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Abstract
Alzheimer’s disease is a complex and heterogeneous, severe neurodegenera-
tive disorder and the predominant form of dementia, characterized by cogni-
tive disturbances, behavioral and psychotic symptoms, progressive cognitive 
decline, disorientation, behavioral changes, and death. Genetic background of 
Alzheimer’s disease differs between early-onset familial Alzheimer’s disease, 
other cases of early-onset Alzheimer’s disease, and late-onset Alzheimer’s 
disease. Rare cases of early-onset familial Alzheimer’s diseases are caused 
by high-penetrant mutations in genes coding for amyloid precursor protein, 
presenilin 1, and presenilin 2. Late-onset Alzheimer’s disease is multifac-
torial and associated with many different genetic risk loci (>20), with the 
apolipoprotein E ε4 allele being a major genetic risk factor for late-onset 
Alzheimer’s disease. Genetic and genomic studies offer insight into many 
additional genetic risk loci involved in the genetically complex nature of 
late-onset Alzheimer’s disease. This review highlights the contributions of 
individual loci to the pathogenesis of Alzheimer’s disease and suggests that 
their exact contribution is still not clear. Therefore, the use of genetic markers 
of Alzheimer’s disease, for monitoring development, time course, treatment 
response, and prognosis of Alzheimer’s disease, is still far away from the 
clinical application, because the contribution of genetic variations to the rela-
tive risk of developing Alzheimer’s disease is limited. In the light of predic-
tion and prevention of Alzheimer’s disease, a novel approach could be found 
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in the form of additive genetic risk scores, which combine additive effects of 
numerous susceptibility loci.
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Introduction

Alzheimer’s Disease

Alzheimer’s disease is a complex and heterogeneous brain disorder that can be 
classified, according to its stages, into dementia in Alzheimer’s disease (F.00) and 
Alzheimer’s disease (G.30), according to ICD-10. Namely, it is a severe neuro-
degenerative disease and the predominant form of dementia (50–75%), but when 
behavioral and psychotic symptoms of dementia (BPSD) develop during the 
course of Alzheimer’s disease, it has to be treated as a severe mental, i.e., psychiat-
ric disorder. These neuropsychiatric symptoms include depression, apathy, anxiety, 
irritability, agitation, euphoria, hallucinations, disinhibition, aberrant motor behav-
ior, elation, delusions, and sleep or appetite changes; and they can occur in the 
early as well as in the middle and late stages of Alzheimer’s disease [1].

The first sign of dementia in Alzheimer’s disease is the gradual worsen-
ing of the ability to remember new information. However, during the course of 
Alzheimer’s disease, multiple cognitive domains are disrupted [2, 3]. The cognitive 
disturbances affect universal domains such as attention, working memory, execu-
tive function, procedural learning and memory, speed of processing, fear-extinction 
learning and semantic memory, and some higher domains that include episodic 
memory, social cognition, theory of mind, verbal learning, memory, and language 
(i.e., use and understanding) [3, 4]. Alzheimer’s disease is a slow, irreversible, pro-
gressive, complex, and lethal disorder, which represents a major health problem 
and fatal global epidemic worldwide [3]. It is characterized by progressive cogni-
tive decline, disorientation, behavioral changes, and death. A latency phase of the 
Alzheimer’s disease is without clinical symptoms although the pathophysiological 
processes are active [2]. The clear etiology of Alzheimer’s disease is still unknown. 
However, the main risk factors are older age, genetic predisposition (especially the 
apolipoprotein E (ApoE) ε4 genotype), gender (female predominance), and pres-
ence of the mild cognitive impairment, but there are also modifiable factors such as 
cardiovascular risk factors, hypertension, diabetes, obesity, smoking, and high cho-
lesterol levels [3]. Insulin signaling dysfunction and brain glucose metabolism dis-
turbances are hallmarks of Alzheimer’s disease, and therefore recently Alzheimer’s 
disease was suggested to be considered as type 3 diabetes [5].

