Chapter 7
Control of Regulatory T Cells by Co-signal
Molecules
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Abstract Foxp3-expressing regulatory T cells (Tregs) perform a vital function in
the maintenance of immune homeostasis. A large part of Treg suppressive function
is derived from their ability to control and restrict the availability of co-signal mol-
ecules to other T cells. However, Tregs themselves also depend on many of the same
co-signals for their own homeostasis, making this a complex system of feedback. In
this chapter, we discuss the critical role of co-signaling in Treg cell biology.
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7.1 Tregs

The first indications that some thymically derived cells had a critical suppressive
function came from early work by Nishizuka and colleagues who demonstrated that
day 3 thymectomy of mice led to severe autoimmunity, suggesting that cells pro-
duced after 3 days were responsible for the maintenance of immune homeostasis
(Nishizuka and Sakakura 1969). However, it was not until 1995 when Tregs (Tregs),
as we now know them, were definitively described on the basis of their expression
of the IL2 receptor alpha chain (CD25) and that transfer of these cells could prevent
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autoimmunity (Sakaguchi et al. 1995). Shortly afterward, it was also found that in
the neonatal period, Tregs develop in a slightly delayed fashion in comparison to
effector T cells, explaining why thymectomy at day 3 allows the development of
effector T cells but not Tregs (Asano et al. 1996).

Tregs are dependent on the master transcription factor Foxp3, and ectopic
expression of Foxp3 into Foxp3 T cells induces suppressive function (Ramsdell
and Ziegler 2014). Conversely, disruption of Foxp3 function results in the develop-
ment of severe autoimmunity in both mice and humans as characterized by the
scurfy mouse strain and immunodysregulation polyendocrinopathy enteropathy
X-linked (IPEX) syndrome (Wildin et al. 2001). IPEX is characterized by severe
allergy with hyper-IgE production, autoimmune disease such as type 1 diabetes
mellitus, and inflammatory bowel disease (Wildin et al. 2001; Ramsdell and Ziegler
2014). While Foxp3 is critical for the function of Tregs, it is not alone responsible
for all Treg-type gene expression as its transfection only causes partial reproduc-
tion of the Treg cell gene signature (Sugimoto et al. 2006). Treg gene expression is
also stably maintained by epigenetic programming. Demethylation of key Treg
genes such as CTLA-4 and Foxp3 itself allows their constitutive expression
(Ohkura et al. 2013). Tregs are critical for prevention of autoimmunity throughout
life, and depletion of Tregs in adult mice leads to catastrophic autoimmunity (Kim
et al. 2007). In addition to the severe fatal inflammation associated with total loss
of Treg function, more subtle defects of Treg number and function have been
implicated in a wide range of autoimmune diseases such as SLE, Sjogren’s syn-
drome, psoriasis, autoimmune hepatitis, myasthenia gravis, and inflammatory
bowel disease (Grant et al. 2015).

Tregs can be split into two primary categories, thymically derived Tregs (tTregs)
and peripherally derived Tregs (pTregs). tTregs are essential for the maintenance of
immune self-tolerance and make up the majority of Tregs in circulation. pTregs are
formed from Foxp3-negative non-Tregs exposed to signals such as TGFp and
IL-2 in peripheral organs; they have a critical and overlapping role with tTregs,
being particularly important for the control of inflammation at barrier sites such as
the gastrointestinal tract and lungs (Josefowicz et al. 2012). A third group also
exists, in vitro derived Tregs (iTregs), consisting of originally Foxp3-negative con-
ventional CD4 T cells (Tconv) that have been induced to convert to Foxp3* cells by
in vitro treatment with antigen, IL-2, and TGF-p. While iTregs have proven a valu-
able tool for understanding Treg function, they cannot be considered the exact
equivalent of in vivo derived pTregs since they lack the proper epigenetic program-
ming and as a result are unstable, tending to lose Foxp3 expression without its active
maintenance (Ohkura et al. 2013). In the past, the terms pTregs and iTregs have
been used interchangeably, while tTregs were also often described as natural Tregs
(nTregs), leading to a certain amount of confusion. Recent recommendations to
clarify the nomenclature aim to address this and should be observed where possible
(Abbas et al. 2013). In addition to differences in their site of origin, Tregs also dis-
play a high level of functional diversity with tissue-resident Tregs in areas such as
the visceral adipose tissue, tumor environment, and muscles, showing characteristic
phenotypes (Burzyn et al. 2013). Further, Tregs may mirror effector T-cell subtypes
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Fig. 7.1 Diversity of Treg cells. Tregs can be broadly divided into the key subgroups of (a) thymi-
cally derived tTregs. (b) Peripheral Tregs (pTregs) converted from Foxp3-negative cells outside the
thymus in vivo. (¢) In vitro Tregs (iTregs) converted from Foxp3-negative T cells in vitro. (d) Tregs
can also mirror effector T-cell subsets by gaining expression of key transcription factors and che-
mokine receptors but not inflammatory cytokines. These cells may be derived from either mainly
tTregs (e.g., Tfr) or mainly pTregs (e.g., Th17-like Tregs)

gaining expression of Th17-, Thl-, Th2-, and Tth-associated transcription factors
(RORyt, T-bet, Gata3, and BCLO, respectively) to form functionally specialized
subpopulations of Tregs. These cells gain expression of matching chemokine recep-
tors allowing them to track the matching effector subtype to the site of inflammation
to deliver suppression in situ (Wing and Sakaguchi 2012) (Fig. 7.1).

While in most circumstances prevention of autoimmune responses to self-
antigens is desirable, the presence of Tregs also suppresses responses to tumor anti-
gens. As a result, Treg depletion or functional blockade leads to tumor regression in
many cases. A number of therapies aimed at exploiting negative or positive co-
signal molecules expressed by Tregs have been developed with the aim of enhanc-
ing antitumor immunity, forming an important part of antitumor immunotherapy
(Tanaka and Sakaguchi 2017).

7.2 Control of Tregs by Co-signal Molecules

7.2.1 Two Signals Required for T-Cell Activation

During the immune response, antigens are processed and presented to Tregs by anti-
gen-presenting cells (APCs) such as dendritic cells (DCs). Recognition of antigens
by the T-cell receptor is essential for both the development and activation of T cells.
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Treg cell

Fig. 7.2 Costimulatory molecules expressed by Tregs and their ligands. Tregs express a range
of costimulatory molecules of the Ig superfamily (CD28 and ICOS) and the TNF-receptor super-
family (OX40, 4-1BB, GITR, CD27, CD30, DR3, and TNFR2)

However, TCR signals alone are not sufficient to fully activate T cells, often leading
to anergy or cell death when presented without a second signal. The two-signal
model of T-cell activation was initially described by Bretscher and Cohn in 1970
(Bretscher and Cohn 1970). In this model, T cells require both the recognition of a
presented antigen via the TCR but also a second co-signal. The requirement for the
co-signal prevents the activation of T cells by recognition of their antigen alone, and
the availability of the second signal to be is closely regulated to prevent autoimmu-
nity. Initially, CD28 signaling was considered to be the sole second signal, and while
it remains of utmost importance, it has now become clear that a range of other co-
signals have roles in T-cell activation and differentiation (Fig. 7.2). While the two-
signal model provides a useful conceptual framework, it is also important to consider
that the various second signals are not necessarily equivalent to one another and may
have roles that vary at different stages of T-cell activation. The different roles may
be sequential with CD28 required for initial signaling of naive T cells, causing the
upregulation of other co-signal molecules of the immunoglobulin family and tumor
necrosis factor receptor superfamily (TNFRSF) members. These co-signal mole-
cules then play important roles in the differentiation of the T cells into specialized
subsets and their survival in the periphery (Watts 2005). Not all co-signal molecules
are stimulatory; in some cases, they act to suppress the T cell expressing them in a
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cell-intrinsic manner and dampen their activation. In addition, some Treg co-signal
molecules act in a cell-extrinsic manner to allow the Treg to exert control over the
local cellular environment. The interplay between these positive and negative co-
signals, received and given by the Tregs, allows a fine level of balance and homeo-
static feedback that prevents both autoimmunity and the development of an overly
immunosuppressed environment by unchecked expansion of Tregs.

