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Chapter 9
Cadmium Stress Tolerance in Plants 
and Role of Beneficial Soil Microorganisms

Abeer Hashem, Abdulaziz A. Alqarawi, Amal A. Al-Hazzani, 
Dilfuza Egamberdieva, Baby Tabassum, and Elsayed Fathi Abd_Allah

Abstract Heavy metal stress triggers anomalies in the plant metabolic activity 
thereby reducing the yield potential of the crop plants. Cadmium (Cd) is one of the 
toxic heavy metals that is continuously added to the soil through natural as well as 
anthropogenic means and once taken up by plants can inhibit plant growth and 
development. Cd toxicity causes problem in uptake and metabolism of essential 
mineral elements as a result of reduced enzyme activity and protein synthesis. It has 
been observed that essential mineral nutrients and the available soil Cd show direct 
competition for the transport proteins. In addition, Cd alters with the sulfhydryl 
group of proteins resulting in reduced enzyme activity. Soilborne microorganisms 
include all actively metabolizing organisms directly or indirectly associated with 
the improvement of soil health and the existing flora. Among the soilborne benefi-
cial microorganisms, arbuscular mycorrhizal fungi (AMF) and plant growth- 
promoting rhizobacteria (PGPR) have been widely accepted for their 
growth-promoting role. Optimization of important physiological and biochemical 
processes in plants can be achieved by the soilborne microorganisms. Hence exploit-
ing their unique properties including stress tolerance via synthesis of compatible 
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solutes and phytohormones, biocontrol agents, etc. should be exploited. The present 
review discusses the role of beneficial soil microorganisms in alleviating the effects 
of Cd stress in crop plants.

Keywords Stress tolerance · Plant microbiome · Arbuscular mycorrhizal fungi · 
PGPR · Cadmium

9.1  Introduction

Soil solution forms the key component for healthy plant growth and inhibiting 
microbes, and any alteration in its physical, chemical, and biological characteristics 
will have direct influence on the existing flora. Likewise, interactions triggered due 
to metal pollution affect the bioavailability of essential nutrients (Nazar et al. 2012; 
Ahmad et al. 2015; Kamran et al. 2015). Some plants modulate metal accumulation 
using various transporters either via active or passive mechanisms resulting in net 
change in the soil pH around root, i.e., rhizosphere. Alterations in the rhizosphere 
soil pH majorly affect the bioavailability of the pH-dependent nutrients in addition 
to the toxic metal ions (Hinsinger et al. 2006). As a common view, soil contains 
nutrients as well as toxic metals which often display interactions at precipitation, 
absorption, and the complex formations with the important organic compounds 
(Pantazis et al. 2007; Chibuike and Obiora 2014). Root secretions or exudates con-
siderably influence Cadmium (Cd) bioavailability and its toxicity due to alterations 
in the pH, chelation, redox state, intensity, and the activity of soil microbes. It has 
been observed that the optimal availability of root-secreted organic substances like 
oxalic acid, citric acid, etc. in the rhizosphere has a key role in reducing the absorp-
tion of toxic metals like Cd by formation of metal-chelate complex.

Growth of plants is determined by several factors, and excess presence of a par-
ticular factor can create alterations in normal developmental and metabolic pro-
cesses. Stresses, including biotic and abiotic, impart deleterious effects on the crop 
growth and hence result in significant yield losses. Between the abiotic stress fac-
tors, the presence of heavy metals in agricultural soils has been observed to restrict 
growth of major food crops. Cd is one of the toxic heavy metals easily taken up by 
plants and obstructs the metabolic processes. The most accepted reasons for the 
increased concentration of Cd in soils have been the greater usage of chemical fer-
tilizers, sewage wastewater for irrigation, and rapid industrialization. All these 
sources result in triggering harmful effects on soil-plant environment system. Cd 
has been ranked among seven most toxic substances and the key reason for the 
alarming toxicity of being its prolonged lifetime in soil. It has been observed that 
the concentration of Cd in soils considered as suitable for normal growth is less than 
0.5 mg kg−1 of soil (Vahter et al. 1991). Cd is considered as a non-essential element 
for the crop plants; however, it has high mobility between soil and plant system, 

A. Hashem et al.

https://www.hindawi.com/79396726/
https://www.hindawi.com/73730821/


215

thereby entering the food chain resulting in significant damage to plants as well as 
animals including humans. Different threshold levels for Cd accumulation in plants 
have been determined in crops like cereals (0.013–0.22  mg  kg−1) and grasses 
(0.07–0.27 mg kg−1) (Kabata-Pendias and Pendias 2001). There are considerable 
evidences that excessive use of phosphate fertilizers or phosphorites also results in 
heavy accumulation of Cd in soils resulting in alteration of growth (Abd_Allah 
et al. 2015; Ahmad et al. 2015). It has been observed that accumulation of Cd causes 
several physiological, biochemical, and genetic alterations which are more often 
reflected on the structural makeup of the plant (Feng et al. 2010). Plants grown on 
Cd-rich soils display altered nutrient uptake, photosynthetic restrictions, hampered 
enzyme activity, altered stomatal functioning, and declined tissue water content 
(Abd_Allah et al. 2015; Hashem et al. 2016a, b). Moreover, excess Cd translocation 
into plants has been observed to reduce the activity of enzymes of carbon metabo-
lism hence the productivity and biomass accumulation (Mobin and Khan 2007; 
Hashem et al. 2016a, b, c). Plants exhibiting higher intake of Cd and other heavy 
metals show greater generation of free radicals including superoxide, hydrogen per-
oxide, and hydroxyl due to the direct effect on the activity of the radical generating 
pathways mediated by enzymes like NADPH oxidase (Sirhindi et  al. 2016). Cd 
hampers the cellular redox balance, thereby leading to obstructions in the normal 
functional patterns of major metabolic pathways (Ahmad et  al. 2018; Alyemeni 
et al. 2017). In addition, the accumulated free radicals in Cd stress lead to enhance-
ment in the rate of lipid peroxidation, and hence oxidative damage to plant tissue is 
initiated (Abd_Allah et al. 2015; Per et al. 2016).