Genetic Background of Alzheimer’s Disease

Alzheimer’s disease can be divided into autosomal dominant Alzheimer’s dis-
ease (or early-onset familial Alzheimer’s disease), other cases of early-onset 
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Alzheimer’s disease, and late-onset Alzheimer’s disease [6]. Genetic background 
of Alzheimer’s disease differs between early-onset familial AD, other cases of 
early-onset Alzheimer’s disease, and late-onset Alzheimer’s disease. Early-onset 
familial Alzheimer’s disease, with a prevalence less than 1%, is caused by high-
penetrant mutations in genes coding for amyloid precursor protein (APP), pre-
senilin 1 (PSEN1), and presenilin 2 (PSEN2). Late-onset Alzheimer’s disease is 
multifactorial and associated with many different genetic risk loci (> 20), with the 
ApoE ε4 allele being a major genetic risk factor for late-onset Alzheimer’s dis-
ease. Genome-wide association studies (GWAS) offered insight into many addi-
tional genetic risk loci involved in the genetically complex nature of late-onset 
Alzheimer’s disease. This review focuses on the recent data from comprehensive 
meta-analysis and GWAS. However, it should be highlighted that the exact contri-
butions of individual loci to the pathogenesis of Alzheimer’s disease still remain 
unclear to date.

Early-Onset Familial Alzheimer’s Disease

The discovery of the association between mutations in APP, presenilin PSEN1 
and PSEN2 genes and the development of early-onset familial Alzheimer’s disease 
provided knowledge about the molecular mechanisms underlying the Alzheimer’s 
disease pathogenesis.

Amyloid Precursor Protein
The enzymatic cleavage of APP can lead to the formation of amyloid β-peptide 
(Aβ), which can be 38 to 43 amino acids long. Cleavage of APP by α- and 
γ-secretases results in the generation of nonpathogenic peptides, secreted form of 
APP (sAPPα) and C-terminal fragments. This pathway is known as nonamyloi-
dogenic or constitutive pathway. Amyloidogenic pathway involves the proteoly-
sis of APP by β- and γ-secretase, resulting in the formation of sAPPα, C-terminal 
fragments, and Aβ. We differentiate two main forms of Aβ, Aβ1–40, and Aβ1–42. 
Amyloid plaques are most commonly formed from more amyloidogenic Aβ1–42 
form.

According to Alzheimer Disease and Frontotemporal Dementia Mutation 
Database (http://www.molgen.ua.ac.be/ADmutations/) and Alzforum (https://
www.alzforum.org/mutations/app), there are around 35 different APP mutations 
that have been associated with Alzheimer’s disease pathogenesis. These muta-
tions include APP gene locus duplications and different point mutations in cod-
ing region of APP gene, resulting in an amino acid substitution. Duplication of 
the whole gene/locus lead to elevated levels of APP and Aβ, and increase the ratio 
of Aβ1–42 to Aβ1–40. Missense mutations can have different effects, depend-
ing on their position. If these mutations cause amino acid substitution near the 
β-proteolytic cleavage site (N-terminal of Aβ), they usually lead to increased 
β-secretase cleavage, increased total Aβ production, and increased aggregation 
and fibril formation (Table 1). Missense mutations in the Aβ sequence in general 
increase Aβ aggregation and fibril formation (Table 1). If the missense mutation is 

http://www.molgen.ua.ac.be/ADmutations/
https://www.alzforum.org/mutations/app
https://www.alzforum.org/mutations/app
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near the C-terminal of Aβ, then it will increase the relative production of Aβ1–42, 
compared to Aβ1–40 (Table 1).

Presenilin 1 and Presenilin 2
PSEN1 and PSEN2 are two homologous multi-transmembrane proteins that 
share around 67% of the sequence [7], and they represent the catalytic core of 
γ-secretase complex. These proteins are also involved in the cleavage of some 
other proteins, like cadherins, low-density lipoprotein receptor (LDLR)-related 
proteins, Notch-1 and ErbB4 [8–11]. At the cell level, presenilins can be found in 
the nuclear membrane, endoplasmic reticulum, the trans-Golgi network and at the 
plasma membrane. They are also widely expressed throughout the organism.

Mutations in PSEN1 and PSEN2 genes are the most frequent known cause 
of early-onset familial Alzheimer’s disease, with emphasis on PSEN1 gene. 
Mutations in these two genes usually cause an impairment in γ-secretase activ-
ity and lead to an increase in the ratio between Aβ1–42 and Aβ1–40, as a con-
sequence of Aβ1–42 overproduction or Aβ1–40 underproduction, or as a 
combination of both (Table 1). PSEN1 mutations were associated with the ear-
liest disease onset ages, with an average age of onset around 43 years, from 25 
until 65 years of age [12]. In APP mutation carriers the disease starts on average 
8.4 years earlier (age of onset between 35 and 65 years of age), and in PSEN2 
mutation carriers on average 14.2 years earlier, with a much older age of onset 
(between 45 and 70 years of age) [12].

