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Abstract Rapid transfer of data of high magnitude is a necessity to meet the demand
of today’s high-speed communication networks. The currently prominent implemen-
tation of TCP protocol is insufficient for the high bandwidth-latency product networks
that are available to users. The current TCP Reno protocol implementation fails to
utilize the available bandwidth optimally and requires an exceptionally small bit
error rate (BER) for it to maintain that rate. A substantial amount of bandwidth is left
unused in such networks. Moreover, congestion control is required so that the sta-
bility of the network is maintained. TCP Reno’s congestion policy is not suitable in
today’s technology as it might take more than a few hours to recover that congestion
window. Many variants of TCP protocols have been suggested which follow more
aggressive approach than the current implementation like loss-based metrics algo-
rithm and delay-based algorithm for congestion control. Loss metric based determine
congestion by loss of a packet; and delay metric focuses on delay as a sign of con-
gestion. The research work presents a comparative study and performance analysis
factors in terms of congestion window size growth and fairness (throughput in terms
of bytes transferred per second) of TCP Reno, Scalable TCP and TCP Cubic which
are loss-based metrics algorithm, and TCP Vegas which is a delay-based algorithm
for congestion control. According to the observation and analysis performed using
simulation, Scalable TCP among TCP Reno, TCP Vegas and TCP Cubic performs
better in terms of the congestion window corresponding with respect to time and can
be considered as a good option. In terms of fairness, TCP Cubic and Scalable TCP,
both are more aggressive than TCP Reno and TCO Vegas. To conclude for aggres-
siveness and packet loss, Scalable TCP is the best option among the TCP variants
taken for performance analysis and evaluation.
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1 Introduction

Large amount of data is required to be transferred quickly over high-speed networks.
TCP Reno [1] is most widely accepted and implemented transport protocol. But it
is not able to scale well to data rate of 100 Mbps and more. Despite large band-
width being available, TCP Reno is not able to completely utilize it. TCP Reno was
designed when the value of data rate used to be in a few kbps. Congestion control is
required so that the stability of the network is maintained. TCP Reno’s [2] additive-
increase/multiplicative-decrease (AIMD) policy for congestion back-off is too rapid
and it might take more than a few hours to recover that congestion window size as
explained by Floyd [3]. Recovery time is too large for TCP Reno. Average conges-
tion window varies with inverse square root of probability of loss [4]. TCP Reno
detects congestion by packet loss. For high-speed network links, very low packet
drop probability is required, which is unreasonable to achieve.

Many variants of the TCP are proposed with changes on the sender side. Those
variants are more aggressive than the TCP Reno. Some of the variants follow loss-
based metric, and some follow delay metric. Loss metric based determine congestion
by loss of a packet; and delay metric focuses on delay as a sign of congestion. Delay
metric based make full use of state of network which is given by packet delay.
Some variants involving updating the congestion control condition on the sender
side are TCP Vegas [5], Scalable TCP [3], TCP Cubic [6], TCP Africa [7], etc. We
are simulating TCP Reno, TCP Scalable, TCP Vegas and TCP Cubic using NS2 [8]
as a network simulator and analysing them using graphical analysis for this paper.

The rest of the paper is organized in the following manner: Tools used for sim-
ulating and analysis are explained in Sect. 2, followed by related work details in
next Sect. 3, and then working and congestion control algorithm of TCP Reno are
explained in Sect. 3.3, which is then followed by Scalable TCP, loss-based algorithm
in Sect. 3.4, TCP Cubic, implemented in Linux and a loss metric based in Sect. 3.5
and TCP Vegas, delay-based algorithm in Sect. 3.6. These algorithms are then fol-
lowed by their implementation and testing details in next Sect. 4. Section 5 consists
of details of performance evaluation followed by conclusions and future work in
Sects. 6 and 7, respectively. Finally, the last section consists of the references used
for the paper.

2 Tools

This section consists of the description of the tools which were used for implementing
congestion control algorithms and analyzing it. Since a lot of traffic is generated in
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the actual network of Internet, it was necessary to imitate the actual network. To
emulate the behaviour of the computer network, network simulator is being used.

2.1 Simulator

NS2 [9], second version of network simulator, is used for simulating TCP variants.
It is a simulation tool that is event-driven and helps in emulating dynamic nature of
actual network like Internet. Different protocols (TCP, TCP Vegas, UDP, etc.) and
queues (drop tail, etc.) can be simulated using NS2, and traffic may be generated
according to the protocols simulated. The network of simulation may be wired or
wireless. Tcl is the script used for creating a simulation file in NS2. The Tcl script is
executed with the command ns along with the name of the file and input arguments,
if required. NS2 consists of mainly two languages: C++ and Object-Oriented Tool
Command Language (OTcl). While simulating, internal mechanism is defined by
C++ and events are configured and assembled by OTcl. TcICL is used for linking
C++ and OTcl.

