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Abstract
Mitochondria play essential roles in neurons and abnormal functions of
mitochondria have been implicated in neurological disorders including myelin
diseases. Since mitochondrial functions are regulated and maintained by their
dynamic behavior involving localization, transport, and fusion/fission, modula-
tion of mitochondrial dynamics would be involved in physiology and pathology
of myelinated axons. In fact, the integration of multimodal imaging in vivo and
in vitro revealed that mitochondrial localization and transport are differentially
regulated in nodal and internodal regions in response to the changes of metabolic
demand in myelinated axons. In addition, the mitochondrial behavior in axons is
modulated as adaptive responses to demyelination irrespective of the cause of
myelin loss, and the behavioral modulation is partly through interactions with
cytoskeletons and closely associated with the pathophysiology of demyelinating
diseases. Furthermore, the behavior and functions of axonal mitochondria are
modulated in congenital myelin disorders involving impaired interactions
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between axons and myelin-forming cells, and, together with the inflammatory
environment, implicated in axonal degeneration and disease phenotypes. Further
studies on the regulatory mechanisms of the mitochondrial dynamics in myelin-
ated axons would provide deeper insights into axo–glial interactions mediated
through myelin ensheathment, and effective manipulations of the dynamics may
lead to novel therapeutic strategies protecting axonal and neuronal functions and
survival in primary diseases of myelin.
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10.1 Introduction

Myelin, the multilamellar ensheathment around axons, plays essential roles in
facilitating fast saltatory conduction and conserves the space and possibly energy
required for nerve conduction (Trapp and Stys 2009; Nave 2010a, b). The
ensheathment by myelin-forming cells divides axons into multiple segments with
differential morphology, molecular distribution, and accessibility to extracellular
molecules, and alters axonal microenvironment and metabolism (Arroyo and
Scherer 2000; Poliak and Peles 2003). In addition, myelin is essential for long-
term maintenance of axonal integrity, and the loss as well as congenital defects of
myelin lead to neurological disorders involving degeneration and loss of axons
(Nave and Trapp 2008; Nave 2010a, b). In this context, the regulation of axonal
metabolism, functions, and survival are closely associated with axonal mitochondria
in physiology and pathology of the nervous system.

Mitochondria play essential roles in almost all cells in the nervous system and
critical for cellular metabolisms such as energy production and Ca2+ homeostasis.
Mitochondrial functions are important in neurons and associated with neurological
disorders involving neuronal and axonal degeneration and loss (Wallace 2005; Lin
and Beal 2006). Mitochondria are dynamic organelles and characterized in neurons
by their characteristic distribution, transport, and fusion/fission (Chan 2006; Saxton
and Hollenbeck 2012). The dynamic behavior is regulated by specialized molecules,
and interaction with the other organelles including endoplasmic reticulum (ER) is
also critical for maintenance of mitochondrial functions (Hayashi et al. 2009; Sheng
and Cai 2012; Lamb et al. 2013; Friedman and Nunnari 2014; Tatsuta et al. 2014;
Misgeld and Schwarz 2017). Therefore, the regulatory mechanisms of mitochondrial
dynamics and organelle interactions have been implicated in pathophysiology of
myelin diseases.

This chapter will focus on the characteristic behavior of mitochondria in axons,
and provide overview of recent studies on the dynamics of mitochondria in myelin-
ated axons as well as their alterations in myelin diseases. Furthermore, the
mechanisms and roles of the behavior and alterations in physiology of myelinated
axons and pathophysiology of myelin diseases are also discussed.
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10.2 General Behavior of Axonal Mitochondria

Mitochondrial behavior in axons is different from that in the soma of neurons and the
other cells, and characterized by two major populations, stationary and motile. The
majority of axonal mitochondria are stationary, immobile during entire observation
period, and enriched in regions such as growth cones and synaptic terminals, which
are considered to have higher metabolic demand (Fig. 10.1a) (Saxton and
Hollenbeck 2012; Sheng and Cai 2012). Other mitochondria are motile, which are
generally small, and their movement is in anterograde and retrograde directions
(Fig. 10.1a). It has been established that these two populations are interchangeable.
Motile mitochondria stop and accumulate at the specific regions and static
mitochondria start moving when the axonal metabolic states are altered. For exam-
ple, mitochondria were enriched near the growth cones under axonal growth, while
stopping of the axonal growth diminished the mitochondrial accumulation in the
distal axons (Morris and Hollenbeck 1993). Therefore, the overall regulation of the
two motile and stationary populations is critical to determine mitochondrial distribu-
tion within the axons.

