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Abstract
Evidence now suggests that precision psychiatry is becoming a cornerstone 
of medical practices by providing the patient of psychiatric disorders with the 
right medication at the right dose at the right time. In light of recent advances 
in neuroimaging and multi-omics, more and more biomarkers associated with 
psychiatric diseases and treatment responses are being discovered in precision 
psychiatry applications by leveraging machine learning and neural network 
approaches. In this article, we focus on the most recent developments for 
research in precision psychiatry using machine learning, deep learning, and 
neural network algorithms, together with neuroimaging and multi-omics data. 
First, we describe different machine learning approaches that are employed 
to assess prediction for diagnosis, prognosis, and treatment in various preci-
sion psychiatry studies. We also survey probable biomarkers that have been 
identified to be involved in psychiatric diseases and treatment responses. 
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Furthermore, we summarize the limitations with respect to the mentioned pre-
cision psychiatry studies. Finally, we address a discussion of future directions 
and challenges.
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Introduction

The interdisciplinary fields of precision psychiatry, machine learning, neural net-
work algorithms, and neuroimaging had been making good progress in recent 
years [1–3]. The objective of a machine learning method is to enable a data-driven 
algorithm that can generally learn from data of the past or present and leverage 
the learned knowledge to make a predictive decision for an unknown future event 
or for any unknown data in the future [4–6]. In the general terms, the roadmap for 
a machine learning method is comprised of three steps where we build the model 
from initial inputs in the first step, evaluate and tune the model in the second step, 
and then utilize the model for making a predictive decision in the third step [4–6]. 
In the field of precision psychiatry, machine learning approaches integrate multi-
ple data types such as neuroimaging and multi-omics data by using state-of-the-
art statistical and data mining algorithms that can automatically learn to perceive 
complicated patterns based on empirical datasets [1–3]. To address the pressing 
challenges precision psychiatry faces today, there is a tremendous need for the 
development of machine learning software frameworks that can achieve clinical 
predictions of a given categorical or quantitative phenotype using next-generation 
neuroimaging and multi-omics data [1–3].

Precision psychiatry, an emerging field of medicine, is growing into a corner-
stone of medical practices with prospects of the customization of healthcare for 
patients with psychiatric disorders, which means that medical practices, deci-
sions, and treatments are tailored to individual patients [7]. More precisely, entire 
patient populations are subdivided into groups by biomarkers such as neuroimag-
ing and multi-omics data; thereby, medications might be adapted personally to 
each individual patient with relevant or comparable genetic and imaging char-
acteristics [7]. To date, there are more and more accumulating biomarkers that 
could affect clinical drug response and disease prognosis for treatment of patients 
with psychiatric disorders [8]. Furthermore, it has long been acclaimed that 
selected single nucleotide polymorphisms (SNPs) and gene expression profiles 
could be used as biomarkers to influence clinical treatment response and adverse 
drug reactions for antidepressants in patients with major depressive disorder 
(MDD) [9, 10].

Recent advances in machine learning, especially deep learning, have pointed 
out its potential and ability to learn and recognize nonlinear and complicated 
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hierarchical patterns based on enormous large-scale empirical datasets [11–15]. 
Due to new approaches such as the deployment of general-purpose computing 
on graphics processing units, deep learning has achieved state-of-the-art perfor-
mances on a wide variety of applications such as precision psychiatry [2, 12–15]. 
In general, the goal of deep learning is to construct a machine learning algorithm 
to facilitate a hierarchical representation of the data by using multiple layers of 
abstraction such as neural networks [12–16]. In other words, a deep learning algo-
rithm for classification applications such as medical diagnosis in precision psychi-
atry is a procedure for choosing the best hypothesis using a neural network with 
multiple layers, instead of using a neural network with only single layer [12–16].

