
Chapter 21
Development and Analysis of a Discrete
Particle Swarm Optimisation
for Bi-criteria Scheduling of a Flow Shop
with Sequence-Dependent Setup Time

V. Anjana , R. Sridharan and P. N. Ram Kumar

Abstract Most studies in flow shop scheduling neglect the setup times or consider
the setup times along with the processing times. However, in industries that man-
ufacture paint, textiles, ceramic tiles, etc., the setup times are significant and are
sequence dependent. This paper addresses the problem of scheduling a flow shop
operating in a sequence-dependent setup time (SDST) environment considering the
objectives, namely minimisation of makespan and mean tardiness. The evolutionary
method of discrete particle swarm optimisation (DPSO) based on weighted approach
is developed and applied to SDST benchmark problems of flow shop scheduling. The
efficacy of the metaheuristic is compared with that of a hybrid genetic algorithm,
and it is observed that on an average, the proposed DPSO provides an improvement
of 7.8, 22.3 and 11.3% in the values of mean ideal distance, computational time and
diversificationmatrix, respectively. Formost problems, the proposedDPSOperforms
superior to the hybrid genetic algorithm.

Keywords Permutation flow shop · Sequence-dependent setup time · Discrete
particle swarm optimisation · Hybrid genetic algorithm

21.1 Introduction

Flow shop is a shop floor configuration where all the jobs share the same sequence of
processing. Every job has a deterministic span of time for completing its operation in
each machine known as the processing time [1]. For processing a job, setup activities
needed to be performed on eachmachine and the time incurred for doing these prepa-
rations is known as the setup time. Setup includes activities such as obtaining tools,
cleaning the machines, setting the machines, fixing and removing jobs and returning
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tools. [2]. From the literature, it is observed that most studies in flow shops neglect
the setup time or consider the setup time along with the processing time. However,
in real-life situations, the presence of setup times cannot be neglected, especially
in industries that manufacture paint, tiles, pharmaceuticals, automobiles, drugs and
cosmetics, where the setup times are sequence dependent. In a sequence-dependent
setup time (SDST) environment, the setup times of jobs depend on the current job
to be processed and also on the previous job that has already been processed [3].

The studies on flow shops focus on optimising a single objective such asminimisa-
tion of makespan, total flow time, tardiness and number of setups [1, 3–5]. In real-life
situations, a decision-maker has to deal with the optimisation ofmore than one objec-
tive.Thepresenceof setup times and the attainment ofmultiple objectives increase the
complexity of the scheduling problem. The solution to themulti-objective problem is
obtained as a set of Pareto-optimal solutions or non-dominated solutions. A solution
is said to be non-dominating, if it is not dominated by any other solutions of the
multi-objective optimisation problem. Each solution in the Pareto-front has a better
value for any one of the objectives and is a solution to the problem [6]. The decision-
maker has to select a solution from the Pareto-front depending on the importance
of the objective to be achieved. Researchers and practitioners adopt the weighted
and non-weighted approach for solving the multi-objective problems. In a weighted
approach, weights are attached to the objectives such that the multi-objective prob-
lem is converted to an equivalent single-objective problem. Hence, the present study
focuses on the development of discrete particle swarm optimisation (DPSO) meta-
heuristic based on the weighted approach for solving the multi-objective SDST flow
shop scheduling problem. The efficacy of the proposed metaheuristic is compared
with the hybrid genetic algorithm.