7.2.2 Costimulators in Treg Biology
7.2.2.1 CD28

CD28 is a cell surface homodimer and a member of the Ig superfamily. It is consti-
tutively expressed by almost all T cells and has a critical role in the initial activation
of both naive Tconvs and naive Tregs (Sharpe and Freeman 2002). CD28’s ligands
CD80 and CD86 (also known as B7-1 and B7-2) are expressed by activated APCs
such as DCs and B cells. To a lesser extent, they are also expressed by activated T
cells. Expression of CD28 by Tregs is essential for their development in the thymus
with mice lacking CD28 or CD80 and CD86 having severe defects in the thymic
development of Tregs and a resultant lack of Tregs in the periphery (Tang et al.
2003). CD28 signaling is required for the production of IL-2 by Tconvs in the thy-
mus, which is in turn essential for conversion of Treg thymic precursors into mature
Tregs (Tai et al. 2005). CD28 also has a cell-intrinsic role in Tregs themselves as
CD28 signaling into a potential Treg cell is essential for their upregulation of Foxp3.
This effect applies early in the Treg differentiation process as thymic development
of both Treg precursor populations, i.e., CD25*Foxp3- and CD25 Foxp3*CD4 single
positive thymocytes, are severely impaired in CD28-deficient mice (Lio and Hsieh
2008; Tai et al. 2005). Similar to its role in the thymus, CD28 is also essential for
the formation of both in vivo pTregs and in vitro iTregs from CD4*Foxp3™ T cells
(Guo et al. 2008).

Apart from its role in the formation of Tregs, CD28 signaling is also required
by Tregs for their full activation and proliferation in the periphery. Genetic defi-
ciency of CD80 and CD86 or CD28 results in a severe defect in the numbers of
peripheral Tregs; in part this is due to the loss of thymic production of Tregs, but
experiments inhibiting CD80 and CD86 via CTLA-4Ig (a solubilized form of
CTLA-4) in adult mice demonstrate that loss of peripheral CD28 signaling causes
a similar reduction in Treg number even in mice with adult thymectomy (Salomon
et al. 2000; Tang et al. 2003). Similar to the thymus, at least part of the loss of
Treg cell numbers in the peripheral organs of mice lacking CD28 signaling is
indirect due to a loss of IL-2 production by CD28-deficient Tconvs; however, a
clear cell-intrinsic role for CD28 in Tregs was demonstrated by the finding that
CD28-deficient Tregs transferred into a wild-type mouse failed to proliferate
(Tang et al. 2003). In addition to mouse studies, human Tregs also respond in a
similar manner as Treg cell proliferation in vitro is dependent on the availability
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of CD28 signaling (Hombach et al. 2007). While loss of CD28 signaling affects
both Tregs and Tconvs, overall the loss of CD28 shifts the balance of immune
homeostasis toward autoimmunity. Genetic deficiency of CD28, CD80, and CD86
or their blockade by CTLA-4Ig in the diabetes-prone NOD mouse model results
in accelerated development of diabetes and autoimmune exocrine pancreatitis due
to the deficiency of functional Tregs. This can be reversed by transfer of Tregs
from a CD28-sufficient mouse (Salomon et al. 2000; Meagher et al. 2008). Loss
of tolerance to a self-antigen similar to that seen in Treg-depleted mice was also
found to occur in CD80- and CD86-deficient mice upon reconstitution with
CD80- and CD86-sufficient dendritic cells, demonstrating that a lack of Tregs was
unable to control the self-reactive response once CD80 and CD86 signaling was
made available to self-reactive T cells (Lohr et al. 2003).

While experiments examining the effect of blocking antibodies or CTLA-Ig on
Tregs are compelling, they struggle to precisely separate the effects of these same
reagents on Tconvs, which indirectly affect Treg homeostasis via IL-2 production.
Recent work addressed this longstanding issue by the conditional depletion of
CD28 in mature Foxp3* Tregs, allowing the examination of the role of CD28 after
its role in the initial differentiation of Tregs (Zhang et al. 2013). These mice have a
normal number of Tregs in the peripheral lymphoid organs, and these Tregs have
normal in vitro suppressive capacity. However, despite this the mice develop auto-
immunity at multiple sites with particular foci in the skin and lungs. Additionally,
CD28-deficient Tregs were found to have a defect in their proliferation and matura-
tion and a resulting loss of expression of activation markers such as CTLA-4, PD1,
and CCR6, suggesting a defect in the generation of effector Tregs. Additionally,
CD28-deficient Tregs were unable to prevent colitis induced by Treg depletion; and
the autoimmunity seen in these conditional knockout mice was preventable by the
transfer of CD28-sufficient Tregs (Zhang et al. 2013).

Due to its critical role in Treg function and homeostasis, therapies to selectively
expand Tregs by stimulation of CD28 have attracted significant interest. Initial
experiments in mice demonstrated that superagonists against CD28 selectively
expanded Tregs in vitro and in vivo and were expected to be a promising therapy
in the treatment of autoimmune disease (Beyersdorf et al. 2006; Lin and Hunig
2003). However, this field has been set back by the unexpected results of a phase 1
trial in which the superagonistic anti-CD28 antibody TGH1412 triggered severe
cytokine storms in healthy volunteers (Suntharalingam et al. 2006). In summation,
it is clear that CD28 signaling plays a critical role at all points of Treg development
and function.

7.2.2.2 Inducible T-Cell Costimulator (ICOS)

ICOS (CD278) is a member of the CD28 family of the immunoglobulin superfam-
ily. As its name suggests, ICOS expression is not found on naive T cells but is
induced by TCR and CD28 signaling and as a result expressed on activated CD8
and CD4 T cells, including Tregs (Wikenheiser and Stumhofer 2016). ICOS has a
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high level of sequence homology with CD28, but despite this their roles are not
redundant. While CD28 is essential for initial T-cell activation, ICOS plays a
more specialized function in the differentiation of effector T cells, having an
important role in the formation of Th2 cells during infection and particularly a key
role in antibody responses due to the dependence of T-follicular helper cells on
ICOS signaling (Wikenheiser and Stumhofer 2016). ICOS also plays a role in
Treg cell biology. Knockout of ICOS reveals no change to the number of thymic
Tregs but a significant reduction in the number of Tregs in peripheral sites such as
the spleen. This does not result in autoimmunity since the loss of Tregs is partial
(from approximately 12% to 8% of CD4 T cells) and is also balanced by a loss of
ICOS in effector memory T cells (Burmeister et al. 2008). Cell transfer experi-
ments demonstrate that this is a cell-intrinsic effect dependent on a loss of prolif-
eration and increased sensitivity to activation-induced apoptosis in ICOS-deficient
Tregs (Burmeister et al. 2008). Similar to its lack of a role in the thymus, ICOS
also has no clear role in the formation of pTregs from CD25CD4* Tconvs in vivo
(Guo et al. 2008).

While loss of ICOS on Tregs does not result in the development of spontaneous
autoimmunity in wild-type mice, it does increase sensitivity in already autoimmune-
prone models. In two strains of mice susceptible to the induction of diabetes, NOD
mice and BDC2.5 T cell receptor transgenic mice, knockout of ICOS or its blockade
by antibodies results in loss of Treg protective functions and increased disease pro-
gression (Kornete et al. 2012; Herman et al. 2004). This is because Tregs resident in
the pancreas express high levels of ICOS, and loss of ICOS leads to a loss of their
proliferative potential and suppressive capability (Kornete et al. 2012). ICOS also
plays a key role in the maintenance of mucosal tolerance. Mice given intranasal
doses of myelin basic protein (MOG) peptides develop resistance to experimental
autoimmune encephalomyelitis (EAE) in an ICOS-dependent and cell transferable
manner (Miyamoto et al. 2005). In the lung mucosa, 50% of Tregs express ICOS,
and this rises to 70-80% following exposure to inhaled antigens such as Ova.
Genetic knockout of ICOS results in both lower initial levels of Tregs in the lung
mucosa and a failure to expand following antigen challenge. As a result, in contrast
to wild-type Tregs, ICOS-deficient Tregs are unable to induce tolerance to respira-
tory allergens when transferred to previously sensitized mice (Busse et al. 2012;
Akbari et al. 2002). As a result, it seems that ICOS is primarily important for the
maintenance and function of specialized tissue-resident Tregs.