With the advent of technology in neuroimaging and multi-omics sciences, 
novel diagnostic tools as well as new drugs are exhibiting high growth potentials 
to address the needs of precision psychiatry for treatment and therapeutic inter-
ventions [17]. The use of biomarkers based on machine learning approaches has 
played a vital role in precision medicine in psychiatry [17]. Recently, there were 
a number of key emerging diagnostic studies for various diseases and treatments 
of significance for psychiatry with consideration of machine learning methods [2]. 
To that end, it would be greatly fascinating to create machine learning models that 
are able to forecast the probable outcome of disease status and drug treatment for 
patients with psychiatric disorders [2, 17]. In addressing this need, machine learn-
ing approaches might provide invaluable tools to accomplish the promise of preci-
sion psychiatry by tailoring treatment based on individual biomarkers [2, 17]. In 
this article, we present various precision psychiatry studies for assessment of dis-
ease status and drug treatment with consideration of machine learning, deep learn-
ing, and neural network approaches. In addition, we summarize the limitations in 
these studies and provide a discussion of future directions and challenges.

Method

Literature Search and Analyses

In this review, we present relevant studies on precision psychiatry and machine 
learning applications after a comprehensive search of the electronic PubMed data-
base (2015–present). Key words in the search included “machine learning,” “deep 
learning,” “psychiatry,” “neuroimaging,” “precision psychiatry,” and “neural net-
work.” Furthermore, we employed a manual search procedure of bibliographical 
cross-referencing. We manually screened the obtained articles and aimed at iden-
tifying original papers and reviews with a particular focus on precision psychiatry 
and machine learning applications. While this article is by no means a comprehen-
sive review of all potential studies reported in the literature, we merely pinpointed 
various examples for machine learning methods in precision psychiatry.
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Machine Learning and Neural Network Applications

Here we describe selective studies that focus on four main arenas including diag-
nosis prediction, prognosis prediction, treatment prediction, and the detection of 
potential biomarkers in the context of machine learning and neural network meth-
ods in psychiatry. Clinical or biological suggestions from these four main catego-
ries could be a decision support aide for future prognosis and optimal treatments 
in translational psychiatry [18].

While this summary does not provide the entire set of relevant studies reported 
in the literature, it nonetheless provides a synthesis of those that can markedly 
influence public and population health-oriented applications in psychiatry and 
machine learning in the near to midterm future.

Diagnosis Prediction

In recent years, there has been a growing trend in combining machine learning 
techniques and structural and functional neuroimaging to provide new insights 
into brain disorders such as Alzheimer’s disease, autism spectrum disorder, and 
schizophrenia [19]. In particular, we focus on emerging big data methodologies 
such as deep learning in the following selective studies.

In order to distinguish mild to severe sporadic Alzheimer’s disease from nor-
mal aging, Kloppel et al. pioneered a project to utilize a machine learning method, 
support vector machines (SVMs), using structural magnetic resonance imaging 
(MRI) and achieved 89% accuracy in their model [20]. In their two-step proce-
dure, SVMs learned the differences between patients with Alzheimer’s disease and 
healthy controls in the first step, and then the framework was tested on a new brain 
scan in the second step [20].

In a recent study, Ju et al. proposed a deep learning approach, which consists 
of auto-encoders and a softmax regression layer, to predict the early diagnosis 
of Alzheimer’s disease [21]. In general, the auto-encoder is an encoding archi-
tecture, which consists of a neural network with the input layer representing the 
MRI data, multiple hidden layers representing nonlinear transformations from the 
previous layer, and the output layer representing the reconstructed MRI instances. 
Compared to widely used single-kernel SVM (accuracy = 84.40%) and multi-
kernel SVM (accuracy = 86.42%), their proposed auto-encoder model had a bet-
ter accuracy (87.76%). Their work highlights that deep learning approaches have 
an advantage over traditional machine learning methods to predict and prevent 
Alzheimer’s disease at an early stage [21].

