
Chapter 9
Organometallic C–H Oxidation with O2
Mediated by Soluble Group 10 Metal
Complexes

Andrei N. Vedernikov

Abstract Selective catalytic C–H functionalization of organic compounds with O2

as the terminal oxidant is an important and challenging practical goal justified from
both economic and environmental perspective. Recent advances in organometallic
palladium-catalyzed aerobic C–H functionalization chemistry are reviewed with an
emphasis on themechanism of the reaction basic steps. These steps include activation
of alkenes, arenes, and alkanes at a palladium(II) center to form organopalladium
intermediates with new Pd–C bonds, C–X bond-forming reactions at palladium(II)
or palladium(IV) center, O2 activation by palladium(II) hydrocarbyls, palladium(II)
hydrides, and palladium(0) complexes. Some limitations of the current palladium-
based systems and directions toward their possible future development are discussed.
Considering organometallic aerobic C–H functionalization catalysis by other group
10 metals, a brief review is provided of a few existing platinum-based systems.
Although no such catalytic systems based on nickel complexes have been reported
yet, some relevant stoichiometric reactions at a nickel center have already been
discovered which promises possible future development of organometallic aerobic
C–H functionalization catalysis by this metal.

Keywords Selective aerobic C–H functionalization · Dioxygen activation ·
Mechanism · Organometallic catalysis · Palladium complexes · Platinum
complexes · Nickel complexes

9.1 Introduction

Selective oxidative functionalization of hydrocarbonswithO2 as the terminal oxidant
is an attractive goal. From an economic standpoint, atmospheric oxygen is one of the
least expensive and abundant oxidizing agents. From an environmental perspective,
the development of selective aerobic oxidation processes could minimize or even
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eliminate chemical waste. Organotransition metal catalysis is a viable approach to
achieve these goals. In this Chapter, catalytic transformations of hydrocarbon C–H
bonds will be considered that involve the use of O2 as terminal oxidant and soluble
organometallic group 10 metal complexes as catalysts or catalytic intermediates. As
it will be shown in this Chapter, the involvement of organometallic species may allow
for diverse transformations of their metal–carbon bonds [1] leading toward various
value-added hydrocarbon functionalization products. Along with an overview of
representative examples of major reaction types, a discussion of the mechanisms of
the reactions will be provided.

Among the transition metals, and the group 10metals, in particular, palladium has
played a prominent role in the development of selective organic oxidation reactions
with O2 (“aerobic oxidation reactions”). A classic example of such processes is the
oxidation of ethylene with O2 to acetaldehyde in the presence of aqueous [PdIICl4]2–

and CuIICl2 cocatalysts (theWacker process) developed in the 1950s (Eq. 9.1) [2–4]:

2CH2=CH2 +O2 → 2CH3CH=O (9.1)

The Wacker process is an organometallic oxidation involving reactive alkylpal-
ladium(II) species as key intermediates. The [PdIICl4]2–complex is responsible for
ethylene oxidation to acetaldehyde with palladium(0) as another reaction product,
which is a known stoichiometric reaction. In turn, the role of the copper cocata-
lyst is twofold. In its oxidized form, CuIICl2, it can convert palladium(0) back to
palladium(II) producing copper(I) species as another product. In its reduced form,
[CuICl2]–, it activates O2 with concomitant conversion of copper(I) species back to
copper(II). Reaction (9.1) has been used on an industrial scale since the 1960s.

The use of soluble platinum complexes in aerobic oxidation of organic substrates
has been known since the 1980s. An early example of such transformations utilizing
O2 as the oxidant is the Shilov reaction, conversion of methane to CH3X products
(X=OH, Cl) catalyzed by aqueous [PtIICl4]2– and a heteropolyacid redox cocatalyst
(Eqs. 9.2, 9.3) [5]:

2CH4 + O2 → 2CH3OH (9.2)

2CH4 + O2 + 2HCl → 2CH3Cl + 2H2O (9.3)

The original version of the reaction reported about 10 years earlier [6] utilized
expensive H2PtCl6 as the oxidant. It was then discovered that H2PtCl6 could be used
in a catalytic fashion with O2 as the terminal oxidant when a heteropolyacid redox
cocatalyst is employed [5]. The Shilov reaction, similar to Wacker process, is also
an organometallic oxidation process which involves methylplatinum(II) intermedi-
ates resulting from methane activation by platinum(II), as well as their methylplat-
inum(IV) derivatives resulting from oxidation of the former [7, 8]. The Shilov reac-
tion’s main limitations are low catalyst turnover numbers (TON) resulting from
gradual conversion of platinum(II) catalyst to inactive platinum(IV) and platinum(0)
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species, as well as poor (≤50%) selectivity in CH3X-type products due to “overox-
idation” of methane leading to formaldehyde, formic acid, and CO2. Aerobic C–H
functionalization reactions mediated by soluble platinum complexes have gained, so
far, no practical applications although they remain in the focus of academic research
[9, 10].

Finally, organometallic functionalization reactions of organic substrates mediated
by nickel complexes are under development [11, 12] and the use of O2 as the terminal
oxidant in such reaction has not yet been reported.