7.2.2.3 Tumor Necrosis Factor Receptor Superfamily (TNFRSF)

The tumor necrosis factor receptor superfamily is a class of co-signal molecules
with varied and to some extent redundant functions in Treg cell biology. Here we
will focus on members of the TNFRSF with well-described roles in Treg cell biol-
ogy, namely, OX40, glucocorticoid-induced tumor necrosis factor-related receptor
(GITR), CD27, CD30, DR3, TNFR2, and 4-1BB (Watts 2005; Croft 2014).
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GITR

Glucocorticoid-induced tumor necrosis factor-related receptor (GITR) is constitu-
tively expressed at a high level by Tregs and can be upregulated by activated Foxp3-
CD4 and CD8 T cells. Previously we found that anti-GITR antibodies could break
self-tolerance, leading to the induction of autoimmune gastritis (Shimizu et al.
2002), and also overcome Treg cell-mediated suppression of the antitumor response,
leading to tumor eradication (Ko et al. 2005). Furthermore, anti-GITR antibodies
are also capable of abrogating Treg suppressive function in vitro (Shimizu et al.
2002). However, since GITR can also be expressed by effector T cells, it was ini-
tially unclear whether it was acting primarily to block Treg function or to stimulate
effector T cells to the extent that they became resistant to Treg cell suppression
(Stephens et al. 2004). A further factor is the possibility of Treg depletion by
antibody-dependent cell death. While initial reports suggested that Treg depletion
was not occurring, this is often a difficult factor to rule out since it is known that in
some cases (such as anti-CTLA-4) an antibody that does not deplete, or even
expands, Treg cell numbers in the lymphoid organs has the ability to deplete Tregs
in certain microenvironments such as the colon and the tumor (Simpson et al. 2013).
To address some of these issues, Shevach and colleagues used Fc-GITR-L, which
mimics engagement of GITR without causing antibody-dependent cell depletion.
They found that GITR stimulation induces the proliferation of both Tconvs and
Tregs in naive mice and that these Tregs retained their full suppressive capacity.
However, when GITR-sufficient Tregs were co-transferred into T-cell-deficient
mice with GITR-deficient effector T cells, treatment with Fc-GITR-L caused severe
loss of Tregs and abrogation of the ability of the Tregs to prevent colitis. In contrast,
GITR engagement by Fc-GITR-L preferentially enhances Treg proliferation in lym-
phoid organs (Liao et al. 2010). These findings emphasize the different roles of co-
signaling pathways in different cellular contexts with the same signals resulting in
either Treg expansion or loss of Tregs depending on the context. The mechanisms
underlying these divergent roles are unclear but may depend on overstimulation of
Tregs in highly inflammatory conditions, such as those seen in colitis induced by
Treg depletion, leading to activation-induced cell death (Ephrem et al. 2013).
Genetic knockout of GITR reveals that the numbers of peripheral Tregs in the
lymph nodes and spleen are reduced by around 30-50%. No spontaneous auto-
immunity is seen, and the Tregs taken from these mice retain their full functional
capacity, demonstrating that GITR is not essential for Treg function (Stephens
et al. 2004; Ronchetti et al. 2004). GITR may also have a role in the thymic dif-
ferentiation of Tregs. It is expressed by thymic Treg precursors and acts to
enhance conversion of Treg precursors to mature Tregs and a resulting mild loss
of thymic Tregs. Loss of GITR leads to mild defects in the production of Tregs
in a competitive setting such as GITR-deficient bone marrow chimera mixed
with wild-type bone marrow (Mahmud et al. 2014). In addition to quantitative
changes to thymic output, competition for GITR signaling also drives the selec-
tion of Treg precursors with high-affinity TCRs. As a result, excessive GITR
signaling provided by high doses of Fc-GITR-L leads to a broadening of the Treg
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cell TCR repertoire with the results that cells bearing lower-affinity TCRs are
able to receive sufficient signaling to become Tregs (Mahmud et al. 2014).

0X40

0X40 (CD134) is a costimulatory molecule expressed on activation by Tconvs but
constitutively expressed by Tregs. Its ligand OX40L is expressed by a range of
APCs (DCs, B cells) and to a lesser extent by NK cells and activated T cells (Chen
et al. 1999). OX40 is broadly considered to be a costimulatory molecule since
blockade of OX40 signaling ameliorates autoimmunity (Redmond and Weinberg
2007). However, this overall effect masks a difference in its function on Tconvs and
Tregs. OX40 signaling in Tconvs leads to an increase in cytokine production and
proliferation while its role in Tregs is more complex (Webb et al. 2016). Knockout
of OX40 does not lead to a severe loss of Treg cell numbers or function at most
lymphoid sites; yet a mild reduction in Treg cellularity can be seen in younger mice,
recovering to normal levels in older mice (Vu et al. 2007; Griseri et al. 2010; Takeda
et al. 2004). OX40 also aids the proliferation of mature Tregs in vitro, suggesting
that it may also have a role in the homoeostasis of mature Tregs (Takeda et al. 2004).
0X40 also has a role in the conversion of Foxp3™ T cells to pTregs (Vu et al. 2007).

However, despite these roles in the formation and maintenance of Tregs, OX40
also appears to suppress certain aspects of Treg cell function. Several studies have
demonstrated that engagement of OX40 appears to inhibit the suppressive function
of Tregs, at least partly by interfering with Foxp3 gene expression (Kinnear et al.
2013; Vu et al. 2007; Valzasina et al. 2005). More recent work demonstrates that
0X40 stimulation induces initial Treg proliferation at multiple organ sites, T-cell
infiltration of the lungs, and downregulation of Foxp3 expression levels in Foxp3-
expressing cells, driving Tregs to an apparently exhausted phenotype. However, in
the presence of additional IL-2, this can be prevented as Tregs expanded by both
0X40-ligand and IL-2 in vivo proliferate well and maintain strong suppressive
function. Together, these results suggest that the effect of OX40 is also dependent
on the availability of cytokines since OX40 alone expands Tregs but pushes them
into a relatively exhausted state unless additional supplementation with IL-2 is pro-
vided (Xiao et al. 2012).

