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Abstract This paper investigates the problem of stability analysis of discrete-time
systems under the effect of generalized overflow nonlinearities, parameter uncertain-
ties, and time delay. The systems under assumption involve norm-bounded param-
eter uncertainties. Two stability criteria based on Linear Matrix Inequality (LMI)
approach are presented. The usefulness of the presented criteria is numerically
proved.
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1 Introduction

Several practical engineering systems such as Markovian jump systems [1], network
control systems [2], neural networks [3], sensor networks [4], etc. can be transformed
as discrete systems which can be represented as state-space model.

In these discrete-time systems, the delay can be occurred due to channel, for e.g.,
transportation delay or some other reason, which may tend the system to be unstable.
So, stability analysis of systems having delay is important. Delay may be constant,
time-varying, and random in nature. Several studies based on the concept of delay
are previously reported [1, 3, 5–13].

Parameter uncertainty is also an important factor for the instability of the discrete
systems. Parameter uncertainty arises due to various factors such as modeling errors,
finite resolution of the measuring equipment, variation in system parameters, and
some other ignored factors. [14–16].
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While implementing linear discrete-time systems in digital computer with finite
wordlength processors, nonlinearities may occur in the systems. Owing to the pres-
ence of such nonlinearities, there may be a chance that systems exhibit unstable
nature. So, it is very important to find the system parameters range for which the
given system is stable. In the present work, the effects of overflow nonlinearities are
only taken into account and the quantization effects are assumed as negligible [5,
17–23].

The stability analysis problem of a class of discrete-time uncertain systems hav-
ing generalized overflow nonlinearities and time delay is significant and more real-
istic. Very little contribution has been done in the literature [5, 17] so far. In [5], a
delay-independent stability criterion is presented and in [17], delay-dependent sta-
bility result is provided by employing free-weighting matrix method. Generally,
delay-dependent stability analysis provides less conservative results than delay-
independent one. A tighter bound inequality, i.e., Wirtinger-based inequality is used
in [24, 25] for getting better stability results.Motivated by these concerns and inspired
by the work presented in [5, 7, 17, 19, 24–27], we revisit the problem under consid-
eration.

Themain aim of the paper is to establish improved delay-dependent criteria for the
stability of the systems under consideration. The key involvements of the paper are
(1) The system presented covers a wider class of discrete-time systems employing
norm-bounded parameter uncertainties, time delay, and generalized overflow non-
linearities. (2) Wirtinger-based inequality [24, 25] is used to deal the sum and cross
terms present in the forward difference of Lyapunov function for deriving the delay-
dependent stability criteria of the present system which may provide better results.
(3) The presented criteria are computationally less complex as they are LinearMatrix
Inequality (LMI) based.

The rest of the paper and its organization are given as follows: In Sect. 2,
descriptions of the considered systems and some required lemmas are given. Delay-
dependent criteria for the stability analysis of the discrete-time systems are presented
in Sect. 3. Section 4 shows the effectiveness of the proposed criteria with numerical
examples. Finally, concluding remarks are provided in Sect. 5.

In this paper, notations are considered as follows: Rk represents k-dimensional
Euclidean space,Rα× β denotes set of α×β matrices with real elements, 0 is a matrix
or vector with all elements are zero, I refers identity matrix of compatible dimension,
PT stands transpose of the matrix P, P > 0(< 0) shows P is positive (negative)
definite real symmetric matrix, symbol ∗ stands symmetric terms in a symmetric
matrix. diag(a, b, c) means diagonal matrix with diagonal elements a,b,c.
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2 System Description

The description of the system under consideration is given by

x̂(r + 1) = f̂ ( ŷ(r))

= [ f̂1(ŷ1(r)) f̂2(ŷ2(r)) · · · f̂n(ŷn(r))]T (1a)

y
∧

(r) = A x̂(r) + Ad x
∧

(r − d)

= [
y
∧

1(r) y
∧

2(r) · · · y∧n(r)
]T

(1b)

x̂(r) = ϕ(r), ∀ r ∈ [−d, 0] (1c)

Ā = A + �A, Ād = Ad + �Ad (1d)

where x̂(r) ∈ R
n is the state variable; A, Ad ∈ R

n × n are matrices (known con-
stant); the matrices (unknown) �A, �Ad ∈ R

n × n having uncertainties in A, Ad ,
respectively; at time r, the initial state value is ϕ(r) ∈ R

n; d is the positive integer
for time delay.

