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Abstract

The Earth’s climate is not static; it changes according to the natural and anthro-
pogenic climate variability. Anthropogenic forcing due to increase of greenhouse 
gases in the atmosphere has driven changes in climate variables globally. Changes 
in climatological variables have severe impact on global hydrological cycle 
affecting the severity and occurrence of natural hazards such as floods and 
droughts. Estimation of projections under climate signals with statistical and 
dynamic downscaling models and integration with water resource management 
models for the impact assessment have gained much attention. The fine- resolution 
climate change predictions of dynamic regional climate model (RCM) outputs, 
which include regional parameterization, have been widely applied in the hydro-
logical impact assessment studies. Advancement of the Coordinated Regional 
Downscaling Experiment (CORDEX) program has enabled the use of RCMs in 
regional impact assessment which has progressed in recent years. CORDEX 
model outputs were considered to be valuable in terms of establishing large 
ensembles of climate projections based on regional climate downscaling all over 
the world. However, the simulations of RCM outputs have to be evaluated to 
check the reliability in reproducing the observed climate variability over a region. 
The present study demonstrates the use of bias-corrected CORDEX model simu-
lation in analyzing the regional-scale climatology at river basin scale, Krishna 
river basin (KRB), India. The precipitation and temperature simulations from 
CORDEX models with RCP 4.5 were evaluated for the historical data for the 
period of 1965 to 2014 with India Meteorological Department (IMD) gridded 
rainfall and temperature data sets cropped over the basin. The projected increase 
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of precipitation under climate signals was predicted to be from 74.4 to 136.7 mm 
over KRB for the future time period of 2041–2060 compared to the observed 
periods of 1966–2003. About 1.06 °C to 1.35 °C of increase in temperatures was 
predicted for the periods of 2021–2040 and 2041–2060, respectively, compared 
to the observed period of 1966–2014 over KRB. The climate variable projections 
obtained based on RCM outputs can provide insights toward the variations of 
water-energy variables and consequent impact on basin yields and losses in river 
basin management.

Keywords
Bias correction · Dynamic downscaling · Hydrology · Regional circulation model 
(RCM) · General circulation model (GCM)

8.1  Introduction

The totality of atmosphere, hydrosphere, biosphere, and geosphere and their inter-
actions are referred as climate system (Mcguffie and Henderson-Sellers 1997). The 
Earth’s climate is not static; it changes in response to natural and anthropogenic 
climate forcing. Climate change refers to climatic conditions over a period of time 
ranging from months to thousands or millions of years. The standard period is 
defined as 30 years according to the World Meteorological Organization (WMO). 
Apart from anthropogenic emission of greenhouse gases, which is considered as 
external forcing, internal forcing such as volcanic eruption and solar variation deter-
mines the dynamics of climate system (IPCC 2007). In this context, increasing tem-
peratures and changes in precipitation patterns have been observed all over the 
world (Hansen et al. 2010) under anthropogenic climate change. The consequent 
and immediate impact of climate change is on intensification of global hydrological 
cycle leading to increase of intensity and frequency of climate hazards such as 
droughts, floods (Rosenzweig et al. 2010), heat and cold waves, etc. The most sig-
nificant impact of climate change is anticipated to be on regional water-energy vari-
ables of hydrological cycle, thus affecting water supply and demand (Cunderlik and 
Simonovic 2005). The increasing concern of climate change and its impacts on 
hydrological variables have motivated several researchers to estimate the projected 
climatological variables accounting for greenhouse gases in the atmosphere (Ghosh 
and Mujumdar 2008). In this context, prediction of accurate projections of hydro- 
climatological variables under climate change is crucial for making adaptive mea-
sures and mitigation policies (IPCC 2007). To this end, climate change impact 
assessment studies have been advanced due to the availability of general circulation 
models (GCMs) as the most credible tools for investigating the physical processes 
of the earth surface-atmosphere system. The GCMs can simulate the projections of 
climatological variables for current as well as for future scenarios accounting for 
greenhouse gas emission scenarios. These are the numerical models, which analyze 
the atmosphere on an hourly basis in all three dimensions based on the law of 
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conservation of energy, mass, momentum, and water vapor and ideal gas law 
(Mcguffie and Henderson-Sellers 1997). These are complex computer simulations 
describing the circulation of air and ocean currents and how the energy is trans-
ported within a climate system. GCMs are classified as atmospheric general circula-
tion models (AGCM) or oceanic general circulation models (OGCM) for modeling 
atmospheric and oceanic circulations (Mcguffie and Henderson-Sellers 1997). Most 
of the climate change impact assessment studies mainly focus on the use of GCM 
outputs of various climatological variables and their integration with hydrological 
modeling (Rehana and Mujumdar 2014; Teutschbein et al. 2011; Chen et al. 2011).