The movement of axonal mitochondria is mediated by specific motor proteins and
their adaptor molecules, which regulate direction and cessation of their movement
(Fig. 10.1b). The motor proteins include kinesin and dynein with distinct or common

Fig. 10.1 Motile and stationary mitochondria in axons. The first image of the time-lapse imaging
showing fluorescently labeled mitochondria in an axon of cultured dorsal root ganglion (a1). The
stationary mitochondrial profiles are colored magenta (a2, arrows) and the kymograph of the time-
lapse imaging (a3) shows vertically appear stationary mitochondria (a3, arrows) and diagonal
trajectories of motile mitochondria (a3, arrowheads). Bars: 10 μm (horizontal) or 20 sec (vertical).
Schemes showing a motile mitochondrion with the motor (b, i) and adaptor (b, ii) proteins on a track
of cytoskeletons, and a stationary mitochondrion with a tethering molecule (c, iii) on the scaffold of
cytoskeletons
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adaptor complex such as Miro and Milton in Drosophila and RhoT1/2 and traffick-
ing protein kinesin-binding (TRAK) 1/2 in mammals (Schwarz 2013). While
kinesins and dyneins are motors on microtubule tracks, myosins are responsible
for the slower bidirectional movement on actin filaments, although myosins may be
associated with tethering rather than transport of axonal mitochondria (Morris and
Hollenbeck 1995; Pathak et al. 2010). The mitochondrial movement is modulated by
multiple mechanisms, including Ca2+ and glucose, and cytosolic Ca2+ binds to
EF-hands of Miro or RhoT1/2, induces mitochondrial detachment from microtubule
tracks and stops mitochondrial movement (Saotome et al. 2008; Wang and Schwarz
2009; Pekkurnaz et al. 2014). The local inhibition of mitochondrial movement
results in increase of mitochondrial sizes in axons (Chada and Hollenbeck 2004;
Macaskill et al. 2009).

Mitochondrial localization is mediated by regulation of mitochondrial docking as
well as the local inhibition of mitochondrial movement. Apart from the role of
myosin as a potential mitochondrial tether to the actin filament, syntaphilin is
another mitochondrial docking molecule, which binds mitochondria to microtubule
scaffolds (Fig. 10.1c) (Kang et al. 2008; Pathak et al. 2010). The loss of syntaphilin
significantly increased mitochondrial motility while its overexpression decreased
number of motile mitochondria (Kang et al. 2008). The impairment in mitochondrial
tethering via syntaphilin perturbed axonal arborization, and increased the variability
of synaptic transmission (Courchet et al. 2013; Sun et al. 2013). These results
indicate that mitochondrial tethering plays significant roles in axonal functions and
morphogenesis.

In addition to the transport and localization, mitochondria undergo dynamic
morphological changes via fusion and fission. The fusion of two mitochondrial
segments generates one large daughter mitochondrion where free exchange of
soluble and membrane-bound molecules takes place within the daughter mitochon-
drion (Busch et al. 2006; Liu et al. 2009). Mitochondrial fission generates two small
daughter mitochondria from one large mitochondrion, and one of the two daughter
mitochondria could be dysfunctional and selectively degraded for mitochondrial
quality control (Twig et al. 2008). The fusion and fission of mitochondria are
regulated by distinct sets of GTPases, including mitofusins (Mfn1, Mfn2) and
dynamin-related protein 1 (Drp1) on outer membranes and optic atrophy 1 (OPA1)
on inner membranes (Hoppins et al. 2007). The fusion and fission of mitochondria
are generally critical for neurological disorders, and genetic mutations of Mfn2 and
OPA1 cause Charcot–Marie–Tooth type 2 and autosomal dominant optic atrophy,
respectively (Alexander et al. 2000; Delettre et al. 2000; Zuchner et al. 2004). Loss
of Drp1 in rodents was embryonic lethal, and mutation in human caused severe
neurodevelopmental defects (Waterham et al. 2007; Ishihara et al. 2009).

