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Preface

“Queen: O Hamlet, thou hast cleft my heart in twain.
Hamlet: Oh, throw away the worser half, and live a purer life 
with the other!”

(William Shakespeare: Hamlet: Act 3; scene-4)

The numbers of diseases in which detrimental oxidation processes play aggravating 
roles have grown steadily over the past two decades. Among the diseases, oxidant-
induced lung diseases are the most prevalent in humans.

“Oxidative stress” indicates a disturbance in the pro-oxidant/antioxidant balance 
and swings it in favour of the pro-oxidants, leading to potential damage to various 
components of cells and tissues. The novel roles of oxidants and antioxidants as 
mediators in signalling cascades have opened new areas of active research. This 
book provides chapters with evidence for crucial roles of oxidants and antioxidants 
in regulating different types of lung diseases.

This book focuses on some new strategies of antioxidant defence counting new 
pharmacologically active agents, presents current knowledge of known agents, and 
provides possible therapeutics of different lung diseases. It is hoped that the book 
will serve as a potential stimulus for further research.

Considering the progression of a plethora of research in this area, it is possible 
that some of the propositions made by the contributors may eventually turn out to 
be otherwise. A Harvard biochemist once said to his graduate students that “half of 
what we taught is probably wrong, but at this stage, we do not know which half”. 
Gottfried Schatz (former Secretary General of EMBO, former President of Swiss 
Science and Technology Council, and former Editor of The FEBS Letters) once said 
that “the uncertainty of scientific knowledge is not weakness, but strength. The sci-
entific vision of the world has dynamic stability. It is not chained to facts, but in a 
way of looking at them. Most institutions demand absolute faith, but science makes 
scepticism a virtue. Scientists see the world as it is and not as they want it to be”.

This book is an outcome of enthusiasm of various renowned experts in their rel-
evant research areas and contains four subdivisions. Part 1 describes the general 
aspects of reactive oxygen species-mediated lung diseases; Part II enumerates 
chronic lung diseases like asthma, COPD, inflammatory lung diseases, and lung 
fibrosis; Part III provides notable information on respiratory syncytial virus (RSV)-
induced lung diseases and different aspects of lung cancer; and Part IV deals with 
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prevention and therapeutics. Each chapter in this book raises many questions that 
need to be addressed for finding appropriate solutions in the area of oxidant-induced 
lung diseases.

We are greatly indebted to all contributors for their considerable energy, time, 
and effort to accomplish a complete chapter with no quid pro quo benefit. We would 
like to thank Mr. Lenold Esithor and Dr. Madhurima Kahali (Springer Nature) for 
their cooperation and support during the preparation of the book.

Kalyani, West Bengal, India Sajal Chakraborti

Preface
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About the Book

This book is intended to provide multidisciplinary approach demonstrating cellular 
and molecular mechanisms associated with ROS-induced initiation and progression 
of a variety of lung diseases such as COPD, emphysema, asthma, cystic fibrosis, 
occupational pulmonary diseases, and importantly lung cancer. The book also cov-
ers translational research on lung diseases and recent research on the prevention and 
therapeutics of different types of lung diseases. Considering the depth and plethora 
of information to be covered, each article of this book are immensely useful for the 
researchers working on understanding the mechanisms associated with different 
types of lung diseases and to identify targets for drug development. With this multi-
disciplinary scope, this book will bridge the gap between fundamental and transla-
tional research with its application in biomedical and pharmaceutical industry, 
making it a thought-provoking reading for basic and applied scientists engaged in 
biomedical research.
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The Effects of Free Radicals 
on Pulmonary Surfactant Lipids 
and Proteins

Mustafa Al-Saiedy, Francis Green, and Matthias Amrein

Abstract
The pulmonary surfactant forms a mixed protein–lipid film at the air–lung inter-
face. It plays a dual role of surface tension reduction and host defense against 
inhaled pathogens. In acute lung injury (ALI) and its more severe form of acute 
respiratory distress syndrome (ARDS), high surface tension throughout the lung 
results in intrapulmonary shunts and edema leading to atelectasis and hypox-
emia. Pulmonary surfactant inhibition is associated with various pulmonary dis-
eases. ALI/ARDS is common (150,000 new cases per year in the United States) 
with mortality ranging from 30% to 60% depending on disease stage. High sur-
face tension can result from an absence of a surfactant film over significant por-
tions of this interface, or from the presence of dysfunctional layer of surfactant. 
Elevated cholesterol levels are shown to be a potent surfactant inhibitor. Oxidative 
damage to both phospholipids and proteins is shown to inhibit surfactant func-
tion. The pulmonary surfactant may be degraded by reactive oxygen and nitrogen 
(RONS) species in the inflamed lung in the presence of physiological cholesterol 
levels. The inhibitory mechanism of oxidative damage on the surfactant film is 
outlined in this chapter. Lipid-sequestering therapies, including cyclodextrins, 
may offer a potential treatment to restore surfactant function and reduce pulmo-
nary inflammation.

Keywords
Pulmonary surfactant dysfunction · Oxidation · Cholesterol · Surfactant protein · 
Phospholipids · Peroxidation · Epoxidation · Peroxynitrites · Cyclodextrins
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1.1  Introduction

The pulmonary surfactant is a protein and lipid mixture, secreted by the epithelium 
into the alveolar lining fluid, which spreads into a surface-active film at the air–lung 
interface. The film reduces surface tension of the air–water interface (about 70 
mN/m) to <1 mN/m [1]. The small airways and the alveoli are unsupported by a 
collagenous scaffold and depend on low surface tension to maintain their structure. 
In inflammatory lung diseases, the film is damaged and collapses before the surface 
tension is sufficiently reduced. This leads to alveolar collapse (atelectasis) and 
reduces the patency of small airways [2], reducing gas exchange in the lung and 
further driving inflammation. Failure of surfactant is ascribed to the effects of exu-
dative plasma proteins and, more importantly, the damage to surfactant lipids and 
proteins in the oxidative milieu of the inflamed lung [3, 4].

In this chapter, we review the structure–function relationship of surfactant and 
how pathological changes in surfactant composition and oxidative damage cause 
dysfunction. We list the susceptibility to oxidation for the relevant classes of surfac-
tant lipids and the surfactant-specific proteins. We discuss the implications of a 
recent observation that the oxidative damage of the film is cholesterol dependent in 
the context of treatment options for surfactant dysfunction.

1.2  The Function–Structure Relationship of the Pulmonary 
Surfactant

For a film of molecular dimensions, pulmonary surfactant (PS) is exceptionally 
strong, a function that depends on its unique composition and structure. The pulmo-
nary surfactant consists of 75–90% (by weight) phospholipids, with a large propor-
tion (~30–45%) being 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) [5–7] 
(i.e., both acyl chains of this lipid contain no double bonds), whereas mono- and 
polyunsaturated phospholipids account for the remaining 50–60%. Polyunsaturated 
species are reported as >10% of total surfactant phospholipids [8, 9]. Neutral lipids, 
primarily cholesterol, are 2–10% of pulmonary surfactant by weight. PS also con-
tains four surfactant-associated proteins – SP-A, SP-B, SP-C, and SP-D [8]. There 
are two forms of surfactant aggregates, a highly surface-active form, referred to as 
the large aggregates, which is enriched in the hydrophilic protein SP-A and hydro-
phobic proteins SP-B and SP-C, and inactivated form referred to as the small aggre-
gates. SP-A and SP-D’s main functions are innate host defense, whereas SP-C and 
SP-B are required for the surface-tension lowering property of surfactant [1, 10, 11]. 
The complex mixture of the surfactant film, which includes a high proportion of 
DPPC, is thought necessary for the surfactant system to achieve low minimum sur-
face tension during the film compression occurring at expiration. Additionally, it 
appears that the surfactant film requires unsaturated phospholipids to act as lique-
fiers for efficient surface adsorption and reinsertion of material during film expan-
sion during inspiration [12].

M. Al-Saiedy et al.
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Surfactant function has been studied in situ, in the lung, and fluctuates during the 
breathing cycle between about 10 mN/m and 0 [13, 14]. The early work on surfac-
tant function and stability showed the surfactant film in a functional state in lipid 
monolayer and multilayer regions at the air–lung interface. This structure can be 
reproduced in vitro to study the structure–function relationship in details [1, 15].

To assess surfactant function in vitro, captive bubble surfactometer (CBS) may 
be used. CBS comes close to mimicking lung function as determined in vivo from 
pressure–volume studies [16, 17]. The CBS resembles near-physiological condi-
tions and includes temperature (37 °C), dynamic cycling rates (20 cycles/min), and 
interfacial adsorption from minute volumes of concentrated (27 mg/mL) surfactant 
containing dense aggregates [18]. Surfactant film functional assessment begins with 
measurements of film formation, indicated by the fall of surface tension upon sur-
factant spreading. Subsequently, the measurement of surface tension upon dynamic 
compression–expansion cycling is performed. The minimal surface tension (MST) 
reached during film compression is the primary indicator of surfactant function in 
this test. The amount of area reduction required to reach MST is another indicator 
of function. Surfactants tested to date include a clinically used, animal-derived sur-
factant, such as bovine lipid extract surfactant (BLES) that contains both hydropho-
bic surfactant proteins and the lipids, surfactants extracted from bronchoalveolar 
lavage (BAL) of animal models of health and disease, as well as patient 
surfactants.

To study the structure–function relationship, surfactants may be spread to the 
air–water interphase of a Langmuir trough, surface tension lowered by adjusting the 
film area, the film lifted off the surface by the Langmuir–Blodgett technique and 
imaged in an atomic force microscope. These studies show that the lipids of the 
surfactant accumulate in the interface with the hydrophilic head groups exposed to 
the water and the hydrophilic tail groups stretched out toward the air in a tightly 
packed film. Functional surfactant, in addition to this monomolecular lipid film, 
shows multilayered regions scattered over the surface. The multilayer regions of the 
film are 5  nm or multiples thereof high, consistent with lipid bilayer stacks. By 
comparing the structure of functional (Fig. 1.1c–e) and dysfunctional surfactants 
([1, 16, 19], Fig. 1.2) as well as theoretical considerations ([15], Fig. 1.1f), stacks 
act as reinforcing elements that prevent the film from buckling at low surface ten-
sion. Buckling is the out-of-plane deflection of the film that leads to film collapse 
[1]. The surfactant proteins SP-B and SP-C cross-link the bilayers to the monolayer. 
This attachment is essential (Fig. 1.1b). Otherwise, they would glide over the mono-
layer and have a little mechanical effect (Fig. 1.1c demonstrates cross-linking).

Surfactant-associated proteins B and C (SP-B and SP-C) independently enhance 
film stability and spreading by facilitating the recruitment of saturated and unsatu-
rated phospholipids into the expanding film (Fig. 1.1e [20]). The positive charges of 
SP-B and SP-C proteins are essential for their activity. The positive charge allows 
for interactions with PG and other anionic surfactant phospholipids, critical to film 
adsorption. Additionally, SP-B and SP-C are essential for the formation of tubular 
myelin, the tubular meshwork the surfactant unfolds into upon release from the type 
II cells. Tubular myelin then promotes the rapid phospholipid insertion into the 

1 The Effects of Free Radicals on Pulmonary Surfactant Lipids and Proteins
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Fig. 1.1 (a) Captive bubble surfactometer. The surfactant is spread at the air–buffer interface of a 
trapped bubble and its size varied while measuring surface tension (surface tension is calculated 
from the shape of the bubble). This procedure reproduces surfactant performance in the lung dur-
ing the breathing cycle [19]. (b) Surface tension during cycles (color coded). Functional surfactant 
drops to a near-zero value upon area reduction, where a dysfunctional surfactant stays at about 
20  mN/m (i.e., the equilibrium surface tension of most lipids). (c) AFM micrograph in three- 
dimensional representation of surfactant (5 μm × 5 μm). The film shows stacks of bilayers. Each 
layer is five nanometers high. (d) AFM topography of the bovine-derived BLES (left) and electri-
cal surface potential of the region (right). SP-C is a strong molecular dipole that gives rise to the 
high surface potential in the lamellae [22]. (e) Lamellae of surfactant are cross-linked to the mono-
layer, whereas lamellae of pure lipid films are not. Films of pure lipids (DPPC, top row) and pul-
monary surfactant (BLES, bottom row) were imaged by AFM (left column). At this point, partially 
collapsed lipid films appear no different from surfactant films. However, lamellae of pure lipids 
can be scraped off from the monolayer in an AFM without trace (top right). Lamellae of surfactant 
cannot be easily scraped off and leave a trace, indicating that monolayer and lamellae are cross- 
linked (bottom right). (f) Surfactant film may fail by buckling (i.e., moving out of plane). 
Computational finite element analysis of the critical buckling load as a function of the coverage of 
the interface by lamellae (the role of multilayer structures in preventing premature surfactant film 
buckling) explains the stabilizing effect of the lamellae. For a film to resist surface tension without 
collapse, about 20% of the area or more needs to be covered by lamellae. The lamellae need to be 
cross-linked to the film. (g) sketch of the cross-linking function of SP-C. Surface tension (arrows) 
excerpts lateral pressure on the film. The film withstands the pressure. The multilayers locally 
distribute the load (symbolized by springs) and prevent buckling

M. Al-Saiedy et al.
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air–liquid interface, regulating the molecular ordering of the film, and the formation 
of multilayer structures (Fig. 1.1g) [21].

1.3  Diseases That Are Associated with Surfactant 
Dysfunction

Pulmonary surfactant function is impaired in acute respiratory distress syndrome 
(ARDS), impacting lung health and survival. With up to 34 cases per 100,000 popu-
lation per year [16], ARDS is common and constitutes a high burden for the health-
care system and society with a cost of well over $100,000 per patient in Canada for 
acute care, for example. In ARDS, a defect in pulmonary surfactant leads to high 
surface tension, causing alveolar collapse, intrapulmonary shunts, and edema lead-
ing to hypoxemia, a dominant factor in the morbidity and high mortality. Direct 
respiratory failure accounts for about 15% of deaths [23]. In addition, mechanical 
stress between overinflated and collapsed lung regions strongly amplifies local and 
systemic inflammation and may help explain the high incidence of multi-organ dys-
function (MODS). ARDS with MODS has much higher mortality, up to 80% [23]. 
Surfactant dysfunction as a major pathogenic factor for ARDS has not been treat-
able to date [23–27].

Bronchiolitis associated with cystic fibrosis (CF) is characterized by inflamma-
tion in the distal airways and impaired surfactant function [28]. In vitro testing of 
pediatric CF surfactant samples, obtained largely from medium and small airways, 
revealed that the ability of the pulmonary surfactant to maintain patency of a capil-
lary tube was markedly reduced, a finding that may explain obstructed airflow in CF 
[28, 29]. Surfactant dysfunction correlates with the severity of pulmonary impair-
ment as reflected by FEV1.

Other conditions associated with surfactant impairment include pneumonia [30, 
31], non-CF bronchiolitis [28], ventilator-induced lung injury (VILI) [32], common 
complication of mechanical ventilation [7], asthma [33], chronic obstructive pulmo-
nary disease (COPD [33]), neonatal respiratory distress syndrome due to meconium 
aspiration [34], and Niemann–Pick disease [35].

1.4  Mechanisms of Surfactant Inhibition

Surfactant inhibition refers to the processes that reduce or abolish surfactant surface 
activity. These processes interfere with surfactant unfolding and adsorption, and 
film formation interferes with film compression and its ability to reach low surface 
tensions, or affect surfactant film respreading during expansion [8]. In neonates, 
however, Avery has shown that impaired lung function in neonatal respiratory dis-
tress syndrome (NRDS) is caused by a lack of pulmonary surfactant [36]. This led 
to the well-established and successful treatment by intratracheal administration of 
exogenous surfactant. ARDS, on the other hand, is associated with dysfunction, 
rather than lack of surfactant. According to the standard model, exudative proteins 
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and/or other surface-active substances adsorb to the air–lung interface. High surface 
tension would then result from an absence of a surfactant film over significant por-
tions of this interface [37]. However, exudative proteins are readily displaced by 
surfactant at the interface and do not result in lasting inhibition [8, 38], and high 
surface tension is best attributed to impairment of the film itself [26, 39]. Small 
amphiphilic molecules such as cholesterol, lysolipids, and free fatty acids in the 
surfactant film may render it dysfunctional [1, 32, 38]. The detrimental effect of 
surfactant proteins and lipid oxidation by reactive oxygen species (ROS) produced 
in the inflamed lung in high levels also falls into this category [2, 18].

1.5  The Combined Role of Oxidation and Cholesterol 
in Surfactant Inhibition

The oxidative milieu of the inflamed lung leads to oxidation that renders the surfac-
tant dysfunctional. Surfactant degradation by reactive oxygen species (ROS) is well 
established and explained by the influx of inflammatory cells in the injured lung, 
direct and indirect environmental insults to the lung [2, 40, 41]. Free radicals have 
been implicated in the pathology of pulmonary disease: asthma, bronchiolitis, cystic 
fibrosis [28, 44], acute respiratory distress syndrome, chronic obstructive pulmo-
nary disease [42, 43], and acute lung injury [32].

Free radicals are continuously formed in the human body [45]. Oxidative dam-
age results from an imbalance in oxidant–antioxidant equilibrium. There are (i) 
endogenous and (ii) exogenous sources of radicals in the lung. Endogenous oxi-
dants are mainly formed by enzymatic reactions, such as cyclooxygenase- dependent 
and xanthine oxidase peroxidation, or they are produced and secreted by activated 
inflammatory cells [47], whereas exogenous oxidants (e.g., NO2, O3, and O2) occur 
naturally from direct exposure to environmental gasses and particles [46]. A balance 
between oxidants and antioxidants is vital for function, homeostasis of physiologi-
cal systems. Oxidative damage may originate from the chemical property of oxygen 
to break up into unstable metabolites (radicals). These radicals can then react with 
various biomolecules and inactivate their properties [46, 48].

The oxidative dysfunction of surfactant is strictly dependent on the presence of 
cholesterol, insofar, that its removal reverses surfactant dysfunction for a broad 
range of diseases [15, 18, 28]. Cholesterol may be removed from surfactant by add-
ing methyl-β-cyclodextrin (MβCD) to the aqueous phase when testing surfactant 
in vitro or by delivering this substance by inhalation in mice. This restores the nor-
mal function of the film [32, 49, 50]. The relatively hydrophobic interior of the 
toroid-shaped MβCD molecule can host various hydrophobic molecules, including 
cholesterol. High levels of MβCD can extract notable amounts of cholesterol from 
interfacial surfactant films [30], cell membranes [29], and unilamellar cholesterol/
phospholipid vesicles [30] into water-soluble cholesterol–cyclodextrin complex.

Cholesterol on its own abolishes surfactant function [19] when highly elevated to 
levels, such as published for some incidences in ARDS [50]. Interestingly, for most 
pathologies of surfactant, cholesterol is not elevated to a level that is in and of itself 
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enough to explain dysfunction, and, yet, removal of cholesterol reverses dysfunc-
tion. For these cases, the surfactant oxidation has rendered the surfactant susceptible 
to mildly elevated or even normal levels of cholesterol. In a recent study with pedi-
atric cystic fibrosis, surfactant samples were unable to sustain normal low surface 
tensions in the CBS (CF, 13.54 ± 1.37 mN/m versus 2.50 ± 0.88 mN/m for lung- 
healthy controls) (P < 0.001) [28]. After MβCD treatment, the function for 14/16 
CF and 2/2 NCFB samples was restored [28, 50]. The proportion of cholesterol in 
surfactant was significantly higher in CF (13.00 ± 1.44 wt. %) compared to lung- 
healthy controls (4.96  ±  0.70  wt. %) (P  =  0.008) and non-CF bronchiolitis 
(4.87 ± 0.48 wt. %) (P = 0.017). While elevated, these cholesterol levels are only 
inhibitory in the presence of oxidation [19]. Non-CF bronchiolitis surfactant is dys-
functional too [50]. This surfactant shows normal cholesterol levels (5.6 ± 0.5 wt%), 
and, yet, a function is restored upon treatment by MβCD. Other examples where 
surfactant dysfunction was reversible by MβCD despite only moderately increased 
cholesterol are a murine model of acute lung injury as well as a murine model 
ventilator-induced lung injury, where Vockeroth et al. showed that surfactant inhibi-
tion could be reversed by methyl-β-cyclodextrin (MβCD) treatment in vitro, despite 
only a relatively moderate increase in surfactant cholesterol [7, 50].

Another strict correlation relates to film architecture in health and disease. 
Functional surfactant exhibits well-defined lipid bilayer stacks on a smooth lipid 
monolayer. Dysfunctional surfactant forms either no- or ill-formed stacks on a 
rough monolayer. Removal of cholesterol from such films always restores the nor-
mal structure. For films containing 20% cholesterol, the surface tension is not 
reduced much below the equilibrium value, no matter how large the area reduction 
(Fig. 1.1b right). For these dysfunctional films, the reinforcing lamellar structures 
are absent [1]. When now methyl-β-cyclodextrin (MβCD) is added to the aqueous 
phase, the normal function and the normal structure of the film are restored [32, 49, 
50]. For a murine model of acute lung injury, a dysfunctional surfactant film showed 
ill-formed multilayers. There too, treatment with MβCD restored both the normal 
function and structure of the surfactant (Fig. 1.2e, f) [10, 50].