2.2 Simulation Results

Simulation results may be text-based as well as animation-based. To interpret the
results, tools NAM and Xgraph are being used. A network object is created as output
in NAM. Topology is created and coded in Tcl file is emulated using NAM, which
helps to interpret flow of the packets in the network. Observations are recorded in
trace file. The trace file is being used for plotting the graph and analyzing the results.

3 Related Work

TCP Reno [1], the traditional and most accepted TCP, was developed around 1990.
There are various improvements proposed for TCP Reno in [2, 10], etc. Many new are
variants which are proposed of TCP Reno, which changes the algorithm of congestion
control and are more aggressive than TCP Reno. These variants follow different
approaches for detecting congestion in the network and implementing congestion
control. Some of the variants follow packet loss-based approach to detect congestion
as HSTCP [11], Scalable TCP, TCP Cubic, etc. Some variants follow delay approach
like TCP Vegas, TCP Fast [12]. Some protocols like TCP Africa have been proposed
which follow both approaches: packet loss based and delay based to be able to utilize
the benefit of both approaches. These protocols follow loss of packet approach under
particular conditions and delayed approach under other conditions.
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3.1 TCP Africa

TCP Africa [7] is neither a completely loss-based protocol nor delay-based protocol.
It is a hybrid one. Delay metric is used by it to determine the network congestion
level, and it acts accordingly. If congestion is absent, then it follows fast mode; and
in congestion presence, it follows slow mode of TCP Reno. It grabs the unutilized
bandwidth quickly, but it becomes slow when the next congestion event is induced.
It uses a parameter o which determines the sensitivity of protocol to delay. This
parameter is generally taken as greater than 1.

3.2 HSTCP

HSTCP [11] is a variation of TCP Reno which also uses packet loss as an indi-
cation of the congestion in network. Three new parameters are being used in this
protocol: High_Window, which indicates the highest size of congestion window;
Low_Window, which tells about the minimum congestion window required for
HSTCP’s new response function to work; and High_P, the probability of packet
drop in HSTCP. If size of congestion window is less than or equal to Low_Window,
then slow mode of TCP Reno is followed; otherwise, if size of congestion window
exceeds Low_Window, then response function of high-speed TCP is followed.

3.3 TCP Reno

TCP Reno [2] congestion control algorithm consists of four components: slow start,
congestion avoidance, fast retransmit, and fast recovery. Sender using TCP Reno is
in any of the following phases:

e Slow start
e Congestion avoidance
e Fast retransmit and fast recovery.

Congestion is detected if either timeout occurs or triple acknowledgement is
received. Whenever congestion is detected or acknowledgement is received, the next
phase of Reno is decided by checking the current phase and congestion status.

Slow Start

Congestion window is increased by most Sender Maximum Sender Size (SMSS)
whenever an acknowledgement is received for new packet sent. In slow start phase,
congestion window is generally doubled for every round trip. When congestion win-
dow exceeds the threshold value (ssthresh), Reno goes to congestion avoidance phase.
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Congestion Avoidance
In congestion avoidance phase, packet loss or timeout size of congestion window is
increased by 1 full-size segment per RTT.

Congestion window is updated until acknowledgement is received for every new
packet sent as:

cwnd = cwnd + SMSS x SMSS/cwnd @))

Whenever timeout occurs, the value of ssthresh is updated. In case of receiving
triple acknowledgement, Reno enters fast retransmit phase.

Fast Retransmit and Recovery

A timer is being maintained for every packet sent. If a sender receives acknowledge-
ment after timeout occurs, then it is considered that the packet is lost. But, it might
take too long to realize that a packet is lost and take action accordingly. Fast retrans-
mit phase uses duplicate acknowledgements to detect that a packet is lost. When
multiple acknowledgment packets (generally 3) are received of the same sequence
number, TCP considers that the packet is lost and retransmits it.