Late-Onset Alzheimer’s Disease

Most of the genes that have been associated with late-onset Alzheimer’s disease, 
detected through different candidate genes studies and GWAS, are involved in 
cholesterol and lipid metabolism (genes coding for ApoE (APOE), sortilin-related 
receptor-1 (SORL1), ATP-binding cassette subfamily A member 7 (ABCA7), and 
clusterin (CLU)), immune system and inflammation (genes coding for comple-
ment C3b/C4b receptor 1 (CR1), CD33 antigen, membrane-spanning 4-domains, 
subfamily A member (MS4A), triggering receptor expressed on myeloid cells 2 
(TREM2), member of the major histocompatibility complex class II HLA-DRB5/
HLA-DRB1, and a SH2-containing inositol 5-phosphatase 1 (INPP5D)), and/
or endosome cycling (genes coding for bridging integrator protein-1 (BIN1), 
CD2-associated protein (CD2AP), phosphatidylinositol binding clathrin assem-
bly protein (PICALM), ephrin type-A receptor 1 (EPHA1)). However, there 
are also studies that implicate some other genes, whose function is not so well 
known and described, with Alzheimer’s disease pathology, like genes coding 
for thioredoxin domain-containing protein 3 (NME8), CUGBP Elav-like family 
member 1 (CELF1), cas scaffolding protein family member 4 (CASS4), protein-
tyrosine kinase 2-beta (PTK2B), zinc finger CW-type PWWP domain protein 1 
(ZCWPW1), fermitin family homolog 2 (FERMT2), sodium/potassium/calcium 
exchanger 4 (SLC24A4), and Ras and Rab interactor 3 (RIN3) [13–19]. In this 
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chapter, some of the most interesting genes found to be associated with late-onset 
Alzheimer’s disease will be described, with their possible involvement in cer-
tain biological pathways and mechanisms that might be relevant for Alzheimer’s 
disease pathology.

Apolipoprotein E
One of the major risk loci for late-onset Alzheimer’s disease is the ε4 allele of 
APOE gene, gene coding for the main apolipoprotein in the central nervous sys-
tem. This glycoprotein plays an important role in lipid transport, and it has an 
undeniable role in growth, repair, reorganization, and maintenance of neurons. 
ApoE facilitates the cellular uptake of lipoproteins by binding to the members 
of LDLR family, or it takes part in the activation of signaling pathways involved 
in modulating lipid homeostasis [20]. Two amino acid substitutions at the posi-
tions 112 and 158 lead to three possible ApoE isoforms, ApoE2, ApoE3, ApoE4, 
which are encoded by three common alleles (ε2, ε3, ε4). The ε4 allele has been 
associated with Alzheimer’s disease, and it is considered as a most important 
risk factor in the case of late-onset Alzheimer’s disease (Table 1). The carri-
ers of APOE ε4 allele have an earlier age of onset of Alzheimer’s disease, and 
they also tend to have more pronounced accumulation of neurofibrillary tan-
gles and amyloid plaques [21]. However, APOE ε2 allele was associated with 
reduced risk of developing Alzheimer’s disease, with reduced accumulation 
of neurofibrillary tangles and amyloid plaques [22, 23], but also with signifi-
cantly larger regional cortical thicknesses and volumes in subjects with cogni-
tive impairment or Alzheimer’s disease [24]. The amino acid substitution at the 
position 158 (arginine to cysteine) impairs the binding of ApoE2 to LDLR and 
its ability to promote clearance of TG‐rich lipoprotein remnant particles. ApoE4 
is characterized by an amino acid substitution at the position 112 (cysteine to 
arginine) that affects the stability of the N‐terminal domain helix bundle and 
C-terminal domain, resulting in enhanced lipid-binding ability of ApoE4 [20] 
and less efficient clearance of soluble Aβ, amyloid plaques and/or neurofibrillary 
tangles [25].