1.6  Oxidative Stress and Surfactant Inhibition

1.6.1  The Role of Oxidation on Surfactant Proteins

There are many potential inhibitory mechanisms for surfactant function in acute 
lung injury [18, 19]. These include lipid peroxidation of mono- and polyunsaturated 
fatty acids [20], denaturation of surfactant apoproteins [21, 22], protein cross- 
linking and inhibition, [23] and alterations in surfactant recycling [24]. Several pro-
teins have been shown to inhibit the activity of pulmonary surfactant, particularly 
serum proteins, such as fibrin and its associated degradation products which are 
found in high concentration in the lungs of patients with ARDS [5–7, 25]. Studies 
with SP-A and other soluble proteins suggest that methionine and tryptophan oxida-
tion can occur [42] and that proteins are preferred targets in protein surfactant 
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Fig. 1.2 (a) Minimum surface tensions during compression–expansion cycles of BLES and oxi-
dized BLES with 0%, 5%, or 10% w/w added cholesterol (∗p < 0.5, ∗∗∗p < 0.001). Both oxidation 
and cholesterol need to be present to cause the surfactant to fail. (b) Oxidative damage is caused 
by either reactive oxygen species (ROS) or reactive nitrogen species (RNS). Upon analyzing the 
effect of oxidation on saturated phospholipids (DPPC), monounsaturated (POPC) and polyunsatu-
rated phospholipids, only the latter leads to surfactant dysfunction in the presence of physiological 
cholesterol levels [5]. (c) Murine model of ALI (acid injury), lung function. Mean values (±SE) for 
elastance (H) and peripheral oxygen saturation are plotted against time in saline-exposed C57BL/6 
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Fig. 1.2 (continued) (n = 6), baseline C57BL/6 (n = 6), and acid-exposed C57BL/6 (n = 7) mice. 
(d) Differential cell count percentage on BAL cytospin films for the ALI model. Enhanced neutro-
phils correlate with impaired lung function (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001). (e) AFM topog-
raphy of the ALI mouse model (20 μm × 20 μm). Being untreated, this dysfunctional surfactant 
showed an abnormal film structure with multilayers and monolayer regions both showing large and 
small extrusions of lipids. (f) The mouse surfactant after adding MβCD to the aqueous phase upon 
which the film was spread. The normal film function and structure were restored [50, 51]

mixtures [43]. Other studies explained the role of SP-A inhibition on SP-B and 
SP-C stability. Thus, it appears likely that ROS and RNS could inhibit surfactant 
adsorption by affecting SP-B and/or SP-C [2, 40].

Hydrophilic SP-A is the most abundant surfactant protein by mass, contributing 
about 50% of total surfactant protein. It is made up of six trimers (octadecamer) 
belonging to the Ca2+=dependent carbohydrate-binding collectin family. SP-A is 
comprised of 248 amino acid residues with a monomeric molecular weight (MW) 
of 26–38  kDa. SP-A contains four domains: a carbohydrate recognition domain 
(CRD), a neck, a collagenous domain, and an amino-terminal domain. The structure 
of SP-A may explain its importance in innate immunity and surfactant stability. It is 
immunologically active, whereby it enhances superoxide production via macro-
phage activation. Additionally, SP-A has been proposed to influence film formation 
and adsorption, compression–expansion cycling surfactant, and film respreading. 
SP-A’s interaction with SP-B, forming SP-A/SP-B complexes at the boundaries of 
condensed DPPC domains, has been shown important in promoting adsorption and 
film stability.

Surfactant-associated protein-B (SP-B) is a hydrophobic protein found in surfac-
tant as a disulfide-dependent dimer of 18 kDa. SP-B deficiency in humans results in 
lethal neonatal respiratory distress syndrome (NRDS), characterized by disorga-
nized surfactant secretory organelles (lamellar bodies) found in type II alveolar cells 
and the absence of lung compliance [52, 53]. SP-B is a member of the saposin-like 
family (SAPLIP) that plays an important role in surfactant stability by interacting 
with the phospholipid bilayers by amphipathic helices. The formation of surface- 
active film requires quick adsorption and film spreading at the air–water interface. 
Furthermore, the pulmonary surfactant film must resist collapse and reach near-zero 
surface tension, during respiration. To achieve low surface tension, the film needs to 
be enriched in saturated phospholipids (DPPC), whereas rapid adsorption requires 
the heterogeneous lipid–protein mixtures [54, 55]. Although SP-B and SP-C influ-
ence the formation and maintenance of the surface film, surfactant-associated pro-
teins lose their functional integrity in the presence of oxidation. Various studies 
showed the production of protein modifications, MDA and HNE, conjugated dienes, 
and carbonyl derivatives [40]. Further, intrinsic fluorescence measurements indi-
cated Fenton (peroxidation reaction), but not HOCl, induced conversion of Trp9 of 
SP-B to hydroxyTrp (OHTrp), kynurenine (Kyn), and N-formylkynurenine (NFKyn) 
[2, 40]. Electrospray ionization mass spectrometry revealed molecular weight 
changes consistent with oxidation of Trp (Fenton) residues and Met (HOCl, Fenton). 
Oxidative modification to Met29 and Met65 (Fenton, HOCl) and to Trp9 (HOCL 
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with OHTrp and NFKyn plus Kyn with Fenton) was confirmed by matrix-assisted 
laser desorption mass spectrometry (MALDI-MS) studies on SP-B tryptic frag-
ments [2].

SP-C is a hydrophobic transmembrane protein. SP-C is a single, alpha-helix, 
bilayer-spanning, confined to the multilayer regions of the surfactant film. The 
human SP-C gene consists of six exons located on the short arm of human chromo-
some 8, and its transcription is regulated by thyroid transcription factor-1 (TTF-1). 
TTF-1 is expressed in type II pneumocytes and was shown to regulate the transcrip-
tional targets of lung maturation and surfactant synthesis. SP-C is synthesized as 
aproprotein and is cleaved into its mature form in the multivesicular bodies by 
removing the C- and N-terminal peptides. Further, SP-C is only expressed by the 
alveolar type II cells postnatally. The deficiency or lack of SP-C leads to severe 
clinical effects. SP-C-deficient mice developed progressive, severe pulmonary dis-
ease associated with epithelial cell dysplasia, acute respiratory distress syndrome 
(ARDS), and monocytic infiltrates in conducting and respiratory airways [20, 56].

In summary, SP-B and SP-C undergo oxidative changes that significantly hinder 
their biophysical properties. The oxidative inhibition of the pulmonary surfactant 
was also related to phospholipid inhibition. The surface activity impairment studies 
found in the reconstituted phospholipid–protein mixtures that both protein and 
unsaturated phospholipid oxidation are both responsible for the impaired activity of 
oxidized surfactants. The oxidative damage to either SP-B or SP-C can hinder sur-
factant function. Damaging surfactant proteins may play a consequential role in 
surfactant inhibition that arises during oxidative stress-related disorders like ALI, 
ARDS, and cystic fibrosis [40].

1.6.1.1  Mechanism of Lipid Peroxidation
Lipid peroxides are present in many pathological conditions [57]. In the lungs, reac-
tive oxygen/nitrogen/species are produced by macrophages, endothelial cells, and 
neutrophils. Reactive radicals are unstable metabolites of oxygen/nitrogen with oxi-
dizing properties. They are responsible for lipid autoxidation in various biological 
processes and are associated with the processes that lead to cell death and tissue 
damage. The degree of tissue injury due to oxidation is dependent on the balance 
between oxidants and antioxidants. Lipid autoxidation does not only increase lipid 
peroxidation levels; it may also form epoxide-containing lipids. Among the targets 
of oxidative damage are phospholipids containing unsaturated fatty acyl and choles-
terol. Lipid autoxidation is a process in which molecular oxygen/nitrogen and phos-
pholipids react via free-radical-mediated chain reaction [57], resulting in the 
formation of lipid epoxidation and/or peroxidation.

Lipid peroxidation pertains to nonenzymatic and autocatalytic autoperoxidation 
process, leading to perpetual breakdown and formation of dioxygen adducts of 
unsaturated lipids and lipid hydroperoxides. The enzymatically driven lipid peroxi-
dation is also evident in biological systems, such as cyclooxygenase-dependent per-
oxidation of arachidonic acid and xanthine oxidase induced. The mechanism of 
lipid peroxidation is well studied, whereby different oxidative mediators are inves-
tigated in various biological processes. Particularly, hydroxyl radicals are shown to 
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be highly reactive with unsaturated fatty acids under oxidative stress. Saturated fatty 
acid chains, such as 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), are 
shown to be more resistant to oxidative modification as they do not contain allylic 
hydrogen atoms. In mono- and polyunsaturated fatty acyl chains, monounsaturated 
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)), 1-palmitoyl- 2-
oleoyl-sn-glycero-3-phosphocholine (POPC), and polyunsaturated (1-palmitoyl- 2-
linoleoyl-sn-glycero-3-phosphocholine (PLPC)), the allylic hydrogen atoms on 
methylene groups adjacent to the double bonds exhibit low hydrogen–carbon (C–H) 
bond energies, whereas bis-allylic hydrogens positioned between two double bonds 
have even lower C–H bond energies. The initiation phase of lipid peroxidation 
begins with the initial hydrogen abstraction and then followed by the introduction 
of molecular oxygen (O2). In polyunsaturated fatty acid (PUFA) chains, the addi-
tion of O2 could occur multiple times to a single acyl chain due to the rearrange-
ments of a peroxyl radical to a new carbon center or due to the presence of other 
bis-allylic hydrogen atoms. The intermediate stage of lipid peroxidation results in 
the formation of additional carbon- or oxygen-centered radicals. Peroxidation inter-
mediate is responsible for perpetuating the damage by radicals. Hydrogen abstrac-
tion by radical groups on the initial α-carbon converts it to a non-radical center. The 
process whereby a single free radical attack damages multiple lipid molecules is 
known as the propagation phase. Termination phase is the final step in lipid peroxi-
dation; this phase is mediated by either increased radical–radical interactions which 
forms non-radical products or antioxidants.

1.6.1.2  The Mechanism of Reactive Nitrogen Species
The pulmonary surfactant is exposed to several insults that alter its molecules: reac-
tive nitrogen and oxygen species (RNOS), peroxidases secreted by activated inflam-
matory cells, and proteases. O∙2− and ∙NO react to form peroxynitrite in the epithelial 
lining fluid [26, 58], which ultimately result in surfactant inhibition as a result of 
lipid peroxidation and damaged surfactant-specific proteins. Exposure of surfactant 
contents to peroxynitrite damages unsaturated phospholipids and small hydropho-
bic surfactant proteins SP-B and SP-C [5, 6]. In vitro studies showed that the addi-
tion of peroxynitrite to clinical surfactant is capable of decreasing the surface 
activity, inducing lipid peroxidation, inducing protein-associated nitrotyrosine, and 
decreasing the function of surfactant proteins, SP-A, SP-B, and SP-C [59].

During edema and inflammation, vasoconstriction is often observed, whereby 
considerable levels of oxidants are produced (O∙2− and H2O2). Superoxide (O∙2−) 
can react with nitric oxide to produce powerful oxidant peroxynitrite (ONOO-), 
which can nitrate lipids and proteins, or is converted into hydrogen peroxide (H2O2) 
under the influence of superoxide dismutase [60].

ONOO- is an important biological oxidant in various oxidation-mediated inflam-
matory lung diseases. ONOO- may indirectly contribute to the generation of ARDS 
by depleting antioxidants and inactivating antiproteases. Although free radicals are 
indiscriminate, PUFA-rich membranes are particularly susceptible [61]. 
Peroxynitrite anions are formed by the rapid reaction of nitric oxide with superox-
ide (k  =  6.7  ×  109  M-1s-1). Additionally, nitric oxide is able to outcompete 
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superoxide dismutase (SOD) for superoxide, resulting in the formation of peroxyni-
trites. The amount and activity of nitric oxide synthase, the activity of downstream 
metabolic enzymes, and the redox balance influence the rate of nitric oxide reac-
tions. ONOO- easily oxidizes biological molecules including proteins, lipids, and 
DNA. Furthermore, ONOO- can modulate various oxidative molecular pathways; it 
can result in irreversible NO-induced modification of proteins and nitrosylate 
amines through nitrosative deamination of DNA bases. Peroxynitrous acid 
(ONOOH) and ONOO- conjugates are also formed in inflamed environment [62]. 
Under favorable conditions, ONOOH can undergo hemolysis, producing hydroxyl 
radicals and nitrogen dioxide (∙NO2). HO∙can diffuse freely through lipid mem-
branes and react with the unsaturated lipid component (Fig. 1.3). This process is 
responsible for surfactant film inhibition.

Additionally, ROS can also form from abnormal oxidative levels. Inflammatory 
cells release peroxynitrite (ONOO−), hypochlorous acid (OCl−), and hydrogen per-
oxides in concentrations that may equal 0.1 mM/min. In the presence of ferrous 
iron, they can induce Fenton chemistry in the epithelial lining fluid [63, 64]. Disease 

Fig. 1.3 Oxidative pathway of RNS-mediated phospholipid damage. This illustrates the molecu-
lar level the three autoxidation stages (initiation, propagation, and termination)
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state is also dependent on the magnitude of the oxidative levels [64]. Protein 
oxidation- mediated surfactant inhibition has also been shown to be a model of sur-
factant dysfunction [41, 65].

There is involvement of ONOO-, NO, and other RNSs in the generation and 
propagation of lung epithelial injury in a variety of pathological conditions [60]. 
First, induction of immune complex alveolitis in rat lungs resulted in significant 
elevation of decomposition products of NO (nitrate and nitrite) and albumin levels 
in the bronchoalveolar lavage, indicating the presence of increased alveolar perme-
ability to solute and suggesting that a surfactant-deficient state may be present [60]. 
Instillation of NG-monomethyl-L-arginine, a specific inhibitor of the oxidative 
L-arginine pathway responsible for the production of NO, resulted in a significant 
diminution of nitrite, nitrate, and alveolar albumin levels, without altering neutro-
phil recruitment in the lung [60]. Second, exposure of rats to 5 and 10 ppm NO 
resulted in a significant degree of lung injury and alteration in the physiological 
function of SP-A [66]. Third, peroxynitrite inactivated αl-proteinase (αl-PI) inhibi-
tor, the most abundant extracellular antiprotease in the epithelial lining fluid, by 
oxidizing the methionine residue of this peptide [60, 67]. Inactivation of α1-PI may 
render the alveolar epithelium susceptible to neutrophil-induced injury [60]. Since 
alveolar macrophages remain activated for several hours, peroxynitrite levels may 
continue to rise. This may explain the lack of clinical response to exogenous surfac-
tant replacement therapy observed in patients with ALI and ARDS. These patients 
suffer from an inflammatory response and increased reactive radical species released 
by the alveolar macrophages, leading to oxidizing exogenous surfactant and damag-
ing its function.

1.6.1.3  Epoxide-Mediated Surfactant Inhibition
It is known that oxidative stress results in degradation and loss of function of bio-
logical membranes. Direct cellular damage of lipid moiety due to lipid peroxide 
accumulation on both alveolar surfaces and lung parenchymal tissues has been 
shown in various studies. Epoxides are cyclic ether with a three-atom ring. Normally, 
the strained ring and polarized carbon–oxygen bond are responsible for the high 
reactivity of epoxides [68, 69]. However, nonactivated aliphatic epoxides are rela-
tively stable under physiological conditions. Epoxidation of unsaturated phospho-
lipids begins with the abstraction of allylic hydrogen from unsaturated fatty acid 
tails. The peroxy radical introduction to neighboring unsaturated fatty acids is then 
followed by rapid rearrangement of fatty acids. Subsequently, the O–O bond is bro-
ken, and the nucleophilic π bond donates its electrons to the oxygen, forming the 
new carbonyl bond. The electrons from the old O–H bond make up the second new 
C–O bond, whereas the protons are picked up by the original carbonyl group. This 
oxidative reaction produces transient radical center that is able to attack the adjacent 
double bond and/or decompose to form epoxides (Fig. 1.4). During peroxide and 
epoxide transition, alkoxy intermediate formation plays a significant role in the con-
version process, as they act as hemolytic scission products of organic nitrates and 
peroxides. Alkoxy intermediates also play a role in autoxidation processes. In vitro 
olefin epoxidation may be accomplished by transition metal catalysis or peracidic 
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acids. Peracidic acids have an extra oxygen atom between the acidic hydrogen and 
their carbonyl group, forming an electrophilic carbon center at the oxygen-rich 
zone. This proton transfer process is the product of an electrophilic attack from the 
epoxide oxygen to the carboxylic acid by-product.

The role of epoxides in pulmonary surfactant damage has been studied to a lesser 
extent. Here we outline the underlying mechanism of epoxide-mediated surfactant 
dysfunction. Various studies had emphasized the role of hydrogen peroxide on sur-
factant dysfunction; however, based on mass spectrometry (MS) studies of oxidized 
pulmonary surfactant, epoxides appear to play a role in surfactant pathophysiology. 
It is important to mention that MS bears certain limitations. The challenge with MS 
lies with distinguishing between two similar mass-to-charge (m/z) species.

Saturated fatty lipids are resistant to oxidative damage, that is, dipalmitoylphos-
phatidylcholine (DPPC). However, the monounsaturated (POPC) and polyunsatu-
rated (PLPC) (m/z 794.55, m/z 792.53, m/z 828.51, and m/z 844.50, respectively) 
phospholipids indicate the presence of an oxidative process (Fig. 1.5). Furthermore, 
the polyunsaturated phospholipids expressed a variety of oxidative species in their 
fatty acyl tails. This is due to the degree of available weak allylic hydrogen suscep-
tible to radical attack. The function of pulmonary surfactant is disrupted by 
Prilezhaev chemistry exposure, producing pure epoxides into the hydrocarbon 
chain. However, in vitro studies showed that the introduction of epoxidation into 
BLES in the absence of cholesterol does not result in film inactivation [51].

Fig. 1.4 Free radical-mediated phospholipid oxidative reaction. This illustrates at the molecular 
level the three stages of autoxidation (initiation, propagation, and termination)
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Fig. 1.5 Mass spectra of 
oxidized phospholipids. (a) 
Saturated (DPPC), (b) 
monounsaturated (POPC), 
and (c) polyunsaturated 
(PLPC) phospholipids. 
These mass spectra 
illustrate whether or not 
oxidation was introduced 
into the investigated 
samples as a result of the 
Fenton chemistry

1 The Effects of Free Radicals on Pulmonary Surfactant Lipids and Proteins



18

To appreciate this difficulty of identifying the exact molecule, Fig. 1.6 is an illus-
tration of PLPC, epoxy PLPC, and hydroperoxy PLPC. The difference between two 
epoxide rings and one hydroperoxide group attached to the hydrocarbon tail is 
1 m/z. The mass difference is rather small between the two species, causing difficul-
ties in accurate molecular identification.

Lipid epoxides mediate surfactant dysfunction. Some observations indicate that 
phospholipid peroxidation in lung tissues may be the origin of lipid epoxides [70]. 
Despite the origin, lipid epoxides appear to be traceable products of lipid peroxida-
tion. In this chapter, we have discussed importance of cholesterol in mediating the 
inhibition of oxidized pulmonary surfactant. However, further investigation of the 
inhibitory mechanism of oxidized cholesterol on the pulmonary surfactant system is 
imperative, as it may provide stronger evidence of the importance of direct phos-
pholipid oxidation in surfactant inhibition.

1.7  Conclusion

This chapter explains the detrimental role of oxidative environments on the molecu-
lar alteration of surfactant, leading to reduced surface activity at normal cholesterol 
levels. The modification of surfactant mono- and polyunsaturated phospholipid con-
stituents yields in measurable changes to surfactant film molecular architecture.

The molecular mechanism of surfactant inhibition indicated in this chapter is 
relevant to disease. Studies where oxidized surfactants are instilled into animal 
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models have shown good associations between in vivo activity and in vitro perfor-
mance. The combination of oxidation and normal cholesterol levels abolishes the 
essential biophysical aspect of surfactant, that is, the ability to reduce the minimum 
surface tension. With the increased knowledge of pulmonary surfactant inhibition, 
several avenues may be used to repair impaired surfactant system. In ALI, CF, and 
ARDS, elevated cholesterol levels can explain the dysfunction on its own [51]. 
Therefore, reducing cholesterol levels in the surfactant film may be a possible thera-
peutic target. Identifying viable treatments for pulmonary surfactant dysfunction 
remains to be an ongoing field of research.