3.4 Scalable TCP

Scalable TCP [3] follows multiplicative-increase/multiplicative-decrease (MIMD)
policy for updating congestion window. The phases and the congestion detection
occurrences of TCP Scalable are same as that of TCP Reno. But its implementation
differs from TCP Reno as follows:

When packets are acknowledged and there is no congestion, congestion window
value is updated by 0.01, i.e.,

cwnd = cwnd + 0.01 2)

When congestion is detected (triple acknowledgement or timeout), then conges-
tion window value is reduced to 0.875 of its value; that is, it is reduced by 0.125
times of its value. i.e.,

cwnd = cwnd — 0.125 % cwnd 3)
Scalable TCP reduces the problem of recovery time of congestion window to a

constant time rather than being dependent on the size of the congestion window, as
in the case of TCP Reno.
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3.5 TCP Cubic

TCP Cubic [6] is an improved variant of BIC-TCP as sometimes BIC becomes too
aggressive specifically in networks with low speeds. The phases and congestion
detection occurrences are similar to TCP Reno. A value W .« is noted when the
first packet loss occurs. Cubic might be in TCP mode, concave or convex regions
depending upon the value of the congestion window. If cwnd < W, then it is in
concave region, and if cwnd > W, then it is in convex region.

Congestion window update is given as:

cwnd = C(t — K)* + Wmax 4

K = (Wmaxp/C)'"? S

where

C cubic parameter
t time elapsed since last reduction of window
B decrease factor.

3.6 TCP Vegas

TCP Vegas [5] follows delay metric to determine the congestion of the network. Vegas
is based on the idea that bytes in the transit of connection are directly related to the
throughput of connection. The used bandwidth by connection is compared with the
bandwidth available of the network; in order utilize available bandwidth and avoid
congestion. In Vegas Base, RTT is one of the main factors used to determine the
expected value of throughput.

Throughputg,.eq = cwnd/BaseRTT (6)

where cwnd is congestion window’s current size.

Then, actual value of throughput is calculated by measuring the number of bytes
transmitted and dividing it by RTT value. This calculation is done once per round
trip time.

Value of difference (D) between actual and expected throughput is calculated.

D = ThlroughputExpected — Throughput .1 (7N

Two thresholds x and y are defined such that x < y. If D < x, then congestion
window is increased linearly for next RTT, and if D >y, then congestion window is
decreased for the next RTT. If x < D < y, then no change in congestion window is
done.
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Fig. 1 Topology used for analysis of TCP variants

4 Implementation and Testing

TCP variants [13, 14] are simulated in NS2 [8] with using their default parameters
for Scalable TCP, TCP Reno and TCP Vegas; for TCP Cubic, default parameters are
set as beta = 0.125, max_increment = 16, fast_convergence = 1 and bic_value =
410. The topology [15] used for doing analysis is as follows (Fig. 1).

Topology consisting of six nodes is being used to simulate the network. Nodes
marked as 0 and 1 are being used as TCP senders, and 4, 5 are being used as TCP
receivers. Nodes 2 and 3 served as bottlenecks in the network. Links from nodes 0
and 1 to 2 have a bandwidth of 2 Gbps and delay of 10 ms. Links from 2 to 3 have a
bandwidth of 1 Gbps with a delay of 200 ms. Links from 4 to 5 and 6 are similar to
0 to I link.

Details of simulation are stored in trace files (.tr) and their graph is plotted using
Xgraph. Analysis is done in the form of congestion window size versus time and
fairness [16]. For this implementation, queue size is set to 10 for connection between
nodes 2 and 3, and packet size is set to 550 bytes. Simulated network is tested up to
550 bytes of packet size, and analysis is done accordingly.

5 Performance Evaluation

5.1 Congestion Window Size Growth

X-axis indicates time with interval of 10 s. Y-axis indicates the size of congestion
window. The graph first increases and then decreases indicating packet loss. The
sharp drop is due to the multiplicative-decrease policy followed by TCP Reno. After
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the drop, the linear increasing curve of the graph indicates that the congestion window
size is increasing and no packet loss is occurring (Fig. 2).

Time is drawn on x-axis, and congestion window on y-axis indicating the con-
gestion window size at particular instances. Time gap of 0.1 s is taken to plot the
graph. The highest value achieved for congestion window is 82. The different peaks
of the graph tell us about the congestion window size at that time, and growth and
decrement of peaks tell us about the corresponding increment/decrement in conges-
tion window size. Decrement indicated packet loss has occurred, and congestion is
detected in the network (Fig. 3).

Congestion window increases indicating successful delivery of packets with
receiving acknowledgement. Decrease tells us about packet loss through timeout
or triple acknowledgement. Graph follows the policy of multiplicative increase and
subsequently multiplicative decrease. Congestion window size increases multiplica-
tively till 55 s, then decreases and then increases again (Fig. 4).

Congestion window of TCP Vegas grows and attains a value of 33 at 5 s. Then, a
packet drop takes place and the value of congestion window becomes 19. The earlier
lost packet is retransmitted successfully; followed by the successful transmission of
new packets which leads to an increase in the size of congestion window. Positive
slope after 5 s indicates that packet loss is not taking place (Fig. 5).