This quick introduction suggests that themost part of this chapterwill be dedicated
to organopalladium catalysis with much less attention paid to reactions of the other
two group 10 metals.

9.2 Homogeneous Organometallic Palladium-Catalyzed
Aerobic C–H Functionalization

Various types of organometallic palladium-catalyzed C–H oxidation (Eq. 9.4) and
aerobic oxidative coupling of C–H (R–H) and X–H fragments (Eq. 9.5) leading to
products with new C–X (R–X) bonds have been reported:

2R−H + O2 → 2ROH (9.4)

2R−H + 2X−H + O2 → 2R−X + 2H2O (9.5)

In an ideal case of a 100%selective transformation, reactions of thefirst typewould
produce no chemical waste. In the second case, ideally, the only by-product would
be water. An extensive recent review covering aerobic functionalization of olefinic
substrates is available [13]. Some representative examples of reactions of both types,
(Eq. 9.4) and (Eq. 9.5), are listed in Table 9.1 and structures of the specific ligands
1–11 used in these reactions are given in Fig. 9.1. A literature analysis shows that
oxidative aerobic transformations of olefinic substrates and arenes are explored better
than those of alkanes. While compiling representative organometallic palladium-
catalyzed aerobic C–H functionalization reactions, preference was given to more
challenging processes involving arene, olefin, or alkane C–H activation (all entries
except 9–12). The assignment of the type of a C–H bond involved in oxidative
functionalization is purely formal for some reactions involving olefins serving either
as hydrocarbon substrates (entries 9–12) or as coupling partners (entries 20–26). In
these specific examples, the relevant organopalladium intermediates result from the
addition of palladium(II) species across an olefin C=C bond (olefin insertion into
PdII-ligand bond) and not from the olefin C–H bond activation. As an alternative to
the olefin insertion, activation of olefins at a PdII center may involve direct allylic
C–H bond cleavage leading to allylpalladium(II) intermediates (entry 5).
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Fig. 9.1 Ligands 1–11 used in reactions in Table 9.1

The reactions in Table 9.1 are organized according to the type of the func-
tional group introduced and new C–X bond formed, the type of the substrate C–H
bonds involved, and the type of the X–H coupling partner, when applicable. Reac-
tions leading to functionalization of substrate C(sp2)–H bonds include hydroxylation
(entry 1), acetoxylation (entry 2), amidation/amination (entries 6–9), imidoylation
(entries 13–15), homocoupling (entry 16), arylation (entries 17–19), alkenylation
(entries 20–24), and alkylation (entry 26). Transformations of substrate C(sp3)–H
bond include acetoxylation (entries 3–5), chlorination (entry 4), amidation/amination
(entries 10–12), alkenylation (entry 25), and oxidative dehydrogenation of cyclohex-
ane derivatives (entries 27–29). Besides X–H type coupling partners, boronic acid
derivatives were also used in some cases (entry 19). Notably, the use of chiral sup-
porting ligands may lead to a highly enantioselective product formation with the
product enantiomeric excess up to 98% (entry 11).

The key to understanding and overcoming challenges associated with the devel-
opment of aerobic C–H functionalization reactions and, in particular, most difficult
aerobic functionalization of alkanes, lies in the understanding of their mechanisms.
Notably, in the past two decades, the rapid development of Pd-catalyzed aerobic
oxidative C–H functionalization has become possible thanks to close attention paid
to mechanisms of palladium-mediated C–H bond activation [46] and O2 activation
reactions [47]. Accordingly, in the subsequent discussion, some key mechanistic
details of these reactions will be considered.
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9.2.1 General Mechanisms of Palladium-Mediated Aerobic
C–H Functionalization

Three plausible catalytic cycles showing major steps of palladium-catalyzed aerobic
C–H functionalization are given in Scheme 9.1. In the “non-redox” PdII—only cat-
alytic cycle A, the metal oxidation state remains the same during three major steps,
the substrate activation step a, the O2 activation step b, and the product-releasing
step c leading to the substrate functionalization product (hydrocarbyl-OH).

In mechanism B, a PdII/Pd0 redox couple is involved. The +2 metal oxidation
state is not changed at the substrate activation step a. The step b leading to substrate
functionalization product (hydrocarbyl-X) involves elimination of C–X bond from a

A

[PdIIY2]

+ hydrocarbon 
(hydrocarbon moiety of a substrate)

[PdIIY(hydrocarbyl)][Pd0]

+ 0.5O2

B

+ 2HY

[PdIIY2]

+ hydrocarbon 
(hydrocarbon moiety of a substrate)

[PdIIY(hydrocarbyl)][PdIIY(O-hydrocarbyl)]

- hydrocarbyl-OH

+ 0.5O2

+ HY

+ HX
(a coupling partner)+ hydrocarbyl-X

[PdIIY2]

+ hydrocarbon 
(hydrocarbon moiety of a substrate)

[PdIIY(hydrocarbyl)]

+ 0.5O2 / 
redox mediator

C

+ 2HY

+ HX
(a coupling partner)

[PdIIX(hydrocarbyl)]

[PdIVX(hydrocarbyl)]

PdII - only cycle

PdII / Pd0 redox cycle (potential formation Pd nanoparticles, Pd black)

PdII / PdIV redox cycle

a

b

c

a

b

c

- hydrocarbyl-X

a

b

d

c

Scheme 9.1 Plausible simplified catalytic cycles for palladium-mediated aerobic C–H bond func-
tionalization
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palladium(II) center with concomitant reduction of PdII to Pd0, and the O2 activation
step c leads to reoxidation of Pd0 to PdII.