For counteracting the negative effects triggered by Cd accumulation, numerous 
mechanisms are initiated, and these include greater synthesis and accumulation of 
compatible solutes, phytochelatins, upregulation of the antioxidant system, and 
effective partitioning of the toxic ions (Hashem et al. 2016a, b, c; Alyemeni et al. 
2017). Antioxidant system neutralizes the toxic radicals to prevent oxidative dam-
age to key molecules, and on the contrary, phytochelatins bring chelation of toxic 
metal ions thereby proving much effective by preventing the initiation of toxic 
effects of metal ions (Ahmad et al. 2018). Osmolytes, antioxidants, and phytochela-
tins in combination bring modulation of metabolic pathways by maintaining the 
tissue water content and structural integrity and preventing radical generation, 
respectively (Nazar et al. 2012). So, the net effect of Cd in soil-plant relationship is 
its influence on the physiological and biochemical processes primarily by affecting 
the enzyme activity, mineral nutrition and assimilation, photosynthesis, antioxidant 
metabolism, and redox homeostasis (Ahmad et al. 2018; Chiboub et al. 2018). In the 
first part of the present review, the growth and metabolic alterations triggered by Cd 
are addressed followed by the role of existing soil microorganisms in the ameliora-
tion of metal-induced effects focusing primarily on the importance of beneficial 
microorganisms in the alleviation of Cd toxicity and its ill effects.
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9.2  Mechanisms of Uptake, Transport, and Accumulation 
of Cd

Uptake, transport, and accumulation or partitioning of Cd in plants have been stud-
ied in somewhat up to comparable levels. With the induction of Cd stress, plants 
have been observed to experience restriction on the uptake of other mineral ele-
ments by competing for the transport protein at the membrane levels (Nazar et al. 
2012; Ahmad et al. 2018; Abd_Allah et al. 2017). Transport proteins including ABC 
and natural resistance-associated macrophage protein have been observed to carry 
out the transport of Cd ions in plants and their expression get upregulated in plant 
species exposed to Cd stress (Sarwar et al. 2010). Besides the activation of Cd trans-
port proteins, the partitioning of accumulated Cd into various organs plays an 
important role in determining the intensity of Cd toxicity in plants under question. 
Several factors controlling the Cd uptake, accumulation, and toxicity include the 
concentration and availability of Cd in rhizosphere, symplastic or apoplastic space 
of Cd transport within the plant tissues, loading and translocation via xylem, and the 
accumulated Cd within vacuoles as cadmium-phytochelatin complex. In addition to 
the transport proteins and other mechanisms depicted above, the cation-exchange 
capacity of the cell walls of root tissues is also a key determining factor in the net 
uptake of heavy metal(loid)s. In the simplest way, greater action-exchange capacity 
reflects greater metal adsorption in the cellular walls, thereby making them easily 
available for the membrane transport with a significant reduction in efflux of metal 
ions. Such high ion-exchange capacity trigger metal accumulation in cellular com-
ponents, including the cytoplasm, and severely affects metal tolerance potential of 
plants (Singh et al. 2015a).

In general, it can be quoted that transport proteins carrying out metal transport 
may be either general or specific. For example, among the key general metal ion 
transporters, NRAMP represents an important group of transporters which are 
transmembrane proteins implemented in transport and homeostasis of metal ions 
and are considered as responsible for the transport of Fe2+, Cd2+, Mn2+, Cu2+, Ni2+, 
Zn2+, and Co2+ ions (Nevo and Nelson (2006). More precisely, the transporters that 
mediate transport of one ion may also carry the other ions as has been observed for 
uptake and transport of zinc (Zn) and Cd (Wong and Cobbett 2009). P1B-ATPase 
(HMA) – a specific metal ion transporter – is involved in the translocation of ions 
specifically Cd and Zn out of the cytoplasm into the vacuole, thereby reflecting to 
their efflux mechanism. It has been suggested that the efflux or export metal ion 
transporters are much more selective as compared to the ones involved in the import 
function (Kramer et al. 2007; Singh et al. 2015a). Overexpression of the exporter 
proteins derived from metal hyper-accumulators has been observed to improve tol-
erance of yeast to Cd and Zn (Papoyan and Kochian 2004). Such transporters are 
considered as potential candidates for exploitation as agents of improving Cd stress 
tolerance in plants. Expression of an iron transporter gene (IRT1), zinc-regulated 
transporter/IRT-related proteins (ZIP), can help in the removal of Cd from polluted 
soils. However, in Arabidopsis IRT1 transporters have affinity for a range of ions 
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including Cd, manganese (Mn), Fe, and Zn (Korshunova et al. 1999). In addition to 
this action, the well-characterized proteins known as diffusion facilitator transport-
ers are implicated in the vacuolar sequestration and transport of toxic metal ions 
(such as Zn, Cd, cobalt (Co), nickel (Ni), etc.) from the cytoplasm into the outer 
cellular compartments (Montanini et al. 2007). The isotopes of natural resistance- 
associated macrophage protein, i.e., NRAMP3 and NRAMP4, have been studied to 
mediate the efflux of cadmium from the vacuole (Thomine et  al. 2003), and the 
overexpression of NRAMP3 and NRAMP4 in Arabidopsis resulted in greater Cd 
sensitivity due to disturbance caused in the Fe homeostasis after its release from the 
vacuole in addition to Cd. Beneficial soil microbes have the potential to restrict the 
uptake of Cd to upper plant parts (Abd_Allah et al. 2015; Hashem et al. 2016a).