Collectively, regulation of mitochondrial movement, localization, and morphol-
ogy are critical for functional maintenance and survival of axons and neurons.
Understanding the dynamic aspects of mitochondria in myelinated axons would
provide insights regarding how myelination affects axonal homeostasis both in
physiology and in pathology of the nervous system.
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10.3 Mitochondrial Regulation in Myelinated Axons

The ensheathment by myelin in the nervous system of vertebrate causes extreme
specialization of axons (Poliak and Peles 2003). The gaps of the insulating compact
myelin sheath are the highly specialized domains called nodes of Ranvier. Voltage-
dependent Na+ channels are clustered on the axolemma of the nodes and required for
saltatory conduction. The nodes are flanked by paranodes, which have unique
cytoplasmic loops of myelin-forming cells. The paranodes contain the junctional
complex between axons and myelin-forming cells and limit diffusion of extracellular
as well as axolemmal molecules (Mackenzie et al. 1984; Bhat et al. 2001; Boyle et al.
2001; Perkins et al. 2008; Rosenbluth 2009; Mierzwa et al. 2011; Shroff et al. 2011).
K+ channels are enriched in the juxtaparanodal regions, which are about 15 μm long,
adjacent to the paranodal regions, and sometimes with invaginations of plasma
membranes into the axons (Spencer and Thomas 1974; Griffin and Price 1981).

Conventionally, it was believed that axonal mitochondria were in general
accumulated in the nodes with some variance in different tracts (Hollenbeck and
Saxton 2005; Chen and Chan 2006). However, the recent development of the
methods for three dimensional (3D) ultrastructural analyses enabled high-throughput
acquisition of serial electron microscopic images and complete reconstruction of all
mitochondria in individual axons (Briggman and Bock 2012; Ohno et al. 2015;
Nguyen et al. 2016; Thai et al. 2016). Application of these advanced methods
revealed that mitochondria in myelinated axons were enriched in internodal regions
rather than the nodes (Fig. 10.2a, b) (Ohno et al. 2011). The abundant mitochondria
in the internodal regions are consistent with the notion that the energy substrate for
axonal mitochondria is provided through myelin sheath as a form of lactate or
glucose and thereby myelin-forming cells maintain axonal integrity (Nave 2010a,
b; Brown et al. 2012; Saab and Nave 2017). The transport of lactate may be mediated
by distinct transporters such as monocarboxylate transporter 1 (MCT1), whose
deficiency in oligodendrocytes impaired axonal survival in the central nervous
system (Funfschilling et al. 2012; Lee et al. 2012). In addition, the Na+/K+ ATPase,
which maintains ion gradient of Na+ and K+ in an energy-dependent manner, was
enriched on axolemma of the internodes (Young et al. 2008; Trapp and Stys 2009).
Therefore, enrichment of axonal mitochondria in the internodal regions suggests that
mitochondrial energy production in myelinated axons predominates in regions with
the supply of energy substrate and higher metabolic demand under basal conditions
(Perge et al. 2009). The molecular mechanisms regulating mitochondrial distribution
in internodes are unclear. However, time-lapse observation in vitro demonstrated
stationary mitochondria were substantially increased during myelin formation
(Kiryu-Seo et al. 2010). It is possible that molecules such as syntaphilin, which
support mitochondrial docking and increase of stationary mitochondria, are involved
in the internodal enrichment. Such modulation of mitochondria-associated proteins
in different segments of myelinated axons may be associated with signal transduc-
tion between axons and myelinating glia, which involves posttranslational modifica-
tion of cytoskeletal proteins in axons (Sousa and Bhat 2007).
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In addition to the mitochondrial enrichment in internodal regions, small and short
mitochondria were accumulated in a fraction of nodal regions, and the nodal
accumulation was mediated by stopping of motile mitochondria in a manner depen-
dent on axonal electrical activity and Ca2+ (Fig. 10.2b) (Zhang et al. 2010; Ohno
et al. 2011). The metabolism of myelinated axons upon nerve conduction is distinct
from that in unmyelinated axons. Myelin ensheathment enables rapid saltatory
conduction by concentrating Na+ channels in the nodal regions and is considered
to conserve energy as well as space for nerve conduction (Ritchie 1995). Activation
of nodal Na+ channels upon nerve conduction increased Na+ concentration in nodal
axoplasm (Fleidervish et al. 2010). Repetitive axonal conduction requires an energy-
dependent exchange of axoplasmic Na+ for extracellular K+ through Na+/K+

ATPases, which was enriched in the juxtaparanodal and internodal regions in
human brain tissues (Young et al. 2008). Given that nerve conduction was impaired
in genetic disorders of mitochondrial functions caused by mutations of mitochon-
drial DNA (Kaufmann et al. 2006; Horga et al. 2014), activity-dependent mitochon-
drial stopping and localization in the nodal and paranodal axoplasm would be
important in order to meet the energy demand of saltatory nerve conduction.