Finally, the mechanism C is also palladium redox-based and involves PdII/PdIV

redox couple. The PdII center does not change its oxidation state during the substrate
activation step a and subsequent reaction with a coupling partner HX, step b. Two
other steps, c and d, involve oxidation of PdII hydrocarbyls to their PdIV derivatives
and C–X elimination of the product (hydrocarbyl-X) from the palladium(IV) center
with concomitant reduction of PdIV to PdII, respectively.

9.2.1.1 Substrate Activation Step

All the basic mechanismsA–C in Scheme 9.1 imply that substrate activation leading
to hydrocarbylpalladium(II) species (step a) occurs without change of the metal
oxidation state +2.

Even in the cases where palladium(0) complexes are used as pre-catalysts (exam-
ples in entries 13–15 in Table 9.1), the authors argue that the actual catalytically
active species are palladium(II) complexes. The latter result from oxidation of pal-
ladium(0) species with O2 involving N–H acidic substrates, O-methyl hydroxamic
acids, which serve as a source of anionic amido ligands for the resulting PdII center
(see step b, mechanism B) [29], see, e.g. Eq. 9.6:

2
[
Pd0

] + O2 + 4H−N(OMe)(COR) → 2
[
PdII(N(OMe)COR)2

] + 2H2O (9.6)

Similar may be the role in Pd0 recycling of protected aminoacids 6 and 7 (Fig. 9.1)
used as ligands in some aerobic C–H functionalization reactions (examples in entries
19–21, 24, Table 9.1).

Importantly, all the mechanisms of substrate activation by palladium(II) com-
plexes discussed below require prior substrate coordination to the metal. Hence, the
slow rates of ligand substitution in catalytically active metal species and strong coor-
dination to palladium(II) center of a supporting ligand or substrate may decrease dra-
matically the overall catalyst turnover frequency. As a result, the judicious choice of
supporting ligand for a catalystmaybe very important,which is, in particular, a reason
for the success of catalytic systems utilizing weakly coordinating 2-fluoropyridine 4
[31, 32] or bidentate 4,5-diazafluoren-9-one 2 [25] ligands (Fig. 9.1).

Holding these considerations in mind, it is very remarkable that the Pd
0

2(dba)3 -
based catalytic system in examples in entries 13–15, Table 9.1 is very tolerant of het-
erocyclic donor groups present in substrates. These donor groups can strongly bind to
palladium(II) center and severely inhibit catalysis of C–H functionalization by palla-
dium(II) complexes. A possible explanation to this tolerance is that the palladium(II)
centerwhich is generated in reaction (9.6) above is coordinated to basic amido ligands
and as such can be involved in substrate C–H bond activation/deprotonation (vide
infra), experiencing minimal inhibiting effect of coordinating heterocyclic donor
groups of the substrates [29].
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Olefin Insertion into PdII-Ligand Bond

Following substrate coordination to a palladium(II) center, its activation by the metal
leading to hydrocarbylpalladium(II) species may proceed either as the substrate C–H
bond cleavage or, for unsaturated substrates, as an addition (insertion) reaction. For
olefinic substrates, even with available relatively acidic allylic C–H bonds, step a
may not involve the substrate C–H activation, as it is the case in oxidative amination
of olefins in the examples in entries 9–12, Table 9.1. Instead, based on available
mechanistic tests, authors of these catalytic systems propose that formation of alkyl-
palladium(II) intermediates in step a occurs as cis-aminopalladation of the olefinic
C=C bonds (Scheme 9.2), and not as allylic C–H bond cleavage [27].

Deprotonation of PdII–Coordinated C–H Bonds

Allylic C–H Deprotonation of Olefins

In turn, in the absence of strongnucleophilic ligands such as amides in examples given
in entries 9–12, Table 9.1, olefinic substrates with available allylic C–H bonds can
undergo allylic C–H deprotonation by the action of a metal-coordinated carboxylate
(Scheme 9.3) [19] or a similar basic ligand [29], or even a free carboxylate serving as
a base, as it was found computationally [48]. Some representative reactions involving
activation of olefinic substrates via allylic C–H bond cleavage are given in entries 5,
27–29, Table 9.1.
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Directed C–H Activation. Concerted Metallation–Deprotonation Mechanism