The Intergovernmental Panel on Climate Change (IPCC) has been established by 
the World Meteorological Organization (WMO) and the United Nations Environment 
Programme (UNEP) to provide scientific, technical, and socioeconomic informa-
tion for understanding the climate change process. The IPCC provides scientific 
information to the research community in terms of future possible climate change 
scenarios for policy- and decision-making (IPCC 2007, 2014). The IPCC has devel-
oped long-term emission scenarios based on the radiative forcing and demographic, 
technical, and socioeconomic information, which are considered a standard refer-
ence to be followed for the policymakers, scientists, and other experts. Such emis-
sion scenarios enabled the scientific community to carry out climate change analysis, 
modeling, impact assessment, adaptation, and mitigation studies. Based on the 
Assessment Report 4 (AR4), IPCC has defined Special Report on Emission 
Scenarios (SRES) of four storylines as A1, B1, A2, and B2 determined by driving 
forces such as demographic development, socioeconomic development, and tech-
nology change along with CO2 level changes (IPCC 2007) (https://www.ipcc.ch/
assessment-report/ar4/). Whereas the IPCC Assessment Report 5 (IPCC 2014) has 
replaced the SRES of AR4 with Representative Concentration Pathways (RCPs) 
RCP8.5, RCP6, RCP4.5, and RCP2.6, here, the RCPs refer to time-dependent pro-
jections of atmospheric greenhouse gas concentrations (https://www.skepti-
calscience.com/rcp.php), and the numbers 8.5, 6, 4.5, and 2 represent the radiative 
forcing, expressed as Watts/m2. For example, RCP 8.5 is high pathway for which 
radiative forcing reaches >8.5 Watts/m2 by 2100 and continues to rise. The RCP 6 
and 4.5 are considered to be stabilization pathways, while for RCP 2 the radiative 
forcing peaks at approximately 3 Watts/m2 before 2100 and then declines. Integration 
of projected climatological variables under climate change scenarios with water 
resource decision and management models to study the impact assessment over 
water quantitative and qualitative availabilities and demands has widely gained 
much attention in the research community (Ghosh and Mujumdar 2008; Raje and 
Mujumdar 2010; Rehana and Mujumdar 2014; Mishra et al. 2014).

Assessment of climate change impacts on water resources necessitates accurate 
projections of various hydroclimate variables, which involves downscaling the pro-
jections of climate variables to hydrological variables. It is of growing importance 
to create accurate projections of hydrometeorological variables by employing cli-
mate model outputs with general circulation models (GCMs) and regional circula-
tion models (RCMs) which can then be statistically or dynamically downscaled 
(Fowler et  al. 2007). To obtain the projections of hydrometeorological variables 
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(precipitation, runoff, temperature, etc.) at regional scales based on large-scale cli-
mate simulations (mean sea level pressure, wind speed, humidity, etc.) obtained 
from GCMs, downscaling models have been advanced (Hewitson and Crane 1992; 
Wilby et al. 2004; Tripathi et al. 2006; Anandhi et al. 2008; Rehana and Mujumdar 
2012). Broadly, the downscaling techniques are classified as dynamic and statistical 
downscaling models. The statistical downscaling model involves deriving empirical 
relationships between large-scale climate variable simulations (predictors) obtained 
from GCMs and regional-scale hydroclimatological variables (predictands) (Wilby 
et al. 2004). The spatial resolution of statistical downscaling projections depends on 
the scale of the regional hydrological variables, and also the spatial resolution of 
GCMs is generally coarse ranging from 2.8°×2.8° to 1.1°×1.1°.