0X40 is highly expressed by Tregs within the tumor microenvironment (Piconese
et al. 2008). As a result, a number of studies have examined the effects of OX40
blockade on the antitumor response. Here, agonistic OX40 antibodies enhance
immunological rejection of tumors by a combination of its stimulatory effects on
Tconvs, reducing the suppressive capacity of tumor-resident Tregs, and by direct
depletion of OX40 high Tregs. A number of clinical trials of anti-OX40 as an anti-
cancer agent are now underway (Sanmamed et al. 2015). In addition to its cell-
intrinsic effects, there is some evidence of a cell-extrinsic role for Treg OX40
affecting OX40 ligand-expressing cells. Tregs suppress the activation and degranu-
lation of mast cells via engagement of Treg OX40 with OX40L expressed by mast
cells (Piconese et al. 2009).
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In contrast to its Treg inhibiting role in many other sites, OX40 has an important
role in the ability of Tregs to maintain gut homeostasis. OX40-deficient mice have
areduction in the number of Tregs found in the lamina propria due to a cell-intrinsic
defect in their ability to accumulate in the gut (Griseri et al. 2010). Upon adoptive
transfer, OX40-deficient Tregs are unable to prevent colitis induced by co-transferred
effector T cells. OX40-deficient mice do not spontaneously develop colitis, but this
may be due to the dependence of effector T cells on OX40 for their ability to cause
colitis (Griseri et al. 2010). Notably, mice expressing high levels of transgenic
OX40L on T cells spontaneously develop colitis, while OX40-sufficient Tregs co-
transferred alongside effector T cells into T- and B-cell-deficient RAG-KO mice
expressing transgenic OX40L in many tissues under the control of chicken p-actin
promoter are unable to prevent colitis (Murata et al. 2002; Takeda et al. 2004).
Together these results suggest that OX40 expression on Tregs is critical for their
suppression of colitis but that excessive OX40L signaling is capable of tipping the
balance toward autoimmunity, either by excessive stimulation of effector T cells or
by suppression of Treg cell function. As a result, the role of OX40 in Treg cells
seems highly complex since it aids thymic development of Tregs and their prolifera-
tion, has an inhibitory effect on Treg suppressive activity in many situations, but
also plays an important role in the maintenance and trafficking of Tregs into the gut.

4-1BB

4-1BB ((CD137) is not constitutively expressed by human Tregs found in peripheral
blood but is rapidly upregulated on their activation, and as a result, following
antigen-specific stimulation in vivo, almost all 4-1BB-positive cells are Tregs at 5
hours poststimulation, while at 20 hours Tconv also upregulates 4-1BB (Schoenbrunn
et al. 2012). In mouse Tregs, 4-1BB is expressed at low levels in the resting state,
but similar to human Tregs, it is rapidly upregulated following stimulation (McHugh
et al. 2002).

Genetic deficiency of 4-1BB does not lead to overt autoimmunity or clear abnor-
malities in T-cell responses (Kwon et al. 2002). 4-1BB signaling enhances the pro-
liferation of Tregs both in vitro and in vivo (Zheng et al. 2004), and anti-4-1BBL
treatment allows the large-scale expansion of Tregs ex vivo while retaining their
suppressive functions and ability to prevent allogeneic pancreatic islet rejection and
resulting diabetes (Elpek et al. 2007). In contrast to OX40, loss of 4-1BB on either
adoptively transferred effector T cells or Tregs had no clear effect on the ability of
the cells to induce or control colitis, respectively (Maerten et al. 20006).

Similar to a number of other co-signal molecules, there is significant interest in
the manipulation of 4-1BB in the context of antitumor immunotherapy. Treatment
with anti-4-1BB effectively enhances antitumor immunity either alone or in combi-
nation with other treatments such as anti-CTLA-4 (Kocak et al. 2006). Since 4-1BB
is expressed by intratumoral Tregs and CD4 and CD8 effector T cells, it is important
to understand which cells are being affected by its engagement. A more recent study
found that intratumoral Treg proliferation was slightly reduced following treatment



7 Control of Regulatory T Cells by Co-signal Molecules 189

with anti-4-1BB. This was seen in conjunction with a reduction in the absolute
number of Tregs infiltrating the tumor and a reduction in their expression of both
PD-1 and CTLA-4, suggesting that the Tregs may have been less activated and sup-
pressive (Curran et al. 2011). It is thus likely that anti-4-1BB enhances antitumor
responses by reducing both the number and function of tumor-infiltrating Tregs.

CD27

CD27 is another member of the TNFR superfamily expressed by Tregs and acti-
vated Tconvs in the periphery and developing thymocytes. The signaling cascade
resulting from CD27 stimulation is partially characterized with TRAF-mediated
activation of JNK- and NIK-dependent activation of the NFkB pathway (Bullock
2017).

CD70, the ligand for CD27, is constitutively expressed by medullary thymic
epithelial cells and thymic DCs, suggesting a role in the thymic development of T
cells (Coquet et al. 2013). Mice lacking either CD27 or CD70 expression have a
partial loss of Treg cell numbers in both the thymus and the periphery but no loss of
suppressive function by the remaining Tregs. Mechanistically, it appears that CD27
co-signals in developing Tregs suppress their apoptosis by suppressing the expres-
sion of proapoptotic BCL-2 family members such as Puma and Bak, allowing them
to survive positive selection (Coquet et al. 2013). Expression of CD27 by tumor-
infiltrating Tregs may also have a role on their survival and function. CD27-deficient
Tregs fail to accumulate in the tumor environment, and as a result, antitumor
responses are enhanced. Similar to the situation in the thymus, this appears to pri-
marily be a defect in the survival of Tregs (Claus et al. 2012).

Tregs may also possess the cell-extrinsic ability to regulate CD70 expression on
DCs via CD27. CD27-expressing Tregs cause the loss of surface CD70 from inter-
acting DCs in a contact-dependent manner. In a mirror image of the transendocyto-
sis central to the function of CTLA-4, in this case the DC internalizes both CD70
and bound CD27 from the Treg cell (Dhainaut et al. 2015).

CD30, DR3, and TNFR2

CD30 is expressed by activated effector T cells and Tregs, while CD30L (CD154)
is expressed by DCs, thymic epithelia cells, B cells, eosinophils, and neutrophils.
The role of CD30 in Treg biology is not well characterized, but several groups have
reported that CD30 expression by Tregs plays a role in transplantation tolerance.
CD30-deficient Tregs are not capable of suppressing CD8 T-cell memory responses
responsible for the rejection of allogenic skin grafts. In this case, CD30 expressed
by Tregs is required for their contact-dependent suppressive function. Whether this
is by direct cell-extrinsic function of CD30 or indirectly via a requirement for CD30
signaling to activate the full suppressive function of the Tregs is unclear, although
the latter seems more credible (Dai et al. 2004). Tregs lacking CD30 expression also
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have a significantly weakened ability to prevent graft versus host disease (GvHD),
while antibody blockade of CD30L in the early but not late stages of GVHD induc-
tion prevents Treg control of the disease (Zeiser et al. 2007).

DR3 (TNFRSF25) is selectively expressed on Tregs in mice with little expres-
sion seen in Foxp3~ Tconvs. Agonistic antibodies to DR3 preferentially cause the
proliferation of Tregs in a TCR- and IL-2-dependent manner. Interestingly due to
its more Treg-specific expression profile, anti-DR3 seems better able to specifically
expand Tregs than other TNFRSF molecules such as GITR, CD27, OX40, and
4-1BB, making it a good candidate immunotherapeutic agent (Schreiber et al.
2010). Accordingly, mice treated with anti-DR3 are resistant to allergic lung
inflammation and have delayed rejection of allogenic heart transplantation; and T
cells from anti-DR3-treated hosts mediate reduced GvHD (Kim et al. 2015;
Schreiber et al. 2010).

TNFR2 is expressed by both resting and activated Tregs. TNFR2 signaling
induced by its ligand TNF-a causes the expansion of both mouse and human Tregs
(Okubo et al. 2013; Chen et al. 2007). Murine Tregs expanded in this manner have
enhanced in vitro suppressive function; however, contrasting results have been
reported by different groups as to the effect of TNF on human Treg suppressive
function, although the majority suggest that Tregs treated with TNF-a have reduced
suppressive function (Nie et al. 2016). Genetic deficiency of TNFR2 results in a
reduction in the number of Tregs in both the thymus and the spleen, a phenotype
also seen in mice with triple knockout of the TNFR2 ligands: TNF, lymphotoxin-a,
and lymphotoxin-f (Chen et al. 2013). Further to this, addition of TNF, to cultures
containing pre-Tregs, enhances their conversion to mature Tregs in comparison to
IL-2 alone (Mahmud et al. 2014). A role for TNFR2 in the in vivo suppressive func-
tion of Tregs was demonstrated as Tregs lacking TNFR2 are unable to prevent coli-
tis due to a deficiency in their stability and competitive fitness (Chen et al. 2013).