With a belief network-based algorithm, Ortiz et al. employed a deep learning 
architecture that integrates gray matter images from brain areas and automated 
anatomical labeling data for identifying Alzheimer’s disease with MRI data [22]. 
Their model was composed of an ensemble of two deep belief networks with four 
different voting schemes [22]. The analysis results demonstrated that the proposed 
deep belief network method provided good performances for differentiating images 
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between healthy controls and Alzheimer’s disease individuals (accuracy = 90%) as 
well as differentiating images between mild cognitive impairment and Alzheimer’s 
disease (accuracy = 84%) [22].

In machine learning, a deep belief network is a class of deep neural networks 
which consist of multiple layers of latent variables and can be viewed as a com-
position of auto-encoders [23]. Deep belief networks have also been applied to 
discriminate young children with autism spectrum disorders using functional MRI 
[23]. In addition, Pinaya et al. utilized a deep belief network model to character-
ize differences between patients with schizophrenia and healthy controls (accu-
racy = 73.6%) using MRI data, and the performance was better than the SVM 
model (accuracy = 68.1%) [24].

Prognosis Prediction

In order to identify course trajectories of MDD, Schmaal et al. proposed a 
machine learning framework that integrates structural and functional MRI using 
Gaussian process classifiers [25]. Gaussian process classifiers are one type of 
multivariate pattern recognition methods, which are similar to SVMs and provide 
the advantage of predictive probabilities of class membership [25]. Schmaal et al. 
employed Gaussian process classifiers to evaluate three MDD trajectories (includ-
ing chronic, gradual improving, and fast remission patients) using prognostic 
value of MRI and clinical data (such as baseline severity, duration, and comorbid-
ity) [25]. Their analysis showed that their machine learning framework can dis-
criminate chronic patients from remitted patients up to 73% accuracy.

To predict health status and better inform clinical decision-making, Miotto 
et al. proposed a deep learning framework which constructs a general-purpose 
patient representation from electronic health records (EHRs) to facilitate clinical 
predictive modeling [26]. Specifically, the deep learning framework uses a mul-
tilayer neural network, which is a three-layer stack of de-noising auto-encoders 
with sigmoid activation functions to derive hierarchical regularities and dependen-
cies in the dataset of about 700,000 patients [26]. Then, random forest classifiers 
were implemented to evaluate the probability that patients might develop a cer-
tain disease given their current clinical status [26]. In the proposed deep learning 
framework, de-noising auto-encoders were trained to reconstruct the input from 
a noisy version of the original data to avoid overfitting [26]. The findings indi-
cated that schizophrenia and attention deficit hyperactivity disorder could be fore-
casted with high accuracy (area under the receiver operating characteristic curve 
(AUC) = 0.85) [26]. Moreover, Miotto et al. compared the proposed deep learning 
framework with well-known conventional machine learning algorithms, including 
principal component analysis, k-means clustering, Gaussian mixture model, and 
independent component analysis [26]. The performance metrics of the proposed 
deep learning framework were superior to those obtained by the conventional 
machine learning algorithms [26]. The main strength of the proposed approach is 
that preprocessing EHR data with the deep learning framework can help provide 
more effective predictions because of nonlinear transformations [26].
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Treatment Prediction

The use of machine learning in terms of predicting treatment response in psychi-
atric drugs is still in its infancy as scant human studies have investigated methods 
to build prediction models for estimating treatment response. We focus on antide-
pressant treatment response in this section.