The distribution and motility of mitochondria in myelinated axons appear to be
regulated in response to the metabolic alterations of the axons. The adaptive
response of mitochondrial behavior is considered to be more important in myelin
diseases particularly in demyelinating disorders. The alterations, mechanisms, and

Fig. 10.2 Mitochondrial
behavior in myelinated axons.
The myelinated axon of a
neuron (a) is marked with a
rectangle and magnified (b).
There are multiple segments
called nodes, paranodes,
juxtaparanodes, and
internodes (b). Mitochondria
are enriched in juxtaparanodes
and internodal regions (b,
upper panel), while
mitochondria are stopped and
increased near the node upon
nerve conduction (b, lower
panel)
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the roles of mitochondrial dynamics in demyelinating axons will be discussed in the
next section.

10.4 Mitochondrial Alterations in Demyelinated Axons

Axonal degeneration, commonly observed in demyelinating diseases (Fig. 10.3a, b),
is characterized by axonal swelling and loss and contributes to permanent neurolog-
ical deficits (Trapp and Nave 2008). The mitochondrial alterations have been
implicated in the pathophysiology of demyelinating diseases (Mahad et al. 2015).
Demyelination poses a major challenge to axons since axons lose support from
myelin-forming cells. Upon demyelination, Na+ channels were redistributed along
the axons, expression of Na+ channel isoforms was changed, and confinement of Na+

influx was modified (Craner et al. 2004a; b). The redistribution of Na+ channels may
increase energy consumption necessary for the exchange of Na+ and K+ upon nerve
conduction (Waxman 2008). In addition, the demyelinated axons are exposed to
inflammatory environment, which is common in demyelinating diseases such as
multiple sclerosis or animal models such as experimental autoimmune encephalo-
myelitis (EAE), and often includes toxic mediators including nitric oxide (NO). NO
can diffuse into demyelinated axons, and inhibit mitochondrial ATP production. All
these factors perturb the energy metabolism of demyelinated axons and would lead

Fig. 10.3 Axons and mitochondria in demyelinated lesions. Immunostaining for an axonal marker,
neurofilament, and a myelin marker, proteolipid protein (a), and an electron micrograph (b) in
mouse corpus callosum demyelinated with cuprizone feeding shows axonal swellings (a, b, arrows)
with numerous axoplasmic organelles (b, arrows). A scheme showing stationary mitochondria,
enriched in internodal regions of myelinated axons (c) and increased in demyelinated axons (d), are
tethered to microtubules with syntaphilin. The three-dimensional reconstruction of serial electron
microscopic images, which are obtained from axons demyelinated under cuprizone feeding shows
mitochondrial number and volume in a syntaphilin knockout axon (KO, double arrowheads) is less
than that in a wild-type axon (WT, arrowheads). Bars 5 μm
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to axonal degeneration mediated by the accumulation of Na+ and Ca2+ (Trapp and
Stys 2009).

The mitochondrial distribution, behavior, and lifecycle are modulated upon
demyelination in order to maintain axonal integrity and functions. In human brain
tissues of patients with demyelinating diseases, the mitochondrial size and numbers
were significantly increased (Mahad et al. 2009; Witte et al. 2009; Zambonin et al.
2011). The increase was prominent compared with adjacent normal-appearing white
matter, and also the consistent increase of mitochondrial mass was observed in
demyelinated axons of animal models (Mutsaers and Carroll 1998; Sathornsumetee
et al. 2000; Zambonin et al. 2011). The live imaging studies of fluorescently labeled
mitochondria in demyelinated axons in vitro revealed that the majority of increased
mitochondrial profiles in demyelinated axons were stationary and these static popu-
lation increased in their sizes (Kiryu-Seo et al. 2010; Ohno et al. 2014). The
expression of mitochondrial tethering molecule, syntaphilin, was increased in
demyelinated axons of human multiple sclerosis patients and a demyelinating
mouse model produced by cuprizone feeding (Fig. 10.3c, d), and the genetic ablation
of syntaphilin impaired volume increase of mitochondria in demyelinated axons and
led to exacerbation of axonal degeneration (Mahad et al. 2009; Ohno et al. 2014).
Since the lack of syntaphilin did not augment neurological symptoms in the inflam-
matory demyelination model of EAE, the mitochondrial tethering could be more
beneficial in demyelination with less inflammation (Joshi et al. 2015). Indeed, the
impairment of mitochondrial respiratory chain components in acute demyelinating
lesions was implicated in the tissue damages (Mahad et al. 2008). These studies
support the concept that the enrichment of functional mitochondria is the common
adaptive response of axons against demyelination, mediated by molecular interac-
tion between mitochondria and cytoskeletons, and beneficial for the survival of
demyelinated axons.