Considering non-olefinic substrates in Table 9.1, their quick inspection shows that
many of them have metal-coordinating heteroatoms, e.g., carboxylate oxygens,
examples in entries 1, 19–20, 24, a quinoline nitrogen, entry 3, an oxime or pyri-
dine nitrogen in entries 4, 25, an anionic amide nitrogen resulting from N–H bond
deprotonation in entries 6–8, 13–15, 17, 23, in a close proximity to C–H bonds
involved in subsequent oxidative functionalization reaction. It was shown that func-
tionalized hydrocarbon substrates containing suitable donor groups undergo C–H
bond activation only after prior coordination of the donor group to the metal [49].
As a result, only those C–H bonds of the substrate that are accessible for the donor
group-coordinated metal can be involved in subsequent transformations. Hence, the
position of the donor groups relative to the substrate’s various C–H bonds deter-
mines the regioselectivity of the C–H activation step a. Formation of five-membered
palladacyclic intermediates is usually kinetically favored over six-membered met-
allacycles. Notably, metallacyclic intermediates with both smaller and larger rings
can form. As a result, for arene derivatives with donor groups (DG) attached to one
of the arene carbon atoms, such as CO2

–, CH2CO2
–, CONR2, NHCOR, CH2NR2,

2-pyridyl, 2-oxazolyl, 2-imidazolyl, N=NAr, CH2SR, or CH2OH selective metalla-
tion and subsequent functionalization is most facile for the arene C–H bonds that
are positioned ortho- to the donor group [49, 50] (examples in entries 1, 6–8, 13–15,
17–20, 23–24, Table 9.1). Similar rules apply for alkane C–H bond functionalization
when dealing with functionalized alkane substrates bearing directing groups [49, 51]
(examples in entries 3, 4, 25, Table 9.1). Importantly, by changing the length and
configuration of a tether between an arene carbon to which the tether is attached and
the donor group, one can achieve a rare selective meta-C–H bond functionalization
of the arene, as it is the case in an example in entry 21 in Table 9.1 [37].

The considerations above also imply that for substrates having several types of
chemically nonequivalent C–H bonds, selective functionalization of some of them
may be a daunting problem in palladium catalysis. At the same time, this is one of
the points of growth and development of this area [37, 47], where joint experimental
and computational modeling efforts are especially promising [52].

Themechanism of C–H activationmost common for substrates with donor groups
and substrates not having directing groups such as non-functionalized arenes or alka-
nes (entries 2, 16, Table 9.1) is the concertedmetallation–deprotonation (Scheme 9.4)
[46], which was also studied computationally [53, 54]. In either case, before the
deprotonation step can occur, a substrate C–H bond has to be coordinated to the
metal center. Such coordination can enhance dramatically the C–H bond acidity and
facilitate subsequent C–H deprotonation. Expectedly, C–H bonds of nonactivated
alkane fragments are the least acidic and, as such, are most difficult to activate and
functionalize.

A substrate C–H bond coordination to the metal is greatly facilitated when the
substrate has a donor group that can coordinate to the metal, thanks to the absence
of the entropic penalty for the C–H bond coordination step (Scheme 9.4, top). Since
hydrocarbon C–H bonds are very poor electron donors, the latter effect is of immense
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importance for metal-mediated C–H activation and functionalization. Interestingly,
coordination of a substrate C–H bond to the metal center can be facilitated when a
palladium(II) carboxylate is a strained chelate, such as palladium(II) pyridine-2,6-
dicarboxylate (Scheme 9.5, top) [16, 17]. Dissociation of a carboxylate arm from the
metal relives the chelate ring strain and is, therefore, facilitated, which accelerates
coordination of the substrate C–H bond to be functionalized. Non-strained analogs
with larger chelate size are less reactive (Scheme 9.5, bottom).
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9.2.1.2 C–X Bond Formation Step

This step is the most critical for achieving a desirable type of C–H bond functional-
ization. Since the key reaction intermediates produced at the step a are organopalla-
dium(II) species, knowledge of their reactivity [1] is very important when designing
new catalytic reactions. This step can be viewed as functionalization of transient
organopalladium species.

In any of the mechanismsA–C (Scheme 9.1), the C–X bond formation may result
already at the step a when the substrate is an olefin involved in an insertion reaction
(see, e.g., Scheme 9.2).

If step a involves a substrate C–H bond cleavage which results in a hydrocarbyl-
palladium(II) intermediate, then the C–X bond formation occurs typically at the step
b (mechanisms A, B) or d (mechanism C).

O2 Insertion into PdII–C Bond

According to mechanism A in Scheme 9.1, the PdII–C bond functionalization (step
b) may be as “simple” as O2 insertion into PdII–C bond which does not involve the
metal redox change, (see an example in entry 1 in Table 9.1 as well as a discussion in
the next section, “O2 activation step”). The expected O2 insertion product is a hydro-
carbylperoxo complex. A few such well-defined stoichiometric reactions are known.
They involve methylpalladium(II) complexes [55–59]. One of the first reported O2

insertion reactions (Scheme 9.6, top) involves a dimethylpalladium(II) species and
is a radical chain process [55], similar to a reported later analogous O2 insertion
involving a neutral monomethylpalladium(II) compound [56]. Another reaction in
Scheme9.6 is photochemical and involves cationicmonomethylpalladium(II) species
(Scheme 9.6, bottom) [57–59]. All of these reactions occur in aprotic media and the
resulting methylperoxo palladium(II) species are formed in high yields.