Clusterin
Clusterin is a highly glycosylated cell-aggregating factor that is involved in differ-
ent processes, including complement inhibition, inflammation, apoptosis, and lipid 
transport [26]. As a chaperone, it could be involved in the amyloid aggregation and 
pathogenesis of Alzheimer’s disease [27]. Evidence suggests that clusterin forms 
complexes with Aβ in cerebrospinal fluid that are able to cross the brain–blood 
barrier [28]. Few GWAS studies suggested clusterin as a potential biomarker of 
Alzheimer’s disease [29, 30]. A single nucleotide polymorphism (SNP) in the 
CLU gene was suggested to be associated with Alzheimer’s disease pathology 
by affecting alternative splicing of CLU [31]. Other rare non- synonymous sin-
gle nucleotide variations have also been identified, along with an in-frame 9-bp 
deletion, that could possibly/probably disturb clusterin structure and function 



Genetic Markers of Alzheimer’s Disease 35

(Table 1). Findings summarized in Table 1 include mutations that could affect the 
β-chain domain of clusterin or are positioned in the intron sequence with high reg-
ulatory potential [32].

Sortilin-Related Receptor-1
Sortilin-related receptor-1 (SORL1) is considered a member of low-density lipo-
protein receptor family and a member of the vacuolar protein sorting 10 (Vps10) 
family of receptors. There are indications that SORL1 could be involved in APP 
processing and trafficking, and that it could be responsible for directing Aβ toward 
lysosomes [33]. However, as a member of LDLR family and an ApoE receptor, 
SORL1 also plays a role in lipid metabolism. SORL1 was first suggested as a 
potential risk factor for late-onset Alzheimer’s disease by Rogaeva and colleagues 
[34], and this was later confirmed by other more comprehensive studies [14, 
35]. One of the possibilities is that the mutations in SORL1 gene (Table 1) affect 
SORL1 expression and BDNF-induced APP processing [36].

ATP-Binding Cassette Subfamily A Member 7
ATP-binding cassette subfamily A member 7 (ABCA7) belongs to a family of 
ABC transporters that are responsible for transporting various molecules across 
cellular membranes. The exact function of ABCA7 still unknown, but there are 
indications that this protein could play a role in lipid homeostasis and the immune 
system. Therefore, the mutations in ABCA7 gene could contribute to Alzheimer’s 
disease development by affecting its interaction with ApoE and lipid metabolism 
and/or by modulating the immune response and the clearance of amyloid plaques. 
ABCA7 was associated with Alzheimer’s disease in 2011 in a large-scale GWAS 
analysis [37]. The reported mutations in ABCA7 gene (Table 1) mostly lead to 
alterations in gene expression [38], but some rare loss-of-function mutations have 
also been reported [39].

Bridging Integrator Protein-1
Bridging integrator protein-1 (BIN1) is an amphiphysin involved in caspase-
independent cell death pathways and clathrin-mediated endocytic pathway [29, 
30]. Few GWAS have identified mutations in BIN1 gene (Table 1) associated with 
Alzheimer’s disease diagnosis [29, 30, 40]. The study by Chapuis and colleagues 
[41] suggested that increased BIN1 gene expression in dementia patients mediates 
Alzheimer’s disease risk by modulating tau pathology.

Phosphatidylinositol Binding Clathrin Assembly Protein
Phosphatidylinositol binding clathrin assembly protein (PICALM) is, simi-
larly to BIN1, involved in clathrin-mediated endocytic pathway. Certain 
SNPs in PICALM gene (Table 1) were found to be associated with the risk of 
developing Alzheimer’s disease. There are even indications that this protein 
is involved in the internalization of APP and Aβ production [42], Aβ and tau 
clearance [43, 44].
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Complement C3b/C4b Receptor 1
Complement C3b/C4b receptor 1 (CR1) is a glycoprotein belonging to the recep-
tors of complement activation (RCA) family. CR1 regulates complement activa-
tion, but it is also participating in innate immune responses. It is expressed by 
many cell types, including erythrocytes, leukocytes, and dendritic cells. Different 
SNPs and an intragenic functional copy-number variation [45, 46] in CR1 gene 
(Table 1) have been associated with increased risk of developing Alzheimer’s dis-
ease. Mentioned copy-number variation in CR1 gene results in two different CR1 
protein isoforms (CR1-F and CR1-S), differentiating in the number of C3b/C4b, 
and cofactor activity binding sites [45, 46], but the exact mechanism of the asso-
ciation with Alzheimer’s disease pathology is not known.