The weighted approach has been adopted bymany researchers like Rajendran and
Zieglar [7], Eren and Guner [8], Eren [9] and Dhingra and Chandna [10] for solving
the SDSTflow shopswithmultiple objectives. Rajendran and Zieglar develop heuris-
tics for scheduling an SDST flow shop with the objective of minimising weighted
flow time and weighted tardiness. The researchers compare the performance of their
heuristic with an existing heuristic, random search procedure and a greedy local
search. The performance analysis reveals the better performance of the proposed
heuristic. Eren and Guner address the scheduling problem in an SDST flow shop
with the objective of minimising the weighted sum of total completion time and total
tardiness. The authors develop an integer programming model for solving problems
of up to 12 jobs. For solving larger-size problems, special heuristic algorithms and
Tabu search are developed. The results from the computational studies indicate that
the algorithms are effective for solving problems up to 1000 jobs. Eren considers the
scheduling of a two-machine SDST flow shop with the objective of minimising four
criteria. An integer programming model and Tabu search are developed for solving
the multi-objective problem of up to 1000 jobs. Dhingra and Chandna develop a
hybrid genetic algorithm minimising the weighted sum of total weighted squared
tardiness and makespan of an SDST flow shop.

It is observed from the literature that the works related to SDST flow shops with
multiple objectives are less in number. Further, no works have been reported with
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discrete particle swarmoptimisation (DPSO) based onweighted approach for solving
an SDSTflow shop scheduling problemwithmultiple objectives. Thus, the objectives
of the present study are as follows.

• Development of ametaheuristic based on discrete particle approach for scheduling
an SDST permutation flow shop with the objective of minimising makespan and
mean tardiness.

• Determination of the best set of parameters of the proposed metaheuristic.
• Experimentation of the metaheuristic using benchmark problems.
• Comparison of the proposed metaheuristic with a hybrid genetic algorithm.

The rest of the paper is organised as follows. The problem definition and the
assumptions related to the study are presented in Sect. 21.2. Section 21.3 provides
the detailed description of the proposed metaheuristic. Section 21.4 presents the
method of determining the best set of parameters of the proposed metaheuristic. The
experimentation details are described in Sect. 21.5. Section 21.6 presents the analysis
of the results, and Sect. 21.7 provides the conclusion.

21.2 Problem Definition

The present study addresses the scheduling problem of an n job × m machine
SDST flow shop with the objective of minimising makespan and mean tardiness.
The assumptions made in the study are as follows.

• All the jobs are available for processing at time zero.
• The processing times of operations of jobs are known in advance.
• Setup times for operations are considered explicitly from processing time and are
sequence dependent.

• Each machine can process only one job at a time.
• No pre-emption is allowed.
• The machines are continuously available, that is no breakdown of machines.

Notations

n Number of jobs to be scheduled
m Number of machines in the flow shop
pji Processing time of job j on machine i
dj Due date of job j
Cj Completion time of job j
sijk Setup time on ith machine if job j is preceded by job k
σ Ordered set of jobs already scheduled, out of n jobs; partial sequence
q (σ , i) Completion time of partial sequence σ on machine i (i.e. the release time

of machine i after processing all jobs in partial sequence σ )
q (σ j, i) Completion time of job j on machine i, when the job is appended to partial

sequence σ
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f 1 (x) Makespan of sequence x
f 2 (x) Mean tardiness of sequence x
w1 Weight assigned to makespan
w2 Weight assigned to mean tardiness.

The objective function for an SDST flow shop scheduling problem is expressed
as follows:

Min f (x) = w1 × f1(x) + w2 × f2(x) (21.1)

Since a sequence-dependent flow shop is considered, the recursive equation for
the completion time of job j on machine i is determined using Eq. 21.2.

q
(
σ j , i

) = max
{
q(σ, i) + si jk, q

(
σ j , i − 1

)} + p ji , (21.2)

where job k precedes job j; q (σ j, i) is the completion time of job j on machine i,
when the job is appended to partial sequence σ ;

(
q(σ, i) + si jk

)
denotes the sum of

the completion time of processing of job k on machine i and the setup time for job
j on machine i; q

(
σ j , i − 1

)
is the completion time of the immediately preceding

operation of job j on the previous machine; and pji is the processing time of job j on
machine i.

The flow time of job j, Cj, is given by

C j = q
(
σ j ,m

)
, (21.3)

where q
(
σ j ,m

)
is the completion time of the last operation of job j on machine m.