In order to predict patient-specific possible antidepressant treatment outcomes 
in MDD, Lin et al. carried out a deep learning prediction algorithm and lever-
aged it to the integrated datasets from several data types (including genetic data 
such as SNPs, demographic data such as age, sex, and marital status, and clinical 
data such as baseline Hamilton Rating Scale for Depression score, depressive epi-
sodes, and suicide attempt status of MDD patients) [27]. First, they conducted a 
genome-wide association study (GWAS) to pinpoint potentially significant SNPs 
of antidepressant treatment response and remission in a hypothesis-free manner 
[27]. Their deep learning prediction algorithm is called the multilayer feedforward 
neural network (MFNN) approach, which adapts the back-propagation algorithm. 
MFNN was employed to calculate the predicted complex relationship between 
antidepressant treatment response and biomarkers [27]. An advantage of their 
approach is that these predictive MFNN methods possess the benefits of nonlinear 
models, fault tolerance, real-time processing, and integrated systems [27]. In their 
analysis results, Lin et al. identified the MFNN model with three hidden layers 
(AUC = 0.81; sensitivity = 0.77; specificity = 0.66) for remission and the MFNN 
model with two hidden layers (AUC = 0.82; sensitivity = 0.75; specificity = 0.69) 
for antidepressant treatment response [27].

There are several studies that utilized traditional machine learning methods 
to predict antidepressant treatment response. A study by Kautzky et al. reported 
that a machine learning prediction model pinpointed 25% of responders cor-
rectly for treatment outcome by using clinical and genetic information [28]. Their 
model was based on the random forests algorithm, which is an ensemble learning 
method and is constructed as a multitude of decision trees to perform classifica-
tion tasks [28]. Particularly, Kautzky et al. identified several potential biomark-
ers including a clinical variable called melancholia as well as three SNPs such 
as brain-derived neurotrophic factor (BDNF) rs6265, 5-hydroxytryptamine recep-
tor 2A (HTR2A) rs6313, and protein phosphatase 3 catalytic subunit gamma 
(PPP3CC) rs7430 [28].

Moreover, by leveraging information such as age, structural imaging, and mini-
mental status examination scores, the subsequent study by Patel et al. showed that 
a machine learning model predicted treatment response with 89% accuracy by 
using an alternating decision tree model, which generalizes decision trees and is 
related to boosting for primarily reducing bias and variance [29].

Furthermore, another study by Chekroud et al. demonstrated that a machine 
learning model estimated clinical remission by using 25 variables with 59% accu-
racy [30]. First, the top 25 predictors were identified by the elastic net, and then 
a tree-based ensemble method, a gradient boosting machine, was used to com-
bine several weakly predictive models (typically decision trees) to form a final 
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ensemble model [30]. In particular, Chekroud et al. identified the top three poten-
tial biomarkers of non-remission such as baseline depression severity, feeling rest-
less during the past 7 days, and reduced energy level during the past 7 days [30]. 
On the other hand, the top three potential biomarkers of remission were total years 
of education, currently being employed, and loss of insight into one’s depressive 
condition [30]. One advantage of their approach is that their model and predictors 
were externally validated by other independent cohorts [30].

Iniesta et al. also implicated that a machine learning model based on clinical 
and demographical characteristics can forecast response with clinically mean-
ingful accuracy by using regularized regression models (AUC = 0.72) [31]. They 
utilized elastic net, an application of regularized regression models, which are gen-
eral linear models with penalties to provide variable selection from a large number 
of variables while avoiding overfitting [32].

Finally, a recent study by Maciukiewicz et al. suggested that a machine learn-
ing model based on SNPs can predict treatment response with 52% accuracy by 
using both SVM-based and decision trees-based models [33]. They first conducted 
a GWAS study to search for genetic susceptibility loci of antidepressant treatment 
response in a hypothesis-free manner [33]. Then, they performed least absolute 
shrinkage and selection operator (LASSO) regression to identify potentially signif-
icant predictors such as rs2036270 and rs7037011 SNPs [33]. In order to enhance 
the prediction accuracy, LASSO performs both variable selection and regulariza-
tion [34].