The mechanism of surfactant inhibition differs in respiratory distress syndrome 
(NRDS) in premature infants and acute respiratory distress syndrome (ARDS). 
NRDS is caused by a lack of pulmonary surfactant which is successfully treated by 
intratracheal administration of exogenous surfactant [25], whereas in ARDS the 
surfactant is damaged but is not lacking; therefore, replacement surfactant therapy 
in ARDS has led to improved oxygenation and increased lung compliance in some 
clinical trials, but these effects have been transient [25, 71]. None of the many con-
trolled double-blind studies was successful. It is important that surfactant research 
continues, as improved patient outcome still appears to hinge on a functioning sur-
factant. Although surfactant replacement therapy may be the wrong approach as it 
addresses a deactivation mechanism that might not be relevant, various in vitro and 
in vivo experiments show that this type of surfactant deactivation will not likely 
respond to surfactant replacement therapy because damaged surfactant at the air–
water interface is not readily displaced. Moreover, exogenous surfactant may rap-
idly be rendered dysfunctional by the same mechanism that degraded the endogenous 
surfactant [26, 72, 73]. Introduction of exogenous surfactant may also strain the 
catabolic and recycling system of the peripheral lung. Based on the reversibility of 
surfactant dysfunction by MβCD for a broad range of inflammatory lung diseases, 
cholesterol-dependent oxidative surfactant inhibition appears to be a generic inhibi-
tory pathway, applicable to most situations. MβCD may indeed be a potential treat-
ment for surfactant dysfunction in inflammatory lung diseases. Cyclodextrins are 
nontoxic simple sugars and widely used as drug carriers. When inhaled they are 
readily cleared from the lung, leaving the body through renal secretion. Cyclodextrins 
have low toxicity, used as vehicles for delivering many drugs and sequestration of 
toxic compounds [74]. MβCD was used for its ability to efficiently sequester cho-
lesterol. Additionally, MβCD was shown to take up linoleic acid in vitro, an impor-
tant lipid mediator of inflammation in ALI/ARDS, as well as suppress acute 
inflammation in an animal model of ALI [75]. Thus, inhaled cyclodextrins may have 
two important properties for treating acute lung injury: an anti-inflammatory effect 
and the ability to repair dysfunctional surfactant.
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Abstract
Overproduction of oxidants within the lung leads to acute lung injury (ALI) 
which may progress to irreversible lung fibrosis. The sources of oxidants may be 
(1) intrinsic, that is, derived from phagocytic macrophages and neutrophils and 
endothelial and alveolar epithelial cells, or (2) extrinsic, that is, caused by inhaled 
pollutants or high concentrations of oxygen. The complex antioxidant system of 
the body includes reduction–oxidation enzymatic systems, nonenzymatic scav-
engers, and dietary components which balance the concentrations of both anti-
oxidant and oxidant substances with dominance of a reducing state. However, 
decreasing levels of antioxidants and/or increasing levels of oxidants disturb the 
stability of the antioxidant–oxidant system and lead to oxidative lung injury. 
Several groups of therapeutic agents, including N-acetylcysteine, flavonoids, 
corticosteroids, phosphodiesterase inhibitors, etc., appeared to be beneficial in 
the treatment of various forms of experimentally induced ALI where they signifi-
cantly reduced the oxidative damage. This chapter reviews the pathophysiology 
and mechanisms of ALI with respect to oxidative and inflammatory changes and 
critically evaluates perspectives of promising treatments to prevent or to  minimize 
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the oxidative changes in experimental models of ALI reflecting possibilities of 
their use also in the treatment of patients with acutely damaged lung.
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Abbreviations

ALI  acute lung injury
AP-1  activator protein-1
ARDS acute respiratory distress syndrome
BALF bronchoalveolar lavage fluid
cAMP cyclic adenosine monophosphate
CAPE caffeic acid phenethyl ester
CAT  catalase
cGCR cytosolic glucocorticoid receptor
cGMP cyclic guanosine monophosphate
CMV conventional mechanical ventilation
COX-2 cyclooxygenase-2
CXCL chemokine (C-X-C motif) ligand
DAMPs danger-associated molecular patterns
DNA  deoxyribonucleic acid
ET-1  endothelin-1
FiO2  fraction of inspired oxygen
GCs  glucocorticoids
G-CSF granulocyte-colony stimulating factor
GM-CSF granulocyte-macrophage colony-stimulating factor
GRE  glucocorticoid response elements
GSH/GSSG reduced and oxidized states of glutathione
HCl  hydrochloric acid
HFOV high-frequency oscillatory ventilation
HMGB1 high-mobility group box 1 protein
4HNE 4-hydroxy-2-nonenal
HO-1 heme oxygenase-1
HTV  high tidal volume ventilation
ICAM-1 intercellular adhesion molecule-1
IFNγ  interferon γ
IL  interleukin
iNO  inhaled nitric oxide
iNOS inducible NO synthase
LPS  lipopolysaccharide
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LT  leukotriene
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
MDA malondialdehyde
MIP-2 macrophage inflammatory protein-2
MMP matrix metalloproteinase
MODS multiple organ dysfunction syndrome
MPO myeloperoxidase
MSAF meconium-stained amniotic fluid
NAC  N-acetylcysteine
NETs neutrophil extracellular traps
NF-κB nuclear factor kappa B
NO  nitric oxide
8-OH-dG 8-hydroxydeoxyguanosine
PaO2  arterial partial pressure of oxygen
PDE  phosphodiesterase
PMN polymorphonuclears
RAGE receptor for advanced glycation end products
RNS  reactive nitrogen species
ROS  reactive oxygen species
SIRS  systemic inflammatory response syndrome
SNAP S-nitroso-N-acetyl-penicillamine
SOD  superoxide dismutase
SP  surfactant protein
TAP  total antioxidant performance
TAS  total antioxidant status
TBARS thiobarbituric acid reactive substances
TGF-β transforming growth factor-β
TLR  Toll-like receptors
TNF  tumor necrosis factor
TUNEL  terminal deoxynucleotidyl transferase-mediated dUTP nick end 

labeling
VCAM-1 vascular cell adhesion molecule-1
VILI  ventilator-induced lung injury
VT  tidal volume
vWf  von Willebrand factor
W/D ratio wet-dry lung weight ratio

2.1  Introduction

Oxygen is vitally important for human existence. Oxidation processes supply 
energy for biological actions, and free radicals generated in these processes partici-
pate in cell regulation. However, the lung as an organ responsible for uptake and 
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utilization of appropriate quantities of oxygen is highly susceptible to oxidative 
damage. Therefore, it contains very effective system of antioxidants located in the 
cells and in the epithelial lining fluid to minimize detrimental effects of oxidants. 
Under physiological conditions, lung concentrations of antioxidants and oxidants 
are well balanced with dominance of a reducing state. When the ratio between oxi-
dants and antioxidants shifts toward oxidants, oxidative processes result into pro-
tein, lipid, and DNA deterioration [1]. In acute lung injury (ALI), oxidative stress is 
associated with both overproduction of oxidants and malfunction of antioxidant 
systems [2]. As the oxidative damage of the lung tissue significantly contributes to 
pathophysiology of ALI, an intensive research in the preclinical and clinical condi-
tions has to find out treatments which may positively influence changes in the 
injured lung. This chapter reviews inflammatory and oxidative changes in various 
animal models of ALI and points out several treatments which may be potentially 
beneficial in this situation.

2.2  Acute Lung Injury

2.2.1  Definitions, Incidence, and Etiology

Acute lung damage represents a life-threatening situation which can occur in all age 
groups. Diffuse alveolar injury, formation of lung edema, inflammation, and 
ventilation- perfusion mismatch may finally lead to decrease in lung compliance and 
into profound hypoxemia [3].

American–European Consensus Conference in 1994 [4] postulated diagnostic 
criteria for acute respiratory distress syndrome (ARDS) or ALI in patients with 
acute lung damage: (1) acute hypoxemia, defined as a ratio of arterial partial pres-
sure of oxygen (PaO2) and fraction of inspired oxygen (FiO2) – for ARDS, PaO2/
FiO2 is <200 mmHg (26.7 kPa), for ALI, PaO2/FiO2 is between 200 mmHg (26.7 
kPa) and 300 mmHg (40 kPa); (2) bilateral infiltrates on chest X-ray; and (3) no 
increase in pulmonary artery wedge pressure. Newer, so-called Berlin definition 
defined three categories of ARDS according to severity of hypoxemia: mild (PaO2/
FiO2, 200–300 mmHg), moderate (PaO2/FiO2, 100–200 mmHg), and severe (PaO2/
FiO2, less than 100 mmHg) forms of ARDS [5]. The term “acute lung injury” that 
in the older definition expressed the milder form of lung damage was omitted, and 
nowadays it is used for general expression of the situation or for experimental stud-
ies where respiratory insufficiency is induced artificially and other clinically rele-
vant signs except of hypoxemia cannot be determined.

Despite better understanding of the pathophysiology and wider use of lung- 
protective ventilations, incidence of ARDS remains high, about 30–80 cases per 
100,000 population [6].

ALI may develop from direct reasons, for example, in pneumonia, aspiration of 
gastric content, near-drowning, inhalation of toxic gases, etc., or from indirect rea-
sons as an accompanying situation in serious systemic disorder, for example, in 
sepsis, severe trauma, or pancreatitis [3, 7].
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2.2.2  Pathophysiology of ALI/ARDS

The hallmarks of ALI/ARDS pathophysiology include ongoing neutrophil- mediated 
inflammation, excessive transmigration and activation of leukocytes and platelets, 
increased activation of coagulation pathways, and enhanced permeability through 
alveolar–capillary membrane [8]. Changes in ALI/ARDS develop in three stages 
which overlap. The initial or exudative phase (day 1–7) is defined by diffuse alveo-
lar damage of lung epithelium and/or endothelium which is linked with release of 
various factors causing injury and cell death. The loss of integrity of alveolar–capil-
lary barrier leads to flooding of the alveoli with proteinaceous fluid and dilution of 
pulmonary surfactant. These changes result into generation of lung edema, decreased 
lung compliance, and impairment of gas exchange [9]. Damage to the lung tissue is 
associated with massive transmigration of immune cells into impaired lung. 
Activated neutrophils, alveolar macrophages, and fixed lung cells produce vast 
quantities of pro-inflammatory substances, for example, interleukin (IL)-1β, IL-6, 
IL-8, tumor necrosis factor (TNF)α, proteases, and reactive oxygen species (ROS), 
further potentiating the lung tissue injury [9, 10]. Within several days, the exudative 
phase fluently passes to proliferative phase that is characterized by resolution of 
pulmonary edema and regeneration of damaged tissue by proliferation and pheno-
typic changes in type II alveolar cells, myofibroblasts and fibroblasts, and new 
matrix deposition. In the absence of recovery, the situation in some patients may 
progress to a fibrotic stage characterized by diffuse fibrosis and irreversible change 
of lung architecture [9, 11].

In direct lung injury, noxious stimuli hit primarily the lung structures. The com-
plex immune response is activated by linking of microbial products or cell injury–
associated endogenous molecules (danger-associated molecular patterns, DAMPs) 
to pattern recognition receptors (e.g., Toll-like receptors, TLR) on the lung epithe-
lial cells and alveolar macrophages which results in inflammation [8]. As additional 
immune effector mechanisms contributing to the tissue injury, neutrophil extracel-
lular traps (NETs) and extracellular histones have been identified. NETs are formed 
by dying neutrophils that release DNA, histones, and granular proteins (e.g., neutro-
phil elastase and myeloperoxidase). The released histones, major proteins of chro-
mosomes, are highly cytotoxic. They act as DAMPs and further induce epithelial 
and endothelial cell death. After entering the circulation, histones stimulate platelet 
aggregation, promote recruitment of neutrophils, and aggravate systemic inflamma-
tion [12, 13]. The systemic leukocyte activation can progress to systemic inflamma-
tory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), 
and multiple organ failure [15].

If the primary cause of ALI/ARDS is located in other tissues than the lung, lung 
inflammation and edema formation may be triggered by high concentrations of his-
tones to which the lung is highly susceptible [12, 14]. However, many other sub-
stances including pro-inflammatory cytokines TNFα and IL-1β, high-mobility 
group box 1 (HMGB1) protein, or mitochondrial DNA may also act as DAMPs and 
induce the lung inflammation and ALI/ARDS [16].
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However, there are other differences between direct and indirect ALI/ARDS, as 
well. In the direct ALI/ARDS, injury is more localized to alveolar epithelial cells, 
with alveolar collapse; accumulation of polymorphonuclears (PMN), particularly of 
neutrophils; fibrin deposition; hyaline membranes; and alveolar wall edema. In indi-
rect ALI/ARDS, diffuse injury to endothelial cells is more prominent, and typical is 
the finding of interstitial edema and smaller lung accumulation of neutrophils than 
in the direct form. Moreover, in the direct form of ALI/ARDS, concentrations of 
pro-inflammatory cytokines TNFα, IL-1β, IL-6, and IL-8 increase in the bronchoal-
veolar lavage fluid (BALF) or lung tissue homogenates. In the indirect form of ALI/
ARDS, increased levels of these cytokines are detected predominantly in the plasma 
indicating that the lung injury is secondary due to reaction of substances released 
from the extrapulmonary sites of injury into the circulation [17, 18]. Regarding the 
primary injury to epithelial cells in direct ALI/ARDS, surfactant protein (SP)-D has 
been identified as a valuable marker of injury to type II alveolar cells and receptor 
for advanced glycation end products (RAGE) as an indicator of deterioration of type 
I alveolar cells. The damage of endothelial cells and systemic inflammation which 
are more prominent in the indirect ALI/ARDS can be confirmed by increased con-
centrations of von Willebrand factor (vWf), IL-6, IL-8, and angiopoietin-2 in the 
plasma [9, 19].

2.3  Oxidative Stress in Acute Lung Injury

Dysregulated acute inflammatory response in ALI/ARDS is linked with higher level 
of lung oxidative stress due to an overproduction of oxidants and reduced activity of 
antioxidants. In normal situation, lung oxidants and antioxidants are kept in balance 
with little dominance of a reducing state. In pathological situations, such as ALI/
ARDS, increases in oxidants and decreases in antioxidants disrupt the equilibrium 
and lead to oxidative changes. However, the oxidative stress is not responsible only 
for direct lung injury, but it can also influence the control of lung inflammation [20].

Oxidants can be of intrinsic or extrinsic origin. Intrinsically generated oxidants 
can be derived from mitochondria, but mainly from phagocytic cells (recruited neu-
trophils and residential lung macrophages) and from alveolar epithelial and endo-
thelial cells [21]. Exogenous sources of oxidants represent inhaled oxidant gases as 
well as medicinal oxygen in supraphysiological concentrations which is used for 
artificial ventilation of patients with severe ARDS [21].

Reactive oxygen species (ROS – superoxide, hydrogen peroxide, hydroxyl radi-
cals, etc.) are formed in sequential reduction of oxygen (equivalent to sequential 
addition of electrons)[2]. Reactive nitrogen species (RNS), particularly nitric oxide 
(NO) and peroxynitrite, also contribute to pathophysiology of ALI/ARDS. Nitric 
oxide (NO) released in small amounts has important neurotransmitter and regula-
tory functions. However, high concentrations of NO generated due to increased 
activity of inducible NO synthase (iNOS) in inflammation exert deleterious effects 
when combine with superoxide and form highly toxic peroxynitrite [2].
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To counterbalance the detrimental action of free radicals, endogenous antioxi-
dant systems, such as superoxide dismutase (SOD), catalase (CAT), glutathione, 
and glutathione peroxidase, are expressed in high concentrations in the lung lining 
fluids [21]. ROS and RNS cause the injury by several ways: (a) strand breaks and 
point mutations of DNA, (b) peroxidation of lipids and generation of vasoactive and 
pro-inflammatory substances, (c) oxidation of sulfhydryl and other protein groups 
altering the activity of proteins, and (d) alteration of transcription factors nuclear 
factor (NF)-κB and activator protein (AP)-1 resulting in increased expression of 
pro-inflammatory genes [22]. Oxidation and cross-linking of proteins, lipids, DNA, 
and saccharides lead to changes of cellular structures and function, increased vascu-
lar endothelial permeability, and lung edema formation as well as pulmonary epi-
thelial dysfunction with impaired sodium transport and fluid reabsorption from the 
alveoli [2].

There are several possibilities to detect free oxygen and nitrogen species and 
their by-products to evaluate the extent of oxidative changes in the lung [20]. Some 
fluorogenic markers of ROS may be detected in live cells [23]. However, more stud-
ies demonstrate changes in the concentrations of markers of lipoperoxidation, for 
example, thiobarbituric acid reactive substances (TBARS), including malondialde-
hyde (MDA), 4-hydroxy-2-nonenal (4HNE), isoprostanes, etc.; markers of protein 
oxidation, such as nitrotyrosine, dityrosine, lysine–lipoperoxidation products, etc.; 
markers of DNA damage, such as 8-hydroxydeoxyguanosine (8-OH-dG), hydrogen 
peroxide and superoxide products, nitrites/nitrates, etc.; and markers of antioxidant 
status, such as levels of SOD, CAT, reduced (GSH) and oxidized (GSSG) states of 
glutathione, or total antioxidant status (TAS) in the samples of BALF, plasma or 
serum of patients with ARDS or in the BALF, plasma, serum, and lung homoge-
nates of experimental animals with models of ALI. Further information on nitroxide 
free radicals, carbon monoxide, and other markers of oxidative stress can be 
obtained from analysis of expired air or exhaled air condensate [20].

2.4  Animal Models of Acute Lung Injury

Experimental models of ALI/ARDS provide an additional knowledge on the patho-
physiology of respiratory distress and enable to determine effectiveness of novel 
therapeutic approaches [24]. Nevertheless, while in humans the criteria for ARDS 
are well defined, these cannot be completely accepted for animal studies. Official 
American Thoracic Society Workshop has considered for fundamental signs of 
experimental ALI: (1) lung tissue damage verified by histopathological investiga-
tion, (2) increased permeability of alveolar–capillary membrane, (3) acute lung 
inflammation, and (4) deterioration in physiological parameters (lung functions, 
oxygenation, etc.). To estimate whether ALI was successfully induced, at least three 
of the mentioned “signs” need to be identified [25].

When modeling human lung injury, species differences should be considered. 
There are unique species characteristics, that is, differences in innate immune 
response (differences in TLR, mononuclear phagocytic system, NO production, 
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chemokines and chemokine receptors, etc.) and differences in animal size which 
can limit a direct applicability of results obtained from the animal models [24]. 
Furthermore, models of ALI are artificially induced in healthy animals, while ARDS 
often occurs in older patients with concomitant chronic diseases.

According to the primary target, experimental models of ALI can be assorted 
into three groups:

 (a) Models with primary dysfunction of epithelium (i.e., models of direct ALI), 
such as model of surfactant depletion induced by saline lung lavage, model 
induced by intratracheal instillation of lipopolysaccharide (LPS), neonatal 
meconium, or hydrochloric acid, model induced by exposure to hyperoxia or 
mechanical ventilation, etc.

 (b) Models with primary dysfunction of endothelium (i.e., models of indirect ALI), 
such as model induced by intravenous LPS administration or instillation of 
oleic acid.

 (c) Models with dysfunction of both epithelium and endothelium [24, 26].

2.5  Evidence of Lung Damage and Oxidative Stress 
in Animal Models of “Direct ALI”

2.5.1  Model of ALI Induced by Intratracheal LPS/Bacteria

Shortly after instillation of bacterial endotoxin LPS or bacteria into the lung, these 
are recognized by alveolar macrophages via their pattern recognition receptors. 
Identification of pathogenic bacteria initiates an inflammatory response with gen-
eration of pro-inflammatory cytokines (TNFα, IL-1β, etc.) and chemokines, such as 
macrophage inflammatory protein (MIP)-2. These mediators then activate epithelial 
cells to express various TLR receptors including TLR4 and via stimulation of 
NF-κB-dependent pathways to produce additional chemokines attracting neutro-
phils into the lung [27]. Transendothelial migration of PMN into the interstitium 
began 1 h after exposure to LPS and reached a maximum of 12–24 h, while trans-
migration of PMN into the alveoli appeared more than 2 h after LPS, with a maxi-
mum at 24 h [28]. In other studies, aerosolized or intratracheal LPS increased counts 
of neutrophils in BALF and lung tissue, elevated pro-inflammatory cytokines and 
neutrophil chemoattractants, and evoked production of lung edema [29–31]. The 
influx of inflammatory cells after LPS inhalation correlated well with lung function 
impairment, and histopathological changes peaked at 48 h [32]. In the recent study, 
LPS increased expression of TNFα, iNOS, and cyclooxygenase (COX)-2 and gen-
eration of ROS in cell line. In addition, LPS activated mitogen-activated protein 
kinase (MAPK) pathways, enhancing NF-κB activation and iNOS expression [33]. 
Similarly in mice, LPS elevated counts of total cells, neutrophils, and macrophages; 
induced lung edema formation due to increased lung cell apoptosis and damaged 
epithelium barrier function; increased TNFα, IL-1β, glutamate, and myeloperoxi-
dase (MPO) activity; and reduced endogenous lung antioxidants [33].
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2.5.2  Model of Surfactant Depletion Induced by Saline Lung 
Lavage

Repetitive saline lung lavage partially removes the lung surfactant leading to 
increased alveolar surface tension, alveolar collapse, and impairment of local host 
defense [24, 34]. These changes result in hypoxemia, edema production, PMN 
migration into the alveolar spaces, and elevated expression of cytokines TNFα, 
IL-1β, IL-6, and IL-8 [35–41].

Injury to cells and inflammation are accompanied with oxidative changes. In 
saline-injured and oxygen-ventilated rabbits, total antioxidant performance (TAP) 
in the lung tissue and plasma decreased, and oxidative DNA damage of the lung 
increased already 4 hours after induction of the model [42]. In a similar model, 
MDA as a marker of peroxidation of lipids, 3-nitrotyrosine as an indicator of oxida-
tion of proteins, and levels of nitrites/nitrates as markers of nitrosative stress ele-
vated in the lung tissue [38–41]. Histological investigation showed peribronchial 
edema, thickened alveolar–capillary barrier, destruction and desquamation of epi-
thelial and endothelial cells, type I cell necrosis, and injury to basement membrane 
[43] as well as significantly increased apoptosis of lung epithelial cells verified by 
TUNEL methods and detection of caspase-3 already 4 h after induction of the model 
[38–41].