Redundancy of TNFRSF Members in Treg Cell Function

Some redundancy between different members of the TNFR family is seen. While
the magnitude of the reductions of Treg numbers in GITR-, OX40-, or TNFR2-
deficient mice is relatively mild, combining OX40 genetic depletion with tailless
dominant negative forms of GITR or TNFR reveals a much more severe defect
in Treg cell numbers with all the combination of all three leading to a near total
loss of thymic Treg production. This role for TNFR family members is in turn
dependent on CD28 signaling for the induction of their initial expression
(Mahmud et al. 2014).

Many of the TNFRSF members have signaling cascades that terminate in activa-
tion of the transcription factor NF-kB family of transcription factors. In particular,
cRel and RelA have vital roles in the thymic production, maintenance, and suppres-
sive function of Tregs (Li and Jacks 2017). Engagement of GITR, OX40, and 4-1BB
induces the phosphorylation of RelA, which anti-CD3 and anti-CD28 fail to do,
suggesting they are acting via distinct signaling pathways. While individual
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knockouts of GITR, OX40, and 4-1BB result in relatively mild defects in Treg for-
mation and function, conditional knockout of RelA in mature Tregs results in seri-
ous autoimmune pathology, resulting in the death of the mice at around 100 days of
age. The Treg cell defect was cell intrinsic and seems to primarily result from a loss
of the ability of naive/central Tregs to differentiate into highly suppressive effector
Tregs (Vasanthakumar et al. 2017). As a result, it seems that loss of one TNFRSF
member expressed by Tregs can be compensated for by the action of others, but loss
of multiple receptors or of the downstream signaling molecules they share leads to
severe defects in either Treg formation in the thymus or the differentiation and func-
tion of Tregs in the periphery, demonstrating that TNFRSF members, as a group,
have an essential role in Treg cell function.

7.2.3 Coinhibitors in Treg Biology
7.2.3.1 Coinhibitory Molecules

Coinhibitory receptors are integral to the synchrony of immune responses. They
provide a means for the immune system to coordinate its defense mechanisms to
achieve sustainable immunity without development of autoimmunity. Their expres-
sion generally coincides with the activation of immune cells; however, each is
highly dependent on the availability of their respective ligands to elicit immuno-
modulatory signals. From a therapeutic viewpoint, coinhibitory receptors and
ligands present avenues for the development of antagonists to counter their effects
in chronic viral infections and cancer, diseases that capitalize on the immune check-
point receptors as Achilles heels of viral- and tumor antigen-specific T cells to
restrain their responses. This strategy has produced promising results in recent years
with certain limitations that are potentially due to the lack of understanding of coin-
hibitory molecules in immune cells other than conventional T cells. In this section,
we discuss the roles of coinhibitory receptors in Tregs, which are known to express
them in substantial amounts (Fig. 7.3).

7.2.3.2 PD-1

Programmed cell death-1 (PD-1 or CD279)) is a coinhibitory surface receptor
belonging to the CD28 superfamily. It is a 50-55 kDa type 1 transmembrane glyco-
protein with a single IgV domain in its extracellular region that shares 21-33%
sequence homology with CTLA-4, CD28, and ICOS. One key feature of PD-1 that
distinguishes it from other CD28 family members is its inability to homodimerize
due to a lack of membrane cysteine (Zhang et al. 2004). The intracellular cytoplas-
mic region of PD-1 consists of two tyrosine-based residues — tyrosine-based inhibi-
tory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM); the
latter is responsible for transducing negative signaling (Long 1999; Sidorenko and
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Fig. 7.3 Coinhibitory molecules expressed by Tregs and their ligands on antigen-presenting
cells. Suppressive function may be mainly either cell intrinsic (TIM3, PD1, Lag-3), cell extrinsic
(ligand capture by CTLA-4), or a mixture of both (cell-intrinsic signaling by TIGIT and TIGIT
triggered release of the suppressive molecule Fgl2)

Clark 2003). PD-1 is expressed on activated T cells, B cells, NK cells, NKT cells,
dendritic cells, and monocytes. The level of PD-1 expression increases with con-
stant antigen exposure and stimulation. High PD-1 expression is a characteristic
feature of exhausted unresponsive T cells (Freeman et al. 2006); however, it is also
expressed by highly activated T cells, making PD-1 alone unable to differentiate
between these contrasting cell types. Upon activation in T cells, the nuclear factor
of activated T cells c1 (NFATcl) translocates to the promoter region of PD-1 to
drive PD-1 expression (Oestreich et al. 2008). Interestingly, a recent study sug-
gested that this may be epigenetically repressed by the chromatin organizer special
AT-rich sequence-binding protein-1 (Satb1) through its recruitment of nucleosome
remodeling deacetylase (NURD) complex to the PD-1 promoter, a process that is
partly counterbalanced by Smad proteins competing for the same promoter-binding
region (Stephen et al. 2017). The exact mechanism which dictates PD-1 expression
remains to be determined.

PD-1 binds to two ligands, namely, PD-L1 and PD-L2, with stronger binding to
PD-L2 (Freeman et al. 2000; Latchman et al. 2001; Tseng et al. 2001; Karunarathne
et al. 2016). In mice, while PD-L1 is constitutively expressed on a wide variety of
immune cells including T and B cells, dendritic cells, macrophages, and bone-
marrow-derived mast cells, PD-L2 expression is mainly limited to primed
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professional antigen-presenting cells such as DCs, macrophages, peritoneal B1 B
cells, and germinal center B cells (Freeman et al. 2000; Yamazaki et al. 2002; Zhong
et al. 2007). Additionally, PD-L1 can be induced on cells of nonhematopoietic ori-
gin (e.g., vascular endothelial cells) (Eppihimer et al. 2002). In humans, PD-L2 is
also present on T cells and vascular endothelial cells (Tseng et al. 2001; Messal
etal. 2011). PD-L1 expression is preferentially enhanced by IFNy, whereas PD-L2
is upregulated by IL-4 and GM-CSF (Yamazaki et al. 2002; Loke and Allison 2003).
Besides PD-1, PD-L1 serves as a ligand for CD80/B7-1 for which the effect of this
interaction leans toward inhibition of T-cell responses (Butte et al. 2007). An alter-
native binding partner for PD-L2 has also been proposed with contrasting properties
to PD-1 (Shin et al. 2003). This is supported by the increased killing of PD-L2-
expressing tumor cells compared to non-PD-L2-expressing tumor cells by PD-1"
cytotoxic T cells (Liu et al. 2003). Identifying the receptor is paramount to make
further inroads into this pathway.

Upon ligation to PD-Ls, ITSM of PD-1 becomes phosphorylated and recruits
SHP-2 (SH2 domain-containing tyrosine phosphatase 2) which in turn dephosphor-
ylates other signaling molecules in the TCR complex, for example, CD3, ZAP70
(C-associated protein of 70 kDa), and PI3K (phosphatidylinositol-3-kinase) (Parry
et al. 2005). Consequently, T cells have reduced capacity to proliferate and produce
cytokines as well as the transcription factors — T-bet, Eomes, and GATA3 — required
for specialized Th1/Th2 functions (Nurieva et al. 2006). In the event of strong TCR
and CD28 stimulation, PD-1-mediated inhibitory effects can be overcome (Freeman
et al. 2000). This can also occur through the STAT5-dependent cytokine pathways
of IL-2, IL-7, and IL-15 (Bennett et al. 2003). Mice rendered genetically deficient
in PD-1 are susceptible to strain-specific autoimmune diseases. PD-1KO C57B16
mice sustain mild lupus-like nephritis and arthritis with late onset, while PD-1KO
BALB/c and NOD mice develop cardiomyopathy and type 1 diabetes, respectively
(Nishimura et al. 1999; Nishimura et al. 2001; Wang et al. 2005). The strain- and
tissue-specific nature of the observed autoimmunity suggests a loss of peripheral
tolerance rather than central tolerance in PD-1KO mice. Nevertheless, it is not
known whether autoimmunity in PD-1KO mice results from increased activation of
T cells per se or whether DCs and macrophages, which have been shown to secrete
larger amounts of cytokines when deficient in PD-1 (Rui et al. 2013), also contribute
through the promotion of inflammation.