In addition, mitochondrial fusion and fission play essential roles for functional
regulation and maintenance of mitochondria (Youle and van der Bliek 2012;
Friedman and Nunnari 2014). The mitochondrial sizes were increased in
demyelinated axons of human tissues and animal models at the light microscopic
level (Zambonin et al. 2011). This observation was supported by detailed 3D
electron microscopic observation showing that the volume of individual
mitochondria was increased in demyelination model produced by cuprizone feeding
(Ohno et al. 2014). These results suggested that the increase of mitochondrial
volume in demyelinated axons is at least partly mediated by mitochondrial fusion.
Although the balanced mitochondrial fusion/fission is critical for neuronal functions
and survival, aberrant activation of mitochondrial fission was observed in neurologi-
cal disorders, and inhibition of mitochondrial fission led to neuroprotection in
models of neurological diseases (Barsoum et al. 2006; Grohm et al. 2012; Cho
et al. 2013). In fact, inhibition of mitochondrial fission with overexpression of
dominant-negative Drp1 protected axons from degeneration induced by aberrant
activation of the axonal cation channel, transient receptor potential vanilloid receptor
1 (TRPV1) (Chiang et al. 2015). Since aberrant axoplasmic Ca2+ increase may
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contribute to the degeneration of demyelinated axons, inhibition of mitochondrial
fission could be beneficial for the survival of demyelinated axons (Fig. 10.4).

The inflammatory toxic mediators cause damages in mitochondrial molecules,
and mitochondrial segments with the damaged molecules would require turnover
and functional maintenance, involving fusion/fission and transport (Smith et al.
1999; Chang and Reynolds 2006; Twig et al. 2008; Saxton and Hollenbeck 2012).
Mitochondrial transport was substantially impaired by inflammatory reactions and
oxidative stress in demyelinated tissues, as observed in an inflammatory demyelin-
ation model (Sorbara et al. 2014). On the other hand, in live imaging studies of
demyelinated axons in vitro under the presence of less inflammation and oxidative
stress, demyelination increased speed and number of axonal mitochondria (Kiryu-
Seo et al. 2010; Ohno et al. 2014). The increased mitochondrial transport in
demyelinated axons was at least partly mediated by the expression of activating
transcription factor 3 (ATF3) (Kiryu-Seo et al. 2010). The increased mitochondrial
transport supported renewal of mitochondrial proteins in the distal portion of
neurites, and perturbed axonal transport of mitochondria in demyelinated axons is

Fig. 10.4 Mitochondrial fission and axonal degeneration. Mitochondria-targeted fluorescent
Dendra2 (mitoDendra2) in cultured rat dorsal root ganglion axons shows overexpression of
dominant-negative dynamin-related protein1 (Drp1K38A) elongate mitochondrial profiles (b,
arrowheads) compared with control (a, arrowheads). Bars: 5 μm. Regulation of mitochondrial
dynamics would ameliorate mitochondrial dysfunction and support survival of axons (c)
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associated with accumulation of oxidative stress and impaired axonal integrity
(Ferree et al. 2013; Sorbara et al. 2014). Alterations of mitochondrial transport
upon demyelination may be regulated as an adaptive response against mitochondrial
damage under the noxious environment of demyelinated axons and involves uniden-
tified retrograde signaling toward nuclei from demyelinated axons. Furthermore,
environmental perturbation of the response would exacerbate the axonal pathology.

Remyelination, the restoration of the myelin sheath, is protective for axonal
survival and neurological deficits (Franklin and Ffrench-Constant 2008). The
remyelination reverses the mitochondrial alterations upon demyelination, and the
sizes of mitochondrial profiles were decreased compared with demyelinated axons in
brain tissues of multiple sclerosis patients (Zambonin et al. 2011). The stationary
mitochondria were decreased while more mitochondria were mobile in remyelinated
axons compared with demyelinated axons in vitro (Kiryu-Seo et al. 2010; Zambonin
et al. 2011). However, when compared with myelinated axons, mitochondrial mass
in remyelinated axons is still slightly larger. Further studies are required for
elucidating the metabolic states and demands of remyelinated axons, which will
provide further insights about the molecular mechanisms associated with the incom-
plete reversal of mitochondrial behavior upon remyelination.