9.3  Cd Toxicity in Plants

The effect of heavy metals in altering the soil characteristics is now well estab-
lished; the influence of these metals on the essential mineral nutrition has been 
observed leading to impeded plant growth and development. The effects may vary 
with the concentration of metal and the type of existing plant species encountered. 
Recent studies of Abd_Allah et al. (2015) have demonstrated restricted growth in 
Cd-stressed Helianthus annuus and Sesamum indium L. due to impaired lipid 
metabolism and uptake of nutrients, respectively. While comparing the Cd tolerance 
in rice accessions, Ueno et al. (2009) noticed considerable variations in the concen-
tration of Cd in shoot ultimately displaying completely vibrant tolerance potential 
(Fig. 9.1). Genotypes of the same species display considerable differences in the Cd 
metal tolerance (Khan and Khan 2014; Asgher et al. 2014; Alyemeni et al. 2017; 
Ahmad et al. 2018). These differences may be attributed to the inherent differential 
capacity of different species and varieties for Cd accumulation and partitioning in 
root and shoot and also on the ability to restrict Cd in roots. In Glycine max, De 
Sousa and Sodek (2003) observed the induction of the alanine aminotransferase and 
hexokinase activity after the plants were exposed to Cd (10  μM) resulting in 
improved tolerance due to greater production of reduced glutathione (GSH). 
Restricted functioning of the transport proteins in Cd-treated plants results in 
increased affinity for the sulfhydryl groups of enzymes, for example, the activity of 
H+ - ATPase decreased significantly in the roots of papilionaceous plants due to Cd 
contrary to cucurbitaceous plants reflecting higher metal tolerance (Chetty et  al. 
1980; Janicka-Russak et al. 2012).

In addition, accumulation of Cd has been observed to impair the structural stabil-
ity of DNA by inducing breaks in strands, causing oxidative damage, and also leads 
to chromosomal aberrations with increased programmed cell death (Tuteja et  al. 
2009). Cd has been reported to trigger cytotoxic as well as genotoxic effects in Vicia 
faba resulting in exchange of sister chromatids, and hence persistent DNA damage 
can occur (Unyayar et al. 2010). In connection to this, the protective mechanisms 
like osmolytes, phytochelatins, and antioxidant system have been essential in 
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 averting the genotoxic stress as observed in several crops subjected to Cd stress 
(Emamverdian et al. 2015). Future studies are required to unravel the exact mecha-
nisms of protection from genotoxic effects of Cd and other metals. Thorough under-
standing about the cross talk between different protective molecules can be handy 
in strengthening our knowledge about signaling cascades and the apoptotic path-
ways involved in such conditions. While screening Brassica juncea, Blanvillain et al. 
(2009)  identified a chromatin remodeling factor, i.e., OXS3, as key factor for 
improved Cd stress tolerance. Contrarily, OXS3 mutants exhibit extra sensitivity to 
Cd treatment which is usually overcome by its subsequent overexpression thereby 
leading to the protection of DNA (Verbruggen et al. 2009). No doubt plants tend to 
chelate most of Cd taken up; however, accumulated Cd is sequestered into the vacu-
ole involving the active participation of transporters, e.g., CAX2 or CAX4 acting as 
Cd/H antiporters. Besides it has been confirmed that Nicotiana tabacum overex-
pressing the Arabidopsis tonoplast Cd/H antiporter exhibit greater tolerance to cad-
mium stress (Korenkov et al. 2007).