CD33
CD33 is a cell surface receptor that mediates cell–cell interaction. This member 
of the sialic acid-binding receptor family transmembrane proteins is an important 
mediator of cell growth and survival, and one of key players in clathrin-inde-
pendent endocytic pathway and innate and adaptive immune system functions 
[37, 47]. There is evidence of a positive correlation between the expression of 
CD33 in microglial cells, amyloid plaque burden and decline in cognitive func-
tions [48, 49]. Different GWAS found a significant association between cer-
tain SNPs (Table 1) and late-onset Alzheimer’s disease. One of these SNPs, 
rs3865444, was associated with the modifications in CD33 level and amyloid 
pathology [49, 50].

Membrane-Spanning 4-Domains Subfamily A Gene Cluster
Membrane-spanning 4-domains subfamily A gene cluster (MS4A) gene products 
are transmembrane proteins with at least four transmembrane domains. The genes 
belonging to this cluster family are not very well characterized, but they might 
play a role in immunity and intracellular protein trafficking in microglia [51, 52]. 
There are indications that genes within the MS4A gene cluster regulate soluble 
triggering receptor expressed on myeloid cells 2 (sTREM2) levels, linking this 
gene cluster family with Alzheimer’s disease pathogenesis [52]. Three members 
of MS4A family (MS4A4A, MS4A4E, MS4A6E) have been linked to Alzheimer’s 
disease by GWAS (Table 1), more precisely, SNPs rs670139 (MS4A4E), 
rs4938933 and rs1562990 (region between MS4A4E and MS4A4A), and rs610932 
and rs983392 (MS4A6A) [53].

Triggering Receptor Expressed on Myeloid Cells 2
Triggering receptor expressed on myeloid cells 2 (TREM2) gene product is an 
important part of transmembrane receptor-signaling complex that is very abundant 
on the cell surface of microglia where it plays an important role in downregulation 
of inflammation, microglial survival and activation, and phagocytosis [54]. There 
is evidence of high involvement of TREM2 in Alzheimer’s disease  pathology. 
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Different TREM2 variants (Table 1) have been associated with Alzheimer’s dis-
ease by few meta-analysis and GWAS. These variants include missense mutation 
rs75932628, rs6916710, rs6922617 (Table 1). TREM2 mutations have been linked 
to extensive brain atrophy in Alzheimer’s disease patients and with other neuro-
pathological phenotypes characteristic for Alzheimer’s disease [52].

CD2-Associated Protein
CD2-associated protein (CD2AP) is a cytoplasmic protein involved in cytoskel-
etal structure regulation, receptor-mediated endocytosis, intracellular trafficking, 
cytokinesis, cell adhesion, and apoptosis. Few GWAS pointed to CD2AP SNPs 
(rs9296559, rs9349407) as loci possibly associated with late-onset Alzheimer’s 
disease (Table 1). SNP rs9349407 could be associated with increased neuritic 
plaque burden in patients with diagnosed Alzheimer’s disease [55].

Ephrin Type-A Receptor 1
Ephrin type-A receptor 1 (EPHA1) is a tyrosine kinase family member important 
during the nervous system development and during the formation of synapse. It 
binds to membrane-bound ephrin-A family ligands leading to bidirectional sign-
aling between two adjacent cells, directing cell adhesion and migration. EPHA1 
could potentially have a role in the microglial immune response in Alzheimer’s 
disease. Two EPHA1 gene variants (rs11771145 and rs11767557) were associated 
with Alzheimer’s disease risk (Table 1).

Conclusion

The knowledge about the genetic background of early-onset familial Alzheimer’s 
disease allowed detection of mutations in APP, PSEN1, and PSEN2 as a predic-
tive/diagnostic screening, but only for these rare cases of autosomal dominant 
Alzheimer’s disease. In the case of late-onset Alzheimer’s disease, there is still 
much of the heritability that remains unexplained, even though, with the help 
from GWAS, there are now more than 20 different identified loci that have been 
associated with late-onset complex Alzheimer’s disease. In the case of APOE, 
the evidence from an extensive meta-analysis shows that around 75% of indi-
viduals that carry one APOE ε4 allele never develop Alzheimer’s disease, and 
around 50% of individuals diagnosed with Alzheimer’s disease are not the car-
riers of this risk allele [56]. Therefore, the use of genetic variations identified 
by GWAS, for more effective diagnosis of Alzheimer’s disease, is still far away 
from the clinical application, because the contribution of these variations to the 
relative risk of developing Alzheimer’s disease is limited. In the light of predic-
tion and prevention of Alzheimer’s disease, there is much more we can expect 
from the additive genetic risk scores, which combine additive effects of numer-
ous susceptibility loci.
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