The characteristic of generalized overflow nonlinearities f̂i (ŷi (r)) is specified by

L ≤ f̂i (ŷi (r)) ≤ 1, ŷi (r) > 1
f̂i (ŷi (r)) = ŷi (r), −1 ≤ ŷi (r) ≤ 1

−1 ≤ f̂i (ŷi (r)) ≤ −L , ŷi (r) < −1

⎫
⎬

⎭
i = 1, 2, . . . n (2a)

where

−1 ≤ L ≤ 1. (2b)

With proper choice of L, (2) covers different types of overflow arithmetics, for e.g.,
saturation (L = 1), zeroing (L = 0), two’s complement and triangular (L = –1), etc.
In the state matrices, the parameter uncertainties are assumed as

�A = B0 F0 C0 (3a)

�Ad = B1 F1 C1 (3b)

where Bi ∈ R
n×pi , Ci ∈ R

qi×n (i = 0, 1) are matrices (known constant) and
Fi ∈ R

pi×qi (i = 0, 1) is matrix (unknown) which satisfies

FT
i Fi ≤ I, i = 0, 1. (3c)
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For the proof of main results, we present the following lemmas.

Lemma 1 [5, 17–19] A positive definite matrix M = MT =[ĥi j ] ∈ Rn×n satisfies

ŷT(r)M ŷ(r) − f̂
T
( ŷ(r))M f̂ ( ŷ(r)) ≥ 0 (4)

provided that the matrix M is characterized by

ĥii = si +
n∑

j=1, j �=i

(ôi j + ρ̂i j ), i = 1, 2, . . . n (5a)

ĥi j = ĥ j i =
(
1 + L

2

)

(ôi j − ρ̂i j ), i, j = 1, 2, . . . n (i �= j) (5b)

ôi j = ô j i > 0, ρ̂i j = ρ̂ j i > 0 i, j = 1, 2, . . . n (i �= j) (5c)

si > 0, i = 1, 2, . . . n (5d)

−1 ≤ L ≤ 1 (5e)

where f̂ ( ŷ(r))is the nonlinearities described by (2) and it is very easy to understand
that, for the case where n = 1, M corresponds to a positive scalar ‘ γ ’.

Lemma 2 [24, 25] For a matrix R > 0 and three nonnegative integers a1, a2, r , as
a1 ≤ a2 ≤ r , if

ξ(r, a1, a2) = 1

a2 − a1
[(2

r−a1−1∑

s=r−a2

x̂(s)) + x̂(r − a1) − x̂(r − a2)], a1<a2

= 2x̂(r − a1), a1=a2 (6)

then

−(a2 − a1)
r−a1−1∑

s=r−a2

ηT(s)Rη(s) ≤ −
[
θ0

θ1

]T[
R 0
0 3R

][
θ0

θ1

]

(7)

where

θ0 = x̂(r − a1) − x̂(r − a2), (8)

θ1 = x̂(r − a1) + x̂(r − a2) − ξ(r, a1, a2) (9)

η(s) = x̂(s + 1) − x̂(s) (10)
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Lemma 3 [14, 15] Let Ξ , �, F and U be matrices (real) of suitable dimensions
with U = UT, then

U+ Ξ F � + �T FT Ξ T < 0 (11)

for all FTF ≤ I , iff there exists a positive scalar ε such that

U+ε−1 Ξ ΞT + ε �T � < 0 (12)

Lemma 4 [19–22, 27] Consider B = [ĉuv] ∈ Rn×n is given by

ĉuu =
n∑

v=1, v �=u

(χuv + δuv), u = 1, 2 . . . n (13a)

ĉuv = L(χuv − δuv), u, v = 1, 2, . . . n (u �= v) (13b)

χuv > 0, δuv > 0, u, v = 1, 2, . . . n (u �= v) (13c)

0 ≤ L ≤ 1, (13d)

(for n = 1, B becomes a positive scalar), then

n∑

u=1

2[ŷu(r) − f̂u(ŷu(r))]
⎡

⎣
n∑

v=1, v �=u

(χuv + δuv) f̂u(ŷu(r)) + L(χuv − δuv) f̂v(ŷv(r))

⎤

⎦

= ŷT(r)B f̂ ( ŷ(r)) + f̂
T
( ŷ(r))BT ŷ(r) − f̂

T
( ŷ(r))(B + BT) f̂ ( ŷ(r)) ≥ 0, (14)

where f̂ ( ŷ(r)) is given by (2a) and (13d).

