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Abstract Over the last few years, the wavelet transform has played a significant
role in the field of multiresolution image analysis. The shortcomings of the wavelet
transform laid the foundation of many advanced wavelets. This review paper brings
together ten advanced wavelets on a common platform to discuss their importance,
concept, architecture, merits and demerits in various fields of image processing.
The relationships among the different advanced wavelets are also illustrated here. A
comparison table serves as a catalog to know the recent trends and applications of
the advanced wavelets.
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1 Introduction

The efficient feature extraction and representation have always been a great chal-
lenge to the researchers. There has been a long way of evolution from the Fourier
Transform, Discrete Fourier Transform, Fast Fourier Transform, Short-Time Fourier
Transform to the Wavelet Transform. Some of the applications of the wavelet trans-
form in image processing are coding, fusion, enhancement, compression, denoising,
segmentation, content-based image retrieval and so on. Though the wavelet trans-
form is a very popular and promising tool for sparse representation of objects with
point singularities, its efficiency is greatly challenged by the objects with line sin-
gularities due to the lack of directionality and anisotropy as suggested by Do and
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Vetterli [1]. Therefore, the urgent need of higher-dimensional sparse representation
of images motivates the researchers to innovate the mathematical transforms called
the advanced wavelets. Here, advanced wavelet is referred as X-let.

The organization of the rest of the paper is given below. Having addressed the
significance of X-let in the introductory section, ten different X-lets are presented in
Sect. 2. Section 3 exhibits a compact chart for the overall comparison of the X-lets.
A brief study on X-let using numerical data obtained from experimental results is
mentioned in Sect. 4. The conclusion with the direction of future work is drawn in
Sect. 5.

2 Ten Different X-lets

The ten different X-lets namely ridgelet, curvelet, contourlet, wedgelet, bandlet,
grouplet, surfacelet, shearlet, Gabor wavelet and brushlet are discussed below.

2.1 Ridgelet Transform

The ridgelet transformwas developed byCandes andDonoho [2] in 1999 to break the
limitation of the wavelet transform in the higher dimension. The ridgelet analysis is
related to the theory of approximation-based superposition of the ridge functions [2].
Reviewing the fundamentals and flowgraph of the ridgelet transform presented by
Starck et al. [3], it canbe concluded that the ridgelet transformcan resolve the problem
of sparse approximation of smooth objects with straight edges. Unfortunately, in
practice, the edges of the images are typically curved instead of being straight.
Therefore, to study the curve singularities, one probable solution is to segregate the
image into a number of sub-images and then apply the ridgelet transform individually
to the sub-images as discussed by Donoho and Duncan [4, Fig. 2].

2.2 Curvelet Transform

The curvelet transformwas pioneered by Candes and Donoho [5] as a newmultiscale
directional transform.This transform in twodimensions (2D) provides nearly optimal
sparse representation of objects having singularities along smooth curves. The first
generation of the curvelet was developed in the continuous domain by multiscale
filtering and “embedded” ridgelet transform. Unfortunately, the redundancy and the
slow nature of the first generation curvelet motivated researchers to develop the
second generation curvelet transform [5, 6] which is determined by the frequency
partitioning technique without the use of the ridgelet transform, thereby making it a
more robust and fast image analysis tool.
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2.3 Contourlet Transform

Do andVetterli [1] reported a double filter bank-based transform called the contourlet
transform for obtaining sparse representation of images. This tool provides a variable
multiresolution and directional decomposition of images. In the pyramidal filter bank
[1, Fig. 7], the first stage is the multiscale decomposition by the Laplacian pyramid
(LP) followed by directional decomposition by two-dimensional directional filter
bank (2DDFB). The LP captures the point discontinuities and directional filter bank
(DFB) links, the point discontinuities into linear structures or contour segments. The
LP decomposition generates a bandpass image. This bandpass image so produced is
free from “scrambled” frequencies which are associated with wavelet filter.