The dynamic downscaling uses a nested higher-resolution regional climate 
model (RCM) within a coarse resolution GCM. The RCMs work at finer resolution 
and provides better dynamic downscaling climate change predictions for a particu-
lar region (Buontempo et  al. 2015) with region-specific parameterization (Singh 
et al. 2017). The use of RCMs for impact assessment should be based on the evalu-
ation of the climate projections with observed data given the debate on the use of 
RCM projections directly (Racherla et al. 2012; Feser et al. 2011). Due to the fine- 
resolution climate model, projections of RCMs, which enable to synthesize the cli-
mate change prediction, and hydrological models to study the regional impact 
assessment studies became widely applicable (Das and Umamahesh 2018). Further, 
RCMs provide dynamically downscaled GCM outputs at fine resolutions compared 
to coarser statistical downscaled outputs, which can be directly used in the impact 
assessment studies (Sun et al. 2006) by testing their performance with current cli-
mate (Singh et al. 2017). The recent regional climate model is available through 
Coordinated Regional Climate Downscaling Experiment (CORDEX), is mainly 
associated with GCM projections from Coupled Model Intercomparison Project 
(CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/), was downscaled with the RCMs run 
by various research institutes, and is available for 14 domains covering the entire 
globe. The present study provides an emphasis to incorporate such CORDEX pro-
jections of precipitation and temperatures to study the regional climate change 
impacts at river basin scales. The Krishna river basin, India, was considered as case 
study to study the regional climate-induced changes of precipitation and tempera-
tures with various CORDEX model outputs.

8.2  Data and Methods

The Krishna river basin (KRB) is the fifth largest river system of India and occu-
pies an area of 2, 58, 948 km2 which is 8% of the total geographical area of the 
country. Nearly 44% of KRB lies in Karnataka, 26% in Maharashtra, about 15% 
in Telangana, and another 15% in Andhra Pradesh within the range 73o17’–81o9’E 
and 13o10’–19o22’ N (Fig. 8.1). The major tributaries of the river are Ghataprabha, 
Malaprabha, Tunga-Bhadra, Bhima, Vedavathi, and Musi. The annual average 
precipitation in the basin is 784 mm, of which approximately 90% occurs during 
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the southwest monsoon from June to October (http://india-wris.nrsc.gov.in/
wrpinfo/?title=Krishna). The study used gridded daily precipitation data from the 
India Meteorological Department (IMD) available for the period of 1901 to 2015 
at 0.25° × 0.25° resolution (Rajeevan and Bhate 2009). The gridded daily average 
temperature data all over India at a resolution of 1° × 1° for the period of 1951–
2014 from IMD was cropped to the basin (Srivastava et al. 2009). The temperature 
was interpolated to 0.25° × 0.25° resolution using the inverse distance weighting 
method from 1° X 1° resolution. The CORDEX (Coordinated Regional 
Downscaling Experiment) is mainly associated with GCM projections from 
Coupled Model Intercomparison Project (CMIP5, http://cmip-pcmdi.llnl.gov/
cmip5/) and was downscaled with the RCMs run by various research institutes. 
CORDEX data sets are available for 14 domains covering the entire globe, and the 
present study selected South-Asian domain of the CORDEX project from Centre 
for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, 
India (http://cccr.tropmet.res.in/home/index.jsp). Daily precipitation and temper-
ature data simulated by 3 RCMs, driven by various GCMs, were obtained from the 
CORDEX (www.cordex.org). Three CORDEX experiments: (1) RegCM4(LMDZ), 
the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional 
Climatic Model version 4 (RegCM4; Giorgi et al. 2012), with deriving GCM as 
IPSL LMDZ4, from Laboratoire de M’et’eorologie Dynamique (France), India; 
(2) CCLM4(MPI), COnsortium for Small-scale MOdelling (COSMO) model in 
Climate Mode version 4.8 (CCLM; Dobler and Ahrens 2008), with deriving GCM 
as Max Planck Institute for Meteorology, Germany, Earth System Model (MPI-
ESM-LR; Giorgetta et al. 2013), from Institute for Atmospheric and Environmental 
Sciences (IAES), Goethe University, Frankfurt am Main (GUF), Germany; and 