Most of the nutrients including nitrogen (N), phosphorus (P), potassium (K), 
magnesium (Mg), etc. are mobile within the plant system, i.e., in xylem and phloem 
tissues, compared to calcium (Ca), boron (B), sugars, etc. Heavy metals like Cd may 
compete with ions like Ca and Mg at the membrane level (Llamas et  al. 2000) 
resulting in its uptake by the cation transport system (employed in the uptake of 
essential elements, e.g., transporters belonging to ZIP and NRAMP families and Ca 

Fig. 9.1 Skeleton diagram describing the mechanisms involved in remediation and alleviation of 
adverse impact of cadmium stress by rhizosphere microorganisms
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channels (Perfus-Barbeoch et al. 2002)). Competition occurring between nutrients 
and the existing toxic heavy metals for the binding sites in different cellular com-
partments can affect the distribution of toxic metals, for example, absorption of Cd 
through Ca ion channel hampers the plant-water relationship (Perfus-Barbeoch 
et al. 2002) imparting hindrances in metabolism by inducing stomatal closure, low-
ered transpiration, and chlorophyll metabolism, hence restricting photosynthesis. 
Reduced uptake of sulfur  (S) in B. juncea cultivars under Cd treatment restricts 
photosynthesis and growth (Asgher et al. 2014; Ahmad et al. 2015). Similarly, in 
chickpea, Cd stress reduces the uptake of key mineral nutrients leading to increased 
oxidative damage and growth restrictions. Reduced photosynthesis due to Cd stress 
has been attributed to the reduction in the activity of enzymes of the Calvin cycle, 
photosynthetic electron transport chain, PSII activity, CO2 concentration, expres-
sion of Rubisco, and uptake and translocation of key mineral nutrients (Asgher et al. 
2014; Per et al. 2016). Cd stress increased DNA polymorphism in rice and possibil-
ity of occurrence of breaks in the DNA (Aina et al. 2007). Cd affects the antioxidant 
system of plants and induces oxidative damage to key metabolic pathways (Hashem 
et al. 2015; Abd_Allah et al. 2015, 2017). Partly such negative effects of Cd can be 
ascribed to low mineral availability in the contaminated soils. Cd brings alteration 
in the protein conformation after binding with the sulfhydryl and carboxylic groups 
of proteins. According to the study of Yoshihara et al. (2006), exposure of tobacco 
to Cd stress induces iron deficiency by significantly increasing the expression of 
NtFRO1 and NtIRT1 in the roots. Transcription factors including FIT, AtbHLH38, 
and AtbHLH39, which belong to helix-loop-helix group, get upregulated in plants 
exposed to Cd stress for protecting the iron homeostasis. In Arabidopsis, overex-
pression of FIT either with AtbHLH38 or AtbHLH39 activates the expression of 
MTP3, HMA3, IRT2, and IREG2 involved in the detoxification of heavy metals and 
further enhanced the expression of nicotianamine coding NAS1 and NAS2 genes 
thereby contributing to iron homeostasis.

9.4  Soil Microorganisms: PGPR and AMF

Already as mentioned above, plant development primarily depends on the charac-
teristics of the rhizosphere soil, the existing environment, and lesser on the plant 
species. A galaxy of microflora interacting with their immediate neighbors for one 
or the other beneficial or neutral associations inhabit Earth. Species belonging to 
different bacterial and fungal genera form the vital components of soil. Among the 
key biotic activities is the nutrient turnover so as to make it sustainable for increased 
crop production (Hameed et al. 2014). Soil microorganisms bring positive changes 
in growth by mediating the mobilization of key nutrients and inducing the synthesis 
of endogenous plant growth regulators (Hashem et al. 2014; Abd_Allah et al. 2015), 
modulating the concentration of polyamines (Hashem et al. 2014; Upadhyay et al. 
2012), inhibiting the growth of phytopathogens, improving soil structure, and 
removing the toxic heavy metals and xenobiotic compounds including pesticides 
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(through sequestration) (Hayat et  al. 2010; Singh et  al. 2015a, b). It has been 
accepted that bacteria are inhabiting in the rhizosphere, i.e., rhizobacteria are the 
most versatile agents in transforming, mobilizing, and solubilizing the key mineral 
nutrients (Oteino et al. 2015). In connection to this, the rhizobacteria and arbuscular 
mycorrhizal fungi (AMF) are considered as the dominant driving forces for nutrient 
recycling and hence soil fertility (Li et al. 2017). Exploitation of soil microorgan-
isms for remediation of toxic metals has been under intense research (Ma et  al. 
2016). The main aim of all the integrative biotechnological or agricultural approaches 
employed for improving crop production via biological means is gaining ground in 
the current era. In connection to this, rigorous research practices have been initiated 
worldwide with greater emphasis on exploring a range of rhizobacteria possessing 
novel traits like heavy metal elimination (Ma et al. 2011; Wood et al. 2016), pesti-
cide degradation (Ahemad and Khan 2012a), salt tolerance (Upadhyay et al. 2012), 
and control of phytopathogens and insects along with the key plant growth control-
ling properties like phytohormone (Tank and Saraf 2010; Upadhyay et al. 2012), 
siderophore (Nadeem et al. 2014), 1-aminocyclopropane-1-carboxylate, hydrogen 
cyanate, and ammonia production in addition to nitrogenase activity, antioxidant 
enzymes (Stefan et al. 2013), and phosphate solubilization (Hashem et al. 2014) etc.