The makespan for a sequence of jobs is given by

f1 = max
(
C j , j = 1, 2, . . . , n

)
(21.4)

The tardiness of a job is given by

t j = max
{
0,

(
C j − d j

)}
(21.5)

The mean tardiness of a sequence of jobs is given by

f2 =
∑n

j=1 t j

n
(21.6)



21 Development and Analysis of a Discrete Particle Swarm … 271

21.3 Discrete Particle Swarm Optimisation

Particle swarm optimisation (PSO) developed by Kennedy and Eberhart [11] for
optimising continuous linear functionsmimics the social behaviour of birds gathering
their food. PSO optimises a problem by having a population of candidate solutions
and moving these particles around in the search space over the particle’s position
and velocity. The continuous PSO is not sufficient to solve the real-life problems
with discrete problem features. Thus, the developers of PSO modified it to address
the discrete problem, namely flow shop scheduling [12]. Discrete particle swarm
optimisation (DPSO) is the discrete version of particle swarm optimisation. The
difference between PSOandDPSOoccurs in the representation of the solution.When
PSO is applied for solving discrete optimisation problems (scheduling problems), the
solution representation of PSO is modified to represent the discrete solutions [13].
In the present study, a variant of DPSO based on the weighted approach is developed
for scheduling an SDST flow shop with the objective of minimising makespan and
mean tardiness. The proposed metaheuristic is described in detail in Sect. 21.3.1.

21.3.1 The Proposed DPSO Metaheuristic

In DPSO, the initial population is considered as the swarm and each solution in the
swarm is termed as the particle. The initial swarm for the present research is generated
using the NEH heuristic [14] and the pair-wise interchange method. The generation
of the initial swarm is followed by the computation of the objective function values of
the particles in the swarm. Each particle in the swarm is represented asX1,X2,X3,…,
XN, where N denotes the number of particles in the swarm. The personal best matrix
corresponds to the objective function values of each particle in swarm. The objective
function values are determined as the weighted sum of the objective function values.
The lowest value among the personal best values is considered as the global best.
Once the personal best matrix is formed, the position of the particles is updated. In
PSO, every move of the particle to the next position is influenced by its own previous
position, the position of the neighbouring particles and the particle in the leading
position. The position of the particles is obtained from the velocity components. The
position update is performed by two types of crossover and amutation operation. The
types of crossover involved are social crossover and cognition crossover. Theprevious
position, the position of the neighbouring particles and the particle in the leading
position are given by the mutation operation, the cognition velocity component and
the social velocity component, respectively. The three components are determined
using the following relations.

The position update equation consists of three components:

λt
i = w ⊗ F1(X

t−1
i ) (21.7)
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δti = c1 ⊗ F2(λ
t
i , p

t−1
i ) (21.8)

μt
i = c2 ⊗ F3(δ

t
i , g

t−1
i ) (21.9)

The first component given by Eq. 21.7 represents the velocity of the particle. In
Eq. 21.7, F1 represents the mutation operator with a probability of w. A uniform
random number r is generated between 0 and 1. If r is less than w, then the mutation
operator is applied to generate a perturbed permutation of the particle, otherwise the
particle is kept without any change. The second component obtained using Eq. 21.8
represents the cognition part of the particle. F2 in Eq. 21.8 represents the cognition
crossover operator with a crossover probability c1. Here, λt

i and pt−1
i are the two

parents for crossover where λt
i is the particle obtained from mutation and pt−1

i is
the particle in the personal best matrix. The occurrence of this crossover operation
depends on the random number generated. The third or social component is provided
by Eq. 21.9 where F3 and c2 represent the crossover operator and social crossover
probability, respectively. The parents for crossover are δti and gt−1

i where δti is the
particle obtained from the cognition crossover and gt−1

i is the global best solution.
The crossover operation depends on the random number generated. The objective
function values of the velocity components are determined. Since the problem is of
minimisation type, the least value among the three components is considered and the
position is updated. A local search is performed on these solutions, which increases
the diversity of the solutions. A non-dominant sorting procedure is applied to the
solutions obtained from the local search, and the set of non-dominated solutions are
updated in each generation. The solutions obtained from the local search become the
swarm for the next generation. The procedure is repeated until it reaches the specified
termination criteria.