Fig. 8.1 Map for the Krishna river basin (a) Location of the catchment in India (b) Krishna basin 
and districts map
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(3) REMO2009 (MPI) regional model, with deriving GCM as MPI-ESM-LR 
(Giorgetta et  al. 2013), from Climate Service Center, Hamburg, Germany. The 
projections for the period of 2006 to 2060 were analyzed under the Representative 
Concentration Pathway (RCP) 4.5 representing atmospheric radiation at 4.5 W m−2 
at the end of 2100.

The RCM outputs are generally associated with systematic biases in the simu-
lated projections compared to real observations (Buontempo et  al. 2015). The 
regional climate model simulations are burdened with systematic bias resulting 
from inadequate physics and bias in GCM simulations used in the boundary condi-
tions affecting the historical and future projections (Ehret 2012). Therefore, the 
present study adopted quantile-based mapping method developed by Li et al. (2010) 
with the comparison of cumulative distribution functions (CDFs) of observed and 
RCM simulated data of precipitation and temperatures for the historical and future 
scenarios. Here, the CDFs of RCM and IMD gridded data sets of precipitation, and 
temperatures were compared to correct the bias present in RCM historical and 
future data sets (Li et al. 2010), where Gamma distribution is used to calculate the 
CDFs of each time series as follows:

 
X F F xm p adjst o c m c m p− −

−
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1
 (8.1)

where

Xm − p. adjst is the bias-corrected climate variable for current period (RCM-historical)
xm − p = biased RCM variable
Fm − c = CDF of RCM Historical data
Fo − c = CDF of IMD (Observed) data and Fo c−

−1  is the inverse CDF of IMD data, 
which gives the observed variable at the corresponding equal CDF level

For bias correction of future RCM data, it is generally assumed that the differ-
ence between the model and observed value during the training period also applies 
to the future period, for a given percentile, which means the adjustment function 
remains the same. However, the difference or shift between the CDFs for the future 
and historic periods is also taken into account;
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where

Xm p adjst−
′

.  is the bias-corrected climate variable for future period (RCM-future)
xm − p = biased RCM future variable
Fm − p = CDF of RCM Future data
Fo − c = CDF of IMD (Observed) data
Fo c−

−1  = inverse CDF of IMD data which gives the IMD variable at the corresponding 
equal CDF level
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Fm − c = CDF of RCM historical data
Fm c−

−1  = inverse CDF of RCM data which gives the RCM variable at the correspond-
ing equal CDF level

The RCM data sets which are at a resolution of 0.44o × 0.44° were brought to the 
IMD precipitation data resolution of 0.25o × 0.25° using the inverse distance weight-
ing method after bias correction. The Krishna river basin has shown significant 
changes after 2003 with spatially averaged precipitation increase of about 28 mm/
decade with Pettitt change point detection year as 2003. Therefore, to study the 
basin-averaged changes of precipitation and temperatures for current and future 
climate signals, the present study considered two-time intervals of 1966–2003 and 
2004–2014. The precipitation and temperatures were analyzed for the time periods 
of 1966–2003, 2004– 2014, 2021– 2040, and 2041– 2060 with RCP 4.5 over KRB.