Detection of Potential Biomarkers

In order to carry out a novel risk factor called Alzheimer’s disease pattern simi-
larity scores, Casanova et al. implemented a high-dimensional machine learning 
framework which is a regularized logistic regression method with an elastic net to 
simultaneously accomplish data integration and prediction for Alzheimer’s disease 
[35]. A regularized logistic regression method with the elastic net, also called the 
adaptive elastic net, has been successfully applied in high-dimensional data, where 
the adaptive elastic net uses elastic net estimates as the initial weight in the model 
[32, 36]. By using MRI data, their approach is based on a coordinate-wise descent 
technique [37] and is able to discriminate patients with Alzheimer’s disease from 
healthy controls [35]. Casanova et al. revealed that Alzheimer’s disease pattern 
similarity scores had strong associations with age, cognitive function, and cogni-
tive status and may be used as an Alzheimer’s disease risk factor [35].

Limitations

The findings as discussed in the previous sections should be interpreted by taking 
into account some limitations of these studies in psychiatry and machine learning 
applications. One limitation of the aforementioned studies is that the small size of 
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the sample does not allow for drawing of definite conclusions due to the possibil-
ity of overfitting during the training process of machine learning and deep learn-
ing algorithms [38]. Second, it is important to replicate their results by comparing 
comparable data from an independent cohort [2]. However, most of these studies 
did not provide replication studies because more and larger datasets may not be 
available to facilitate subsequent studies. Furthermore, these findings may not be 
generalizable. An open challenge is that the most useful findings will generalize 
across various testing conditions, broader populations, different ethnic groups, 
numerous sites, and diverse real-life clinical settings [39].

In addition, variability in data quality such as missing data may make prior 
selection of predictive variables or driver biomarkers essential; for example, prese-
lecting SNPs from the GWAS data [40]. However, we speculate that this preselec-
tion can be expected to impact the overall structure and implementation in the final 
machine learning model. In future work, large prospective clinical trials are neces-
sary in order to answer whether the relevant biomarkers are reproducibly associ-
ated with disease status and drug response in machine learning studies.

While in this article we selected a few studies to exemplify relevant machine 
learning and deep learning algorithms in the neurobiology of psychiatric disor-
ders, it should be pointed out that psychiatry research could further benefit from 
combining the advanced machine learning algorithms with multi-omics tech-
niques [17]. Several existing biobanks have been established for multi-omics stud-
ies, including the COMBINE Biobank [41], the Korea Healthy Twin Study [42], 
LifeGene [43], and the Taiwan Biobank [44–51].

Finally, it should be noted that in order to demonstrate the robustness of a sin-
gle biomarker or even a set of biomarkers, future studies in precision psychiatry 
and machine learning should assess the overlap or lack of overlap between bio-
markers in diverse machine learning analyses by using tools such as Venn dia-
grams [52]. Current evidence indicates that various machine learning analysis 
strategies may often yield different biomarkers, even when they were applied to 
the same type of disease [53].

Perspectives

As suggested by the aforementioned studies, precision psychiatry promises to 
offer new therapeutic and diagnostic techniques for accurate diagnosis, prog-
nosis, and treatment in a disease-specific and patient-specific manner [7, 8, 54, 
55]. In the context of multi-omics and neuroimaging-driven approaches, it is of 
major importance that potential clinical applications involving machine learning 
for prediction of drug responses or disease might provide the appropriate solu-
tions to global primary care, and thereby it would have been up-taken by users 
and governments. Moreover, it is hypothesized that the next generation of psy-
chiatric therapies for disease treatment thus ought to take into consideration the 
interplay among neuroimaging and multi-omics data. The latest advances in sin-
gle-cell sequencing and data-intensive life sciences will certainly trigger more 
novel machine learning software tools for population health in the next decade 
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[56]. Furthermore, it will also increasingly generate application-oriented solutions 
toward the field of public health in light of the pressing needs of precision psy-
chiatry for innovative diagnostics [57]. Over the next few years, machine learning-
based precision psychiatry for the pretreatment prediction may become a reality in 
patient care after prospective large clinical trials to validate clinical factors and the 
relevant biomarkers [58].
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