2.4 Wedgelet, Bandlet and Grouplet Transform

The role and the limitation of the X-lets in resolving the complex image boundaries
with typical shapes and conditions have been discussed below with the flowchart
given in Fig. 1, where α is the geometrical regularity determining factor. It is known
that the geometrically regular functions can be described as a piecewise Cα-regular
functions (α times continuously differentiable) outside a set of regular edges. But the
curvelet transform has the optimal image representation for only α = 2. In practice,
the images have irregular geometry with either α < 2 or α > 2 [7]. Therefore, when
the question of regularity along the singularities of a surface arises, the failure of the
curvelet transform is overcome by a novel approximate scheme called the wedgelet
[8]. According to Yang et al. [7], the wedgelet divides the support of the image in
dyadic adapted squares. But this approach is suitable for edges without blur and
simple geometry images. Therefore, the quest for better X-let continues and one
such approximation-based adaptive technique called the bandlet was introduced by
Pennec and Mallat [9]. It can suitably capture the geometric regularity along the
edges in an image by implementing an adaptive approximation of the image geometry
when α is unknown and can fruitfully represent images because each bandlet atom
is represented by a geometric flow showing the directions of regular variations of
the gray level [7]. The geometry of the bandlet is suitable for analyzing geometrical
regular images. But the key drawback of bandlet is that it cannot faithfully represent
the complex geometry of textures as that of a wooden fiber. Thus, the researchers
came up with another novel approach called the grouplet [10, 7] based on the Gestalt
theory [11]. It suggests the recursive use of a set of grouping laws which help to
model the edges of images with long range of monotonic turbulent geometry, e.g.,
wooden texture.
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Fig. 1 Flowchart for finding
the geometrical regularity of
images under different
constraints
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2.5 Surfacelet Transform

The DFB was introduced by Bamberger and Smith in the year 1992 [12]. Lu and Do
[13] proposed the extension of 2DDFB to higher dimensions resulting in a new type
of filter banks called three-dimensional directional filter bank (3DDFB)which retains
the wonderful capacity of directional decomposition of 3D (three dimensional) sig-
nals. The 3DDFB, when combined with the LP, gives rise to the 3D surfacelet or
surface transform. The block diagram representation of the surfacelet transform is
presented by Lu and Do [14]. The surfacelet bears close resemblance with another
transform called dual-tree wavelet transform (DTWT). The redundancy ratio in three
dimensions is almost the same for both the surfacelet and DTWT. But the advantage
of surfacelet over DTWT is that its angular resolution can be refined to a very high
level just by raising the number of decomposition levels.

2.6 Shearlet Transform

Shearlet introduced by Labate et al. [15] is a new class of multidimensional image
representation tool. It is popular due to its ability to represent bivariate functions
sparsely. So far various directional transforms like curvelets, contourlets and sur-
facelets have been addressed for edge representation of images. But none of the
X-lets provides a unified treatment of both the continuous and digital setting [16].
This major drawback of these multiresolution methods is overcome by the shear-
let due to its uniting capacity of the continuous and digital domain [16]. Another
interesting feature of the shearlet is the easy fitting in the framework of affine like
systems. Shearlets are basically functions with orientation. The orientation of this
function or waveform can be regulated by a parameter called shear parameter. These
can be obtained by using dilation, translation and shear transformation of a given
function.

2.7 Gabor Wavelet

In image processing, the octave-based decomposition of the Fourier plane by the
wavelet transform results in a poor angular resolution. But the wavelet packets can
decompose the Fourier plane optimally at the cost of the four symmetrical peaks in
the frequency plane [17]. Thus, it is difficult to selectively tune and trace a unique
frequency. Directionally oriented filter banks, steerable pyramid resolve the random
partitioning of the Fourier plane. In this context, the role of Gabor filter needs men-
tioning. A Gabor filter [18] resembles a wavelet filter bank where an individual filter
produces an estimate of the local frequency content. This Gabor filter is a local band-
pass filter with joint localization of the spatial and frequency domain. The remarkable
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feature of Gabor wavelet is that the Gabor basis is not only frequency tunable but
also orientation selective. The Gabor wavelets designed in close analogy to visual
cortical cells of themammalian brain helps to decompose a given image intomultiple
scales and multiple orientations too.

2.8 Brushlet Transform

It is understood from theGabor filter that the computation load increases abruptly due
to the convolution of the original image with so many filters of the bulky Gabor filter
bank. Therefore, for better angular resolution,Meyer and Coifman [17] expanded the
Fourier plane into windowed Fourier bases to develop a new X-let called brushlet.
This is a well-localized complex-valued function bearing a unique peak in frequency
domain. Being a complex-valued function, it is associated with a phase giving the
knowledge of orientation of the X-let. The size and the location of the brushlets can
be adaptively selected in order to obtain the most precise representation of an image
in terms of oriented features with all possible directions and low computation load
as compared to Gabor filters.

3 Comparison of X-lets

The comparison of the X-lets is provided in Table 1.

4 Short Study on X-lets Using Experimental Results

There are numerous applications which experiment with X-lets. Some of the appli-
cations are (i) mammogram denoising using X-let [19, 20]; (ii) wavelet and curvelet
based on soft, hard and block thresholding techniques for noise filtration of mam-
mograms [21]. Here, a short study is presented on the numerical data obtained from
[21].