Plant growth-promoting rhizobacteria (PGPR) include both symbiotic and non- 
symbiotic bacterial strains, and key examples for symbiotic ones include rhizobia, 
while non-symbiotic ones are Bacillus, Klebsiella, Pseudomonas, Azospirillum, and 
Azotobacter, and AMF are being exploited worldwide as the bio-inoculants for pro-
moting the growth and development of plants under a wide range of environmental 
stresses including heavy metals (Wani and Khan 2010; Abd_Allah et  al. 2015; 
Hashem et al. 2016a, b, c), herbicides (Ahemad and Khan 2011a), salinity (Mayak 
et al. 2004; Alqarawi et al. 2014; Bharti et al. 2016), water stress (Alwhibi et al. 
2017), insecticides (Ahemad and Khan 2011b), fungicides (Ahemad and Khan 
2012b), etc. In mycorrhiza “myco” means “fungus” and “rhiza” means “root”; 
therefore it means fungi infecting roots (Hameed et al. 2014). AMF improve nutri-
ent absorption, water holding capacity, and stress tolerance (Alqarawi et al. 2014; 
Candido et al. 2015). Nearly 250 species of AMF have been identified (Kruger et al. 
2012). AMF isolates have been classified within six major genera under order 
Glomales also referred as Zygomycota (Ahanger et al. 2014). Advancement in the 
molecular techniques has enabled the direct identification of the AMF isolates 
infecting roots or rhizosphere, and the confirmation of the genetic diversity occur-
ring within the different species has also been confirmed (Kruger et  al. 2012). 
Therefore, both PGPR and AMF must have (1) efficiency to colonize roots and (2) 
potential to mediate growth promotion by modifying the metabolism (3) and must 
multiply and compete efficiently with the existing microbiota.

Despite having enormously available research findings on PGPR-AMF-induced 
stress mitigation, the exact mechanisms underlying plant growth promotion are not 
fully known. It has been observed that both PGPR and AMF exhibit beneficial prop-
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erties for regulating the growth and development of plants positively (Khan et al. 
2009; Hameed et al. 2014; Santoyo et al. 2016; Meena et al. 2017).

To be accurate rhizosphere can be the zone of soil, which is surrounding the plant 
root system, and rhizobacteria and AMF refer to cluster of microorganisms compe-
tently colonizing the roots (Kloepper et al. 1991). It has been reported quite often 
that plant roots synthesize and release an array of chemical compounds into the 
rhizospheric soils, which act as attractants for a wide variety of soil microorganisms 
(Walker et al. 2003). These exudates bring modification in the physical as well as 
chemical properties of the soil, therefore, determining the structure of existing soil 
microbial populace residing in immediate vicinity of the root surface (Baetz and 
Martinoia 2014). It must be pointed out here that some exudates repel microorgan-
isms, while some attract which may vary with the composition of exudates, often 
dependent on the physiological status in addition to the type of plant and microbe 
species involved (Kang et al. 2010). Nardi et al. (2000) have suggested that exudates 
inhibit the growth of competing plant species as well and favor the symbiotic asso-
ciations. However, the inhabiting beneficial microorganisms modify the root devel-
opmental patterns and mediate exchange of nutrients by making significant increase 
in the production of exudates (Neumann et al. 2014).

9.5  Plant Growth Promotion by PGPR and AMF Under Cd 
Stress

As already discussed PGPR and AMF trigger plant growth promotion by the altera-
tion of the whole microbial community existing in the rhizosphere niche. Generally, 
the rhizospheric microorganisms (PGPR and AMF) improve plant growth by direct 
or indirect mechanisms. Enhancing the nutrient acquisition including N and P, mod-
ulating the endogenous hormone levels, and improving the enzyme activity are 
included in direct growth-promoting mechanisms while acting as biocontrol agents 
resulting in the reduction of the inhibitory effects the pathogens are involved in 
indirect mechanisms (Ahanger et al. 2014). However, both direct and indirect ben-
eficial mechanisms are triggered in plants exposed to different stresses with speci-
ficity of response exhibiting certain degree of variation with type of stress imposed. 
Reports available depicting the beneficial role of soil bacteria and fungi in ameliora-
tion of different stresses have been described by various researchers all over the 
world (Al-karaki et al. 2004; Yedidia et al. 2001; Gamalero et al. 2009; Garg and 
Singla 2012; Gholamhoseini et al. 2013; Hameed et al. 2014; Hashem et al. 2014, 
2015, 2016a, b, c; Yang et al. 2015; Abd_Allah et al. 2015, 2017; Wu and Zou 2017; 
Scagel and Bryla 2017; Mitra et al. 2018a, b) (Table 9.1). In the following sections, 
beneficial role of soil PGPR and AMF in growth regulation under metal stress will 
be discussed with special attention on Cd stress (Fig. 9.1).
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9.6  Soil Microbes and Mineral Nutrition