Alternatively, the breakdown in peripheral versus central tolerance in PD-1KO
mice may be explained by the role that PD-1 plays in T-cell development. Given that
PD-1 is first expressed in early CD4-CDS8- thymocytes and is upregulated upon
TCR recognition in CD4+CD8+ thymocytes, PD-1 can affect the maturation of T
cells by calibrating the TCR signal threshold for positive and negative selection
(Nishimura et al. 1996; Blank et al. 2003). Hence, it is likely that thymic emigrants
in mice lacking inhibitory PD-1 contain less self-recognizing Tconvs and perhaps
more Tregs. Indeed, the percentage and number of thymic CD4*Foxp3* cells in
young PD-1KO mice are higher compared to wild-type controls. The authors also
demonstrated reduced total CD4 single positive PD-1KO thymic T cells specific for
MJ23, a native prostate antigen, in chimeric mice containing a mixture of MJ23
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TCR transgenic Ragl” PD-1-deficient and PD-1-sufficient bone marrow cells,
indicative of possible increased negative selection of PD-1KO immature CD4 T
cells. On the other hand, there was increased differentiation of PD-1KO MJ23-
specific thymic T cells into Tregs. Nevertheless, studies have yet to be performed to
determine whether the TCR repertoire of mature Tconvs has decreased affinity for
self-antigens and that of Tregs has increased affinity in PD-1KO mice.

Although PD-1 is highly expressed by activated Tregs, there is limited knowledge
on its exact function in Tregs. In comparison to PD-1- Tregs, PD-1"-expressing
Tregs have reduced demethylation in the Foxp3 locus, are less proliferative in vitro,
exert weaker suppression on Tconvs, and have shorter telomeres, traits consistent
with terminal differentiation and exhaustion (Lowther et al. 2016). This observation
also raises two important questions pertaining to dormancy and memory of Tregs
since the graded manner which PD-1 is expressed could be associated with activa-
tion status. On this note, the effect of blocking PD-1 signaling during activation of
Tregs needs to be carefully assessed in future studies. According to current evidence,
it is likely that PD-1 blockade on Tregs would bring about increased immunosup-
pression. This stems from a study that found T-follicular regulatory cells, a subtype
of Tregs residing within lymphoid follicular zones, derived from PD-1KO mice are
more efficient in preventing Tconv proliferation in vitro (Sage et al. 2013). A second
study made a similar finding in vivo by transferring CD4*Foxp3* Tregs from either
wild-type or PD-1KO mice into mice that were rendered susceptible to pancreatitis
by partial impairment of Foxp3 expression (Zhang et al. 2016). Not only did the
transfer of PD-1KO Tregs result in decreased conventional CD4 and CD8 T-cell
activation; there were also less cellular infiltrates and pathological damage in the
pancreas. Nonetheless, one caveat with assessing Tregs from PD-1KO mice is the
possibility that whole Treg activity is enhanced as a compensatory response to the
global increase in T-cell activation and not directly due to PD-1 deficiency itself.

Another area of interest in PD-1 that is related to Tregs is its role in the conver-
sion of Tconvs to peripheral Tregs (pTregs). PD-L1 expression on antigen-presenting
cells has been shown to be critical for TGFp-induced development of pTregs from
Tconvs (Francisco et al. 2009). Furthermore, transfer of naive CD4 Tconvs into
RagKO mice deficient in both PD-L1 and PD-L2 produced less pTregs and caused
more severe inflammatory disease. Downregulation of Akt/mTOR signaling is
believed to facilitate PD-L1-mediated generation of pTregs. However, it should be
noted that these data cannot definitively link the PD-L1:PD-1 axis to pTreg develop-
ment as PD-L1, in addition to PD-1, binds to CD80 which is expressed on Tconvs
as well. This could be inferred by an apparent increase in number, but not frequency
which remained unchanged, of pTregs converted from PD-1KO Tconvs in RagKO
mice (Ellestad et al. 2014). Here, due consideration must also be given to the analy-
sis and interpretation of pTreg frequency, and absolute number in the various organs
(i.e., blood and lymph nodes) for PD-1KO Tconvs is inherently more proliferative
and readily mobilized. Therefore, an increase in pTregs may merely be a conse-
quence of increased expansion and activation of PD-1KO Tconvs rather than an
absence of PD-1-mediated regulation of pTreg conversion. Despite this, the results
clearly suggest that PD-1 may not be absolutely essential for Tconvs to differentiate
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into pTregs. More stringent experimental designs are required to investigate the
effect of PD-1 on this aspect of immune regulation.

Due to its high expression in Tconv, Treg, and CDS cells in the tumor environ-
ment, targeting the PD-1 pathway has been considered a key candidate for antitu-
mor immunotherapy (Iwai et al. 2017). Early experiments in mice demonstrated that
either anti-PD-1 or anti-PD-L1 is effective at inducing antitumor immune responses
and anti-PD-1 agents such as Nivolumab have proven a relative success in the clinic
either alone or in combination with other immunotherapeutic agents such as anti-
CTLA-4 (Callahan et al. 2014).

7.2.3.3 CTLA-4

Cytotoxic T-cell lymphocyte antigen-4 (CTLA-4, CD152)) is a close relative of
CD28 and shares the same ligands, CD80 and CD86. However, while CD28 is a
critical costimulatory molecule, CTLA-4 is known for its suppressive function.
CTLA-4 is constitutively expressed by Tregs and can also be expressed by activated
Tconvs. Genetic knockout of CTLA-4 results in severe fatal autoimmunity and lym-
phoproliferation in a manner similar to that seen in Foxp3-deficient scurfy mice
(Tivol et al. 1995). Correspondingly genetic knockout of both CD80 and CD86 or
CD28 prevents the autoimmunity seen in CTLA-4-deficient mice demonstrating the
opposing roles of CTLA-4 inhibition and CD28 stimulation (Mandelbrot et al. 1999;
Tai et al. 2007). Conditional knockout of CTLA-4 specifically on Tregs results in
severe inflammation with similar consequences but slightly delayed fatality to fully
CTLA-4-deficient mice (Wing et al. 2008). Surprisingly, in contrast to germline or
Treg conditional knockout, CTLA-4 depletion in adult mice is not fatal and even
leads to resistance to EAE. Despite this, CTLA-4 depletion in adult mice does result
in severe autoimmunity (pneumonitis, gastritis, insulitis, and sialadenitis) (Klocke
et al. 2016). These findings suggest that while CTLA-4 is critical for Treg cell sup-
pressive function during the neonatal period, if depleted in the mature immune sys-
tem, other Treg suppressive mechanisms are able to partially compensate for this to
prevent fatal autoimmunity. This partial redundancy of other suppressive molecules
replacing CTLA-4 function is also demonstrated by the finding that highly activated
CTLA-4 KO Tregs taken from CTLA-4-deficient mice are suppressive in vitro
while CTLA-4 KO Tregs taken from bone marrow chimera or mosaic mice are not.
This is because strong activation of Tregs, which occurs in a mouse with a total lack
of CTLA-4, allows upregulation of other suppressive molecules. This does not occur
in the marrow chimera where immune homeostasis is retained (Wing et al. 2008).
The key role of CTLA-4 in the maintenance of immune homeostasis in humans has
recently been demonstrated by the discovery of a rare patient group suffering from
severe autoimmunity due to heterozygous loss of function mutations of the CTLA-4
gene (Schubert et al. 2014; Kuehn et al. 2014). In contrast, heterozygous loss of
CTLA-4 in mice has little measurable effect, possibly due to the unchallenging
clean conditions that specific pathogen-free mice are kept in.
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CTLA-4 has been demonstrated to have both cell-extrinsic and cell-intrinsic
functions (Wing et al. 2011). The key cell-extrinsic function of CTLA-4 is to control
availability of its ligands CD80 and CD86 on antigen-presenting cells in a contact-
dependent manner (Onishi et al. 2008). This ability to deplete CD80 and CD86 can
be blocked by anti-CTLA-4 antibodies and is also lost in Tregs with genetic defi-
ciency of CTLA-4 (Wing et al. 2008). CTLA-4 rapidly cycles on and off the cell
membrane into intracellular pools, where the majority of CTLA-4 is located. As it
engages with CD80 and CD&6, it is able to pull them off the surface of APCs,
sequestering them into the Treg where they are then degraded; as a result, Tregs
rapidly remove CD80 and CD86 from APCs in a contact-dependent manner (Walker
and Sansom 2015).