2.5.3  Model of ALI Induced by Neonatal Meconium

Meconium and meconium-stained amniotic fluid (MSAF) which can be aspirated 
due to intrauterine stress or during the labor contain many substances potentially 
toxic for the lung, such as bile acids, bilirubin, cholesterol, free fatty acids, pancre-
atic phospholipase A2, etc. [44]. In animal models, intratracheal instillation of neo-
natal meconium suspension caused dose-dependent airway obstruction, drop in 
lung compliance, and alveolar atelectasis due to dysfunction of pulmonary surfac-
tant, right-to-left pulmonary shunting, lung cell damage and death due to apoptosis 
and necrosis, and severe hypoxemia, hypercapnia, and acidosis [45–52]. In addi-
tion, meconium-induced, neutrophil-mediated inflammation was verified by mas-
sive PMN transmigration into the lung, increased pro-inflammatory cytokines in the 
lung homogenate and plasma, and increased protein content in BALF and wet–dry 
(W/D) lung weight ratio as markers of lung edema formation [52, 53]. Exposure to 
meconium also increased neutrophil-derived production of ROS, which in pigs cor-
related with meconium concentration [54]. In rabbits, meconium instillation trig-
gered oxidative changes leading to significant peroxidation of lipids and proteins in 
the lung tissue and plasma, as confirmed by higher concentrations of TBARS, 
3-nitrotyrosine, SH groups, dityrosine, and lipoperoxidation products and lower 
total antioxidant status (TAS) and activity of cytochrome c oxidase in the lung mito-
chondria [52, 53]. The experimental results have been recently confirmed by the 
results of the clinical study showing elevated concentrations of MDA and 8-OH-dG 
in the cord blood of full-term and late preterm newborns which were delivered 
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through MSAF than in the newborns not delivered through MSAF [55]. Meconium 
aspiration-associated changes can be also responsible for oxidative changes in dis-
tant organs, for example, in the hippocampus [56, 57].

2.5.4  Model of ALI Induced by Hyperoxia

Exposure to high oxygen concentrations for longer time can induce primary hyper-
oxic lung injury, or can exacerbate changes in the lung injured from other primary 
causes [58]. Under hyperoxia, excessive ROS are directly toxic for cells. In addi-
tion, ROS enhance pro-inflammatory pathways leading to dysfunction of alveolar–
capillary membrane and influx of PMN into the alveolar spaces [58, 59].

Exposure to oxygen lasting 3–4 days triggered damage to type I cells, necrotic 
changes of endothelial cells, formation of interstitial and intra-alveolar edema, and 
increased platelet adhesion and PMN accumulation [60]. Exposure of rats and mice 
to 100% oxygen for 40–50 h resulted in lung deterioration, and exposure for 60–70 h 
caused death [24, 60]. Exposure of mice to 95% oxygen for more than 8 h caused 
DNA base damage in the isolated lung cells in comparison to room air [61]. In rats 
with 7-day exposure to hyperoxia (≥90% oxygen), weight gain slowed down, and 
lung tissue was severely injured as indicated by hematoxylin-eosin staining, higher 
W/D ratio, and higher protein and mRNA expression of HMGB1 and RAGE than in 
the control group [62].

2.5.5  Model of ALI Induced by Mechanical Ventilation

Mechanical ventilation is an important tool for support of critically ill patients with 
ARDS. However, inappropriate ventilation strategy aggravates the effects of a “first 
hit” to the lung due to alveolar overdistension caused by high inspiratory pressure 
of tidal volume at the end of inspiration (“volutrauma”) or due to injury from repeti-
tive closing and opening the alveolar units in insufficient value of positive end- 
expiratory pressure (“atelectrauma”) [63]. Thus, this so-called ventilator-induced 
lung injury (VILI) produces additional lung damage [64, 65].

In animals, already 30 min of excessive ventilation led to detachment and death 
of endothelial cells and denudation of underlying basement membrane [66]. These 
changes were associated with increased microvascular permeability, formation of 
hyaline membranes, stimulated transmigration and activation of PMN, and increased 
synthesis of pro-inflammatory cytokines [67–69], particularly of TNFα [65].

While large-volume ventilation caused alveolar hemorrhage, hyaline membrane 
formation, neutrophilic infiltration, decline in lung compliance, and worsened gas 
exchange [70], small-volume ventilation mitigated inflammation and lung tissue 
damage [37]. Ventilation with high tidal volumes (HTV, 18 ml/kg) compared to low 
tidal volume ventilation (8 ml/kg) in rats increased oxidative stress in the lung 
expressed by elevated concentrations of methylguanidine and MDA in BALF and 
lower antioxidative activity expressed by protein expression of glutathione 
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peroxidase-1. In addition, HTV ventilation increased W/D ratio, leukocyte count in 
BALF; protein expression of pro-inflammatory markers, such as NF-κB, vascular 
cell adhesion molecule (VCAM)-1; and TNFα and matrix metalloproteinase 
(MMP)-9 and decreased expressions of specific surfactant proteins SP-A and SP-D 
in the pulmonary tissue [71].

2.5.6  Model of ALI Induced by Acid Aspiration

Intratracheal instillation of hydrochloric acid (HCl) within a short time caused sur-
factant dysfunction, increase in vascular permeability and intrapulmonary shunts, 
rapid deterioration of gas exchange, and neutrophil-mediated acute inflammatory 
response [72–74]. Acid-induced sequestration of PMN and increased W/D ratio and 
concentration of proteins in BALF were associated with overproduction of ROS and 
elastase, whereas IV administration of SOD and CAT prevented an edema forma-
tion, but did not reduce PMN sequestration [75]. Recruitment and activation of neu-
trophils correlated with high levels of serine proteases. However, the authors found 
proteases to be the primary mechanism of this injury, whereas administration of 
deferoxamine, causing chelation of iron necessary for production of hydroxyl radi-
cals, or of catalase, promoting enzymatic breakdown of hydrogen peroxide, did not 
protect the lung against injury [76]. Due to abundant production of oxidants and 
serine proteinases degrading certain superoxide dismutases, the capacity of antioxi-
dants declined [77, 78]. Acid aspiration also triggered generation of oxidized phos-
pholipids in the lung, stimulating production of cytokines via TLR-4 receptor [79, 
80]. Systemic inflammation can be additionally promoted by increased release of 
nucleosomes and histones [81]. As a result, acid aspiration models were associated 
with rapid increase in levels of TNFα, IL-8, IL-1β, IL-6, and IL-10, MIP-2, and 
eicosanoids and activation of complement [74, 82].

Nevertheless, in addition to HCl making low pH, gastric content consists of food 
particles, bacterial cell wall products, cytokines, etc. which may participate in 
aspiration- induced lung injury in humans [83–85]. Intratracheal instillation of both 
acid and small gastric particles evoked more evident lung injury as verified by find-
ing of worsened surfactant dysfunction and oxygenation and elevated counts of 
erythrocytes, total leukocytes, and neutrophils and higher concentrations of total 
protein and albumin in BALF than in the group with instillation of only HCl or 
small nonacidified gastric particles [86].

2.5.7  Model of ALI Induced by Mustards

Sulfur mustard, nitrogen mustard, and their analogs are used as chemical warfare 
agents, targeting respiratory system [87]. Mustards as lipophilic agents rapidly pen-
etrating the tissues and cells cause alkylation and cross-linking of cell structures, 
resulting in oxidative and nitrosative stress, DNA breaks, deterioration of cell func-
tion, and cell death by apoptosis or autophagy [87, 88].
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Exposure to sulfur mustard in rats resulted in fast local damage, thickening of 
alveolar walls, increased transmigration of inflammatory cells into the lung, evi-
dence of autophagy and apoptosis processes, elevated protein in BALF, and elevated 
expression of COX-2, TNFα, and iNOS in the alveoli and of MMP-9  in airway 
epithelium. In contrary, expressions of antioxidant heme oxygenase (HO)-1 and 
anti-inflammatory collectin SP-D lowered after exposure to sulfur mustard [89]. 
Exposure to nitrogen mustard altered lung mechanics, caused marked histological 
changes, increased protein content and cell counts in BALF, elevated expression of 
pro-inflammatory enzymes iNOS and COX-2, implicated in lung injury, and 
enhanced expression of substances controlling turnover of extracellular matrix [90]. 
Similarly, other authors reported higher levels of pro-inflammatory and profibrotic 
mediators including ROS and RNS, cytokines, and transforming growth factor 
(TGF)-β [88, 91, 92].

2.5.8  Model of ALI Induced by Halogen Inhalation

Exposures to halogens, chlorine or bromine, can appear due to accidental release in 
industry or use of chemical weapons [93]. Inhaled chlorine gas is extremely toxic 
and caused dyspnea, hypoxemia, airway obstruction, and pulmonary inflammation 
and edema and in severe cases led to ARDS and death of exposed patients [94]. 
Subacute effects include abnormal epithelial repair, mucus overproduction, airway 
obstruction and fibrosis, and worsened lung function [93, 95] as well as systemic 
vascular dysfunction and cardiac injury [96, 97]. Similar signs were observed in 
animals, where chlorine inhalation altered breathing pattern, caused hypoxemia, 
inflammation, mitochondrial damage, formation of lung edema, pulmonary hyper-
tension, airway hyperresponsiveness, lipid peroxidation, surfactant dysfunction, 
and lung cell apoptosis or necrosis [93, 98, 99]. Mild hypoxemia, airway hyperre-
sponsiveness, and deterioration of small airways verified histologically were 
observed 7 days after chlorine inhalation in rabbits [99].

Oxidative stress is the principal mechanism contributing to chlorine toxicity 
[93]. Inhaled chlorine firstly interacts with antioxidants in lung epithelial lining 
fluid. Chlorine in reaction with water generates hypochlorous acid and HCl, fol-
lowed by oxidation of plasmalogens in the lung and surfactant. Products of these 
reactions (chlorinated lipids, 2-chloropalmitaldehyde, and 2-chlorostearaldehyde) 
can (a) stimulate neutrophils; (b) react with protein side chains, DNA, and lipids of 
the airway epithelial cells leading to injury; (c) inhibit Na+-dependent alveolar fluid 
clearance that results into lung edema formation; or (d) can be further oxidized to 
intermediates triggering inflammation via stimulation of MAPK and NF-κB path-
ways [100, 101].

Bromine is less reactive than chlorine, but also induces airway hyperresponsive-
ness and ARDS. Similarly to chlorine, inhaled bromine reacts with antioxidants in 
the epithelial lining fluid. When the local antioxidant stores are depleted, bromine 
and hypobromous acid react with epithelial cell membranes to form reactive 
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brominated lipids causing disruption of airway epithelium, inflammation, and lung 
edema [93].

2.5.9  Model of ALI Induced by Phosgene Inhalation

Phosgene is an industrial gas generated as an intermediate in production of various 
chemicals: dyes, pesticides, plastics, polyurethanes, pharmaceuticals, etc. Inhaled 
phosgene causes the pulmonary damage and edema formation which are dependent 
on the time and intensity of exposure. These changes are the consequences of acyla-
tion and oxidant-mediated reactions resulting in protein and phospholipid dysfunc-
tion and generation of ROS and RNS [102].

In animal models, exposure to phosgene increased permeability of alveolar–cap-
illary barrier, damaged type I epithelial cells [103], and altered energy metabolism 
[104], and expression of proteins contributed to glutathione redox cycle [105], 
increased lipid peroxidation [106], decreased levels of 3′-5′-cyclic adenosine mono-
phosphate (cAMP)[107], enhanced production of leukotrienes (LT)[108], and stim-
ulated release of endothelin (ET)-1 [109].

2.6  Evidence of Lung Damage and Oxidative Stress 
in Animal Models of “Indirect ALI”

2.6.1  Model Induced by Intravenous/Intraperitoneal 
Lipopolysaccharide (LPS)

An early phase after intravenous/intraperitoneal LPS is characterized by monopha-
sic thermic response (LPS-induced fever), increased minute ventilation due to 
changes in breathing rate and tidal volume [110, 111], lower cardiac output and 
arterial pressure, and higher pulmonary artery pressure due to increased resistance 
in postcapillary veins [24], tachycardia [112], and changes in heart rate variability 
(an index of cardiac autonomic control), accompanied with increased IL-6 in the 
heart tissue [113], intravascular coagulation, and increased risk of death [24]. If 
LPS-exposed animal survives, the acute phase is followed by hemodynamic stabili-
zation with microvascular injury and PMN lung sequestration, increased permeabil-
ity, shunt fraction and pulmonary artery pressure, hypoxemia and higher 
alveolar–arterial oxygen differences, and intravascular thrombosis [24, 114].

In contrast to intratracheal LPS delivery, PMN infiltration into the lung, epithe-
lial damage, and formation of hyaline membranes are relatively small [24]. 
Intravenous/intraperitoneal LPS triggers apoptotic changes of capillary endothe-
lium preceding other tissue damage [115] and lung edema formation [110, 116]. In 
addition, leukopenia and release of various pro-inflammatory cytokines, adhesion 
molecules, and tissue factors can be detected [110, 112, 116–118] as well as changes 
in concentrations of surfactant proteins [111].
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Intravenous/intraperitoneal administration of LPS also led to serious oxidative 
changes as indicated by higher levels of oxidants and lung MPO activity and lower 
levels of antioxidants [116, 118–121]. Similar changes have been found in patients 
with sepsis, too [122–124].

2.6.2  Model of Oleic Acid-Induced Lung Injury

Deleterious effects of intravenous oleic acid administration can be detected early 
after the administration, with maximum changes at 12 h [24]. There are several 
presumed mechanisms contributing to this type of the lung injury [125]. Oleic acid 
directly binds to biological membranes triggering intracellular pathways leading to 
lung cell death due to necrosis [126]. In addition, increased lung cell apoptosis is 
indicated by an increase in pro-apoptotic markers including caspase-3 and caspase-
 6 and decrease in antiapoptotic markers [125, 127]. Other presumed mechanisms 
participating in oleic acid-induced lung injury are a covalent binding of oleic acid to 
sodium channels and Na+-K+ ATPase in the epithelial cells leading to impairment of 
sodium transport and enhanced edema formation [128]. Furthermore, fatty acids 
participate in many processes, such as generation of lipid mediators, ROS and RNS, 
influencing activity of various intracellular signaling pathways, linking to TLR 
receptors, regulation of gene expression, activation of transcription factors, etc. 
[129].

2.7  Therapeutic Options

2.7.1  Antioxidants

Antioxidants represent rather heterogenous group of compounds that produce direct 
or indirect antioxidant effects. Directly acting antioxidants act as scavengers of 
ROS/RNS. As by-products, they can generate further reactive substances, for exam-
ple, hydrogen peroxide is produced in dismutation of superoxide by SOD. Some 
agents can serve as cofactors or substrates for other endogenous antioxidants. For 
instance, a direct scavenger N-acetylcysteine (NAC) can act also as a source of 
cysteine for GSH synthesis. Thiol group containing antioxidants can interact with 
carbon-centered radicals. Effects of other substances, for example, polyphenolic 
compounds, are based on generation of a mild oxidative stress response, which can 
evoke an antioxidant response leading to suppressed oxidative stress [130, 131].

Administration of NAC successfully diminished oxidative and inflammatory 
changes in various forms of ALI. NAC reduced chlorine inhalation toxicity [132] 
and attenuated pulmonary edema, decreased markers of lung oxidative stress, and 
increased Nrf2 activation in phosgene-induced ALI models [133, 134]. In other 
models of chemical-induced injury, NAC preserved cell viability [135] and pro-
tected the cells from GSH depletion and lipid peroxidation [136, 137]. In sulfur 
mustard-induced lung injury, NAC improved survival, enhanced gas exchange, 
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decreased neutrophils and protein content in BALF, and decreased inflammatory 
markers [138–140]. In hyperoxia-exposed rats, nebulized NAC given once a day for 
7 consecutive days decreased W/D ratio, alleviated lung histopathological changes, 
and reduced protein and mRNA expressions of HMGB1 and RAGE [62]. In 
meconium- induced lung injury in rabbits, intravenous NAC significantly decreased 
markers of lipid and protein oxidation and prevented a decrease in TAS [52]. 
Additional improvement in this model was found when intravenous NAC was deliv-
ered together with exogenous surfactant treatment [141, 142].

From other antioxidants, intravenous Cu/Zn SOD prevented impairment of the 
lung function induced in rats by ventilation with high tidal volumes (18 ml/kg) 
compared to low tidal volume ventilation (8 ml/kg), effectively reversed pulmonary 
oxidative stress and inflammation, preserved SP-A and SP-D expressions in the 
lung, and increased serum NO level enhancing NO bioavailability [71].

Glutathione, the most frequent thiol in cells of nonprotein structure, can have 
lower effectiveness compared to other antioxidants administered orally because of 
its limited gastric absorption and degradation [131]; however, it can reduce the oxi-
dative damage [143].

Melatonin (N-acetyl-5-methoxytryptamine), a hormone regulating circadian 
rhythms, also acts as an antioxidant [144]. Melatonin treatment following nitrogen 
mustard injection restored oxidative and nitrosative stress indicators in the rat lungs 
to levels comparable with controls, probably due to iNOS inhibition [145]. 
Melatonin protected the cell culture models against chlorine and phosgene [146] 
and a rat phosphine-induced model from peroxidation of lipids, depletion of GSH, 
and DNA breaks [147].

Metal-containing catalytic antioxidants represent synthetic complexes mimick-
ing the activity of endogenous antioxidant enzymes (SOD, CAT, etc.)[148]. For 
instance, catalytic antioxidant AEOL 10150 diminished oxidative lung damage in 
in vivo model of sulfur mustard analog inhalation [149] and protected from negative 
effects of chlorine as it was suggested by suppressed airway hyperresponsiveness, 
inflammation, and oxidative lung injury [150].

Other potentially beneficial antioxidants in ALI/ARDS are certain vitamins and 
their analogs. Vitamin D delivered to hyperoxia-injured neonatal rats reduced 
upregulation of TLR4 by hyperoxia and alleviated lung deterioration by preventing 
the loss of integrity of the lung structures, decreasing deposition of compounds of 
extracellular matrix, and reducing inflammation and lung cell apoptosis [151, 152]. 
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) as a water- 
soluble analog of vitamin E enhanced survival and suppressed oxidative changes in 
models of sulfur mustard ALI [143, 153]. Atypical synthetic adamantyl retinoid 
ST1926 given to LPS-injured mice decreased cell counts in BALF and concentra-
tions of IL-1β, IL-18, IL-6, and TNFα in serum and lung; suppressed NF-κB, 
inhibitor-κB, and IκB kinase α, as well as TLR4 receptor induced by LPS; and 
thereby suppressed ROS production [154].

Positive results were observed also for bioflavonoids. For example, quercetin 
protected against sulfur mustard toxicity likely because of detoxication of interme-
diates and breaking of lipid peroxidation reaction [143, 153, 155]. Pretreatment 
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with quercetin 1 h before LPS challenge prevented interstitial edema and infiltration 
of PMN into the lung; attenuated elevation in the BALF total protein and count of 
neutrophils, W/D ratio, and levels of TNFα, IL-6, MDA, and MPO activity; and 
stimulated antioxidant activities of SOD, CAT, and glutathione peroxidase in LPS- 
challenged rats [156]. Other flavonoid fisetins decreased concentrations of lung 
MPO and expressions of IL-6, TNFα, IL-1β, MIP-1α, and MIP-2 and reduced 
upregulation in gene transcription of HO-1 and SOD2 in a mouse model of LPS- 
induced lung inflammation [157]. Anti-inflammatory and antioxidative effects in 
models of ALI have been recently published also for other compounds from medical 
plants, such as isovitexin [158] or vitexin [159]. Anti-inflammatory effects of resve-
ratrol, a natural phytoalexin, in intratracheal LPS-induced ALI are probably related 
to suppression of oxidation, leukocyte activation, and generation of inflammatory 
mediators. Furthermore, resveratrol mitigated the LPS-induced histopathological 
changes, edema, and PMN infiltration, prevented an increase of IL-1β and IL-18 in 
BALF, inhibited expressions of NLRP3 and caspase-1 mRNA, and suppressed acti-
vation of NLRP3 inflammasome in the lung and nuclear translocation of NF-κB p65 
and reduced activity of NF-κB and generation of ROS [160]. Similarly, resveratrol 
improved lung histopathological changes during endotoxemia, decreased prooxi-
dant biomarkers MDA and H2O2, increased activity of antioxidants (GSH/GSSG 
ratio, TAC, CAT, and SOD), and suppressed expression of iNOS, NO, and peroxyni-
trite in intraperitoneal LPS-induced ALI [161].

Other antioxidants, for example, caffeic acid phenethyl ester (CAPE), reduced 
phosgene-evoked elevation of MDA and SOD activity, reversed the decline of GSH 
concentrations in BALF and lung tissue, and partially inhibited nuclear transloca-
tion of NF-κB p65 [162].