Lemma 5 [19, 20, 23, 27] Consider Z = diag (d1, d2,…, dn) > 0. Then, pertaining
to (2a) and −1 ≤ L < 0, the following relation is satisfied

n∑

k=1

2dk[ŷk(r) − f̂k(ŷk(r))] [−L ŷk(r) + f̂k(ŷk(r))]

= (1 + L) ŷT(r)Z f̂ ( ŷ(r)) + (1 + L) f̂
T
( ŷ(r))Z ŷ(r)

− 2 f̂
T
( ŷ(r))Z f̂ ( ŷ(r)) − 2L ŷT(r)Z ŷ(r) ≥ 0. (15)
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Remark 1 In this paper, we have considered two ranges of L, i.e., 0 ≤ L ≤ 1 and
−1 ≤ L < 0 which together cover (2b).

3 Main Results

In Sect. 3, two criteria are presented for the global asymptotic stability of the system
(1a), (1b), (1c), (1d)–(3a), (3b), (3c). The first criterion (Theorem 1) is applicable
to the situation where 0 ≤ L ≤ 1 and the second one (Theorem 2) is valid for
−1 ≤ L < 0.

Theorem 1 The system (1a), (1b), (1c), (1d)–(3a), (3b), (3c) with 0 ≤ L ≤ 1
is globally asymptotically stable if there exit suitable dimensioned matrices P =[
p1 p2
∗ p3

]

> 0, Q = QT > 0, R = RT > 0 and positive scalars ε0, ε1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− p1 + (( p2 + pT2 )/2) + Q + d2R − 4R + ε0CT
0C0 −( p2/2) − 2R −d(( p2 − p3)/2) + 3R

∗ −Q − 4R + ε1CT
1C1 −d( p3/2) + 3R

∗ ∗ −3R
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

( pT2 /2) − d2R + ATB ATM 0 0
−( pT2 /2) + AT

d B AT
d M 0 0

d pT2 /2 0 0 0
p1+(d2R) − M − (B + BT) 0 BTB0 BTB1

∗ −M MB0 MB1

∗ ∗ −ε0 I 0
∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(16)

where the matrices M and B are given by (5) and (13), respectively.

Proof Consider a quadratic Lyapunov function

V (x̂(r)) = Γ T(r)P Γ (r) +
r−1∑

s=r−d

x̂T(s)Qx̂(s) + d
0∑

θ =−d+1

r−1∑

s=r+θ−1

ηT(s)Rη(s)

(17)

where

Γ T(r) = [x̂T(r)
r−1∑

s=r−d

x̂T(s) ]
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and

η(r) = x̂(r + 1) − x̂(r)= f̂ ( ŷ(r)) − x̂(r).

Defining

�V (x̂(r)) = V (x̂(r + 1)) − V (x̂(r))

= χT(r)Ψ (d)χ(r) + x̂T(r)Qx̂(r) − x̂T(r − d)Q x̂(r − d)

+ d2ηT(r)R η(r) − d
r−1∑

s=r−d

ηT(s)Rη(s) (18)

where

χT(r) =
[

x̂T(r) x̂T(r − d) ξT(r, 0, d) f̂
T
( ŷ(r))

]
,

Ψ (d) =

⎡

⎢
⎢
⎣

− p1 + ( p2 + pT2 )/2 − p2/2 −d(( p2 − p3)/2) pT2/2
∗ 0 −d p3/2 − pT2/2
∗ ∗ 0 d pT2/2
∗ ∗ ∗ p1

⎤

⎥
⎥
⎦ (19)

and ξ(r, 0, d) is given by (6).
Next, by the use of Lemma 2, the last term of �V (x̂(r)) is expressed as

− d
r−1∑

s=r−d

ηT(s)Rη(s)

≤ −d

[
x̂(r) − x̂(r − d)

x̂(r) + x̂(r − d) − ξ(r, 0, d)

]T[
R 0
0 3R

][
x̂(r) − x̂(r − d)

x̂(r) + x̂(r − d) − ξ(r, 0, d)

]

(20)

Now, from Lemmas 1 and 4, (18) can be rearranged as

�V (x̂(r)) = χT(r)φ(d)χ(r) − β (21a)

where

β = ŷT(r)M ŷ(r) − f̂
T
( ŷ(r))M f̂ ( ŷ(r)) + ŷT(r)B f̂ ( ŷ(r))

+ f̂
T
( ŷ(r))BT ŷ(r) − f̂

T
( ŷ(r))(B + BT) f̂ ( ŷ(r)) ≥ 0. (21b)
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φ(d) =