CTLA-4 has also been reported to have cell-intrinsic functions. Recent work
suggests that CTLA-4 may affect the motility of Tregs via interaction of its cyto-
plasmic tail with the protein kinase C isoform PKC-n. This complex recruits a
GIT2-aPIX-PAK complex that controls the disassembly of focal adhesion points
between the Treg and APCs and as a result affects the ability of the Treg to disen-
gage from an APC in order to seek new targets. This results in a partial loss of sup-
pressive function in Tregs lacking PKC-n, causing a loss of ability to prevent
antitumor responses, but still retaining the capacity to prevent colitis following cell
transfer into RAG-deficient mice (Kong et al. 2014). Several other reports have also
suggested that CTLA-4 may play a role in the arrest or enhancement of T cell and
Treg mobility on contact with APCs; however, this has proven controversial with
different studies providing conflicting evidence (Walker and Sansom 2015). While
cell-intrinsic mechanisms may play a role in the fine-tuning of CTLA-4 function,
they appear dispensable for the main role of CTLA-4 in the control of immune
homeostasis since bone marrow chimera experiments and use of conditional knock-
out mice where half of Tregs express CTLA-4 demonstrate that CTLA-4-deficient
Tconvs and Tregs do not have a clear phenotype as long as they are in the presence
of CTLA-4-sufficient Tregs (Bachmann et al. 1999; Wing et al. 2008).

CTLA-4 expression by Tregs is also critical for their ability to prevent antitumor
responses, and as a result, CTLA-4 cKO mice rapidly clear tumors (Wing et al.
2008). Treatment of tumor-bearing mice with anti-CTLA-4 leads to tumor regres-
sion. In the clinic, anti-CTLA-4 is already in use with compounds such as ipilim-
umab, already showing efficacy in the treatment of human melanoma. Treatment
attempts at other cancers such as prostate and non-small cell lung cancer have not
been initially successful, but combination therapies with Nivolumab (anti-PD-1)
have yielded promising initial results (Callahan et al. 2014). Due to its importance
in regulation of the immune system, other reagents targeting the CTLA-4 pathway
have been developed. CTLA-4Ig, in which CTLA-4 has been fused with the Fc
region of IgGl1 to create a solubilized form of CTLA-4 that blocks CD80 and CD86,
is a currently licensed drug (abatacept) for the treatment of rheumatoid arthritis and
has been shown to have significant benefit to this patient group. However, trials in
other autoimmune/inflammatory conditions such as asthma, lupus, and ulcerative
colitis have been less successful (Adams et al. 2016).
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7.2.3.4 Lag-3

Lymphocyte activation gene-3 (Lag-3) is a transmembrane protein with a conforma-
tion reminiscent of the CD4 coreceptor. It mainly binds to major histocompatibility
complex II (MHCII) and has greater affinity compared to the binding of CD4 to
MHCII (Huard et al. 1995). In spite of this, Lag-3 can also regulate MHCl-restricted
CDS8 T cells intrinsically (Grosso et al. 2007), suggesting a role of other Lag-3
ligands such as LSECtin, a member of the C-type lectin receptor superfamily, found
predominantly in dendritic cells in blockade of T-effector responses (Xu et al. 2014).
It is notable that deficiency in Lag-3 leads to spontaneous autoimmunity only in
autoimmune-prone mice stains such as the NOD background (Bettini et al. 2011).
During T-cell activation, Lag-3 cross-links with CD3 and modulates T-cell activity
through a pathway that has yet to be uncovered (Hannier et al. 1998). To date, it is
only known that Lag-3 depends on the KIEELE motif of its intracellular domain to
transduce inhibitory signals in CD4 Tcons (Workman et al. 2002). Whether Lag-3
requires the other two motifs, one containing serine-phosphorylation sites and the
other containing glutamic acid-proline repeats, for its function in other T-cell sub-
sets remains to be determined (Workman et al. 2002). This is worth consideration
particularly for Tregs where Lag-3 may either act as a cell-intrinsic inhibitory core-
ceptor or serve as a cell-extrinsic immune suppressive arm as discussed below.

Within the activated population of whole CD4 T cells, Lag-3 is preferentially
expressed and maintained on pTregs. Using a Lag-3 blocking antibody, it was found
that Lag-3 was crucial for pTregs to mount efficient suppression on Tconvs and
protect mice from death in a model of lethal pneumonitis (Huang et al. 2004). A
similar finding was obtained for tTregs although this was debatable due to the
ambiguous nature of identifying tTregs as CD4*CD25* cells in earlier studies
(Huang et al. 2004). This controversy is compounded by another study that showed
wild-type and Lag-3KO CD4*CD25" Tregs did not differ in their ability to prevent
allogeneic GVHD (Sega et al. 2014). As GvHD is only preventable by the transfer
of CD62L* naive Tregs, which are essentially tTregs, into host mice (Ermann et al.
2005), the initial claim that Lag-3 is indispensable for tTreg function may not be
completely true. On a similar note, one must account for differences, if any, in the
proportion of CD62L* naive Tregs within the CD4*CD25" cells in wild-type and
Lag-3KO mice. A recent study addressed some of these issues by generating NOD
mice with a conditional knockout of Lag-3 specifically in Foxp3* Tregs. It was
found that such mice had a lower incidence of diabetes, which may be attributed to
Lag-3 restricting the maintenance and proliferation of islet-infiltrating Tregs through
downregulation of Eos and IL-2-Stat5 signaling (Zhang et al. 2017). Importantly,
the inhibition of Eos by Lag-3 likely subjects Tregs to become unstable and dis-
posed to reprogramming, a typical feature of pTregs (Sharma et al. 2013).
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7.2.3.5 TIGIT

The coinhibitory T-cell immunoreceptor with Ig and ITIM domains (TIGIT)) and its
partner costimulatory receptor CD226 can be deemed to regulate T-cell responses in
ways similar to CD28/CTLA-4 (Joller et al. 2011). Both TIGIT and CD226 bind to
CDI155 and CD112 with the former exhibiting stronger affinity (Anderson et al.
2016). The intracellular domain of TIGIT consists of an ITIM motif and an immu-
noglobulin tail tyrosine (ITT)-like motif (Yu et al. 2009). The cell-intrinsic inhibi-
tory function of TIGIT hinges on its ITT-like motif which becomes phosphorylated
and recruits SHIP1 to dampen NF-kB signaling upon ligation of TIGIT to its ligand
(Lietal.2014). Besides, TIGIT has been shown to exert cell-extrinsic immunoregu-
latory effects by stimulating IL-10 and blocking IL-12 production by DCs through
its interaction with CD155, hence repressing Th1 immunity (Yu et al. 2009). This
can also be achieved by TIGIT-expressing Tregs (Joller et al. 2014). In humans,
TIGIT* T cells are particularly enriched in the Foxp3*Helios* thymic Treg fraction.
Moreover, while level of TIGIT expression is markedly higher, CD226 expression
is lower in Helios* compared to Helios™ Tregs and Tconvs (Joller et al. 2014). It is
currently postulated that TIGIT is a late activation marker and limits the prolifera-
tive capacity of tTregs. In contrast, TIGIT'CD226* Tregs harbor properties that are
synonymous to iTregs such as higher IFNy and IL-10 production and reduced
Foxp3-TSDR demethylation (Fuhrman et al. 2015; Joller et al. 2014). Intriguingly,
TIGIT was found to be highly necessary for the conversion of murine Tconvs into
iTregs in vitro.