2.7.2  Glucocorticoids

Glucocorticoids (GCs) act via both genomic and nongenomic mechanisms. The 
genomic mechanisms are mediated by interaction with cytosolic glucocorticoid 
receptor (cGCR). After passing through cell membrane, GCs link to ligand-binding 
domain of cGCR. The glucocorticoid–cGCR complex translocates to nucleus and 
binds to DNA-binding sites or glucocorticoid response elements (GRE). Linking to 
GRE+, the glucocorticoid–cGCR complex activates transcription of anti- 
inflammatory proteins (IL-10, annexin 1, inhibitor of NF-κB, etc.) and other pro-
teins regulating metabolism (“transactivation”) [163, 164]. Binding to GRE-, the 
glucocorticoid–cGCR complex inhibits transcription of NF-κB and AP-1 which 
leads to suppression of synthesis of pro-inflammatory cytokines (IL-1, TNFα, inter-
feron (IFN)γ, etc.) [165], expression of iNOS and production of NO [166], etc. 
(“transrepression”).

The nongenomic mechanisms of GCs act through specific membrane-associated 
and cytosol-associated receptors and second messengers [164]. These effects are, 
for example, involved in rapid T-cell immunosuppressive action [167], decreasing 
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arachidonic acid production [168], and activation of endothelial NO synthase lead-
ing to NO-dependent vasorelaxation [163].

Treatment with GCs in ALI/ARDS led to controversial results according to the 
type of injury. In intravenous endotoxin-induced ALI model, intratracheal 
budesonide enhanced lung compliance and PaO2/FiO2; decreased W/D ratio, pro-
tein content, concentration of neutrophil elastase, and leukocyte and neutrophil 
counts in BALF, lowered TNFα, IL-1β, and IL-8; and increased IL-10  in BALF, 
reduced lung injury, and improved survival [169]. Similar improvement was found 
in ALI model induced by large-volume ventilation, where intratracheal budesonide 
besides the abovementioned benefits decreased neutrophil elastase level, intercel-
lular adhesion molecule (ICAM)-1, and MIP-2 and increased IL-10 in BALF and 
plasma, decreased phosphorylated NF-kB lung levels, and reduced lung histological 
changes and apoptosis [170]. Intratracheal budesonide also ameliorated combined 
VILI+endotoxin-induced ALI model which enhanced oxygenation, ameliorated 
inflammation, reduced lung histopathological changes and apoptosis, and enhanced 
survival [171]. Potent anti-inflammatory and antioxidant effects of intravenous 
dexamethasone [172] and intratracheal budesonide [47] were observed also in 
meconium-induced ALI, where these agents significantly decreased markers of both 
protein and lipid peroxidation in the lung. Positive impact of budesonide was 
enhanced when administered intratracheally together with exogenous surfactant 
[51, 53, 173]. Intratracheal budesonide alleviated inflammation and lung cell apop-
tosis also in saline lavage-induced ALI [39]. In chlorine-induced ALI, high-dose 
dexamethasone reduced acute inflammation and airway hyperresponsiveness [174], 
mometasone and budesonide showed a dose-dependent inhibition of neutrophil 
influx into the lung [175], and aerosolized budesonide improved lung functions 
[176]. In acid-injured lung, dexamethasone reduced neutrophil recruitment, edema 
formation, and oxygenation [177, 178]. In contrary, in ALI caused by phosgene 
inhalation, no benefit of GCs in the acute phase of injury was found, and, in the 
recovery phase, their effect was even harmful [179–182].

Administration of GCs in patients with ARDS is still discussed [183]. 
Methylprednisolone given in early ARDS improved lung injury score, shortened 
the use of mechanical ventilation, enhanced survival, increased protein C levels, and 
decreased plasma IL-6 in patients with direct ARDS [184]. Recent meta-analysis of 
low-to-moderate dose of prolonged administration of GCs showed that GC delivery 
diminishes the time necessary for ventilation, extubation, and discharge from hos-
pital and reduces mortality without obvious side effects. Therefore, the use of meth-
ylprednisolone in early moderate-to-severe ARDS (daily dose of 1 mg/kg) and late 
persistent ARDS (daily dose of 2 mg/kg) has been suggested [185]. Promising 
results were observed also in pediatric ARDS [186–188]. Methylprednisolone given 
as a loading dose of 2 mg/kg followed by a daily dose of 1mg/kg in infusion from 
days 1 to 7 decreased levels of IFN-α, IL-6, and IL-10, monocyte chemoattractant 
protein (MCP)-1, granulocyte-colony stimulating factor (G-CSF), and granulocyte- 
macrophage colony-stimulating factor (GM-CSF) and increased total leukocytes 
and platelet counts and IL-17α levels on day 7 [187]. On day 7, methylprednisolone 
reduced MMP-8 (indicating reduced activation of neutrophils), prevented increase 
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in soluble ICAM-1 (indicating decreased endothelial injury), and decreased soluble 
RAGE (indicating epithelial injury and recovery) which correlated well with respi-
ratory functions [188]. On the other hand, high-dose GCs given in patients with 
ARDS within 7 days of admission increased mortality rates within 3 months [189]. 
Similarly, no benefit was observed for methylprednisolone in persistent ARDS or in 
starting methylprednisolone therapy later than 2 weeks after appearance of the first 
signs of ARDS [190, 191].

2.7.3  Phosphodiesterase Inhibitors

Phosphodisterase (PDE) inhibitors are enzymes hydrolyzing cyclic adenosine 
monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Each type 
of cells can produce different PDE isoforms; therefore, PDE inhibitors regulating 
the concentrations of cAMP and cGMP can modulate the function of various cells 
and organs. Because in the lung the PDE isoforms PDE3, PDE4, and PDE5 are 
produced at high concentrations, selective PDE3, PDE4, and PDE5 inhibitors and 
nonselective PDE inhibitors can be of benefit [192].

In isolated perfused rabbit lung model of phosgene exposure, administration of 
nonselective PDE inhibitor aminophylline mitigated peroxidation of lipids and 
lowered concentration of leukotrienes C(4)/D(4)/E(4) in perfusate, reduced lung 
weight gain, and prevented a decline in cAMP level in the lung tissue [133]. In 
meconium-induced ALI, intravenous aminophylline in higher dose (2 mg/kg) and 
lower dose (1 mg/kg) reduced inflammation, lung edema, and protein and lipid oxi-
dative changes in the lung [193, 194]. Other nonselective PDE inhibitors, for exam-
ple, pentoxifylline, reduced signs of lung damage and inflammatory and oxidative 
changes in nitrogen mustard-injured rats, as verified by decreased indicators of oxi-
dation lipocalin (Lcn)2 and HO-1 [195]. Pentoxifylline improved lung functions 
and survival also in rats with acid-induced ALI [196].

Positive effects were observed with selective PDE inhibitors, too. PDE3 inhibitor 
olprinone decreased markers of oxidation of lipids and proteins in the lung tissue, 
mitochondria, and blood plasma in rabbits with meconium-induced ALI [197]. 
PDE4 inhibitor rolipram inhibited degradation of cAMP alleviating lung edema, 
inflammation, and AHR in chlorine-induced ALI [198]. Other PDE4 inhibitor roflu-
milast effectively reduced inflammation, lung edema formation, oxidative changes, 
and lung cell apoptosis and improved respiratory parameters in saline lavage- 
induced ALI [199]. In phosgene-induced model of ALI, administration of selective 
PDE4 inhibitor CP-80633 and PDE5 inhibitor sildenafil improved survival in mice 
[102]. In our recent study, PDE5 inhibitor sildenafil reduced leak of leukocytes 
(especially of neutrophils) into the alveoli; decreased pro-inflammatory cytokines 
(TNFα, IL-8 and IL-6), markers of oxidative damage (3-nitrotyrosine, MDA, and 
nitrites/nitrates), lung edema formation, and apoptosis of lung epithelial cells; and 
improved respiratory parameters in rabbits with surfactant depletion ALI model 
[41].
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2.7.4  Inhaled NO and NO Donors

Despite that inhaled nitric oxide (iNO) can provide some benefits in ALI/ARDS as 
a potent vasodilator, participation of nitric oxide (NO) in pulmonary inflammatory 
response is controversial. NO modulates inflammation and regulates the immune 
responses by multiple ways. Low amounts of NO which are in normal conditions 
generated particularly by endothelial and neuronal NO synthases suppress expres-
sion of adhesion molecules, production of cytokines and chemokines, and adhesion 
and transmigration of leukocyte into the tissues. However, high concentrations of 
NO produced by iNOS, for example, in inflammation, can be deleterious and pro- 
inflammatory. Thus, effects of NO depend not only on the enzymatic source but 
especially on the cell context, NO level, and initial priming of inflammatory cells 
[200, 201].

Inhaled NO can react with superoxide and may form toxic compounds in the 
lung including peroxynitrite, which damages DNA, leads to lipid peroxidation and 
protein changes, and can stimulate a release of inflammatory mediators. In ARDS 
patients treated with iNO, increased concentrations of 3-nitrotyrosine, considered 
for marker of peroxynitrite production, and 3-chlorotyrosine, considered for marker 
of activation of neutrophils, were found in BALF [202]. In contrary, in porcine 
model of sepsis, iNO prevented an increase in protein content and neutrophil count 
in BALF [203]. iNO also positively influenced inflammatory markers in BALF of 
ARDS patients where iNO mitigated generation of hydrogen peroxide, decreased 
expression of β2 integrin CD11b/CD18 in neutrophils, and lowered IL-8 and IL-6 
[204]. In more recent studies, iNO mitigated DNA damage, histopathological lung 
score, and number of PMN in BALF and elevated TAP in the lung, but increased 
also plasma nitrites/nitrates in rabbits with surfactant depletion [205, 206].

In a similar model of ALI induced by saline lung lavage, intratracheal delivery of 
soluble NO donor S-nitroso-N-acetyl-penicillamine (SNAP) decreased TBARS 
and expression of iNOS in the lung and lowered plasma levels of nitrite/nitrate. 
Decrease in markers of oxidative stress was associated with decreased transmigra-
tion of neutrophils into the lung, decreased production of pro-inflammatory cyto-
kines, and indicators of epithelial and endothelial damage and apoptosis of lung 
epithelial cells [38]. Nitric oxide-generating agents, such as sodium nitrite, resulted 
in lower protein content in BALF, reduced lung cell apoptosis, restoration of normal 
lung W/D ratios, and improved survival [207, 208].

Additional benefits for iNO in ARDS patients have been recently published also 
regarding a posttreatment periodin which the ARDS survivors may suffer from 
long-term obstructive or restrictive pulmonary dysfunction. The ARDS patients 
who were treated with iNO given in low dose showed an improvement in selected 
pulmonary function tests at 6 months after the treatment than placebo-treated 
patients [209]. Similarly in pediatric ARDS, positive response to iNO was associ-
ated with fewer ventilator days [210].
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2.7.5  Other Promising Pharmacological Approaches

In ALI/ARDS, molecular pathways including generation of ROS by NADPH oxi-
dases and induction of phosphorylation of MAPK signal transduction pathways can 
also serve as therapeutic targets [58, 59]. In phosgene-induced model, specific 
inhibitors of MAPK exerted potent modulatory effect on the expression of pro- 
inflammatory enzymes COX-2 and iNOS which resulted in diminished lung edema, 
which was likely mediated by inhibition of MAPK activation and of lower genera-
tion of NO and prostaglandin E(2) [211]. In LPS-exposed A549 cells, synthetic 
N-methyl-d-aspartate receptor antagonist MN-08 decreased the levels of TNFα, 
IL-1β, COX-2, iNOS, and ROS, upregulated expression of HO-1, and inhibited cell 
apoptosis. In ALI model evoked by intratracheal LPS, MN-08 lowered cells in 
BALF, attenuated lung edema, and reduced glutamate, MPO, and MDA, while it 
increased SOD and GSH activities and blocked MAPKs/nuclear translocation of 
NF-κB signaling pathways [33].

Promising results were also found on influencing iNOS, enzyme mediating pro-
duction of RNS by macrophages. Blocker of iNOS aminoguanidine reduced 
changes in nitrogen mustard-injured lung and suppressed oxidative stress and 
inflammation [87].

Anticoagulants and antithrombotics exhibiting potent anti-inflammatory effects 
could also be beneficial. For instance, heparin reduced disturbance in pulmonary 
coagulopathy and inflammation in chlorine-induced ALI [212, 213], and activated 
protein C decreased pro-inflammatory cytokines and lung edema formation in HCl- 
induced ALI [214].

Effective in reduction of oxidative stress and inflammation was also lidocaine. In 
rabbits with HCl-induced ALI, lidocaine attenuated HCl-induced increase in super-
oxide production by neutrophils and improved PaO2 and lung mechanics [215].

Some improvements were found for dexmedetomidine, a specific agonist of 
α2-adrenoreceptors. In neonatal rat model of hyperoxia-induced ALI, dexmedeto-
midine treatment attenuated lung injury by decreasing W/D ratio, mitigating oxida-
tive and inflammatory changes, and reducing lung cell apoptosis [216].

Positive effects were observed after administration of β-adrenoreceptor ago-
nists, too. Nonselective β-agonist isoproterenol lowered pulmonary vasoconstric-
tion, decreased requirement for tracheal pressure, reduced lung weight gain, 
diminished leukotriene C(4)/D(4)/E(4)-mediated permeability of lung capillaries, 
and kept the GSH redox states in the lung tissue of the phosgene-induced ALI [133]. 
Nebulized short-acting β2-agonist salbutamol reduced neutrophil influx into the 
lung but did not improve survival in pigs after phosgene exposure [217]. Long- 
acting β2-agonist arformoterol mitigated chlorine toxicity on airway reactivity and 
alveolar fluid clearance by increasing lung cAMP [218].

Positive effects on survival rates in phosgene-injured mice showed also inhibi-
tors of GABA transaminase (e.g., valproic acid, vigabatrin) and anticholinergic/
antiserotonergic compounds (e.g., cyproheptadine) indicating participation of 
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neurogenic signaling mechanisms, as well as administration of nonselective TRPA 
antagonist (RR) and TRPA1 inhibitor (HC-030031) confirming a role of TRP 
channels in airway irritation and inflammation [102]. Inhibitor of TRP vanilloid, an 
ion channel expressed in lung endothelial cells, reduced vascular permeability and 
airway hyperreactivity and enhanced gas exchange in mice with chlorine exposure 
[219].

Nonsteroidal anti-inflammatory drug ibuprofen can improve some markers of 
ALI, as well. For instance, in phosgene-injured animals, ibuprofen increased the 
survival reducing lipid peroxidation and GSH depletion [133] and reduced lung 
edema production [220].

Favorable effects were observed also for inhibitors of cytokines and other 
inflammatory mediators. In nitrogen mustard-injured rats, anti-TNFα antibody 
reduced lung histopathologic alterations and protein and cell contents in BALF, 
decreased expression of oxidative stress marker HO-1, and suppressed collection of 
M1 macrophages with pro-inflammatory and cytotoxic effects in the lung and 
reduced profibrotic TGF-β [221]. In acid-injured rats, IL-8 antibody reduced lung 
edema formation and neutrophil transmigration, decreased IL-8, and improved oxy-
genation [222], inhibitor of complement pathway ameliorated increase in TNFα 
and subsequent neutrophil lung sequestration [223], and monoclonal antibody to 
adhesion molecule anti-CD18 inhibited binding of neutrophils to the endothelium 
[224].

Another promising approach is sirtuin 3 (SIRT3). This mitochondria-specific 
protein is necessary for deacetylation of metabolic enzymes and oxidative phos-
phorylation. The recent study has shown that overexpression of SIRT3 may reduce 
oxidative lung damage and edema [225].

Serine protease inhibitor ulinastatin decreased synthesis of pro-inflammatory 
cytokines via regulation of MAPK/NF-κB signaling pathway in intratracheal LPS- 
induced ALI [226]. Decrease in BALF cells and concentrations of IL-15 and 
ICAM-1  in blood serum and improved lung structure after ulinastatin were also 
found in phosgene-induced model of ALI [227].

Pretreatment with nilotinib, a tyrosine kinase inhibitor, attenuated lung edema, 
histopathological marks of lung injury, and accumulation of cells in BALF, increased 
SOD and GSH activities, decreased MDA and nitrites/nitrates, and decreased lung 
levels of TNFα, TGF-β1, and iNOS in rats with aerosolized LPS-induced model 
[228].

2.7.6  Lung-Protective Ventilation Strategies

Ventilation with high tidal volumes leads to more severe lung changes than ventila-
tion with smaller volumes. Therefore, current guidelines suggest lung-protective 
ventilation modes, such as small-volume conventional mechanical ventilation 
(CMV) with small tidal volumes (VT) (<6 ml/kg body weight) or high-frequency 
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oscillatory ventilation (HFOV), using limited airway pressure (<30 cm H2O) and 
appropriate value of positive end-expiratory pressure [229, 230].

Lung-protective ventilation can reduce oxidative changes which are dependent 
on the extent and severity of lung injury. CMV with VT of 6 or 8 ml/kg in a pig 
model of phosgene-induced ALI improved oxygenation, decreased shunt fraction 
and mortality, and reduced hemorrhage, neutrophilic infiltration, and intra-alveolar 
edema compared to CMV with VT of 10 ml/kg [231]. Similarly, in gastric juice- 
induced ALI, MPO activity, lung injury score, and edema formation were lower in 
three types of lung-protective ventilation compared to aggressive high-volume 
CMV [232]. In saline lavage-induced ALI, lung-protective strategies (low tidal vol-
ume CMV and HFOV) attenuated lipid peroxidation expressed by MDA and other 
markers of inflammation and lung injury, protein content, leukocytes, elastase, and 
TNFα in tracheal fluid [35]. TAP in the lung and plasma of saline lavage-injured 
rabbits elevated, and oxidative DNA damage declined in animals ventilated with 
HFOV compared to CMV [42]. In rabbits with meconium-induced ALI, plasma 
levels of TBARS gradually increased in both CMV- and HFOV-ventilated animals 
during experiment; however, no between-group differences in the plasma or lung 
TBARS were found [233].

2.8  Conclusions

Oxidative changes represent a key mechanism in the acute lung damage. Although 
there are no pharmacological approaches generally approved for the treatment of 
ALI/ARDS, there are several groups of medicaments which can mitigate neutrophil 
transmigration, alleviate damage to alveolar–capillary barrier, and reduce genera-
tion of ROS/RNS and pro-inflammatory cytokines, proteases, etc. However, posi-
tive as well as potentially adverse effects of these agents should be carefully studied 
in various animal models of ALI before they could be recommended for administra-
tion in patients with ARDS.
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Abstract
The current therapies for oxidative stress-induced lung diseases are majorly 
based on the reduction of airway obstruction and improved exacerbations. 
However, none of the available treatments have been proven to avoid disease 
progression or reduce mortality. In this context, mesenchymal stem cell (MSC) 
therapy has become a strong contender for better therapeutic strategies for sev-
eral pulmonary diseases. MSCs can be readily harvested from various tissues and 
efficiently propagated and possess strong immunomodulatory/suppressive prop-
erties. Animal studies have shown encouraging outcomes with MSC therapy for 
various lung disorders, like COPD and emphysema. These studies have inspired 
research groups to understand the mechanisms by which MSCs may bring about 
their beneficial effects upon transplantation; however, clinical trials have not 
been as successful. This chapter summarizes and highlights the various aspects 
of MSC therapy in cellular, preclinical, and clinical settings.

Keywords
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3.1  Introduction

The adult human lung has a surface area of 35–100 mm2, depending on the lung 
capacity, and is continuously involved in the efficient exchange of gases for oxida-
tive metabolism [1]. The lungs are exposed to a variety of chemicals, toxic gases, 
smoke, pollutants, airborne toxins and microorganisms. It is widely recognized that 
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an altered balance between oxidant–antioxidant levels leads to an excessive accu-
mulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 
the lungs [2]. A review article [3] in this context highlights how oxidative stress is 
implicated in the generation and progression of lung diseases. Lungs are continu-
ously exposed to exogenous environmental pollutants in the air, for example ciga-
rette smoke (CS), dust, smoke and ozone and ROS from xenobiotic compounds. 
The primary function of the lung is the exchange of gases across alveoli and capil-
laries. Adult human lungs exchange 10 k–20 k litres of air daily. Endogenous lung 
stem cells and progenitor cells are regenerative populations that are essential for the 
maintenance of cells and injury repair. These are the facultative progenitor cells – 
basal, Clara cells, Clara-like cells, pulmonary neuroendocrine cells and type II alve-
olar epithelial cells. Asthma is a chronic inflammatory airway disease, in which 
recruitment of inflammatory cells and excessive ROS production have been found 
in the airway of asthmatic patients. Airway inflammation-associated oxidative stress 
in asthma also induces oxidative modification of proteins and lipids in the airway. 
High levels of ROS lead to breakdown of antioxidant defences like changes in 
superoxide dismutase (SOD), catalase activity and reduced glutathione, leading to 
their deficiency and inactivation. Lung diseases like asthma, chronic obstructive 
pulmonary disorder (COPD) and pulmonary fibrosis (PF) are often induced by oxi-
dative stress and are leading causes of morbidity and mortality. The major risk fac-
tors for these diseases are varied; however, even after the cessation of the factors, 
oxidative stress often persists and contributes to disease progression. Emphysema, 
an oxidative stress-induced lung disorder, is defined pathologically by airspace 
enlargement and destruction of alveolar septa. Important contributing factors to the 
pathobiology of emphysema are imbalances between proteases–antiproteases and 
oxidants–antioxidants. Inflammatory cells are recruited to the alveoli where they 
release elastases, cytokines and oxidants – cigarette smoke inhalation contributes to 
pathogenesis of emphysema. Idiopathic pulmonary fibrosis (IPF) is a chronic, pro-
gressive, irreversible lower respiratory disease characterized by diffuse alveolar 
inflammation and structural disorder, leading to pulmonary interstitial fibrosis [4, 5].