⎡

⎢
⎢
⎢
⎣

− p1 + (( p2 + pT2 )/2) + Q + d2R − 4R + ĀTM Ā −( p2/2) − 2R + ĀTM Ād

∗ −Q − 4R + ĀT
d M Ād

∗ ∗
∗ ∗

−d(( p2 − p3)/2) + 3R ( pT2 /2) − d2R + ĀTB

−d p3/2 + 3R −( pT2 /2) + ĀT
d B

−3R d pT2 /2
∗ P1+(d2R) − M − (B + BT)

⎤

⎥
⎥
⎥
⎦

(21c)

From (21a), (21b), (21c), it is implied that �V (x̂(r)) < 0 if φ(d) < 0. By the
aid of Schur’s complement, φ(d) < 0 is written as

φ(d) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− p1 + (( p2 + pT2 )/2) + Q + d2R − 4R −( p2/2) − 2R −d(( p2 − p3)/2) + 3R
∗ −Q − 4R −d p3/2 + 3R
∗ ∗ −3R
∗ ∗ ∗
∗ ∗ ∗

( pT2 /2) − d2R + ĀTB ĀTM

−( pT2 /2) + ĀT
d B ĀT

d M
d pT2 /2 0

p1 + d2R − M − (B + BT) 0
∗ −M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0

(22)

Using (3a), the inequality (22) can be expressed as

φ0(d) + B̄0F0C̄0 + C̄
T
0 F

T
0 B̄

T
0< 0 (23)

where

B̄
T
0 = [

0 0 0 BT
0 B BT

0M
]
, C̄0 = [C0 0 0 0 0] (24)

φ0(d) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− p1 + ( p2 + pT2 )/2 + Q + d2R − 4R −( p2/2) − 2R −d(( p2 − p3)/2) + 3R
∗ −Q − 4R −d p3/2 + 3R
∗ ∗ −3R
∗ ∗ ∗
∗ ∗ ∗
( pT2 /2) − d2R + ATB ATM

−( pT2 /2) + ĀT
d B ĀT

d M
d pT2 /2 0

p1 + d2R − M − (B + BT) 0
∗ −M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(25)

Employing Lemma 3, (23) can be written as

φ0(d) + ε−1
0 B̄0 B̄

T
0 + ε0C̄

T
0 C̄0<0 (26)
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where ε0 > 0. Next, with the aid of Schur’s complement, (26) yields

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− p1 + (( p2 + pT2 )/2) + Q + d2R − 4R + ε0CT
0 C0 −( p2/2) − 2R −d(( p2 − p3)/2) + 3R

∗ −Q − 4R −d( p3/2) + 3R
∗ ∗ −3R
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

( pT2 /2) − d2R + ATB ATM 0

−( pT2 /2) + ĀT
d B ĀT

d M 0
d pT2 /2 0 0

p1 + d2R − M − (B + BT) 0 BTB0
∗ −M MB0
∗ ∗ −ε0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(27)

Next, following the analysis similar to (23)–(27), one can easily get (16) from (27).
This ends the proof.
Next, we present the following result.

Theorem 2 The system (1a), (1b), (1c), (1d)–(3a), (3b), (3c)along with−1 ≤ L < 0
is globally asymptotically stable if there exit suitable dimensioned matrices P =[
p1 p2
∗ p3

]

> 0, Q = QT > 0, R = RT > 0, and positive scalars ε0, ε1 satisfying

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− p1 + ( p2 + pT2 )/2 + Q+
d2R − 4R + ε0CT

0 C0
−( p2/2) − 2R −d ( p2 − p3)/2 + 3R ( pT2 /2) − d2R + (1 + L)ATZ

∗ −Q − 4R + ε1CT
1 C1 −d( p3/2) + 3R −( pT2 /2) + (1 + L)AT

d Z
∗ ∗ −3R d( pT2 /2)

∗ ∗ ∗ p1+d2R − M − 2Z
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

ATM (−2L)1/2ATZ 0 0
AT
d M (−2L)1/2AT

d Z 0 0
0 0 0 0
0 0 (1 + L)ZB0 (1 + L)ZB1

−M 0 MB0 MB1

0 −Z (−2L)1/2ZB0 (−2L)1/2ZB1

∗ ∗ −ε0 I 0
∗ ∗ ∗ −ε1 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(28)

where Mis given by (5) and Zis a positive definite diagonal matrix of appropriate
dimension.