Protonolysis of the products of O2 insertion into PdII–CH3 bond in Scheme 9.6
can lead to free methylhydroperoxide, an unstable and explosive chemical. Hence,
the practical value of such products may be low. In this regard, an in situ con-
version of hydrocarbylperoxo metal species into palladium(II) alkoxo complexes
or free alcohols would be more desirable. In fact, both MeO2H and MeOH form
in a photocatalytic reaction of O2 with a water-soluble anionic methyl palladium
complex [(dpms)PdIIMe(OH)]–, besides ethane which is a major reaction product
(Scheme 9.7, top) [60]. Importantly, the formation ofMeO2H can be fully suppressed
by a slight modification of the reaction conditions with a concomitant increase of the
MeOH yield up to 50% with the rest of the balance being ethane. It was shown that
various hydroperoxides RO2H (R=H, Me, t-Bu) react cleanly and rapidly with the
methylpalladium(II) reagent, [(dpms)PdIIMe(OH)]–, to form the correspondingROH
in high yields. A proposed reaction sequence shown in Scheme 9.7 (center and bot-
tom) involves formation of a hypothesized highly electrophilic methylpalladium(IV)
species responsible for the production of various Me–X products detected in the
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Scheme 9.6 Some reported
examples of direct thermal
[55] or photochemical
[57–59] O2 insertion into
PdII–CH3 bond of
methylpalladium(II) species

PdII

L

L

Me

Me
O2

O2 insertion into PdII-CH3 bond (thermal, chain radical)

PdII

L

L

Me

O O

Me

L

L
=

N N

N

N

PdII

L

L

L

Me
O2

PdII

L

L

L

O O

Me

O2 insertion into PdII-CH3 bond (photochemical)

L

L

L

=

N
R

R

R = NH2, NHMe, Me

mixtures with various nucleophiles and resulting from their attack at the CH3–PdIV

fragment of the proposed methylpalladium(IV) transient.

Reductive Elimination of C–X Bond from a PdII or a PdIV Center

According to mechanisms B and C (Scheme 9.1), C–X bond formation occurs as a
result of reductive elimination from PdII(X) hydrocarbyls (mechanism B, step b) or
PdIV(X) hydrocarbyls (mechanism C, step d) species. The ligands X necessary for
such reductive coupling are introduced into palladium(II) coordination sphere prior
to the C–X bond elimination (mechanism B) and, typically, but not always, prior to
the PdII to PdIV oxidation step c (mechanism C) as a result of a ligand exchange,
olefin insertion into palladium(II)-ligand bond (examples in entries 20–26) or, rarely,
C–H bond activation at the electrophilic PdIV center [61].

Mechanism C involving a PdII/PdIV redox couple is rare in aerobic C–H func-
tionalization chemistry. In particular, the authors of the catalytic system in entry 2
[15], Table 9.1, proposed involvement of a PdII/PdIV redox couple with a C(sp2)–O
reductive elimination from a PdIV hydrocarbyl resulting from the oxidation of its PdII

precursor with HNO3. Similarly, possible involvement of the PdII/PdIV redox couple
was discussed for reactions in entries 3 [16] and 4 [18] leading to C(sp3)–X (X=O,
Cl) reductive elimination from PdIV species which, in fact, occurs as an SN2 process.
In the latter system, the oxidant responsible for the generation of PdIV hydrocarbyls
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Scheme 9.7 Photochemical
dioxygen activation by a
water-soluble
methylpalladium(II)
complex and conversion of
RO2H to ROH [60]

photochemical functionalization of Pd-CH3 with O2 in water
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is HNO3, similar to the reaction in entry 2. In turn, for the catalytic system in entry
3, the PdIV hydrocarbyls were speculated to be produced aerobically from their PdII

precursors [16]. It was shown computationally that the formation of PdIV transients
is thermodynamically viable thanks to the ability of the tripod ligand 1 (Fig. 9.1)
to adapt a facial coordination mode. At the same time, a mechanism involving an
O2 insertion into PdII–C bond also could not be excluded [17]. Notably, there are
precedents of reactions between O2 and dimethylpalladium(II) complexes supported
by facially chelating ligands that lead to palladium(IV) derivatives [62, 63].

The involvement of PdII/Pd0 redox catalysis (mechanism B) is most commonly
proposed in various aerobic C–H functionalization reactions. The relevant examples
in Table 9.1 are the reactions leading to C(sp3)–O bond formation, such as in the
catalytic system in entry 5, C(sp2)–N bond formation, such as in arene and alkene
amination reactions in entries 6–12, and C–C bond formation, such as in the arene
imidoylation reactions (entries 13–15), arene homocoupling (entry 16), arene ary-
lation (entries 17–19), arene and alkane alkenylation (entries 20–25) and alkylation
(entry 26).
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Finally, a special case of the product forming step associatedwith themechanismB
which does not require the presence of an actual coupling partner is dehydrogenation
of various cyclohexane derivatives in reactions in entries 27–29. In this case, the new
C=C bonds result from β-hydrogen atom elimination of palladium(II) hydrocarbyl
intermediates.

O2 Activation Step

Another stepwhich is critical for any catalytic aerobic C–H functionalization process
is O2 activation. Direct O2 insertion into PdII–C bond is one of the possibilities which
has been already characterized in section “O2 Insertion into PdII–C Bond”.