Treatments which are currently available for asthma and COPD are based on 
personalized estimation of symptoms and future risk of exacerbations. Available 
pharmacological approaches involve anti-inflammatory drugs like corticosteroids, 
bronchodilators and theophylline. These only help in minimizing acute exacerba-
tions and airflow limitation, and, hence, improving the quality of life of patients 
with COPD [6]. There is no definitive therapy available that prevents disease pro-
gression or reduces mortality. Evidence suggests that antioxidant therapies have 
failed to improve therapeutic outcomes in oxidative stress-induced lung diseases. 
Various drawbacks like inadequate doses and short lives of antioxidants, unpredict-
able absorption of enteral antioxidants, difficulty in targeting a specific vulnerable 
tissue compartment, inability to deliver antioxidants during a viable  therapeutic 
window [3], etc. have limited the effectiveness of antioxidant therapy. Thus, it is 
important to strategize newer therapies for lung diseases.
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In this chapter, we focus on efficacy and safety of MSC therapy in experimental 
models of COPD, pulmonary emphysema and asthma of preclinical models and 
clinical trials that have brought up hopeful outcomes  as well as exposed certain 
lacunae. We also highlight the main mechanisms through which MSCs exert their 
beneficial effects upon transplantation.

3.2  MSC Therapy in Lung Diseases

MSCs are multipotent progenitor cells that have been widely used in respiratory 
diseases as strong candidates for treatment of destructive disorders like COPD and 
emphysema due to their tissue repair abilities and immunosuppressive and anti- 
inflammatory properties. MSCs may be harvested from several adult tissues like the 
bone marrow, dental pulp, adipose tissue, lungs and foetal tissues, such as the 
umbilical cord, amniotic fluid, human tubal tissue, placenta etc. [6].

Various criteria need to be taken into account while choosing the optimum source 
for MSC transplantation:

 1. Tissue source – Bone marrow is the most widely used source for MSC-based 
transplantation in lung diseases. MSCs behave differently depending on their 
tissue of origin, resulting in differences in tissue repair abilities [7, 8], immuno-
genicity and anti-inflammatory properties. These may impact the beneficial 
effects of MSCs in vivo. Thus, other MSC sources are also being considered and 
used increasingly these days. While all sources exhibit similar benefits in an 
experimental model of elastase emphysema, in some parameters like macro-
phage polarization to a more anti-inflammatory phenotype, BM-MSCs were 
found to be more effective in an experimental emphysema model [6].

 2. Dosage – A broad range of MSC doses (e.g. 104–6∗106 cells) has been used to 
treat lung disorders in mice under research settings. This has been particularly 
well-studied in case of emphysema, wherein in one such study, the authors sug-
gested 5∗104 as the optimal dose using  human umbilical cord blood-derived 
MSCs. The efficacy is usually measured in terms of their effect on the mean 
linear intercept. However, there were limitations of this study as the variations 
among the tested doses were small [6].

 3. Route of administration – Two main ways of delivery have been tested for MSC 
administration – systemic (intravenous and intraperitoneal) and local (intrapleu-
ral, intratracheal, intranasal and intrabronchial). Generally in translational 
research, MSC delivery should be least invasive and with less contamination 
risks; thus, systemic delivery is considered better. However, for sufficient num-
ber of MSCs to reach the lungs and the extrapulmonary compartments in severe 
cases, very large quantities of MSCs will need to be administered, which is dif-
ficult to model in small animals, and the results may not be reproducible. Thus, 
local administration is often used in disease models nowadays. Evidence sug-
gests that while intravenous administration is more effective in achieving benefi-
cial immunomodulatory effects like production of vascular endothelial growth 
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factor (VEGF), macrophage polarization and endothelial cell proliferation, local 
administration confers more reparative benefits like reduction in lung hyperinfla-
tion and fibrosis in a chronic model of elastase-induced emphysema [6].

 4. Number of administrations – Single or multiple administrations have been found 
to be more effective depending upon the degree of disease progression and model 
system [6].

3.2.1  Chronic Obstructive Pulmonary Disease (COPD)  
and Emphysema

Oxidants which contribute to the pathogenesis of COPD may originate endoge-
nously (by metabolic reactions) or exogenously (i.e. through cigarette smoke). CS 
imposes oxidative stress which further activates oxidants released by inflammatory 
cells endogenously. Under normal conditions, a robust oxidant–antioxidant defence 
system is in place to maintain a balance. However, exposure to CS results in an 
excess of oxidants, thus creating oxidative stress, and is a pathogenic mechanism of 
COPD. Lung inflammation is enhanced via redox-sensitive inflammatory transcrip-
tion factors, such as NFΚB and activating protein-1, and subsequently by activating 
their downstream transcriptional pathways. Oxidative stress also increases neutro-
phil sequestration in the lung and enhances lung inflammation. Oxidative stress is 
also linked to stimulation of mucus release by airway epithelial cells and impaired 
mucociliary clearance.

Modulation of redox environment by MSCs is an emerging area of interest. 
Transplantation of MSCs in LPS-induced acute lung injury (ALI) rats has been 
shown to be accompanied by decreased oxidative stress. Malondialdehyde levels 
are found to be reduced in the lungs, along with increased synthesis of heme oxy-
genase- 1 (enzyme that has strong antioxidative and cytoprotective effects). 
Transplantation of BM-MSCs has been shown to reduce oxidative stress in the brain 
of a rat model of spontaneous stroke, suggesting that this may be well the case in 
CS-induced emphysema.

Transplanted MSCs also differentiate into alveolar cells, thus benefitting the 
COPD mice. Differentiation of MSCs into type II alveolar epithelial cells has been 
shown to activate canonical Wnt signalling pathway [9]. A gene profiling study fol-
lowed the expression profile in mouse lung post treatment of umbilical cord-MSCs 
in a 6-month-long cigarette smoke-induced emphysema model over time. Molecular 
level changes were observed in genes involved with oxidative stress, immune 
responses and transcription, soon after transplantation. MSCs display immunomod-
ulatory action and interact with the immune system cells like the macrophages, 
rather than directly interacting with the lung. MSCs may induce macrophage polar-
ization towards an anti-inflammatory phenotype (M2) while inhibiting pro- 
inflammatory phenotype (M1). MSCs have also been shown to interact with alveolar 
macrophages to promote their reprogramming via the cyclooxygenase 2/prostaglan-
din E2 pathway [6]. Li et al. [9] showed that induced pluripotent cell-derived MSCs 
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when co-cultured with CS-induced airway smooth muscle cells rescued mitochon-
drial membrane potential loss, cellular apoptosis and attenuated mitochondrial ROS 
(mtROS) in the latter. MSC-derived conditioned medium had the same effect on 
mtROS but not on membrane potential or apoptosis, indicating that paracrine effects 
did not affect these parameters. Mitochondrial transfer was seen in co- culture which 
was enhanced upon CS exposure. iPSC-MSCs had the same effect on airway hyper-
responsiveness, ozone-induced mitochondrial dysfunction and inflammation mouse 
lungs under in vivo conditions.

Intravenous infusion of MSCs was found to suppress C-reactive protein levels in 
a clinical trial of COPD patients. MSCs were found to inhibit alveolar apoptosis 
through changes in expression of apoptotic and/or anti-apoptotic proteins. The 
apoptotic gene Bax and anti-apoptotic gene Bcl-2 were induced and repressed, 
respectively, upon administration of MSCs in a papain-induced model of emphy-
sema in rats [11]. Another mechanism to ameliorate alveolar apoptosis could be 
through suppression of cleavage of caspase-3.

Several studies have evaluated the therapeutic effect of MSCs on COPD and 
acute respiratory distress syndrome (ARDS) through their immunomodulatory and 
anti-inflammatory effects. MSCs can migrate to tissue injury sites, and their immu-
nosuppressive properties are useful for successful autologous and heterologous 
transplants. MSC administration to the lung in LPS-induced mouse ALI was shown 
to reduce pro-inflammatory factors like tumor necrosis factor α (TNF) and macro-
phage inflammatory protein (MIP-2) in the broncheolar lavage fluid (BALF) and 
plasma, and elevate the anti-inflammatory molecule IL-10. Increased survival rate 
of rats suffering from LPS-induced lung injury was observed upon injection of 
umbilical cord-MSCs. Pulmonary and systemic inflammation was also reduced to a 
significant extent along with reduced lung edema, lung wet–dry ratio, neutrophil 
counts, myeloperoxidase activity and protein concentration. In E. coli-induced ALI, 
intratracheal administration of MSCs led to higher survival of mice, and lung injury 
was reduced due to lower levels of pro-inflammatory molecules like IL-1β, IL-1 α, 
IL-6, TNFα and MIP-2. Myeloperoxidase  (MPO) activity as well as lung water 
content were also reduced.

Mouse MSCs have been shown to ameliorate changes associated with emphy-
sema. Destruction in elastase-induced emphysema model was seen through upregu-
lation of hepatocyte growth factor, epithelial growth factor and secretory leukocyte 
protease inhibitor in the lung. Administration of MSCs was shown to revive emphy-
sema and CS-mediated destruction through the decrease of pro-inflammatory medi-
ators like TNFα, IL-1β, MCP-1 and IL-6. Protease expression like MMP9 and 
MMP12 were decreased, and VEGF, VEGF receptor 2 and TGFβ were found to be 
increased, thus reducing lung cell apoptosis [6].

Direct MSC administration to treat CS-induced emphysema model of COPD in 
rats  reduced the mean pulmonary arterial pressure and cell apoptosis. In papain- 
induced pulmonary emphysema in rats, the protective effects of MSC transplanta-
tion were found to be partially mediated by upregulation of VEGF-A expression and 
inhibition of cell apoptosis [11].
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3.2.2  Pulmonary Fibrosis (PF)

Ortiz et al. [12] reported that BM-MSC injection (0.5 lakh cells/mouse) through the 
jugular vein immediately after challenge with bleomycin (BLM) was found to sig-
nificantly reduce pulmonary fibrosis. In silicon dioxide-induced PF mice model, 
hMSCs directly replaced fibrotic cells with normal lung cells and reduced PF symp-
toms like inflammation and collagen deposition. In a separate study, BM-MSCs 
were found to significantly reduce BLM-induced lung fibrosis by the downregula-
tion of pro-inflammatory molecules, nitric oxide metabolites and angiogenic cyto-
kines after 4  days of injection. Zhao et  al. [13] showed that BLM-induced rats 
received protective effects from lung damage post BM-MSC engraftment. 
Combinatorial treatment of cyclophosphamide along with BM-MSCs was also 
found to protect mice from BLM-induced lung fibrosis. Data from MSC-based clin-
ical trials were found to support the safety of single infusion in IPF patients. 
BM-MSCs were found to home to injured lungs after damage, exhibited epithelioid 
phenotype and reduced collagen deposition and inflammation in BLM-induced 
mice models. BM-MSCs were also found to migrate to airway epithelial cells in a 
3D direct-contact wound repair model. These seem to be mediated by certain che-
motactic factors and their receptors [10]. Stromal cell derived factor (SDF-1) is one 
such chemokine that has been shown to be crucial for migration via receptor CXCR- 
4. SDF-1 was found to promote the chemotactic migration of BM-MSCs. This 
effect was also seen in mice BLM lung extracts and inhibited by CXCR-4 antago-
nist (TN14003). SDF and CXCR-4 were found to be increased in IPF lungs com-
pared to normal lungs. Concentration of SDF-1 in serum and BALF and expression 
level of CXCR-4 were found to be increased in BLM-induced animal models. 
SDF-1α mRNA levels in lungs were increased significantly compared to control 
groups, measured on both days 7 and 14. SDF-1 was also elevated in idiopathic 
interstitial pneumonia in patient lungs. Chemokine CXCL8 (interleukin 8) was also 
found to promote migration of hMSCs.

It has been often observed that MSCs show low engraftment and differentiation 
after administration, even though some beneficial effects are seen. This is believed 
to be largely due to the action of paracrine factors and immune adjustment.  
MSC- derived conditioned medium has been seen to exert protective effects in  
BLM- induced model. MSC-CM decreased pulmonary inflammation, fibrosis, collagen 
deposition and cell apoptosis. A549, alveolar epithelial cancer cells, were seen to be 
protected from cell apoptosis through MSC-mediated paracrine action. MSCs 
secrete a range of molecules like growth factors, chemokines and cytokines which 
regulate local immune responses that inhibit inflammation. Interestingly, MSCs pre-
treated with hypoxia had better healing effect in BLM-induced PF mice.

MSCs elicit their beneficial effects via reducing the expression of tissue inhibitor 
of metalloproteinase-1, matrix metalloproteinase MMP9, γ-interferon and TGF-β to 
reduce lung inflammation and fibrosis. MSCs have also been shown to increase 
gene expression levels of γ-glutamylcysteine synthetase, NADPH quinine oxidore-
ductase 1, nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 [10].
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3.3  Mechanisms Through Which MSCs Alleviate Oxidative 
Stress

3.3.1  Mitochondrial Transfer

Mesenchymal stem cells are known to transfer healthy mitochondria to stressed 
cells through tunnel nanotube formation. Islam et al. [14] showed that BM-MSCs 
transfer the mitochondria to pulmonary alveoli, thus protecting mice from LPS- 
induced ALI. MSCs were found to contribute to mitochondrial transfer through con-
nexin 43, nanotube and microvesicles in a calcium-dependent manner. This was 
shown to rescue mitochondrial bioenergetics in the recipient cells. The attachment 
of MSCs to alveolar epithelium in ALI was found to be crucial for mitochondrial 
transfer from MSCs. Ahmad et  al. [15] showed that MSCs transferred healhty  
mitochondria to injured cells in  both ovalbumin and cockroach allergen mouse 
models  and significantly  alleviated symptoms. This was also shown in vitro in  
rotenone-induced lung injury model. BM-MSCs were also found to mitigate oxida-
tive damage inflicted by CS-induced COPD mice. MSC-transferred mitochondria 
reduced inflammation, thus promoting rescue [16]. Chuang et al. [17] showed that 
WJ-MSCs are able to rescue cybrid cells from myoclonic epilepsy patients through 
transfer of healthy mitochondria thus improving mitochondrial bioenergetics. 
Paliwal et al. [7] have shown that MSCs from different sources like AD, BM, WJ 
and DP showed differential reduction of mtROS through mitochondrial transfer by 
nanotube formation.

3.3.2  Paracrine Mechanisms

It has been seen that MSCs from all sources act through paracrine actions without 
being necessarily present at the site of lesion. Most MSCs have been found to disap-
pear within 1 day after injection. Although MSCs can spontaneously differentiate 
into bone, cartilage and adipose in vitro, they rarely differentiate into lung resident 
cells like epithelial cells. Thus, a large chunk of the MSCs’ reparative abilities are 
believed to be through their paracrine actions [6].

Phase I clinical studies in newborn infants in case of neonatal lung diseases 
(bronchopulmonary dysplasia, severe intraventricular haemorrhage, hypoxic isch-
emic encephalopathy) have shown that MSC treatments are safe, feasible and pos-
sibly effective [18]. Very low rates of engraftment of MSCs upon transplantation 
and low differentiation in vivo, but high beneficial effects, indicate that long-term 
survival of cells on site may not be essential. Thus, large parts of the therapeutic 
effects are believed to be associated with their paracrine effects. MSC-conditioned 
media was shown to ameliorate hyperoxia-induced acute lung injury. MSC-derived 
exosomes have been shown to ameliorate oxidative damage in lung injury models. 
In ventilator-induced lung injury, MSC secretome has proved beneficial.

Protective effects of UC-MSCs were seen to be mediated through upregulation 
of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) 
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in hyperoxic neonatal lung injury. Administration of VEGF siRNA-treated MSCs 
did not protect against impaired alveolarization, angiogenesis, ED-1 positive cells, 
increased terminal deoxynucleotidyl transferase nick end labelling and downregula-
tion of pro-inflammatory cytokines.

3.4  How Does ROS Affect the Regenerative Potential 
of MSCs?

Few studies have explored the effect of ROS on stem cells. It is crucial to understand 
and prevent ROS-induced effects on stem cells as MSCs are now being widely used 
for therapeutic purposes. MSCs are known to export their healthy mitochondria to 
oxidatively stressed cells, thus decreasing their oxidative stress and stabilizing  
their membrane potential. The mitophagy of such rescued cells is also restored. 
Antioxidants have been shown to enhance mitochondrial rescue transfer mecha-
nism. It has been seen that MSCs, like other cells, undergo a decline in their regen-
erative capacity and other biological functions – accumulating cellular senescence 
and damage with age. There are various cellular and molecular changes in their 
self-renewal, proliferation and differentiation capacities. MSCs are continually 
exposed to endogenous or exogenous oxidants. Whereas a low level of ROS is nec-
essary to maintain normal cellular homeostasis and serves as intracellular signalling 
molecule, high levels can interact with a wide range of cellular molecules and cause 
harm. ROS can cause DNA damage by triggering specific DNA damage response, 
leading to cell cycle arrest via activation of p53/p21 and/or p16/Rb pathways. High 
levels of ROS block the activation of telomerase, thus leading to immortalization of 
MSCs and cancer development [11].

Oxidative stress-induced DNA damage has been found to bring about post- 
translational modifications. Aged mice with higher accumulated ROS have been 
seen to undergo extensive loss of alveolar type I and II cells and delayed regenera-
tion of alveolar type II cells compared to young mice. Low levels of ROS in mouse 
airway basal stem cells exhibited higher proliferative capacity, compared to cells 
with higher ROS.  Lung mesenchymal stem cells have been isolated from nasal 
mucosa and lung compartments. The isolated cells expressed MSC cell surface  
proteins like CD73, CD105, CD166 and CD90. These have also been shown to  
differentiate into multiple lineages like adipocytic, osteocytic and chondrocytic. 
Understanding the mechanisms of senescence of MSCs will help explore  novel 
strategies to improve MSCs’ beneficial effects  in recipients with age-related  
diseases where oxidative stress plays a crucial role.

3.5  Strategies to Improve MSC Therapy in Lungs

MSC treatment in research settings has been shown to be effective in repair of lung 
damage. MSC administration is safe in COPD patients, but the effects in clinical 
trials have not been very robust in terms of mortality reduction or improvement in 
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lung function. Thus, combining MSC therapies with specific modulators that can 
potentiate the beneficial effects of MSC are being tested. Based on the mechanisms 
of anti-inflammatory, anti-fibrotic, antimicrobial and anti-apoptotic activities, 
MSCs have been used for lung disease therapy like acute respiratory distress syn-
drome (ARDS), allergic asthma, silicosis and emphysema. Preclinical studies have 
shown a good safety profile, thus encouraging the further clinical trials. However, 
clinical trials have shown limited results  – small inoculation cell number, late 
administration during advanced disease stage, low survival of MSCs in vivo and 
impaired MSC biological activity/potency could be various reasons. Another issue 
could be poor engraftment of MSCs in the lungs, given that cells are cleared from 
lung tissue within 24 hours.

 (i) A study overexpressing CXCR-4 surface receptor which interacts with stro-
mal cell-derived factor-1 showed improved MSC homing to injured sites. This 
strategy can be used to home a greater number of MSCs into lungs in acute 
lung injury models.

 (ii) Low-level laser (LLL) has been suggested as an interesting new therapy to 
boost the MSC response in emphysema. It is non-invasive, economical and 
safe. Under in vitro conditions, LLL has been shown to promote stem cell 
proliferation. It also increases cyclic AMP synthesis in alveolar macrophages, 
leading to reduction in NFΚB activation and IL-1 and IL-6 secretion and con-
sequently lung inflammation [6]. In another study, human tubal cells and LLL 
were combined to treat a CS-induced emphysema model successfully. 
Reduction of inflammatory cellular infiltration, collagen deposition in the 
lungs and mucus secretion were potentiated with this combination therapy.

 (iii) Another strategy that has produced beneficial results is optimization of culture 
conditions. MSCs are classically cultured in tissue culture plates as 2D mono-
layers. However, in 2D cultures, MSCs may lose their stemness properties, 
which is not the case in vivo. 3D spheroid cultures of MSCs have been found 
to prevent apoptosis and maintain self-replicative potential of MSCs due to 
conservation of cell–cell interactions that are important for survival and col-
ony formation. Aggregated AD-MSCs were found to exhibit better therapeutic 
performance compared to dissociated AD-MSCs in a mouse model of elastase- 
induced emphysema [6].

 (iv) To increase longevity/potency of MSCs in vivo, two techniques have been 
tried. One is preconditioning of MSCs through brief exposure of cells to low 
doses of a sublethal/toxic agent to increase stress tolerance. It has been seen 
that freshly isolated MSCs have better potency in vivo than frozen and thawed 
MSCs. Besides in terms of preconditioning, hypoxia, heat- and nutrient- 
depleted microenvironments have been tested to prepare them for in vivo 
survival.