Soil microbes including PGPR and AMF regulate the uptake of mineral ions in the 
host plants under normal and environmental extremes. Among the key mineral ele-
ments, the uptake of which is mediated by associated microbes, are N, P, Mg, S, etc. 
Nitrogen-fixing bacteria make the nitrogen available to plants for absorption and 
subsequent assimilation, while phosphate-solubilizing microbes preferentially 
assist in P uptake. Biologically fixed N accounts for at least two-thirds of the total 
fixed N even under extreme conditions like high temperature, salinity, metal stress, 
etc. (Raymond et  al. 2004). Microorganisms including rhizobia, cyanobacteria, 
Gluconacetobacter diazotrophicus, Azotobacter, and Azospirillum may enter either 
in symbiotic or non-symbiotic relation with the host plant. Chen et al. (2003) have 
shown that soybean treated with Cd (10 and 20 mg kg−1 soil) exhibited a significant 
reduction in the nitrogen fixation by reducing the number of nodules resulting in 
considerable decline in the nitrogen assimilation. The specific type of nitrogen fixa-
tion genes (nif and fix genes) controls nitrogen fixation (Kim and Rees 1994). 
Leucaena leucocephala grown on metal-contaminated soils showed significant 
recovery in the decline of N assimilation by the presence of native rhizobia (Rangel 
et al. 2017). On the other hand, inorganic phosphate solubilization mediated by the 
associated bacteria involves the release of certain organic acids by the bacteria into 
the soil leading to solubilization of the complex phosphate compounds into ortho-
phosphate, thereby making it easily available to plants for absorption and assimila-
tion. Oteino et  al. (2015) have demonstrated that endophytic bacteria have the 
potential to produce gluconic acid which initiates the solubilization of insoluble 
phosphate, thereby leading to significant improvement in growth of Pisum sativum 
L. Recently, Korir et al. (2017) reported that co-inoculation of rhizobia and other 
PGPR improved growth of common bean by increasing the uptake and assimilation 
of nitrogen and phosphorus. Greater uptake of minerals was found to be regulated 
by the impact of inoculants on the gene expression. In addition to N and phosphate 

Table 9.1 The effect of microbes on Cd stress of plants

Microorganisms Plants References

Bacillus amyloliquefaciens SAY09 Arabidopsis Zhou et al. (2017)
Pseudomonas aeruginosa Burkholderia gladioli Tomato Kanika et al.
Agrobacterium fabrum, Stenotrophomonas 
maltophilia

Wheat Zafar-Ul-Hye et al. 
(2018)

Enterobacter sp. Rice Mitra et al. (2018a, b)
Bacillus, Klebsiella, Leifsonia, Enterobacter Maize Ahmad et al.
Enterobacter aerogenes Rice Pramanik et al. (2018)
Burkholderia sp. D54 Tomato Wei et al. (2018)
Burkholderia cepacia CS8 Catharanthus 

roseus
Khan et al. (2018)

Klebsiella michiganensis MCC3089 Rice Mitra et al. (2018a, b)
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assimilation, the homeostasis of other elements, including Zn, Ca, Mn, and Fe, has 
been observed to show close linkage with the Cd toxicity and tolerance (Wu et al. 
2012; Zhai et al. 2016). Cd stress affects the transport proteins and PGPR, and asso-
ciated beneficial microorganisms may have a key role in the modulation of their 
activity and expression; however, experimental studies confirming this are not avail-
able. It should be noted here that excess phosphate supplementation leads to disas-
trous effects on the soil fertility and plant growth due to considerably excessive 
accumulation of Cd. However, improving phosphate solubilization using PGPR is 
safe for the environment and plants. In this context phosphate-solubilizing microbes 
make the availability of P to the plants (Khan et al. 2006). Among the key phosphate- 
solubilizing microorganisms are Bacillus, Beijerinckia, Rhizobium, Azotobacter, 
Enterobacter, Microbacterium, Flavobacterium, Pseudomonas, Serratia, etc. mak-
ing P availability easy for plants via the involvement of various mechanisms (Zaidi 
et al. 2009). It has been observed that bacterial strains show both phosphate solubi-
lization and mineralization functions (Tao et al. 2008). Phosphate-solubilizing bac-
teria (PSB)  are exclusively found in various soil types, and the performance of 
particular strain depends on the environmental factors (Ahemad and Khan 2012a, 
b). It should be noted here that the positive effects of the PSB either alone or with 
rhizobia under stress conditions have been reported by many workers (Zaidi and 
Khan 2005; Ahemad and Khan 2011a, b, 2012a, b; Poonguzhali et al. 2008; Chen 
et al. 2008; Zaidi et al. 2009).

9.7  Soil Microbes and Antioxidant System

It is well established that crop plants growing under stressed environmental condi-
tions show upregulated antioxidant defense system for the protection of major cel-
lular pathways from the free radical-triggered oxidative damage (Mittler 2002; 
Hashem et  al. 2015). Antioxidant system includes enzymatic and non-enzymatic 
components working coordinately for bringing the stability to metabolism. 
Strengthening the antioxidant system with the help of soil beneficial microorgan-
isms helps plants to neutralize the toxic ROS quickly and keep metabolism at opti-
mal level (Abd_Allah et al. 2015; Alwhibi et al. 2017). Inoculation of Cd-resistant 
PGPR to stressed (50 μM CdCl2) Sulla coronaria reduced the oxidative damage by 
upregulating the activity of antioxidant enzymes, SOD, APX, SOD, and GPOX 
(Chiboub et al. 2018) proving the beneficial impact of PGPR in protection of S. cor-
onaria from heavy metals. Increased activity of antioxidant enzymes due to rhizo-
bia and PGPR strains in metal-stressed Vicia faba reduces the oxidative damage by 
decreasing the accumulation of free radicals (Fatnassi et al. 2015).