8.3  Results and Discussions

The spatial averaged monthly variation of precipitation and temperatures for the 
period of 1951 to 2014 is shown in Fig. 8.2, with rainfall contributing months as 
June to October, whereas the dry months as March, April, and May. To examine the 
spatial variation of precipitation, the annual average precipitations for three time 
periods of 1951–1972, 1973–1992, and 1993–2014 were studied as shown in 
Fig. 8.3(a). The average annual precipitation over KRB was estimated at 975 mm, 
varying between 650 and 1843 mm. The total annual precipitation amount varied 
from high toward the Western Ghats boundary of the KRB to low toward East of the 
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Fig. 8.2 The spatial average monthly average temperature and precipitation over Krishna river 
basin for 1951–2014
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basin, covering few districts of Telangana. Figure 8.4 (a) shows the temporal trends 
of basin-averaged precipitation for the period of 1965–2014. The basin-averaged 
annual average precipitation has shown increasing trends over KRB. The spatially 
averaged precipitation has shown an increasing trend at a rate of 28 mm/decade 
(Fig. 8.4(a)). Thus, although there is high spatial variability of precipitation over 
KRB, the annual average precipitation has shown an increasing trend over the basin. 
The spatial pattern of average air temperature over the basin is presented in 
Fig. 8.4(b). Higher average temperatures were observed toward the upper most por-
tion of the basin covering few districts of Maharashtra and Telangana. Figure 8.4(b) 
shows the temporal trends of basin-averaged temperatures for the period of 1965 to 
2014. Correspondingly, temperature has shown an increasing trend of 0.1 °C/decade 
(Fig. 8.4(b)).

For the assessment of precipitation and temperatures over KRB for the future 
scenarios, the CORDEX simulations were used. The precipitation and temperature 
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data extracted from RCM outputs from 1965 to 2060, after bias correction, were 
used to estimate the precipitation and temperatures over KRB. Basin-averaged pre-
cipitation and temperatures were studied for two time periods of 2021–2040 and 
2041–2060 along with historical time period of 1965–2003 and 2004–2014 as given 
in Table 8.1. The study of the compatibility of RCM projections with observed data 
sets is a prominent step (Singh et al. 2017). Therefore, the study compared the RCM 
climate projections with the observed data sets for historical period of 1965 to 
2014 in reproducing the current climate variability. The bias-corrected monthly pre-
cipitation and temperatures from each CORDEX RCM model were well compared 
with the observed IMD data for the period of 1965–2014 (Fig. 8.5). The RMSE 
(R-square) values estimated between observed precipitation and each RCM model 
outputs of COSMO, REMO, and SMHI were estimated at 78.5 (0.2), 70 (0.23), 80 

Table 8.1 Spatial average annual precipitation and temperatures for current (1966–2003, 2004–
2014) and future period (2021–2040, 2041–2060) for KRB

Hydrological variable RCM name
Current Future
1966–2003 2004–2014 2021–2040 2041–2060

Average annual precipitation 
(mm)

Observed 733.12 894.47 – –
COSMO 757.91 698.27 762.82 807.52
REMO 755.36 841.84 864.29 850.7
SMHI 773.33 834.73 834.73 869.82

Annual temperature (°C) Observed 26.6 26.7 – –
COSMO 26.53 27.05 27.71 28
REMO 26.54 26.71 27.81 28.09
SMHI 26.56 27.1 27.74 28.22