21.3.2 Hybrid Genetic Algorithm

The hybrid genetic algorithm (HGA) is developed by combining the evolutionary
method of genetic algorithm with a local search method. The initial population is
generated using NEH and the pair-wise interchange method. The population is then
subjected to genetic operators of selection, crossover and mutation. A local search is
applied to the solutions obtained frommutation. The set of Pareto-optimal solutions is
obtainedby applying the non-dominant sorting algorithm to the offspringofmutation.
The procedure is repeated for a specified number of generations. The hybrid GA is
applied to the benchmark problems with the best set of parameters obtained from
Taguchi’s robust design and the utility index concept.
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21.4 Parameter Configuration of DPSO

The parameters of the proposed DPSO include type of mutation, probability of muta-
tion, type of cognition crossover, probability of cognition crossover, type of social
crossover, probability of social crossover and the swarm size. The parameters of the
DPSO metaheuristic are determined using Taguchi’s robust design in combination
with the concept of utility index [15, 16]. The parameters and their different levels
are shown in Table 21.1. The L18 orthogonal array is selected, and the objective
function values are determined for each trial. Once the objective function values
are computed, the average response value of each objective function for each factor
level is determined. The average values of the objectives for each factor level are
presented in Table 21.2. The average response value corresponding to each level
of the parameters is computed from the objective function values and is shown in
Table 21.3.

The preference number for each objective function is obtained using Eq. 21.10.

Pb = Z log
yb
y′
b

, (21.10)

where yb is the value of the objective b, y′
b is the maximum or minimum acceptable

value of the objective and Z is a constant. The value of Z has to be determined for
computing the preference number for each objective. It is assumed that at optimum,
value of the objective Pb = 9, and hence, the value of Z is computed as follows.

At optimum, y′
bof objective b, Pb = 9; Z = 9

log y∗
b
y′
b

, (21.11)

where y∗
b is the predicted optimal value of attribute b.

The predicted optimal value of makespan = 1651.87 + 1645. 39 + 1643.81 +
1638.61 + 1645.72 + 1640.81 + 1642.64 − 3 × 1655.48 = 6838.3.

Table 21.1 Parameters and their levels

Sl. No. Parameter Code Level

1 2 3

1 Mutation type A Shift Swap –

2 Mutation probability B 0.1 0.2 0.3

3 Type of cognition C Single point Two point PMX

4 Cognition probability D 0.7 0.8 0.9

5 Type of social crossover E Single point Two point PMX

6 Social crossover probability F 0.7 0.8 0.9

7 Swarm size G 20 30 50
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The predicted optimal value of mean tardiness = 295.85 + 293.64 + 293.43 +
251.64 + 295.19 + 253.50 + 293.38 − 3 × 292.88 = 1098.

The preference number is determined for makespan and mean tardiness from
the predicted optimal values using Eq. 21.10. The utility index is computed using
Eq. 21.12.

Ud =
l∑

b=1

abPb, (21.12)

where ab is the weight assigned to the objective b, Pb denotes the preference num-
ber of objective b, l is the number of objectives and d is the experiment number.
The preference number and the utility index corresponding to each experiment of
the orthogonal array are shown in Table 21.4. The average utility index correspond-
ing to each level of parameters is determined and is provided in Table 21.5. From
Table 21.5, it is observed that parameter B, that is the mutation probability, has the
highest range, and hence, it is the influencing factor on the performance characteris-
tics of the algorithm. The order of importance of the parameters on the performance
of the algorithm can be listed as follows: mutation probability, probability of social

Table 21.4 Preference
number and utility index

Experiment
No.