 (v) MSC potency was shown to be improved by preconditioning the MSCs in an 
inflammatory milieu. Pooled sera from patients with severe ARDS were used 
as inflammatory preconditioning media to activate MSCs. These sera contain 
high levels of IL-10, IL-8 and IL-6 and low levels of IL-1β, TNFα and IFNγ.
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 (vi) Chemical substances like pioglitazone, N-acetylcysteine (NAC) and tetran-
drine have been used to increase MSC potency. Pioglitazone binds to peroxi-
some proliferator-activated receptor. This modulates transcription of genes 
involved in glucose and lipid metabolism. NAC-preconditioned MSCs reduced 
lung inflammation and collagen content in lung tissue of bleomycin-induced 
PF model. Thus, treatment with primed MSCs significantly reduced mortality 
of bleomycin-administered animals after 28 days, compared to naive MSCs. 
Although tetrandrine has not yet been tested in vivo, cell culture results (5 and 
10μM for 24 hours) showed that PGE2 expression was increased in MSCs 
post treatment.

 (vii) Genetic manipulation: Genetically engineered MSCs to overexpress hepato-
cyte growth factor (HGF) have been seen to have better survival in vivo, and 
the effects have been tested in lung injury models. MSCs engineered to condi-
tionally express HSP70-VEGF-MSCs exhibited better survival and therapeu-
tic efficacy than control MSCs in a CS extract and emphysema model. MSCs 
overexpressing developmental endothelial locus (Del-1), ST2 receptor gene, 
angiotensin-converting enzyme (ACE-2) and manganese superoxide dis-
mutase (MnSOD) dramatically improved the lung injury index, levels of pro- 
inflammatory cytokines like TNFα, IL-1β and IL-6 and neutrophil count in 
mouse models of ARDS. For pulmonary arterial hypertension, MSCs overex-
pressing heme oxygenase-1 (HO-1) gene have been found to be more effective 
in the reduction of RV systolic pressure and RV hypertrophy in recipient mice. 
Genetically modified cells are currently in early-phase clinical trials for pul-
monary hypertension patients in the Pulmonary Hypertension and Angiogenic 
Cell Therapy (PHACeT) trial [8].

3.6  Mesenchymal Stem Cells in Clinical Trials

Lung disorders are one of the leading causes of morbidity worldwide, besides car-
diovascular diseases and cancer. Considering the levels of airborne microbes, toxins 
and microbial by-products that lungs are exposed to, healthy lungs are able to main-
tain the homeostasis, plasticity and integrity of the tissue [19]. However, no defini-
tive cure or treatment regime is available for the variety of lung disorders. Stem 
cells-based therapies are the upcoming treatment regimens in various lung diseases 
due to their characteristic properties of immune-modulation, being immunologi-
cally naive and being anti-inflammatory and anti-fibrotic in action. Of all the types 
of stem cells, mesenchymal stem cells (MSCs) are the easiest to obtain and trans-
plant. They have also shown great in vitro expansion and in vivo regeneration 
potential. 

Keeping the diverse characteristic features of MSCs into consideration, a lot of 
clinical trials have been conducted, and several are ongoing. According to the regis-
tered clinical trials on www.clinitrials.gov, 13 clinical trials have been completed, 
10 are recruiting patients currently, 4 are ongoing but not recruiting patients now, 11 
are not yet recruiting, 1 has been withdrawn, and status of 12 clinical trials is not 
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known. This data depicts those clinical trials which are using mesenchymal stem 
cells obtained from various tissue sources for the treatment of lung diseases. The 
figure given below gives a brief idea of the overall scenario in this direction 
(Fig. 3.1).

Also according to the clinical registry data, umbilical cord-derived MSCs are the 
most highly used MSC candidates in the clinical trials, followed by bone marrow- 
derived MSCs (29%) and adipose tissue-derived MSCs (10%). The remaining other 
sources of MSCs contributed 12% of the clinical trials (Fig. 3.2).

Fig. 3.1 Current status of various clinical trials using mesenchymal stem cells as the cell source. 
The data is based on the latest information available on www.clinicaltrials.gov

Fig. 3.2 Pie-chart showing use of mesenchymal stem cells obtained from various tissue sources 
used in the registered clinical trials of lung diseases
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There have been quite a few studies reported for the use of MSCs in treating vari-
ous lung diseases [20]. But most of the clinical trials were conducted to establish the 
safety and efficacy of use of MSCs in treating these diseases. Most of the studies 
have taken up intravenous as the mode of infusion of MSCs. However, there are still 
several ongoing clinical trials in various lung diseases. A brief background of the 
recent clinical trials in this area is given in the Table 3.1.
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Abstract
Activation of proteases is known to dysregulate the homeostasis of lung metabo-
lomics and thereby triggers a variety of lung diseases such as chronic obstructive 
pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and 
pulmonary hypertension (PH). Among proteases, matrix metalloprotease (MMP) 
plays a critical role in regulating the turnover (degradation and synthesis) of 
extracellular matrix (ECM). MMPs facilitate cell migration by modulating pro-
duction of cytokines and other signaling molecules, which are involved in the 
pathogenesis of lung diseases. Under normal condition, proteases are controlled 
by endogenous antiproteases. For example, MMPs are regulated endogenously 
by their inhibitors, TIMPs. Agonists induced imbalance of MMP-TIMP results 
in MMP activation. Oxidative stress by modulating inflammatory signaling tar-
gets triggers activation of MMPs and thereby initiates the progression of lung 
diseases. This suggests that MMP inhibition is an attractive therapeutic strategy 
to ameliorate oxidant-induced lung diseases.
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4.1  Introduction

Normal function of healthy lungs require alveolar support by the extracellular 
matrix (ECM). Lung diseases are predominantly associated with the abnormal 
remodeling or destruction of ECM that alters normal lung function and, if extensive, 
cause death. Proliferation and migration of cells are regulated by cell matrix interac-
tions and matrix turnover [1, 2]. MMP family members act on lung matrix, thereby 
causing a variety of pathological consequences of the lung. MMPs can proteolyse 
and remodel ECM proteins throughout the body [3, 4]. MMPs are classified consid-
ering their structure and functions (Table 4.1) [5, 6]. MMP-mediated alteration in 
tissue integrity appears to be important for normal physiology. MMP-induced acti-
vation of some signaling cascades and modification of integrins has been observed 
to regulate platelet function. A discernible alteration of MMP expression may pro-
duce a variety of pathological conditions in the lung such as PH, asthma, ARDS and 
COPD. An extensive alteration of ECM is important for a variety of lung diseases, 
which include emphysema and asthma due to intra-alveolar fibrosis by MMPs [7].

NADPH oxidase (NOX), a multisubunit enzyme complex, is the main source of 
oxygen-derived free radicals in cells and tissues. NOX has seven isoforms, and their 
action depends on tissue and cell types. This enzyme yields superoxide anion (O2

.−), 
which can further react with nitric oxide (NO) to form peroxynitrite (ONOO−). 
Thus, ROS-mediated stress plays a pivotal role in malfunctions of the lung that 
eventually cause different types of lung diseases [8, 9].

4.2  NADPH Oxidase and MMPs

NADPH oxidase (NOX)-derived O2
.− is an important component of stress-induced 

cellular signal network. NOX-induced oxidative stress-mediated signaling could 
impinge upon normal cellular mechanism and could dictate cells either to adapt to 
the stress or to go for apoptosis or cancer based on anti-oxidant status. Activation of 
NADPH oxidase in the lung has been observed to be altered by several chemical, 
physical, environmental and biological factors and also by the different stimuli, 
which could further increase in NOX activity [10,11].

Lipopolysaccharide (LPS), a bacterial endotoxin, increases leukocyte NADPH 
oxidase and also nonphagocytic NOX in human epithelial cells by activating 
isoform- specific protein kinase C [12]. Different proinflammatory cytokines such as 
TNF-α, IL-1β and IFN-γ play a vital role in activating NOX [13–19]. In pulmonary 
smooth muscle cells, Ang II stimulates NOX activity through the involvement of 
c-Src, EGF receptor transactivation, phosphatidylinisitol-3-kinase and Rac [20]. 
Other vasoactive agents like thromboxane A2 and endothelin-1 (ET-1) stimulate 
PLD activity that subsequently activates NOX [21, 22] in pulmonary vasculature. 
Additionally, agents such as silica, asbestos, bleomycin, cigarette smoke and auto-
mobile exhaust components have been observed to increase NOX activity in airway 
epithelial cells (AECs) and also in the pulmonary endothelial and smooth muscle 
cells [23–26].
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Table 4.1 List of major matrix matalloproteases with their substrates and chromosomal 
localization

MMPs Others name

Molecular 
weight latent/
active

Chromosome 
location Substrates

MMP-1 Collagenase-1; 
interstitial collagenase

55,000/45,000 11q22-q23 Collagen type I, II, 
III,VII, VIII, X

MMP-2 Gelatinase A; 72kDa 
gelatinase; type IV; 
collagenase; MMP-5

72,000/66,000 16q13 Collagen type I, II, III, 
IV, V, VII, X, XI, XIV; 
gelatin; aggrecan; 
laminin; fibronectin; 
elastin; MMP-9; 
MMP-13

MMP-3 Stromelysin-1; 
pro-collagenase 
activator; transin-1; 
MMP-6

57,000/45,000 11q23 Collagen type II, III, 
IV, IX, X, XI; gelatin; 
aggrecan; laminin; 
fibronectin; elastin; 
MMP-1, -7, -8, -9, and 
-13

MMP-7 Matrilysin-1; matrin; 
PUMP-1; uterine 
metalloendopeptidase

28,000/19,000 11q21-q22 Collagen type IV, X; 
gelatin; aggrecan; 
laminin; fibronectin; 
elastin; MMP-1, -2, and 
-9

MMP-8 Collagenase-2; 
neutrophil collagenase

75,000/58,000 11q21-q22 Collagen type I, II, III, 
V, VII, VIII, X; gelatin; 
aggrecan; laminin; 
fibronectin; elastin

MMP-9 Gelatinase B; 92kDa 
gelatinase; type IV 
collagenase

92,000/86,000 20q11.2-q13.1 Collagen type IV, V, 
VII, X, XIV; gelatin; 
aggrecan; fibronectin; 
elastin

MMP-10 Stromelysin-2; 
transin-2

57,000/44,000 11q22.3-q23 Collagen type III, IV, 
V; gelatin; aggrecan; 
laminin; fibronectin; 
elastin; MMP-1; 
MMP-8

MMP-11 Stromelysin-3 51,000/44,000 22q11.2 Aggrecan; fibronectin; 
laminin; α -1 
antitrypsin

MMP-12 Macrophage 
metalloelastase

54,000/22,000 11q22.2-q22.3 Collagen IV; elastin; 
gelatin; laminin; 
fibronectin; vitronectin

MMP-13 Collagenase-3 60,000/48,000 11q22.3 Collagen type I, II, III, 
IV; gelatin; aggrecan; 
MMP-9

MMP-14 MT1-MMP 
(membrane-type-1 
MMP)

66,000/56,000 14q11-q12 Collagen type I, II, III; 
gelatin; aggrecan; 
laminin; fibronectin; 
elastin; MMP-2; 
MMP-13

(continued)

4 Role of NADPH Oxidase-Induced Oxidative Stress in Matrix…



78

NADPH oxidase-derived oxidants target the inflammatory proteases, for exam-
ple, matrix metalloproteinases, which leads to lung diseases including PH, COPD, 
ARDS, asthma, cystic fibrosis and cancer [27–32]. Production of ROS by activated 
phagocytic cells occurs through activation of NOX complex, which comprises cyto-
solic (p47phox, p67phox and p40phox and Rac1) and membrane (gp91phox and 
p22phox) components. Upon agonist-induced translocation of these cellular com-
ponents to the cell membrane, NOX becomes activated and subsequently induces 
NADPH oxidase activity to generate superoxide anion (O2

.−) [33]. Since lung dis-
eases are predominantly associated with the ECM remodeling,  therefore, MMPs 
and their endogenous inhibitors (TIMPs) play a critical role in ECM homeostasis. 
In pulmonary fibrosis (PF), cysteine oxidation in the enzyme’s active site causes 
activation of pro-MMP. Importantly, ROS not only activate MMPs but also increase 
its mRNA expression (Fig. 4.1).

Table 4.1 (continued)

MMPs Others name

Molecular 
weight latent/
active

Chromosome 
location Substrates

MMP-15 MT2-MMP 72,000/60,000 16q13-q21 Gelatin; laminin; 
fibronectin; MMP-2

MMP-16 MT3-MMP; ovary 
metalloproteinase

64,000/52,000 8q21 MMP-2

MMP-17 MT4-MMP; 
stromelysin A; 
stromelysin B

57,000/53,000 12q24.3 Fibrin; fibrinogen; TNF 
precursor

MMP-18 Xenopus collagenase-4 55,000/42,000 Not applicable Unknown
MMP-19 RASI-1; RASI-6 54,000/45,000 12q14 Gelatin; aggrecan; 

COMP; collagen type 
IV; laminin; nidogen; 
large tenas

MMP-20 Enamelysin 54,000/22,000 11q22.3 Amelogenin; aggrecan; 
COMP

MMP-21 Xenopus MMP; 
XMMP

70,000/53,000 10 Unknown

MMP-22 Gallus domesticus 52,000/43,000 Not applicable Gelatin; casein
MMP-27 MMP; CMMP
MMP-23 CA-MMP 56,000/? 1p36 McaPLGLDpaARNh2 

(synthetic MMP 
substrate)

MMP-24 MT5-MMP 63,000/45,000 20q11.2-q12 MMP-2
MMP-25 MT6-MMP; 

leukolysin
63,000/? 16p13.3 Gelatin

MMP-26 Matrilysin-2; 
endometase

28,000/19,000 11p15 Collagen type IV; 
gelatin; α 1-PI; 
fibronectin; fibrinogen; 
pro-MMP-9

MMP-28 Epilysin 59,000/45,000 17q11.2 Casein
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Oxidative stress has been shown to contribute to TGF-β-induced pulmonary 
fibrosis [34]. Several stimuli like ET-1, Ang-II and TxA2 have been shown to induce 
pro-MMP-2 activation. Activation of pro-MMP-2 primarily occurs through the 
involvement of NOX-derived O2

.− and subsequently by other reactive species 
derived from O2

.− such as OH., OOH. and ONOO− [35, 36]. Stimulants like ET-1 
and TxA2 in pulmonary smooth muscle cells generate active MMP-2 from inactive 
pro-MMP-2, which occurs via MT1-MMP upon regulating NOX-PKCα-p38MAPK- 
NFκB pathway. This active MMP-2 may be involved in the pathogenesis of many 
lung disease like PH, ARDS, asthma, COPD and lung cancer (Fig. 4.1) [36].

Fig. 4.1 Role of proinflammatory mediators and various stimuli generated by environmental and 
occupational agents, and also from metabolic pathways on ROS production in the lung and subse-
quent activation of MMPs leading to a variety of lung diseases

4 Role of NADPH Oxidase-Induced Oxidative Stress in Matrix…
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4.3  MMPs in Pulmonary Hypertension and Right 
Ventricular Hypertrophy

Pulmonary arterial hypertension (PH) is distinguished primarily by remodeling of 
pulmonary artery, which leads to hypertrophy of the right ventricle [37, 38]. This 
mainly occurs primarily due to a noticeable increase in proliferation of pulmonary 
artery smooth muscle cells [37, 39]. In addition, the progressive phase of PH 
includes an increase in ECM turnover: its synthesis and degradation. ECM upon 
degradation could organize different types of proteases in which MMPs gained spe-
cial importance [40, 41]. Several studies have shown that an increase in the level of 
MMPs appear to be important in the progression of PH and associated lung diseases 
[42, 43].

Lepetit et  al. [44] have identified a marked increase in MMP-2 activity in 
PASMCs of patients with PH. MMP-2 is known to be produced upon activation of 
pro-MMP-2. Membrane-type matrix metalloproteinase-1 (MT1-MMP) interacts 
with tissue inhibitor of metalloproteinase-2 (TIMP-2) in the cell membrane. The 
bimolecular MT1-MMP-TIMP-2 complex associates with pro-MMP-2 by produc-
ing a complex (trimolecular complex) and thereby initiates the activation cascade 
and subsequently releases active MMP-2 into the extracellular medium [45]. 
Cytokines like IL-1 and TNF-α are present in significantly higher levels in serum of 
patients with PH [46]. Roy et al. [47] have demonstrated the role of proinflamma-
tory cytokines: TNF-α, IL-1β and TGF-β in inducing activation of pro-MMPs (such 
as pro-MMP-9 and pro-MMP-2) and to study the mechanistic pathway(s) for their 
activation in the SMCs of pulmonary artery (Fig. 4.1).

Lungs treated with monocrotaline (MCT) for producing PH have been shown to 
be associated with numerous genes involved in the regulation of ECM and subse-
quently cell adhesion, which was confirmed by gene expression analyses. A dis-
cernible increase in MMPs like MMP-2 and MMP-9 have been shown to increase 
MMP-8, MMP-10, MMP-11, MMP-12 and MMP-20, which play a critical role in 
PH.  Additionally, MMPs can increase in migration of SMCs in monocrotaline 
(MCT)-treated PH artery [48]. Additionally, increase in the activity of MMP-1, 
MMP-2, MMP-9 and MMP-3 were  observed during normoxic recovery from 
hypoxia-induced PH [49]. In a study using rat hypoxic pulmonary artery, Herget 
et al. [50] demonstrated collagen breakdown by a marked increase in MMP-13 dur-
ing exposure with hypoxia [50].

Failure of the right ventricle (RV) is a deadly disease with no effective treatment. 
In a mouse model, bleomycin-induced failure of the right ventricle (RV), stimula-
tion of α1-adrenergic receptor (α1A-subtype) by A61603 was shown to improve PH 
and RV hypertrophy and failure. ROS is known to directly reduce the function of 
contractile proteins [51]. Thus, A61603-mediated decrease in oxidative stress could 
improve contraction of the myofilament by decreasing its damage by ROS. ROS 
also stimulates mRNA and protein expression. The resulting activation of MMP-2 
affects negatively [52–55]. An increase in MMP-2 activity has been shown to alter 
Ca2+ handling characteristics of the pulmonary vasculature [56, 57]. Thus, A61603 
reduces MMP-2 expression during A61603 treatment, thereby protecting RV 
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function due to proper Ca2+ handling, which results in a marked decrease in myofila-
ment injury [58]. This indicates that A61603 protects against RV hypertrophy 
induced by ROS. A61603 treatment appears to be beneficial in this pathology con-
ceivably due to its role to increase SOD and also to reduce NOX-4 activity, which 
in combination decreases ROS level and subsequently minimizes reductions of 
myofilament contractility. Additionally, chronic A61603 treatment has been shown 
to induce inotropic effect to augment RV pump function.

4.4  MMPs and Chronic Obstructive Pulmonary Disease

COPD is a chronic lung disease, which is ascribed by irreversible decrease in alveo-
lar airway flow [59, 60]. Emphysema and chronic bronchitis elicit pathogenesis of 
the COPD. Emphysema occurs due to damage of the alveoli with a marked reduc-
tion in the plasticity of the lung. This results in lowering of gas trapping and that sub-
sequently decreases pulmonary oxygenation. The major cause of COPD is due to 
inhalation of silica, asbestos, cigarette smoke and smoke associated with automo-
bile exhaustion [61, 62]. MMPs are known to be involved in emphysema, which 
results in the pathogenesis of COPD [63].

Immunohistochemical studies of COPD patients lung tissue exhibit an increase 
in the expression of MMPs, e.g. MMP-1, MMP-2 (present predominantly in alveo-
lar macrophages and epithelial cells), MMP-8 and MMP-9 (primarily secreted by 
neutrophils) [64]. COPD patients sputum elicit a marked increase in MMP-2 and 
MMP-9 activities [65, 66]. In bronchoalveolar lavage fluid (BALF), MMP-8 and 
MMP-9 levels were considerably higher in smokers having emphysema in compari-
son to the smokers without emphysema [67, 68]. The inflammatory cell migration 
to the airway cells due to ECM destruction augments MMP-9 expression [69]. As a 
consequence, TIMP-1 inhibits MMP-9 activity by 1:1 stoichiometric binding [70]. 
COPD patients sputum elicit active MMP-9, which is absent in normal subjects. 
Importantly, COPD patients have about 25% pro-MMP-2, while only 5% was 
observed in the controls. This indicates that pro-MMP-2 level also increases in 
COPD patients. This is in agreement with a study of Beeh et al. [71], who have 
shown an enhancement in MMP-9/TIMP-1 ratio in sputum of patients with 
COPD.  Alveolar macrophages isolated from BALF of COPD patients elicited a 
marked increase in MMP-9 secretion with augmented enzymatic activity in com-
parison to the smokers and non-smokers, who are apparently healthy [72].

Cigarette smoke extracts also induce MMP-2 gene expression and MMP-2 gela-
tinase activity in normal lung fibroblasts [73]. Cigarette smoke extracts treatment to 
lung fibroblasts stimulates EGR-1 mRNA expression. Imai et al. [74] have shown 
that emphysema patient’s lung parenchyma elicits higher MMP-1 expression. 
MMP-3 and MMP-7 also release cytokines and growth factors such as TNF-α, 
TGF-β, FGF-1 and IGF-1 that, in turn, promote cleavage of adherence junction 
proteins from its binding proteins, which results in damage to the cells [75, 76].