Plants grown in Cd-contaminated soils show considerable increase in the genera-
tion and accumulation of free radicals such as superoxide, H2O2, and hydroxyl, 
leading to increased lipid peroxidation (Ouariti et  al. 1997; Hossain et  al. 2006; 
Ahmad et al. 2011, 2015; Abd_Allah et al. 2015, 2017). Metal stress-induced per-
oxidation of lipids is widely accepted as one of the important damaging aspects and 
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a determining factor of the magnitude of environmental stress. The inoculation of 
AMF has been observed to improve the structural integrity of membranes by 
improving the polyunsaturated lipid components of the membranes (Alqarawi et al. 
2014; Abd_Allah et al. 2015). It is established that the membrane lipids are very 
much sensitive to ROS and initiate their oxidation causing the accumulation of per-
oxide radicals. Cd stress-induced peroxidation of membrane lipids causes mem-
branes to loose their functional integrity resulting in leakage of essential elements 
(Djebali et al. 2005). In addition to this, Cd and other stress factors triggered ROS 
accumulation and the lipoxygenase activity, deteriorating the membranes and other 
cellular components (Djebali et al. 2005). In rice, Kuo and Kao (2004) also demon-
strated an increase in the production of H2O2 resulting in oxidative stress and 
reduced growth.

Barley root tips displayed a considerable increase in the expression of lipoxygen-
ase activity after exposure to Cd resulting in membrane damage (Tamas et al. 2009). 
Zhang et al. (2014) have demonstrated a significant increase in the expression of 
antioxidant coding genes in Populus under Cd stress. In another study with Chlorella 
vulgaris, Cheng et al. (2016) have demonstrated that activity of SOD, CAT, POD, 
and GR increased with treatment of Cd resulting in the prevention of oxidative dam-
age to some extent. Not only in plants Cd uptake by animals, including fishes like 
Takifugu obscurus, has been reported to improve the gene expression of important 
antioxidant genes and their isozymes including CAT1, Cu/Zn-SOD, Mn-SOD, and 
GR (Kim et al. 2010). The improving antioxidant system can prove exceptionally 
beneficial in promoting growth via protection of major metabolic processes. In con-
text to this, increasing the indigenous antioxidant defense system has been the key 
target of present research for protecting the maximum crops from metal damage, 
and exploiting the potential of soil microbes is one such strategy (Fig. 9.1).

9.8  Soil Microbes and Osmolytes

The accumulation of osmotic solutes under different stresses including metal stress 
has been reported (Ahmad et  al. 2015). The accumulation of osmolytes leads to 
osmoregulation and protection of major plant assimilatory pathways. Among the 
most important solutes are proline, glycine betaine, sugars, etc. The accumulation 
of solutes tends to bring the turgor maintenance via increased water uptake under 
stress by maintaining the water potential of tissue well below that of soil solution 
(Tester and Davenport 2003). Osmolytes maintain the ionic balance between vacu-
oles and cytoplasm. More importantly they do not hinder the normal metabolic 
reactions if accumulated in large concentrations (Zhifang and Loescher 2003). It 
has been reported that accumulation of osmolytes is proportional to change in the 
external osmolality, which varies with species, thereby leading to protection of key 
cellular structures and the maintenance of the osmotic balance for continuous water 
influx (Hasegawa et al. 2000). Though the majority of the compatible solutes impli-
cated in osmoregulation are organic in nature, essential inorganic ion such as K+ 
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also serves as a major osmolyte (Yokoi et al. 2002). The type and concentration of 
solute accumulated vary with the type of stress and the species. Accumulated osmo-
lytes may be simple sugars like fructose and glucose, sugar alcohols or complex 
sugars like trehalose and raffinose, quaternary amino acid derivatives like proline 
and glycine betaine, tertiary amines, and sulfonium compounds like choline (Yokoi 
et al. 2002). Among the main functions of osmolytes are the maintenance of cellular 
water status and the protection of subcellular structures, membranes, and proteins 
(Ashraf and Foolad 2007). It is now widely accepted that osmolytes including pro-
line, glycine betaine, and sugars mediate ROS scavenging and signaling under 
stressful conditions (Kathuria et  al. 2009; Szabados and Savoure 2010). Plants 
showing greater accumulation of glycine betaine have been reported to exhibit 
maintained activity of PSII complex and carboxylase activity of RUBISCO, thereby 
leading to improved photosynthetic efficiency (Papageorgiou and Murata 1995; 
Tian et al. 2017).

There are increasing research reports that crop cultivars exhibiting greater syn-
thesis and accumulation of osmolytes are more efficient to combat stress as com-
pared to the low accumulating mutants. Plants having increased expression of 
proline and glycine betaine coding genes accumulate significant concentrations of 
proline and glycine betaine (Verdoy et al. 2006; Giri 2011). Transgenic Medicago 
truncatula overexpressing delta(1)-pyrroline-5-carboxylate synthetase shows 
greater osmotic stress tolerance (Verdoy et al. 2006). Khan et al. (2015) reported 
that greater proline accumulation imparts Cd stress tolerance to B. juncea. Therefore, 
from the above brief discussion, it can be concluded that greater accumulation of 
compatible solutes is one of the key mechanisms or adaptations to combat stresses 
like Cd toxicity. PGPR and AMF inoculation increases the accumulation of proline, 
glycine betaine, and sugars in different crop plants resulting in growth regulation 
(Dimkpa et al. 2009; Abd_Allah et al. 2015; Vurukonda et al. 2016).