For the implementation considered, congestion window size of TCP Vegas does
not vary much as compared to TCP Reno; the difference is really less. No packet loss
after 10 s for the simulation taken could be one of the reasons for this observation.
Values of congestion window of Scalable TCP are much higher than that of TCP
Reno; even when there is a packet loss in scalable and congestion window decreases,
there is no packet loss at the same time on TCP Reno. This shows the aggressiveness

Etmms by [t [l rin o [ b
| . _ = 1

0,00 1 1 1 1 e

10,9000 { ! ! ! | | | /
0 4 + 4 .
50,000 | ! ! ! | | o

0 s 1 Lo

o 7

- | ¢
- | !
)
y
000 100000 =, 00w 0, 0000 0000 00000 LR 0000 w00 0000 J 110, 0000 1IN0 190 s000 1e00000 1509000

Fig. 2 Congestion window versus time for TCP Reno in NS2
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Fig. 3 Congestion window versus time for TCP Cubic in NS2

Fig. 4 Congestion window versus time for TCP Scalable in NS2

of the Scalable TCP. Values of congestion window for TCP Cubic are less than TCP
Reno, but they increase at almost by same level despite TCP Cubic window having
less value (Table 1).
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Fig. 5 Congestion window versus time for TCP Vegas in NS2

Table 1 Congestion window at different time elapsed

P. Bansal et al.

Time (in s) TCP Reno TCP Vegas TCP Cubic Scalable TCP
5 13.07 33 21 28
10 23.48 24.7 36 39
20 46 47.35 31 62
30 67.53 69.24 50 95
40 90.27 92.18 65 149
50 113.12 115.14 27 233
60 136.01 138.11 21 253
70 157.82 160.1 23 230
80 180.65 183.09 44 248
90 203.52 206.08 30 326

5.2 Fairness

For analyzing fairness [16] of TCP variants with TCP Reno, link from node 0 to
node 4 is simulated using TCP Cubic, Scalable TCP, TCP Vegas one by one, and the
link from node 1 to node 5 is simulated using TCP Reno.

For evaluating fairness, throughput in terms of bytes transferred per second is
taken as a parameter. Throughput or bytes transferred per second is plotted on y-axis
against time in seconds is plotted on x-axis.

The cubic curve (red curve) depicts the throughput variation with time for TCP
Cubic and Threno (green curve) depicts the variation for TCP Reno. Initially, both
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start with throughput at low value and later on (at 5 s) value gets increased, vary-
ing TCP Cubic’s value more than TCP Reno. 171 packets are dropped during this
scenario (Fig. 6).

In Fig. 7, Scalable TCP’s throughput values are plotted by curve scalable (red
curve) and TCP Reno’s throughput is plotted by Reno (green curve). Throughput of
Scalable TCP increases more than TCP Reno. While simulating scenario is depicted
in Fig. 7, 61 packets are dropped.

Fig. 6 Bytes transferred per second versus time for TCP Cubic and Reno

Fig. 7 Bytes transferred per second versus time for TCP Scalable and Reno
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Fig. 8 Bytes transferred per second versus time for TCP Vegas and Reno

In Fig. 8, renoth (green curve) indicates the throughput values with time for TCP
Reno and vegasth (red curve) indicates values for TCP Vegas. Throughput values
for both the TCP Reno are TCP Vegas which are nearby initially, and then, TCP
Reno’s throughput increases more than TCP Vegas. Twenty packets are dropped
while transferring data in this scenario.

6 Conclusion

According to the network taken for simulation, observation, and analysis, Scalable
TCP among TCP Reno, TCP Vegas and TCP Cubic perform better in terms of the
congestion window corresponding with respect to time. If the evaluation metric
of congestion window with time is being considered, then Scalable TCP can be
considered as a good option.

When performance metric of fairness is taken, aggressiveness and packet drop,
both are taken into consideration. TCP Cubic and Scalable TCP both are more aggres-
sive than TCP Reno, but packet loss is more when TCP Cubic is taken along with
TCP Reno for evaluating fairness. Packet drop is lowest in scenario when TCP Vegas
is simulated along with TCP Reno in the same network, but TCP Vegas is less aggres-
sive than TCP Reno. To moderate both the terms, aggressiveness and packet loss,
Scalable TCP is the best option among the TCP variants taken.

According to both the metrics, congestion window variation and fairness, Scalable
TCP performs finest and can be considered as an alternative option for TCP Reno.
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7

Future Work

This analysis can be extended to other protocols as TCP Fast, TCP Africa, etc. TCP is
currently notimplemented in NS2; thus, it can be implemented in C++ and then linked
to NS2 followed by its simulation. Other performance metrics may be considered for
evaluation as safety, reliability, etc., for complete analysis of an alternative option
for TCP Reno.
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