The mammograms with Salt and Pepper, Speckle, Poisson, Gaussian noise are
denoised by wavelet and curvelet with an intention to exploit the role of underlying
soft, hard and block thresholding techniques. The thresholding technique already
discussed in [21] refers to either the preservation or elimination of wavelet/curvelet
coefficient generated during the implementation of wavelet/curvelet transform to the
mammogram image. The average signal to noise ratio (SNR) obtained by imple-
menting soft, hard and block thresholding techniques using wavelet and curvelet
transforms to mammograms with different noises are compared in Fig. 2. When the
performance of the three thresholding techniques is compared, ignoring the type of
transform, block thresholding technique provides a promising result for all noises
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Table 1 Comparison of X-lets

X-let Significant
characteristics

Merits Demerits Selected
applications

Ridgelet Optimal
representation of
straight-line
singularities

Better than
wavelet in
attaining low
mean square
error while
representing
smooth
functions and
straight edges

Not suitable for
representing
images with
curves and
texture

Space weather
monitoring,
characterization
of
nano-structures
taken by
scanning
tunneling
microscope

Curvelet Localized in
position, scale
and orientation

Better than
wavelet and
ridgelet in image
compression and
denoising

Higher
computational
cost than the
wavelet
transform
especially in
higher
dimension

Fluid mechanics,
Solving of
partial
differential
equations

Contourlet Direct
determination of
contourlet
transforms on
rectangular grid
and compactly
supported frame

Better than
curvelet since
immune to
quantization
noise and noise
due to
thresholding
effect

Implicit
oversampling by
LP

CBIR, Image
representation,
denoising and
compression

Wedgelet Sub-band
decomposition
of the original
image followed
by the use of the
prediction and
update operator

Better than
wavelet in
representing the
linear features of
an image

Application
limited to the
horizon class
image, i.e.,
binary image
with single edge

Image
enhancement
and denoising

Bandlet Specialized in
capturing
geometric
regularity along
the edges of an
image

Better than
curvelet and
wedgelet in
representing the
edges of images
having complex
geometry like
boiling water
image

Unfaithful
representation of
the complex
geometry of
textures

Image
compression,
restoration and
denoising

(continued)
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Table 1 (continued)

X-let Significant
characteristics

Merits Demerits Selected
applications

Grouplet The length and
width of the
individual atom
can be
modulated to
match the
different types of
geometrical
structures of
natural images

Better than
curvelet, bandlet
and wedgelet in
representing the
long range
regularity of fine
elongated
structures like
hair texture

Difficult to
adjust the
complexity of
the association
fields for coding
it with less
number of bits
for getting
satisfactory
compression
result

Image in
painting, texture
analysis

Surfacelet Capture and
represent the
signal
singularities
lying on smooth
surfaces noticed
in 3D medical
and video
images

Better than dual
tree wavelet
transform due to
high degree of
angular
resolution
caused by
increasing
number of
decomposition
levels

High redundancy
of surfacelet is
reduced in the
higher
dimensions

Processing of
multidimen-
sional
volumetric data
like seismic
imaging and
video clips,
denoising of
video signals

Shearlet Sparse
representation of
bivariate
functions

Better than
classical wavelet
because it gives
information
regarding the
directionality
within the image

Being associated
with scaling and
translation
parameter it
cannot detect
directionality
like conventional
wavelet
transform

Representation
of signal at
higher
dimension

Gabor Wavelet Multiple scale
and orientation
decomposition
of an image

Gabor basis is
frequency
tunable and
orientation
selective

Difficult to
reconstruct the
Gabor wavelets
by linear
superposition
due to the
unavailability of
orthonormal
bases

Bio-metric
application like
iris
identification,
face recognition

Brushlet Localized
complex
function with
one peak in the
frequency
domain

Feature retrieval
rate better than
Gabor wavelets
due to less
computation

Though this
X-let is based on
adaptive
representation
but its
construction is
hard to
implement

Texture
segmentation,
retrieval and
classification



Advanced Wavelet Transform for Image Processing—A Survey 193

Fig. 2 Comparison of mean
SNR found using soft, hard
and block thresholding
techniques based on wavelet
and curvelet transforms [21]
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except Poisson noise. Hard thresholding gives satisfactory result for Poisson noise.
When the overall denoising performance is the primary issue, curvelet outperforms
wavelet.

5 Conclusion

The primary goal of understanding the significance and classification of X-let has
been consistently presented in this paper. This paper describes the shortcomings of
an X-let and its gradual development. One observation about the X-lets is that despite
sharing a common structure or a similar function, they are very much application
specific. And this paper gives us an idea of the applicability of the different members
of the X-let family for various image processing purposes. The several less explored
areas like the implementation of curvelet transform in seismic imaging or the upcon-
version of ordinary television image into high definition image using bandlet can be
the directions of the future work.
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