Preference number Utility index

Makespan Mean tardiness

1 0.082 0.180 0.131

2 0.066 0.455 0.260

3 0.010 0.662 0.336

4 0.116 0.647 0.381

5 0.098 0.552 0.325

6 0.218 0.593 0.406

7 0.059 0.385 0.222

8 0.010 0.644 0.327

9 0.239 0.195 0.217

10 0.000 0.393 0.197

11 0.000 0.556 0.278

12 0.150 0.339 0.245

13 0.116 0.329 0.223

14 0.082 0.181 0.131

15 0.191 0.007 0.099

16 0.017 0.739 0.378

17 0.455 0.849 0.652

18 0.146 0.397 0.272
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Table 21.5 Average utility value for each level of parameters

Parameter Utility value Max–Min (range)

Level 1 Level 2 Level 3

A 0.289 0.275 – 0.015

B 0.241 0.261 0.344 0.103

C 0.255 0.329 0.262 0.074

D 0.293 0.258 0.296 0.038

E 0.240 0.282 0.325 0.085

F 0.330 0.243 0.325 0.087

G 0.238 0.306 0.303 0.068

crossover, type of social crossover, type of cognition crossover, swarm size, proba-
bility of cognition crossover and type of mutation. The different levels of parameters
are plotted with the average utility index, and the parameter with the highest utility
value is selected as the best parameter. The utility index value for each parameter at
different levels is shown in Fig. 21.1. The parameter values with the highest utility
values are A1 B3 C2 D3 E3 F1 G2.

The best set of parameters of the proposed DPSO is obtained from Taguchi’s
method, and the concept of utility value is shown in Table 21.6.
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Fig. 21.1 Utility index value for each parameter at various levels

Table 21.6 Best set of parameters of DPSO

Sl. No. Code Parameter The best setting level

1 A Mutation type Shift

2 B Mutation probability 0.3

3 C Type of cognition crossover Two point

4 D Probability of cognition crossover 0.9

5 E Type of social crossover PMX

6 F Probability of social crossover 0.7

7 G Swarm size 30
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21.5 Experimentation

Experimentation of the proposed DPSO is carried out on the SDST benchmark prob-
lems of flow shop scheduling. The study is conducted on 20 jobs, 50 jobs and 100
jobs with the machine size as 5, 10 and 20. Themethod for generating the setup times
and the due dates required for the study are provided in the following subsection. The
algorithms are applied with the best set of parameters determined using Taguchi’s
orthogonal array and utility index as described in the preceding section. The DPSO
metaheuristic terminates after examining 1000 solutions for 20 jobs and 50 jobs,
whereas the termination occurs after examining 1500 solutions for 100 jobs. All the
problem instances are solved using MATLAB software on a desktop computer that
runs on an Intel Core Processor with 3 GHz RAM.

21.5.1 Data Generation for the Problems for Computational
Studies

In the present study, the setup times of jobs are considered explicitly. Hence, the
setup times of jobs are generated using the setup time level concept. The setup time
level is expressed as the ratio of maximum setup time to the maximum processing
time. The setup time for the jobs is expressed using the following relation.

Setup time level = max si jk
max pi jk

× 100

for all i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . , n, (21.13)

where pijk is the maximum time element of the processing time matrix and sijk is the
maximum time element of the setup time matrix. The setup time level is assumed to
be 25%, and hence, the setup time of jobs is generated in a uniform distribution in the
interval between 1 and 25. The processing times are obtained from the benchmark
problemsof flowshop scheduling [17]. The duedates of jobs required for the study are
generated using the method of total work content. The due date of a job is expressed
as follows.

Due date of a job = arrival time + r

× (processing time of the job + setup time of the job),
(21.14)

where r is the allowance factor and it is set equal to 2.