10.5 Alterations of Axonal Mitochondria in Models
of Congenital Myelin Disorders

Congenital defects of myelin structures and functions lead to various phenotypes
from almost normal development and aging to severe neurodevelopmental defects
and premature death. These phenotypes are at least partly attributable to the abnor-
mal myelin ensheathment, which results in impaired nerve conduction and
alterations of axo–glial interactions affecting organelle dynamics and metabolism
(Nave 2010a, b). Abnormal dynamics of mitochondria are often implicated in the
pathophysiology of the congenital myelin disorders.

The severe phenotypes are observed among the disorders caused by mutations in
proteolipid protein (PLP). The types of mutations in the Plp gene on X-chromosome
cause wide ranges of symptoms including severe disorders of Pelizaeus-Merzbacher
disease (PMD) to the much milder form of spastic paraplegia type 2 (SPG2) (Willard
and Riordan 1985; Saugier-Veber et al. 1994). Animal models for these
PLP-associated disorders are also established and contributed to our understanding
of the pathological mechanisms (Yool et al. 2000; Inoue 2005). In myelin-deficient
(MD) rats, a model of PMD, where myelin formation is disrupted by a point
mutation in the Plp gene (Csiza and de Lahunta 1979; Boison and Stoffel 1989),
oligodendrocytes ensheath axons but fail to produce compact myelin sheath.
Although these axons in MD rats had node-like regions with concentrated Na+

channels, molecular distribution of paranodal proteins, such as contactin and
contactin-associated proteins (Caspr), and saltatory conduction were significantly
affected (Waxman et al. 1990; Arroyo et al. 2002). In the electron microscopic
analyses, mitochondrial densities and areas occupied by mitochondria were
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significantly increased in axons of MD rats (Dentinger et al. 1985). In addition, live
imaging analyses in organotypic slice cultures revealed that the stationary
mitochondria were increased in these axons of MD rats, and the mitochondrial
motility was not affected by the axonal electrical activity around the node-like
regions (Ohno et al. 2011). These findings are consistent with the concept that
increased mitochondrial mass in demyelinated axons is largely stationary, and
myelin formation and saltatory conduction is critically involved in the modulation
of mitochondrial transport and localization at the nodal regions (Mahad et al. 2009;
Kiryu-Seo et al. 2010).

PMD is also caused by the duplication of the Plp gene, and animals with extra
copies of Plp are informative to understand the role of PLP as well as the pathophys-
iology of PMD (Griffiths et al. 1998a, b). The animal models with different dosages
of Plp gene demonstrated that higher PLP dosage causes severer and often lethal
phenotypes involving impaired myelin formation and oligodendrocyte degeneration,
and lower dosage leads to progressive demyelination with axonal degeneration
(Kagawa et al. 1994; Readhead et al. 1994). In demyelinated axons of mice
overexpressing PLP, mitochondrial density was significantly increased in axons of
optic nerves, and mitochondrial respiratory functions were also upregulated in the
demyelinated axons of PLP mutants (Hogan et al. 2009). Mutation in the other
myelin genes also causes a severe deficit of myelin formation in the nervous system,
and myelin basic protein (MBP) is partially deleted and myelin formation is impaired
in shiverermice (Roach et al. 1985). Analyses with electron microscopy and enzyme
histochemistry revealed increased mitochondrial density and mitochondrial cyto-
chrome c activity in spinal cord axons of shiverer mice lacking myelin chronically
(Andrews et al. 2006). These findings are consistent with the findings in
demyelinated axons of human multiple sclerosis patients (Mahad et al. 2009), and
increased mitochondrial volume and functions would be the common response
against the loss of myelin irrespective of the cause.