Increased accumulation of proline and other metabolites was observed in Bacopa 
monnieri after inoculation of PGPR (Bharti et  al. 2013); similarly Pseudomonas 
pseudoalcaligenes colonizing rice seedlings resulted in enhanced synthesis of gly-
cine betaine and glycine betaine-like quaternary compounds resulting in improved 
stress tolerance (Jha et  al. 2011). It has been reported that inoculation of VOC- 
emitting Bacillus subtilis GB03 to Arabidopsis promoted the synthesis and accumu-
lation of glycine betaine and its immediate precursor choline imparting greater 
stress tolerance (Zhang et  al. 2010). However, it shall be noted that very scanty 
reports are available regarding the impact of soil microbes on the growth and toler-
ance of plants under Cd stress. Inoculation of Pseudomonas putida (ATCC 39213) 
to Eruca sativa declined the uptake of Cd (Kamran et al. 2015) and Ni (Kamran 
et al. 2016) by improving the accumulation of osmolytes. Haneef et al. (2014) have 
demonstrated reduced oxidative damage to Plantago ovata by the inoculation of 
AMF and Azotobacter via increased accumulation of osmolytes including proline. 
In Cajanus cajan inoculation of AMF improves growth and N metabolism by 
enhancing the accumulation of trehalose in the presence of Cd (Garg and 
Chandel 2011).
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9.9  Soil Microbes and Phytohormone Production Under Cd 
Stress

Generally, it may be said that the phytohormones like indole acetic acid (IAA) syn-
thesized by the rhizobacteria may interfere with the developmental processes of 
host plant altering the endogenous pool (Glick 2014). No doubt increase in endog-
enous concentration of hormones may initiate reciprocal signaling resulting in 
impeded gene expression; however, their role in initiating and regulating the 
rhizobacteria- AMF-plant interactions cannot be neglected (Spaepen and 
Vanderleyden 2011). Generally, plant hormones regulate so many processes includ-
ing cell division and differentiation, germination, ripening, signaling, vegetative 
growth, root formation and development, and response to numerous biotic and abi-
otic stresses (Ahmad et  al. 2011). It has been observed that the bacteria-derived 
phytohormones, e.g., IAA, result in increased root growth by enhancing the surface 
area and length of roots, thereby mediating improved growth of plants by improving 
the access to mineral nutrients. In addition to this, the root cell walls get loosened 
due to IAA facilitating increase in exudation, thereby providing nutrients for sup-
porting microbes in rhizosphere (Glick 2014; Spaepen and Vanderleyden 2011). In 
Leucaena leucocephala, PGPR inoculation improved production of organic acids, 
IAA, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase activity, and Ca3(PO4)2 solubilization resulting in improved Zn and Cd toler-
ance (Rangel et al. 2017). Kotoky et al. (2019) reported enhanced growth of rice by 
IAA producing PGPR strain of Serratia marcescens even in the presence of high Cd 
concentrations. The synthesis of phytohormones by the microbes inhabiting the 
plants has been observed from times.

Another important phytohormone is ethylene which has been reported to get 
accumulated under stresses like waterlogging, salinity, heavy metal, drought, etc. 
resulting in significant decline in growth (Asgher et al. 2014; Khan et al. 2015). 
High concentration of ethylene induces defoliation, thereby reducing the crop per-
formance (Bhattacharyya and Jha 2012). PGPR possessing ACC deaminase 
enzymes promote growth and development of plants by reducing the endogenous 
levels of ethylene to normal level  (Zahir et  al. 2008). Achromobacter, Bacillus, 
Pseudomonas, Agrobacterium, Azospirillum, Burkholderia, Serratia, and Rhizobium 
strains have been reported to show ACC deaminase activity (Nadeem et al. 2007; 
Kang et al. 2010; Glick 2014; Singh et al. 2015c). In general, phytohormones have 
been observed to mediate the signaling under metal stresses (Bak et al. 2014). The 
PGPR strains displaying ACC deaminase activity help host plants to prevent dam-
age of several stresses including phytopathogenesis, heavy metals, radiation, salin-
ity, temperature, and flooding (Glick 2014). Enhancement in the rhizobial nodulation 
and uptake of essential nutrients like N, P, and K in addition to healthy AMF colo-
nization have been observed in crops infected by the ACC deaminase producing 
PGPR strains (Shaharoona et  al. 2008; Glick 2014). In Arabidopsis, Zhou et  al. 
(2017) demonstrated that inoculation with Bacillus amyloliquefaciens SAY09 
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improves Cd stress tolerance by regulating the synthesis of abscisic acid, IAA, and 
gibberellic acid resulting in optimizing signaling events.

9.10  Conclusion

The soil rhizospheric microflora including PGPR and AMF are much beneficial for 
the healthy maintenance of growth of plants, and most of them have been recog-
nized for their beneficial role in regulating the growth and development of plants. 
PGPR and AMF benefit plants by enhancing the mobility of key nutrients into the 
plants concomitant with the reduction or restriction of toxic ions including metals. 
The beneficial role of soil microorganisms in ameliorating the ill effects of stresses 
via the modulations in the key defense mechanisms is now an obvious established 
fact. Future research shall remain focused to unravel the exact mechanism of soil 
microorganisms bringing amelioration of the metal stress. Making integration 
between the physiological, biochemical, molecular, and genetic approaches will be 
handy in identifying the key regulatory mechanisms induced by rhizospheric micro-
organisms in driving various known structural and functional integrities within the 
host plants for improved metal stress tolerance.
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