O2 Activation by Redox Cocatalysts

O2 activation carried out by a redox cocatalyst is very common in aerobic Pd-
catalyzed C–H functionalization, especially in its older versions. Some redox cocata-
lysts that were proven efficient are copper(II) complexes, heteropolyacids, and lower
nitrogen oxides NOx (x = 1, 1.5, 2). These cocatalysts in their reduced form, e.g.,
copper(I) orNO, react rapidlywithO2 to form species capable of oxidizing palladium
center from lower to higher oxidation states, Pd0 to PdII (mechanism B, Scheme 9.1)
or, in some cases, converting PdII hydrocarbyls to PdIV hydrocarbyls (mechanism
C). Some of the catalytic systems in Table 9.1 utilize these cocatalysts, CuX2 (entries
7, 8, 23), NOx (entries 2, 4), and a heteropolyacid H4[PMo11VO40] (entry 25). While
copper(II) cocatalysts are traditionally assumed to support recycling of Pd0 to PdII

species (mechanism B), the systems utilizing NOx as redox mediators (entries 2, 4)
are proposed to support reactions involving a PdII/PdIV redox couple (mechanism C,
Scheme 9.1).

The presence of a redox-active cocatalyst in a catalytic system, such as those
mentioned above, does not exclude the option that O2 activation will actually be
carried out by palladium species. In particular, the authors of the reaction in entry 16
have observed only negligible effect of Cu(OTf)2 additive on Pd0 reoxidation. They
have concluded that themajor role of Cu(OTf)2 cocatalyst in the palladium-catalyzed
oxidative homocoupling of o-xylene is not O2 activation but rather that of a Lewis
acid enhancing reactivity of Pd(OAc)2 [31].

O2 Activation by Pd0 Species

The catalytic systems where O2 activation is carried out by Pd0 species are becoming
increasingly important practically and are interesting mechanistically. These reac-
tions convert Pd0 complexes to PdII peroxo species (Eq. 9.7), e.g., Pd(PPh3)4 is
oxidized to Pd(κ2-O2)(PPh3)2 [64]. Notably, triphenylphosphine liberated in the lat-
ter reaction can reduce palladium peroxide and form corresponding phosphine oxide.
This fact suggests that the practical value of phosphine ligands in aerobic palladium
catalysis may be limited.
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Fig. 9.2 Some palladium
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O2 activation by Pd0 species can be most efficient when suitable ligands are
present. For instance, a PdL2 complex 12 with very bulky N-heterocyclic car-
bene (NHC) ligands L=N,N’-bis(2,2”,6,6”-tetramethyl-m-terphen-5’-yl)imidazole-
2-ylidene) (Fig. 9.2) reacts with O2 at room temperature even in a solid state [65].

LnPd
0 + O2 → cis-L2Pd

II(O2) + (n − 2)L (9.7)

The resulting palladium(II) peroxo complexes are relatively basic and can react
stepwise with acids to form first palladium(II) hydroperoxo complexes (Eq. 9.8) and,
eventually, H2O2 (Eq. 9.9):

cis-L2Pd
II(O2) + HX → PdIIX(OOH)L2 (9.8)

PdIIX(OOH)L2 + HX → PdIIX2L2 + H2O2 (9.9)

In turn, H2O2 released in the last reaction may act as an oxidant with respect
to Pd0 and/or reactive hydrocarbyl PdII species (e.g., Scheme 9.7, bottom) [60] or
decompose into O2 and H2O.

In the absence of suitable ligands, the rate of the oxidation reaction in Eq. 9.7
may be too slow and/or the stability of Pd0 complexes may be too low, so that a
catalyst deactivation leading to the formation of catalytically inactive Pd black may
become highly competitive with the reaction (9.7). Such catalyst deactivation is the
major reasonwhymany palladium-based catalytic systems involving PdII/Pd0 couple
(mechanism B, Scheme 9.1) require high catalyst loading, 10–20% and even higher
(see Table 9.1 for examples). Notably, at some intermediate stages leading to the
formation of palladium black, palladium(I) species [25, 66] and, ultimately, soluble
palladium clusters/nanoparticles may be produced which often are also catalytically
active in aerobic oxidation reactions [67, 68].
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Interestingly, until recently, the utilization of organic ligands in aerobic func-
tionalization catalysis by palladium compounds was not practiced, although some
polar solvents such as DMSO that can coordinate to palladium(II) center were used
successfully in a number of aerobic palladium-catalyzed C–H functionalization reac-
tions (examples in entries 6, 22, Table 9.1). This situation is, in part, a reflection of
a formerly poor understanding of the underlying aerobic chemistry of Pd0 species
[47]. One of the important reasons for this lag is related to the fact that rates of
aerobic C–H functionalization by soluble palladium complexes are often zero order
in [O2], and their turnover-limiting step is the substrate C–H activation, so making
the characterization of the O2 activation step difficult in such systems.