Axons of specific tracts in the PLP mutants have impaired axonal transport, and
accumulation of axoplasmic organelles including mitochondria was observed in
retinal ganglion axons (Edgar et al. 2010; Ip et al. 2012). The accumulation of
organelles was prominent in paranodal regions, and the perturbation of axonal
transport was associated with neuroinflammation, since the disruption of transport
was rescued in the absence of cytotoxic T cells (Ip et al. 2012). The massive
neuroinflammation may be associated with the mitochondrial abnormality in PLP
mutant model as well (Nave et al. 1986; Macklin et al. 1987; Moriguchi et al. 1987;
Huttemann et al. 2009; Tatar et al. 2010). On the other hand, in the nerve fibers of
Caspr mutants, axonal mitochondria with abnormal morphology were accumulated
near the nodes (Einheber et al. 2006; Sun et al. 2009). Mutations of Caspr cause
impaired paranodal septate-like junctions, abnormal expression or distribution of
paranodal and juxtaparanodal molecules, and severe decrease of conduction velocity
(Bhat et al. 2001). The abnormal transport, distribution, and functions of
mitochondria in myelin mutants would be affected by not only inflammation but
also abnormal metabolism derived from impaired myelin structures.
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Genetic ablation of myelin-related molecules, such as PLP, 20,30-cyclic nucleotide
phosphodiesterase (CNP) and myelin-associated glycoprotein (MAG), caused pro-
gressive axonal degeneration following myelin formation in the central and periph-
eral nervous system (Griffiths et al. 1998a, b; Yin et al. 1998; Lappe-Siefke et al.
2003; Nguyen et al. 2009). In these mutant models of myelin-related proteins, axonal
swelling with accumulated axoplasmic organelles was commonly observed
(Griffiths et al. 1998a, b; Lappe-Siefke et al. 2003; Yin et al. 2006). Biochemical
analyses revealed fast axonal transport was impaired (Edgar et al. 2004), and
abnormal organelle accumulation in the distal regions of the nodes was often
observed in degenerating axons (Griffiths et al. 1998a, b; Yin et al. 2006). In a
myelin mutant model with axonal swelling in the distal side of the nodes, time-lapse
imaging of live axons in slice cultures indicated impaired transport of mitochondria
in distal regions of the nodes, and this transport defects accompanied destruction of
microtubules and abnormal microtubule stability in axons (Yin et al. 2006, 2016).
Posttranslational modification of axonal cytoskeletons could be perturbed in myelin
mutants such as shiverer and MAG-deficient mice (Rosenbluth 1980; Inoue et al.
1981; Windebank et al. 1985; Shine et al. 1992; Colello et al. 1994; Kirkpatrick and
Brady 1994; Yin et al. 1998; Brady et al. 1999; Nguyen et al. 2009), and therefore
the trophic support of myelin ensheathment may include signal transduction, which
modulates axonal cytoskeletons and is required for transport of axonal organelles
including mitochondria.

Axonal pathology that is independent of the formation and maintenance of
myelin ensheathment also involves morphological alterations of axonal
mitochondria and associated organelles. The detailed ultrastructural analyses using
the 3D reconstruction of serial electron microscopic images revealed that
mitochondria in the myelinated axons of optic nerves had an extension of outer
membranes, which had close contacts with tubular smooth ER membranes (Yin et al.
2016). In the myelin mutant model with progressive axonal degeneration following
myelination, the intimate contacts between mitochondria and ER were decreased
when the mitochondria became shorter and the extension was diminished. These
structural changes in organellar interactions accompanied abnormal cristae
structures and impaired functions of axonal mitochondria (Yin et al. 2016). These
results indicate that axonal degeneration in dysmyelinated axons of myelin mutants
also involves organelle interactions necessary for mitochondrial homeostasis.

10.6 Summary and Conclusions

The integration of multimodal imaging along with animal and in vitro models
enabled more detailed analyses of mitochondrial behavior in myelinated,
demyelinated, and dysmyelinated axons. These analyses started to reveal that sta-
tionary and motile pools of axonal mitochondria are regulated in nodal and
internodal regions in response to metabolic alterations of myelinated axons. In
addition, adaptive responses involving cytoskeletal interactions and genetic tran-
scription regulate the behavioral alterations of mitochondria in demyelinated axons

156 Y. Sui et al.



and affect the pathophysiology of demyelinating diseases. Furthermore, congenital
myelin disorders modulate behavior and functions of axonal mitochondria, which
influence axonal survival and disease phenotypes and are associated with impaired
interactions between axons and myelin-forming cells as well as the inflammatory
environment of the nervous system. The regulatory mechanisms and effective
manipulations of mitochondrial dynamics and functions would provide deeper
insights into axo–glial interactions mediated through myelin sheath, and may lead
to novel therapeutic strategies protecting axons and neurons in primary diseases of
myelin.
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