Proof Pertaining to the case where −1 ≤ L < 0 and in view of Lemmas 1 and 5,
Eq. (18) (obtained in the proof of Theorem 1) can be mathematically re-expressed
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as

�V (x̂(r)) = χT(r)φ1(d)χ(r) − β1 (29a)

where

β1 = ŷT(r)M ŷ(r) − f̂
T
( ŷ(r))M f̂ ( ŷ(r)) + (1 + L) ŷT(r)Z f̂ ( ŷ(r))

+ (1 + L) f̂
T
( ŷ(r))Z ŷ(r) − 2 f̂

T
( ŷ(r))Z f̂ ( ŷ(r)) − 2L ŷT(r)Z ŷ(r) ≥ 0,

(29b)

φ1(d) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− p1 + (( p2 + pT2 )/2) + Q + d2R − 4R+
ĀTM Ā − 2L ĀTZ Ā

−( p2/2) − 2R + ĀTM Ād − 2L ĀTZ Ād

∗ −Q − 4R + ĀT
d M Ād − 2L ĀT

d Z Ād

∗ ∗
∗ ∗

−d(( p2 − p3)/2) + 3R ( pT2 /2) − d2R + (1 + L) ĀTZ

−d( p3/2) + 3R −( pT2 /2) + (1 + L) ĀT
d Z

−3R d pT2 /2
∗ p1 + d2R − M − 2Z

⎤

⎥
⎥
⎥
⎦

(30)

From (29a), (29b), it follows that �V (x̂(r)) < 0 if φ1(d) < 0.
Next, following the similar steps as shown in the proof of Theorem1, the condition

φ1(d) < 0 leads to (28). This ends the proof.

Remark 2 The given criteria are in LMI setting and can be mathematically tractable
by MATLAB with YALMIP 3.0 parser [28].

Remark 3 Note that it is worth to compare the present resultswithCorollary 9 of [17].
To handle the sum and cross terms of the forward difference of the Lyapunov func-
tion, Wirtinger-based inequality (see Lemma 2) is considered in this paper while in
[17], free-weighting matrix approach is used for the same. Consequently, the present
approach requires less number of decision variables as compared to [17]. Hence, the
present approach gains improvement in terms of computational complexity relative
to [17].

Remark 4 As future work, the idea of the present paper can be extended to the stabil-
ity of discrete-time uncertain systemswith external disturbances and/or time-varying
delay using generalized overflow nonlinearities, H∞ stability of discrete-time uncer-
tain systems with generalized overflow nonlinearities and time delay, etc. Further,
one can also apply the present idea for two dimensional (2-D) and multidimensional
(n > 2) systems.
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Remark 5 The time delay considered in the existing literaturemay be constant and/or
time-varying. In the modeling of the practical engineering/industrial systems, i.e.,
microgrid systems with constant communication delay [29] and networked control
systems with constant feedback delay [30] where constant time delay has also been
taken into account, the main objective of all these concerns including the present
paper is to find the allowable time delay that assures the system stability.

4 Numerical Examples

The usefulness of the presented criteria is given by the following numerical examples.

Example 1 Consider the system (1a), (1b), (1c), (1d)–(3a), (3b), (3c), where

A =
[
0.8 0
0 0.91

]

, Ad =
[−0.1 0

−0.1 −0.1

]

B0 = B1 =
[

0

0.1

]

, C0 = [0.01 0], C1 = [0 0.01] (31)

Pertaining to L = 1, it is found that (16) is feasible for maximum delay d = 18.
Hence, according to Theorem 1, global asymptotically stability of the system under
consideration is achieved whereas Corollary 9 of [17] fails to obtain the same.

Example 2 Consider the discrete-time system described by (1a), (1b), (1c), (1d)–
(3a), (3b), (3c) with (31) and L = −1/3. It is verified easily that Theorem 2 assures
the global asymptotic stability of the system over a maximum delay d = 13. By
contrast, Corollary 9 of [17] fails to this end.

Examples 1 and 2 support the fact that the presented approach may yield stability
results which are not covered by [17]. In summary, the present results may establish
improved stability conditions (less conservative and computationally efficient) which
are uncovered by existing results.

5 Conclusions

In this paper, two delay-dependent criteria for stability analysis of discrete-time
uncertain systems with time delay and generalized overflow nonlinearities have been
established. The presented criteria are in the form of LMIs and, hence, computation-
ally tractable. The effectiveness of the proposed criteria is proved with the numerical
examples.
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