O2 Activation by PdII Hydrides Versus Pd0 Species

Catalytically competent palladium(0) species are expected to result fromC–X reduc-
tive elimination of PdII(hydrocarbyl)X complexes in mechanism B, Scheme 9.1.
Alternatively, palladium(0) speciesmaybe produced as a result ofH–Yelimination of
palladium(II) hydrides (Eq. 9.10) which, in turn, are formed as a result of β-hydrogen
atom elimination of suitable palladium(II) alkyl, alkoxo, or similar species.

LnPd
II(H)Y → LnPd

0 + HY (9.10)

Importantly, palladium(II) hydrides are also able to react with O2. The reaction
proceeds via O2 hydrogen atom abstraction/radical recombination pathway leading
to O2 insertion into Pd–H bond and formation of palladium(II) hydroperoxides [69]
(Eq. 9.11), so allowing to return PdII back to the catalytic cycle.

LnPd
II(H)Y + O2 → LnPd

II(OOH)Y (9.11)

The reaction between O2 and a (PCP)PdII(H) complex 13 (Fig. 9.2) was charac-
terized kinetically to reveal a first-order dependence of its rate on pO2 and a large
deuterium kinetic isotope effect, kPdH/kPdD = 5.8, all consistent with an H-atom
abstraction mechanism. The mechanism was also analyzed computationally [70].

More extensive studies of reactions between various palladium(II) hydride com-
plexes andO2 (Eq. 9.11) have led to a conclusion that an alternative reaction sequence
(9.10)–(9.7)–(9.8), that is HY reductive elimination—oxidation, leading to palla-
dium(II) hydroperoxo complexes can be faster than the direct route (9.11) [71],
although, in general, both pathways may be very competitive kinetically [72, 73].
In some cases, just a minor variation in the electronic properties of the anionic lig-
and Y, e.g., a p-substituted benzoate in bis-NHC palladium(II) hydride complexes
trans-L2PdII(H)(O2CC6H4-p-X) 14 (Fig. 9.2), can lead to a change in the reaction
mechanism from the direct O2 insertion (Eq. 9.11), with a large deuterium kinetic
isotope effect, kPdH/kPdD = 3.1 for X = OMe [73], to a stepwise transformation
(9.10)–(9.7)–(9.8), with a very small kPdH/kPdD = 1.3 for X = H [71]. Interest-
ingly, benzoquinone additives which are often present as a cocatalyst in palladium-
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catalyzed aerobic C–H functionalization reactions (see, e.g., an example in entry 19
in Table 9.1) were found to accelerate the reaction sequence (9.10)–(9.7)–(9.8) [74].

Notably, the HY reductive elimination—oxidation reaction sequence
(9.10)–(9.7)–(9.8) and, in particular, its first step (9.10), is strongly favored in
palladium(II) complexes bearing labile monodentate L-type ligands since three-
coordinate LPdII(H)Y species resulting from a ligand L dissociation eliminate H–Y
at faster rates (Eq. 9.10, n = 1 vs. n = 2). The use of bidentate ligands appears to also
favor the HY reductive elimination—oxidation reaction sequence, as compared to
the direct pathway (Eq. 9.11), when one of the ligand’s donor atoms is basic enough
to deprotonate the PdII–H bond. That is usually the case for N-donor ligands. The
deprotonation can occur upon this donor atom dissociation from the metal. As a
result, the authors of [47] conclude that the O2 activation in most aerobic catalytic
systems used till date is carried out, most typically, by Pd0 species and not by
palladium(II) hydrides.

9.3 Homogeneous Organometallic Platinum—Catalyzed
Aerobic CH Oxidation

As it was mentioned in the introduction, the first-ever developed platinum-based cat-
alytic system for aerobic C–H functionalization allowed to carry out an overall very
challenging transformation, the conversion of gaseous methane to CH3X products
(Eqs. 9.2, 9.3), albeit with low [PtCl4]2– catalyst turnover (≤6) and poor selectivity in
CH3X products (≤50%) [5]. The reaction mechanism [7, 8] is similar to mechanism
C shown in Scheme 9.1 for aerobic palladium catalysis. Notably, the heteropoly-
acid used in these experiments as a redox mediator was also shown by the authors
to oxidize methanol, so contributing to the overall low reaction selectivity in CH3X
products. Subsequent attempts to developmore efficient variants of the reaction were
made. In 2001, some modifications to the aerobic system were undertaken by intro-
ducing aqueous CuCl2 as a redox mediator instead of a heteropolyacid and using
water-soluble alkanesulfonic acids as substrates which are much easier to handle
than gaseous methane. Water was used as the reaction medium [75]. These changes
allowed to achieve the catalyst turnover numbers up to 43–52 after 4 h of reaction at
160 °C for ethanesulfonic acid as a substrate (Eq. 9.12):

2C2H5SO3Na + O2 → 2HOCH2CH2SO3Na (9.12)

The reaction was ~50–76% selective with respect to the methyl group oxidation
product, 2-hydroxyethanesulfonic acid shown in Eq. 9.12, with the rest of the balance
being mostly the corresponding aldehyde and carboxylic acid.