Setup time of a job

= number of operations of the job × average setup time of an operation
(21.15)
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21.6 Results and Discussion

The Pareto-optimal solutions are determined for the nine problem sizes using the
DPSO metaheuristic. The efficacy of the proposed metaheuristic is compared with
the hybrid genetic algorithm based on the performance measures such as mean ideal
distance (MID), computational time, diversification matrix (DM), average objective
values and minimum objective values. The obtained Pareto-optimal solutions for the
nine SDST benchmark problem sizes are shown in Table 21.7. It is observed from the
values in Table 21.7 that for most of the problem sizes, the values of makespan and
mean tardiness obtained from DPSO are better than the hybrid genetic algorithm. In
the 20 job × 20 machine problem, both the metaheuristics provide mean tardiness
values as zero for one of the solutions in the Pareto-optimal set. However, a better
makespan value is obtained from DPSO for the zero mean tardiness value.

21.6.1 Performance Analysis of the Proposed Metaheuristic
Based on the Mean Ideal Distance, Computational
Time and the Diversification Matrix

The MID values, computational time and DM values of the proposed metaheuristic
are shown in Table 21.8. From Table 21.8, it is observed that for all the problem

Table 21.7 MID, computational time and the diversification matrix for the SDST benchmark
problems

Sl. No. Problem
size n × m

Mean ideal distance Computational time
(s)

Diversification
matrix

Hybrid
genetic
algorithm

DPSO Hybrid
genetic
algorithm

DPSO Hybrid
genetic
algorithm

DPSO

1 20 × 5 1612.24 1634.97 3.12 0.83 22.74 95.13

2 20 × 10 2059.68 1891.51 3.27 0.81 47.58 41.23

3 20 × 20 2834.00 2426.01 3.61 1.46 174.03 408.08

4 50 × 5 3747.80 3695.62 6.37 14.97 61.94 198.46

5 50 × 10 4160.81 3735.86 6.96 15.85 58.33 105.89

6 50 × 20 4917.66 3940.43 13.53 15.86 79.96 165.13

7 100 × 5 7421.30 7398.17 24.13 1.93 25.00 55.25

8 100 × 10 7460.86 7136.28 24.15 1.77 61.19 93.02

9 100 × 20 8863.25 7654.33 35.75 2.08 48.71 48.96

n—Number of jobs; m—number of machines
The values are provided in bold to show the better performance of the discrete particle swarm
optimisation
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Table 21.8 Minimum and average makespan values for the SDST benchmark problems

Problem size n × m Hybrid genetic algorithm DPSO

Minimum Average Minimum Average

20 × 5 1581 1589.33 1563 1609.50

20 × 10 2042 2053.33 1871 1890.00

20 × 20 2740 2834.00 2222 2426.00

50 × 5 3534 3552.20 3432 3508.50

50 × 10 4016 4027.25 3619 3664.00

50 × 20 4839 4869.25 3881 3929.50

100 × 5 6893 6895.50 6852 6879.00

100 × 10 7049 7067.67 6745 6791.50

100 × 20 8527 8551.00 7431 7454.50

n—Number of jobs; m—number of machines
The values are provided in bold to show the better performance of the discrete particle swarm
optimisation

sizes except the 20 job × 5 machine problem instance, the MID values are lower
for the DPSO metaheuristic. Lower MID values indicate better performance of the
metaheuristic. Hence, it is evident from theMID values that the DPSOmetaheuristic
performs better than the hybrid genetic algorithm. When the computational time
is considered, the time taken for the DPSO metaheuristic to provide the Pareto-
optimal solutions is lower for most of the problem sizes when compared to the hybrid
genetic algorithm. The DM values also reveal the superior performance of DPSO
metaheuristic to hybrid genetic algorithm.Thehigher values ofDMindicate the better
performance of the metaheuristic. Thus, in terms of MID values, computational time
and DM values, the DPSO metaheuristic outperforms the hybrid genetic algorithm.