Fig. 8.5 Scatter plots of bias-corrected RCM model outputs of (a) precipitation and (b) tempera-
tures for the period of 1966 to 2014
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(0.15), respectively, for the period of 1966 to 2014, whereas the RMSE (R-square) 
values estimated between observed temperature and each RCM model outputs of 
COSMO, REMO, and SMHI were estimated at 1.9 (0.6), 1.6 (0.7), and 1.95 (0.52), 
respectively, for the period of 1966 to 2014. Among the selected three RCMs, the 
REMO model has shown best performance for simulating precipitation and tem-
peratures over KRB. The precipitation has been predicted to increase under climate 
change signals with all three RCM models for the future periods of 2021 to 2060 
over KRB. The increase in projections of annual average precipitation for the peri-
ods of 2021–2040 and 2041–2060 was compared with the observed data periods of 
1966–2003 and 2004–2014 over KRB (Table 8.1) (Fig. 8.6(a)). The SMHI model 
has predicted highest increase of precipitation as varying from 101.6 and 136.7 mm 
for the future time periods of 2021–2040 and 2041–2060, respectively, compared to 
the current climate period of 1966–2003 over KRB. While the lowest precipitation 
projections, varying about 29.7  mm and 74.4  mm of increase for the period of 

Fig. 8.6 Basin-averaged annual observed and predicted (a) precipitation and (b) temperatures for 
the period of 1966–2003, 2004–2014, 2021–2040, and 2041–2060 over KRB with various RCM 
model outputs
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2021–2040 and 2041–2060, respectively, compared to observed period of 1966–
2003, were noted with COSMO model outputs, moderate precipitation increasing 
projections were predicted with REMO for the RCP 4.5 for the future time periods 
of 2021 to 2060. Overall, the projected increase of precipitation under climate sig-
nals was predicted to be from 74.4 to 136.7 mm over KRB for the future time period 
of 2041–2060 compared to the observed periods of 1966–2003. About 
1.06 °C–1.35 °C of increase in temperatures was predicted for the periods of 2021–
2040 and 2041–2060, respectively, compared to the observed period of 1966–2014 
over KRB (Fig. 8.6 (b)) (Table 8.1).

8.4  Conclusions

With consideration of fine resolution and simple in extraction, the RCM outputs can 
be used in the hydrological impact assessment studies under climate variability. 
Comparable to complex statistical downscaling models, which requires advanced 
computational expertise, the RCM projections can be used for brief analysis of spa-
tiotemporal variability of climate variables at river basin scales. Such basic analysis 
of river basins can provide insights toward the variations of water-energy variables 
and consequent impact on basin yields and losses in terms of evapotranspiration, 
etc. The fine-resolution projections of precipitation and temperatures will provide a 
basis to study the streamflow variabilities with integration with distributed hydro-
logical models. However, given the limitations toward the reliability of RCM out-
puts with observed climate variables and the use of bias correction method adopted, 
the CORDEX model projections have to be applied for impact assessment studies 
with proper evaluation. The bias-corrected projections should be evaluated for 
extreme precipitation and temperature indices at catchment scales to study the reli-
ability of RCMs for modeling the extreme climate variables (Singh et al. 2017). 
Further, with the uncertainty involved in the projections of each RCM model and 
with each RCPs, uncertainty evaluation must be performed for climate variables and 
associated hydrological model. Given the variations over the climate variable pro-
jections from various climate models, RCPs and various water management models 
accumulate climate and model uncertainty in the impact assessment (Kay et  al. 
2009; Wu et al. 2015). Implementation of multimodal weighted mean variables to 
study the possible range of uncertainty bounds accumulating from various stages of 
decision-making and cascading of uncertainties (Rehana and Mujumdar 2014) can 
be potential future research problem. Further, the application of RCM model out-
puts for the hydrological impact assessment has to be validated by comparing the 
historical spatiotemporal variability of simulations of hydrological events. Thus, the 
simulations of hydrological, drought, irrigation, and water quality associated with 
RCM outputs must be validated with historical occurrence of events in terms of 
frequency, durations, and intensities along with spatial extents of the events. The use 
of RCM outputs for the assessment of hydrological studies at catchment scales will 
emphasize on the adaptive measures to be applied for the sustainable water resource 
management.
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