A more recent reinvestigation of the Shilov reaction was undertaken in 2010 [9].
The authors used microfluidics technique and screened a number of redox mediators
for the reaction of CH4 with O2 in water at 180 °C. They observed up to 49 catalyst
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Scheme 9.8 Aerobic stoichiometric C–H functionalization of arenes mediated by platinum(II)
complex 15 [10]

turnovers after 6 h with the selectivity in CH3OH ~50% using either Fe2(SO4)3 or a
heteropolyacid as a redoxmediator. Formic acid accounted for the rest of the balance.

Although the catalyst turnover numbers in both cases are much better than in
the original Shilov publication [5] and, in fact, in many palladium-based systems
listed in Table 9.1, the resulting oxidation products, 2-hydroxyethanesulfonic acid
and methanol, may, most likely, be readily available at a lower cost using traditional
methods of their preparation. Further reaction developments are in order.

Notably, learning from recent progress in aerobic catalytic C–H functionalization
by palladium complexes, a possible direction for future research in catalytic platinum
chemistrymay target a better understanding of the underlyingC–Hactivation, aerobic
oxidation, and C–X reductive elimination chemistry of platinum species involved
and rational design of ligands for these transformations [76]. As an example of such
efforts, platinum(II) complex 15 supported by a newly designed sulfonated pincer
ligand in Scheme 9.8 supports facile aerobic stoichiometric C–H functionalization
of a series of arenes leading to derived arylplatinum(IV) complexes 17 [10]. The
reaction is more efficient for electron-rich arenes. The minor products of the arenes
functionalization are oxidatively C–C coupled complexes 18. The fraction of the
undesirable product 16 forming along with 18 can be significantly reduced in the
presence of p-hydroquinone.

9.4 Development of Homogeneous Organometallic
Nickel-Catalyzed Aerobic CH Oxidation

Nickel-based catalytic systems for organometallic aerobic C–H functionalization are
still at an early stage of development. In fact, no such systems have been reported
so far. At the same time, some basic step of a plausible catalytic cycle incorpo-



246 A. N. Vedernikov

rating nickel complexes can be envisioned. A recent publication [77] discloses a
possible approach toward donor group/auxiliary 19-directed C(sp3)–H activation at
a nickel(II) center to produce metallacyclic nickel(II) alkyls 20 (Scheme 9.9). The
behavior of the reported system resembles that of similar palladium(II) systems,
although at somewhat higher temperatures for the nickel-based one. The kinetics
of the reaction in Scheme 9.9 has been characterized in detail, including a large
deuterium kinetic isotope effect, kH/kD ~ 7, and the reaction was proposed to oper-
ate a concerted metallation—deprotonation mechanism also common in palladium
chemistry.

Notably, although not shown to involve organonickel intermediates, hydrogen
atom transfer (HAT) chemistry involving C–H bonds of a series of alkylarenes such
as 9,10-dihydroanthracene, toluene, and ethylbenzene has also been demonstrated
in their reactions with a few isolated nickel(III) complexes [78].

In turn, stoichiometric aerobic Ni–C bond functionalization reactions have been
known for a long time. Examples of aerobic oxidative C(sp2)–O [79] and C(sp3)–N
[80] coupling reactions are given in Scheme 9.9, bottom.

Finally, there is a substantial body of recent work detailing the intimate chemistry
of dioxygen activation at a nickel(I) center supported by various chelating ligands
which can lead to nickel(II) superoxo or peroxo complexes and even nickel(III)
peroxo species [81].

Overall, the fact that the key steps of a potential catalytic cycle of aerobic C–H
functionalization by nickel are established, may be viewed as a promise of possible
future development of the related catalytic chemistry.

Scheme 9.9 Auxiliary-
directed C(sp3)–H activation
at a nickel(II) center (top)
[77] and aerobic oxidative
functionalization of
NiII-C(sp3) bonds (bottom)
[78, 79]
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9.5 Conclusions

Aerobic organometallic C–H functionalization catalysis by palladium complexes has
shown a significant development over the past two decades. The major driving force
behind this success was an increased attention to and an improved understanding of
the reaction mechanisms and the role that the ligand environment at the metal plays
in such reactions. Numerous challenges remain on the way toward making hydrocar-
bon C–H bonds a “functional group” that can be readily and selectively transformed
to another “classic” functional group by using the right catalytic system. Under-
standing the mechanism of C–H activation and the factors that control its selectivity
in substrates with chemically non-equivalent C–H bonds can drive the progress in
this area. A collaboration of experimentalists and computational chemists in such a
challenging area of research may become fruitful. While organometallic palladium
aerobic oxidation catalysis has already been an established and has a solid reputa-
tion among synthetic chemists, analogous platinum-based systems for aerobic C–H
functionalization are scarce. Slower reaction rates of reactions involving platinum
species, as compared to analogous palladium chemistry, maybe a reason behind such
poor performance in aerobic platinum catalysis. But as in the case of the recent devel-
opment in aerobic palladium catalysis, greater attention to reaction mechanisms and
ligand design might help improve the situation. Finally, organometallic nickel aero-
bic oxidation catalysis is not established yet but there are some promising reports that
suggest possible future development of this field. Overall, selective catalytic aerobic
C–H functionalization reactions are poised to grow in their importance in the coming
years and the group 10 metals can continue contributing to this development.
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