21.6.2 Performance Analysis Based on the Average
and Minimum Objective Function Values

The average values and the minimum values of makespan and mean tardiness
obtained for the proposed algorithms are shown in Tables 21.9 and 21.10, respec-
tively. From Table 21.10, it is observed that the minimum value of makespan is
obtained from the DPSO metaheuristic for all the problem instances. Further, the
average makespan provided by the DPSO metaheuristic has lower values for all the
problem sizes except the 20 job × 5 machine problem. In that problem instance,
though the average makespan value is better for HGA, the minimum makespan is
provided by the DPSO metaheuristic. Similarly, the minimum and average values of
mean tardiness have better values for the DPSO metaheuristic except the 20 job ×
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Table 21.9 Minimum and average mean tardiness values for the SDST benchmark problems

Problem size n × m Hybrid genetic algorithm DPSO

Minimum Average Minimum Average

20 × 5 265.20 270.73 276.90 286.90

20 × 10 148.30 160.57 67.10 75.10

20 × 20 0.00 1.47 0.00 4.15

50 × 5 1175.50 1194.78 1100.70 1158.90

50 × 10 1021.80 1045.55 700.40 728.30

50 × 20 673.10 688.14 227.20 290.48

100 × 5 2731.40 2743.65 2716.70 2722.55

100 × 10 2372.50 2390.02 2190.40 2191.30

100 × 20 2327.70 2331.85 1730.70 1737.55

n—Number of jobs; m—number of machines
The values are provided in bold to show the better performance of the discrete particle swarm
optimisation

Table 21.10 Pareto-optimal solutions for the SDST benchmark problems

Sl. No. Problem size n × m Hybrid genetic algorithm DPSO

Makespan Mean tardiness Makespan Mean tardiness

1 20 × 5 1599 265.20 1563 296.9

1588 267.90 1656 276.9

1581 279.10

2 20 × 10 2073 148.30 1909 67.1

2045 149.00 1871 83.1

2042 184.40

3 20 × 20 2914 0.00 2630 0

2848 1.40 2222 8.3

2740 3.00

4 50 × 5 3569 1175.50 3590 1100.7

3557 1181.30 3557 1113.7

3554 1193.30 3432 1220.8

3547 1197.20 3455 1200.4

3534 1226.60

5 50 × 10 4041 1021.80 3709 700.4

4030 1035.10 3619 756.2

(continued)
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Table 21.10 (continued)

Sl. No. Problem size n × m Hybrid genetic algorithm DPSO

Makespan Mean tardiness Makespan Mean tardiness

4022 1050.80

4016 1074.50

6 50 × 20 4901 673.10 3881 323.7

4888 677.00 4015 227.2

4884 679.80 3902 310

4880 682.00 3920 301

4876 683.20

4875 683.50

4870 685.40

4867 689.40

4854 691.30

4849 694.60

4848 694.80

4839 723.60

7 100 × 5 6898 2731.40 6852 2716.7

6893 2755.90 6906 2728.4

8 100 × 10 7091 2372.50 6745 2192.2

7075 2374.30 6838 2190.4

7070 2382.30

7065 2394.00

7056 2400.00

7049 2417.00

9 100 × 20 8575 2327.70 7431 1744.4

8527 2336.00 7478 1730.7

n—Number of jobs; m—number of machines

5 machine case. Hence, it is evident from the results that the DPSO metaheuristic
performs better when compared to the hybrid genetic algorithm.

21.7 Conclusions

The present study proposes a DPSO for solving the bi-objective scheduling problem
of an SDST flow shop. Computational studies using the SDST benchmark problems
reveal that on an average, the proposed DPSO provides an improvement of 7.8, 22.3



21 Development and Analysis of a Discrete Particle Swarm … 283

and 11.3%when comparedwithHGAfor themeasures such asMIDvalues, computa-
tional time and diversification matrix, respectively. In the present study, continuous
availability of the machines is assumed. However, in real-life situations, we may
encounter breakdown and repair of machines. Thus, the work can be extended by
integrating appropriate scheduling andmaintenance policies. Other methods for gen-
erating the initial population and due dates can be examined. Performance measures
other than makespan and mean tardiness can also be considered.

Acknowledgements The authors express their sincere thanks to the reviewers for their suggestions
which helped in improving the initial version of the paper.
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