Due to the novel identification of TIGIT* Tregs, the function of this particular
Treg subset is still unclear. It was earlier shown that upregulation of TIGIT during
Treg activation was hindered in an IL-12-mediated Th1 environment, suggesting a
possible role in counterbalancing T-helper effector responses (Fuhrman et al. 2015).
This concept has been validated in mice where, as in humans, tTregs are the major
source of TIGIT* Tregs which coexpress neuropilin-1 and Helios and are distinctly
more activated and suppressive in comparison to TIGIT Tregs (Joller et al. 2014).
Elevated expression of costimulatory (e.g., ICOS) and coinhibitory molecules (e.g.,
PD-1, CTLA-4, Tim3, Lag3) and Treg signature genes (e.g., Foxp3, CD25, GITR,
IL-10) bear testament to the highly immunosuppressive phenotype of TIGIT* Tregs
(Joller et al. 2014). This was similarly observed in tumor-infiltrating TIGIT* Tregs,
which were behind the suppression of antitumor CD8 T-cell responses (Kurtulus
et al. 2015). Perhaps, one peculiar trait of TIGIT* Tregs is their preferential expres-
sion of Thl- and Th17-specific genes over those of Th2 (Joller et al. 2014). This
includes the respective chemokine receptors. In line with their gene expression pro-
file, TIGIT* Tregs suppress Thl and Th17 but not Th2 responses. Mechanistically,
this particular function of TIGIT* Tregs owes to their increased propensity to secrete
soluble fibrinogen-like protein 2 (Fgl2) in addition to IL-10 (Joller et al. 2014). It is
conceivable that the combined effect of Fgl2 and IL-10 from TIGIT* Tregs tilts the
T-helper balance from Th1/Th17 to Th2. Interestingly, in comparison to other acti-
vated Tregs, TIGIT has twofold greater expression by highly differentiated
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CD25-negative T-follicular regulatory cells located in germinal centers, suggesting
that it may have a role in the regulation of antibody responses (Wing et al. 2017).

7.2.3.6 Tim-3

T-cell immunoglobulin-3 (Tim-3) is the first among the Tim family of proteins that
was discovered (Anderson et al. 2016). As a coinhibitory molecule, any compro-
mise on Tim-3 function unleashes activated T cells, particularly Thl, to instigate
immune-mediated diseases. This can be brought about by modifications to the
Tim-3 gene or blocking Tim-3 with anti-Tim3 antibody (Monney et al. 2002;
Koguchi et al. 2006). The spontaneity of autoimmune development from antagoniz-
ing Tim-3 firmly underlines Tim-3 as a major immune regulator. Reversion of Tim-
3+ T cells from a dysfunctional state to a highly autoreactive state has been shown
to account for the effect of Tim-3 blockade (Koguchi et al. 2006), though it is neces-
sary to recognize that Tim-3 is expressed in multiple other cells such as Tregs, NK
cells, NKT cells, and APCs (Anderson et al. 2016).

Several ligands have been identified for Tim-3, one of which is galactin-9 (GAL-
9). Engagement of GAL-9 leads to cell death in Tim-3* Th1 cells and protects mice
from experimental autoimmune encephalomyelitis. Other ligands include phospha-
tidylserine (PS), high mobility group protein B1 (HGMBI1), and carcinoembryonic
antigen cell adhesion molecule-1 (Ceacam-1) (Anderson et al. 2016). Since T cells
do not possess any ability to phagocytose apoptotic cell function, the PS:Tim-3
pathway has not been examined in T cells. As for HMGB-1 whose role is to chap-
erone DNA from apoptotic cells to dendritic cells and macrophages, it is proposed
that Tim-3 sequesters it to keep inflammatory responses under control (Chiba et al.
2012). Lately, Ceacam-1 has emerged as an interesting candidate that is coexpressed
with Tim-3 in activated T cells. Both Ceacam-1 and Tim-3 interact with each other
in cis and trans through their N-terminal domains to mediate Tim-3-dependent inhi-
bition. Heterodimerization of the molecules in cis is especially vital for Tim-3 matu-
ration and maintenance on the cell surface. This is evidently manifested in
Ceacam-1-deficient T cells which are low in Tim-3 expression and are highly
pathogenic.

Clearly, Tim-3 is important to immune tolerance, and the degree of redundancy
it shares with Tregs ought to be ascertained. Thus far, it is known that Tim-3* Tregs
belong to a specific PD-1-expressing activated Treg subset that is almost exclusively
found within inflamed tissues (Sakuishi et al. 2013). The same can be assumed for
human Tim-3* Tregs which are not immediately detectable ex vivo but only after
stimulation with anti-CD3 and anti-CD28 (Gautron et al. 2014). The in vitro acti-
vated Tim-3* Tregs are more suppressive against Th1 and Th17 responses compared
to their Tim-3" counterparts which are barely effective in Th17 suppression. In mice,
Tim-3"PD-1* Tregs were reported to have high expression of the classic regulatory
genes (e.g., CD25, CTLA-4, and IL-10) and display strong in vitro immunosuppres-
sion (Sakuishi et al. 2013). Notwithstanding these traits, the short-term survival of
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Tim-3"PD-1* Tregs allows them to only delay but not prevent allograft rejection
(Gupta et al. 2012). On a more positive note, future cancer treatment can leverage
combined blockade of Tim-3 and PD-1, which abrogates much of the enhanced
immunoregulatory functions of Tim-3* Tregs, in particular IL-10 production
(Sakuishi et al. 2013). This would facilitate a two-pronged approach to relive anti-
tumor T cells from checkpoint blockade as well as suppression by Tregs (Fig. 7.4).

7.3 Conclusion

One notable similarity between a range of the co-signal molecules discussed here is
the strongly context-dependent nature of their function. Many positive co-signal
molecules are capable of enhancing Treg proliferation when given in the context of
an environment with relatively low inflammatory milieu. On the other hand, these
same signals cause the death or loss of function of the Tregs in more activated envi-
ronments, notably inside tumors. The exact mechanisms underlying this phenome-
non are not fully clear but may be the result of either overstimulation leading to
activation-induced cell death or alterations to intracellular conditions of the Tregs
leading to different co-factors becoming involved in the downstream signaling
events following engagement of the co-signal molecule. For example, the TNFRSF
members CD27, GITR, OX40, and 4-1BB can bind to TRAF2, which leads to acti-
vation of canonical NF-kB signaling and proliferation and activation of Tregs.
Alternatively, the proapoptotic molecule Siva can also interact with the signaling
domains of CD27 and GITR, resulting in increased apoptosis of Tregs via the TRAF



7 Control of Regulatory T Cells by Co-signal Molecules 201

pathway (Spinicelli et al. 2002; Nocentini and Riccardi 2005). The choice of these
opposing pathways may be the result of the environment and signaling through
other ligands or cytokines resulting in changes to the availability of downstream
adaptor molecules.

Tregs are critical for the prevention of autoimmunity while also being capable of
preventing beneficial responses such as antitumor immunity. As a result, their func-
tion must be tightly regulated by a range of co-signals either enhancing or suppress-
ing their proliferation and function dependent on context. Further Tregs themselves
control the availability of co-signals to other T cells, most notably by their ability to
regulate CD80 and CD86 expression by CTLA-4 and thus restrict the availably of
CD28 signals to Tconv. These different costimulatory and coinhibitory factors inter-
twine to result in a fine-tuned system to control immune homeostasis with multiple
levels of feedback and redundancy and balance the need for protective immune
responses with reducing the likelihood of autoimmunity.
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