when the data from the sensor node
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Fig. 1 Normal and anomalous dataset with respect to time series

Fig. 2 Normal and anomalous dataset with respect to time series

Fig. 3 Normal and anomalous dataset with respect to time series

keep on increasing as compared to the normal data. This anomaly is used in
singlehop datasets from [11] example is shown in Fig. 2.

3. Shot Noise(Spikes):
This anomaly occurs when the sensor data shows small spikes between the data.
This anomaly is inserted to Node8 and Node9 of dataset from [8], example is
shown in Fig. 3.

The comparison of the kernel functions are performed on the basis of performance
metrics shown in (9) and (12). In which g is the g-means accuracy andF1 − Measure
shows the balance between the recall and precision value obtained from the dataset.
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g = √
Acc+ ∗ Acc− (9)

where

Acc+ = No. of target samples correctly classified

Total number of target samples
(10)

Acc− = No. of nontarget samples correctly classified

Total number of nontarget samples
(11)

and the F1-Measure is given by

F1 − Measure = 2 ∗ Precison ∗ Recall

Precison + Recall
(12)

The graph is plotted in terms of accuracy and F1-Measure and this result shows
the compatibility of different kernel functions with SMO-SVM classifier in terms
of different kinds of anomalies. The comparison of results in terms of performance
metrics can be shown in the figures. Figure4 (a, b) shows the accuracy and F1-
Measure for SMO-SVMmethod of multihop dataset, Fig. 5 (a, b) shows the accuracy

(a) Accuracy for Multihop dataset (b) F1-Measure for Multihop dataset

Fig. 4 Accuracy and F1-Measure for multihop dataset

(a) Accuracy for SingleHop dataset (b) F1-Measurefor SingleHop dataset

Fig. 5 Accuracy and F1-Measure for singlehop dataset
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(a) Accuracy for IBRL dataset (b) F1-Measure for IBRL dataset

Fig. 6 Accuracy and F1-Measure for IBRL dataset

and F1-Measure for SMO-SVMmethod of singlehop dataset, and Fig. 6 (a, b) shows
the accuracy and F1-Measure for SMO-SVM method of IBRL dataset. However
the system performance for Random Noise the Sigmoid and Gaussian kernel show
better compatibility with classifier, for Regerative feedback Noise the Sigmoid and
poly3 kernel show better compatibility with classifier and for Shot Noise the all the
four kernels show better compatibility with classifier. So it can be concluded that the
accuracy of detection depends upon the selection of kernel function.

4 Conclusion

In this article we have used SMO-SVM as a detector and classifier for the WSN
datasets. Three different types of noise are inserted in the datasets as explained in the
above section, and to analyze this anomalous dataset various kernel functions are used
with the SMO-SVM classifier. By analyzing the results obtained we may conclude
that for network prone to random noise Sigmoid and Gaussian kernel function are
better choice. For network prone to regenerative feedback noise sigmoid and poly3
kernel functions works better. For network prone to shot noise any of the kernel
function among the four can be used.We have successfully compared the importance
of kernel functions with the classifier and its compatibility for different anomalous
conditions. In futurewewill be using this classifier to construct anAnomalyDetection
System.
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