MMP-12 is another subfamily of MMPs, mostly secreted by macrophages, and 
is known to be associated with COPD and airway remodeling [62]. Studies with 
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different animal models illustrate the involvement of MMP-12 in pathogenesis of 
cigarette smoke-mediated emphysema in a mice model. In this context, it has been 
observed that MMP-12 gene knockout mice elicited complete protection from 
emphysema that occurs upon exposure of cigarette smoke. Cigarette smoke also 
stimulates the macrophage staffing in association with elastolytic properties of 
MMP-12 [77].

ADAMs (a disintegrin and metalloproteases) are another subfamily of proteases, 
which belongs to the metzincins family and is structurally related to MMPs [78–
81]. ADAM-33 has been observed to be involved in airway inflammation along with 
hyperresponsiveness in the general population with COPD [82]. Rat exposed to 
cigarette smoke in a COPD model have higher ADAM-17 level in lung tissues com-
pared to respective control, indicating involvement of ADAM in the  obstructive 
lung pathology [83]. Human airway epithelial cells (NCI-H292) treated with 
ADAM-17 siRNA develops protection against smoke-induced mucin overproduc-
tion [84].

4.5  MMPs and Lung Cancer

Lung cancer (LC) is one of the major causes of cancer-related death in human, and 
annually above 1.1 million deaths occur all over the world [85]. LC may be catego-
rized as (i) small-cell lung cancer (SCLC) and (ii) non-small-cell lung cancer 
(NSCLC) [86]. NSCLC is found in approximately 85% of all lung cancer cases, 
which include squamous cell carcinoma (SQ), adenocarcinoma (AD) and carcinoid 
[87]. Tobacco stimulates inflammation and oxidative stress in lung tissue [88, 89], 
modulates the transcription and activation of proteases and thereby elicits protease- 
antiprotease imbalance towards protease in the lung parenchyma leading to damage 
to the lung tissue, which could have influence on the progression of lung cancer [90, 
91].

MMPs play a critical role in cancer pathogenesis that has been suggested to be 
initiated by proteolytic degradation of several ECM components and basement 
membranes. LC expresses high level of MMPs. Upregulation of MMPs may cause 
genetic alterations in addition to transcriptional changes and that subsequently acti-
vates a relatively large number of oncogenes like β-catenin or lymphoid enhancer 
factor-1 (LEF-1); however, a marked decrease in tumour suppressors, for example, 
p53, have also been observed [91, 92].

Serum collected from SCLC and NSCLC patients elicited a marked increase in 
MMP-9 and TIMP-1 levels with respect to healthy subjects [93]. Patients with 
NSCLC have shown an increase in MMP-9 level in plasma, but the exact role of 
MMP-9 in lung cancer is currently unknown. MMP-9 is known to play an important 
role for metastasis development in NSCLC. Itoh et al. [94] have demonstrated that 
in MMP-9-deficient mice, metastasis development was vulnerable in comparison to 
control mice in regard to cancer dissemination. In NSCLC, MMP-1, MMP-2 and 
MMP-9 have been suggested to be reliable markers as they contribute to metastasis 
and tumour invasion [95–97]. In stromal fibroblasts, elevated MMP-2 expression 
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was found in squamous lung cell carcinoma compared with adenocarcinoma. 
MMP-2 expression in tumour of fibroblast stroma has been suggested to be an 
excellent angiogenic marker for NSCLC [98]. The involvement of MMP-2 in cancer 
development was demonstrated in a mice model [99]. It has been demonstrated that 
MMP-2 inhibition could decrease production of vascular endothelial growth factor 
(VEGF) and subsequently inhibit angiogenesis and apoptosis of endothelial cells 
[100]. In patients with NSCLC, MMP-2 and MMP-9 expressions were demon-
strated by immunohistochemical studies [101–103]. Additionally, the expression of 
endogenous MMP inhibitors (TIMPs) was found to be correlated with different 
stages of cancer [104]; and their levels could be considered as prognostic markers 
to ascertain the progression of lung adenocarcinoma [105].

MMP expression has been shown to vary with cancer subtypes [106]. Lack of 
MMP-13 did not show a doscernible effect on tumour growth, vascularization and 
lung metastasis, though MMP-13 mRNA has been shown to be significantly 
increased with cancer metastasis [99]. Absence of MMP-7 did not show any altera-
tion in the progression of lung metastases, whereas MMP-9 deficiency or treatment 
with MMP-9 inhibitor decreases lung tumour burden in mice [94, 107, 108]. In dif-
ferent models of tumour metastasis, abrogation of MMP-12 significantly increases 
lung carcinoma metastasis w.r.t normal animals, indicating that MMP-12 could play 
a tumour-suppressive role [108]. By activating MMPs with FGF, VEGF and TGF-β, 
MMPs promote tumour angiogenesis [109, 110]. MMP-14 cleaves the hyaluronan 
receptor, CD44, and the released extracellular domain of CD44 subsequently binds 
with MMP-9 in malignant cells surface. This complex subsequently activates TGF-β 
and thereby triggers angiogenesis [111].

CH1104I treatment to mice has been shown to significantly inhibit metastasis of 
lung carcinoma cells, which indicates that abrogation of MMP-2 and MMP-9 could 
decrease metastasis of lung cancer cells [112]. The MMP inhibitor, MMI270, was 
shown to markedly decrease colony numbers in the lung following treatment with 
B16-F10 mouse [113]. The MMP inhibitor, BMS-275291, also showed therapeutic 
potentiality because of its role to ameliorate symptoms of advanced lung cancer 
[114]. However, more detailed studies are needed  before recommending BMS- 
275291 for chemotherapy of advanced NSCLC [115]. The broad-spectrum MMP 
inhibitor, BAY 12-9566  N has been shown to counteract the neoplastic growth 
induced by genotoxic carcinogen [116]. GM6001 is also a potent inhibitor and dis-
plays its role in the MMTVPyMT cancer model [117].

4.6  MMPs and Asthma

Asthma is characterized as a chronic inflammatory lung disease associated with 
airway hyperresponsiveness, infiltration of inflammatory cells in bronchi and sig-
nificant morphological alterations of airway structure (bronchial remodeling). As 
ageing progresses, a marked decrease in lung function has been observed [118]. In 
asthmatic patients, remodeling occurs through (a) thickening of epithelium due to 
fibrosis-associated deposition of collagen and fibronectin, (b) hyperplasia of smooth 
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muscle cells, (c) enhancement of blood vessels in airways and (d) hyperplasia 
Goblet mucus-producing cells [119–122]. In asthma, secretion of proteases in air-
ways has also been documented. 

MMPs and TIMPs are known to play a critical role in the pathogenesis asthma 
[123, 124]. To establish MMPs role in the pathogenesis of asthma, Suzuki et al. 
[125] observed an alteration in the MMP-2 and MMP-9 and TIMPs levels in sputum 
isolated from patients with asthma. They also found that compared to control 
(healthy subjects), MMP-2 and TIMP-1 levels were significantly elevated in asth-
matic patients, whereas MMP-9 level was markedly greater in asthmatics. Vignola 
et al. [126] have observed stimulation of both MMP-9 and its inhibitor, TIMP-1, in 
asthma patients in comparison to control subjects. In asthma patients, MMP-9 has 
been observed to increase the level of proinflammatory cytokines [127, 128], which 
induces inflammation of the airways [129]. TNF-α and IL-1β have been shown to 
induce MMP-9 expression in macrophages [130–132]. Cataldo et  al. [133] have 
shown that MMP-9 knockout mice were unable to elicit airway hyperresponsive-
ness [133]. Cigarette smoke treatment to asthmatic human respiratory epithelia has 
been observed to be liable to MMP-9-induced airway remodeling [134–137], indi-
cating that MMP-9 inhibition could have protective role towards asthma.

Other classes of MMPs such as MMP-1, MMP-3, MMP-7, MMP-8, MMP-12 
and MMP-19 were shown to be involved in asthma pathogenesis. In airway smooth 
muscle cells of asthmatics, immunoreactive MMP-1 expression was found to be 
predominantly higher, indicating that MMP-1 plays an important role in inducing 
the mass of airway smooth muscle cells, which is characteristically present in 
patients with asthma [138]. BALF collected from asthma patients elicit higher 
MMP-8 expression, which seems to be critical determinant in this type of lung dis-
ease [139, 140]. This idea was hypothesized from an observation of a mice model 
of asthma by Gueders et al. [141], which was observed in MMP-8-deficient mice. 
Bronchial fibroblasts MMP-3 along with MMP-2 stimulate procollagen synthesis 
and showed a marked increase in hyperreactivity resulting in reduced lung function 
[142]. However, in severe asthma patients, MMP-7 level is higher in basal epithelial 
cells, which induces cleavage of Fas ligand (FasL), and thereby damages the airway 
epithelial cells [143]. Guiders et al. [144] have shown that MMP-9 deficiency in 
mice decreases tenascin-C accumulation in Th2-mediated airway reactivity, indicat-
ing involvement of MMP-19 in asthma. Chiba et al. [145] demonstrated upregula-
tion of MMP-12 in airways of bronchial asthma in a rat model system. MMP-12 
was found to be enhanced in monocytes and macrophages that migrates to the site 
of inflammation and thereby causes remodeling. This remodeling occurs through 
degradation of ECM components by cytokines-mediated induction of MMPs, which 
eventually cause airway inflammation [146]. Mitogen-activated protein kinases like 
ERK1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositol 3-kinase (PI3-K) 
are known to be involved in IL-1β-mediated activation of MMP-12 [147, 148]. 
These evidences suggest that MMPs are the major class of proteases that could prove 
useful as therapeutic measures for asthma patients.

R-94138 and marimastat are the two broad-spectrum MMP inhibitors that reduce 
the progression of allergic inflammation in airways and hyperresponsiveness to 

J. Sarkar et al.



85

allergens in different model systems [149, 150]. However, GM6001 administration 
did not elicit any alteration in ovalbumin (OVA) caused asthma in mice, albeit inhib-
its inflammatory cells accumulation in lung parenchyma [151]. In a murine model 
of toluene-mediated asthma (TDI-OA), MMPI-I (matrix metalloproteinase inhibitor 
I) and MMPI-II (matrix metalloproteinase 2/9 inhibitor II) have been shown to 
decrease the number of inflammatory cells in BALF [152, 153]. Several drugs with 
anti-inflammatory effects, for example, corticosteroids, have been shown to inhibit 
LPS-induced activation of MMP-12  in macrophages [147, 154]. In patients with 
severe asthma, corticosteroid treatment is the most effective anti-inflammatory 
medication and exhibits its anti-inflammatory effect by reversing the imbalance of 
MMP-9/TIMP-1 [155, 156]. In this context, dexamethasone has been shown to sig-
nificantly attenuate IL-1β-mediated stimulation of MMP-12 activity [157].

4.7  MMPs in ARDS and Acute Lung Injury

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are the 
foremost life-threatening diseases. ARDS and ALI have been suggested to occur 
due to injury to epithelial and endothelial capillary membrane of alveoli during 
inflammation with the involvement of MMPs. MMP-induced ECM-degrading com-
ponents are involved in the initiation and progression of different types of lung 
diseases [158–160].

MMPs are predominantly secreted by activated macrophages and neutrophils 
[161, 162]. It has previously been suggested that these cells are the only MMPs 
source; however, it has now been known that fibroblasts, endothelial cells and type 
II epithelial cells of the lung are also the source of MMPs [162, 163]. Kong et al. 
have shown that lungs of paediatric ALI patients produce higher level of MMP-8, 
MMP-9, MMP-2, MMP-3, MMP-11 and MMP-12 in comparison to controls [158, 
163–165]. In brochoalveolar lavage (BAL) fluids of ALI/ARDS patients, a marked 
increase in MMP-2, MMP-8 and MMP-9 levels have been observed  [163]. The 
value of the ratio of MMP-9/TIMP-1 may be considered as prognostic marker of 
ARDS [158, 165].

Several investigators have suggested that MMPs and its inhibitors for therapeutic 
potentials in ALI [166]. In a mice model, ischemia-reperfusion injury to the lung, 
bleomycin, hyperoxia, LPS and acid aspiration were shown to trigger ALI [167]. 
LPS or bleomycin treatment was shown to induce ALI in mice deficient in MMP-8. 
This occurs due to a marked increase in the deposition of PMNs. The accumulated 
PMNs cause a marked decrease in MMP-8-mediated macrophage inflammatory 
protein-1α (MIP-1α) inactivation and result in a marked increase in mortality [168, 
169]. Induction of LPS in mice with MMP-9 deficiency has been shown to develop 
emphysema [170]. In mouse lung, inhibition of MMP-9 by chlomethylase-3 (CMT- 
3) was shown to attenuate inflammation of neutrophils [171]. BALF collected from 
MMP-9-deficient mice upon ozone exposure showed greater protein content and a 
discernible increase in epithelial cells and neutrophils with respect to the wild-type 
cells. This suggests protective effect of MMP-9 in the inflammation during ozone 
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exposure [172]. However, this kind of protective effect was not found in MMP-7- 
deficient mice [172]. Additionally, ALI induced by hyperoxia showed a marked 
increase in inflammation in MMP-13-deficient mice due to its absence in the cleav-
age of monocyte chemotactic protein-1 [173]. It has been observed that MMP-3 
also contributes to lung injury during inflammation [174]. Thus, MMPs are involved 
in lung injury in ARDS, while its inhibition prevents ALI. MMP-3 and neutrophil 
elastase inhibition by tetracycline was shown to reduce lung injury in an animal 
model system [175]. Similar protective effects by inhibiting MMP-3 inhibition have 
also been shown to give similar protection in animal models of sepsis [176, 177]. 
Therefore, inhibition of MMP-3 activity could prevent acute lung injury. Importantly, 
treatment with MMP-3 inhibitors needs to start early in the initiation and progres-
sion of the disease in order to prevent the pathogenic mechanism.

4.8  MMPs and Lung Fibrosis

Pulmonary fibrosis (PF) is a fatal disease where interstitial myofibroblasts replaced 
the loss of lung epithelial cells and deposition of ECM component in the interstitial 
space of the lung, which causes remodeling of pulmonary vessels [178]. PF in addi-
tion elicits damage to the alveoli leading to decrease in oxygen transfer and subse-
quently collapse of alveoli [179]. Intraluminal fibrosis occurs due to the recruitment 
of inflammatory cells especially macrophages, lymphocytes and neutrophils into 
airways, which leads to dysregulation of the turnover of ECM components [180, 
181].

In PF chronological variations in the localization and the expression of MMPs 
and TIMPs have been observed [182, 183]. MMP-2 and MMP-9 activities have 
been observed to be stimulated in BALF from patients with PF [184]. MMP-9 activ-
ity has been shown to be notably increased in the early stage of PF, whereas MMP-2 
activity is predominant in the latter stage of the disease. Alveolar macrophages of 
patients with PF revealed greater MMP-9 expression with respect to normal [185]. 
MMP-2 and MMP-9 overexpression have been shown to damage alveolar epithelial 
cells, thereby increasing invasion of fibroblasts into the alveoli [184].

Besides the involvement of gelatinases, MMP-7 gene has also been observed to 
be overexpressed in patients with PF [186]. Zuo et al. [187] in a mouse model have 
shown that MMP-7-deficient mice inhibits PF [187]. Studies of the transcriptional 
behaviour of the lung genes of the patients with PF confirm the involvement of 
MMP-1 [188]. Moreover, collagen showed a prominent role in the progression of 
PF by cleaving the native helix of fibrillar collagens. Gene expression of other 
classes of MMPs such as MMP-3, MMP-8, MMP-12, MMP-13 and MMP-28 was 
also found to be stimulated in PF induced by bleomycin [189–195].

Overexpression of TIMPs causes dysregulation in MMP-TIMP balance, which 
leads to a marked increase in MMP activity [181]. TIMPs are expressed in different 
types of lung cells that have different roles in the regulation of the activities of 
MMPs. TIMP-2 and TIMP-3 genes were expressed during fibrosis. Thus, MMPs 
could be considered an important prognostic marker in lung fibrosis. In this context, 
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Corbel et al. [196] have demonstrated that the synthetic inhibitor of MMPs, batima-
stat, markedly inhibits the bleomycin-induced PF.

4.9  MMPs and Cystic Fibrosis

Cystic fibrosis (CF) is a type of lung disease where protease-antiprotease imbalance 
increases protease activities which may contribute to progressive bronchiectasis due 
to damage of alveoli [197]. It has now become clear that MMPs are involved in CF 
[197]. In the sputum of CF patients, a marked increase in MMPs levels have been 
observed [198–200].

MMP-9, one of the mostly studied MMPs, is expressed mainly in PMNs, macro-
phages and epithelial and endothelial cells of the lung. MMP-9 exerts proinflamma-
tory effects by generating a novel neutrophil chemokine, proline-glycine-proline 
(PGP) [201], and increasing the chemokine potency of IL-8 [202]. Gaggar et al. 
[201] have shown that MMPs regulate the immune response during CF by generat-
ing proline-glycine-proline (PGP), which is an extracellular matrix-derived neutro-
phil chemoattractant [201]. A marked increase in MMP-9 level was detected in 
BALF and serum of patients with CF [199, 200, 203]. Geraghty et al. [204] have 
demonstrated that neutrophil elastase (NE) augments MMP-2 expression in epithe-
lial cells and thereby alters remodeling and inflammatory responses in CF [205].

Other class of MMPs, for example, MMP-7, has also been shown to be associ-
ated with CF. Dunsmore et al. [206] have shown the elevation in MMP-7 expression 
in the AES of patients with CF. Research in the recent past provided evidence sup-
porting involvement of MMP-2  in CF [207]. A previous study indicated that 
amiloride-sensitive epithelial sodium ion channels play an important role in airway 
surface lipid depletion, which activates MMP-12-dependent emphysema [207]. 
Additional studies are required to determine the role of MMP-12 on leukocytes and 
BALF in patients with CF [208].

In vivo dysregulation of TIMP/MMP status may be correlated to the secretion of 
CF.  It is known that tetracyclines, for example, doxycycline, have intrinsic anti- 
inflammatory properties and inhibit production of MMPs in endothelial cells [209], 
which have been regarded as targets for CF [201].

4.10  MMPs and Tuberculosis

In global health crisis, Mycobacterium tuberculosis is known to be one of the most 
harmful human pathogens. Primarily, M. tuberculosis causes ECM destruction. It 
causes and thereby creates sites for its proliferation and transmission to another host 
[210]. This kind of tissue damage due to inflammation is mainly responsible for 
morbidity and mortality of patients with tuberculosis (TB). Notably, the mechanism 
by which lung matrix destruction in TB occurs is poorly understood. However, it 
has been suggested that MMPs are the key molecules in the pathogenesis of TB, due 
to its novel capacity to damage ECM, for example, collagen.
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Chang et al. [211] reported that a marked increase in MMPs levels were found in 
human TB. They collected BALF from the patients and found an increase in MMP-9 
expression in comparison to controls [211]. In TB patients, MMPs are activated and 
play an important role in degrading the lung matrix, while endogenous tissue inhibi-
tors of metalloproteinases (TIMPs) failed to balance the activated MMPs [212, 
213]. Elkington et al. [214] demonstrated that M. tuberculosis upregulate MMP-1, 
MMP-3, MMP-7 and MMP-10. Coussens et al. [215] have also observed an increase 
in the level of MMP-1, MMP-7 and MMP-10  in macrophages infected with M. 
tuberculosis. Immunohistochemical studies have identified the localization of MMP 
in TB granulomas. MMP-1 and MMP-7 are expressed in Langhans giant cells and 
macrophages in granulomas of the lung [214], whereas MMP-1 and MMP-9 are 
localized in epithelial cells of the lung [216, 217]. Thus, targeting MMP activity 
seems to be the useful intervention in drug-resistant TB [218]. Dexamethasone has 
been shown to ameliorate early effects in TB meningitis [219] and subsequently 
decreases MMP-9 level [220]. Another globally used drug to inhibit the activity of 
MMPs in TB patients is doxycycline. Importantly, multiple MMP inhibitors were 
developed as remedy for cancer [221], and these are currently under reassessment 
as adjunctive drugs to diminish immunopathological aspects of TB.

4.11  MMPs and Sarcoidosis

Sarcoidosis is an inflammatory lung disease affecting multiple organs including the 
lung and lymph nodes with unknown aetiology [222, 223]. Granuloma formation 
seems to be important for manifestation of a variety of lung diseases that are associ-
ated with remodeling and proteolysis of the ECM [224–226]. Proteases in macro-
phage especially MMPs have been suggested to play a critical role in sarcoidosis 
[227]. A marked increase in collagenase activity has been detected in BALF from 
sarcoidosis patients, where MMP-8 appears to be predominant MMPs [228]. 
MMP-9 levels are also elevated in BALF and sputum of patients with sarcoidosis 
without a discernible increase in TIMP-1 level [224, 228]. Immunohistochemical 
studies demonstrated that a cellular component of sarcoid granulomas in the lung 
has a high degree of immunoreactivity for MMP-1, MMP-2 and MMP-9, whereas 
the role of MMP-3 and MMP-7 has been observed to be less [229]. The cells of the 
sarcoid granulomas have low levels of TIMP-1 and TIMP-2, and that maintains 
latency in the activity of MMPs. The activated proteases cause disruption of the 
basement membrane leading to its damage [229]. Thus, MMP activation and ECM 
breakdown with subsequent remodeling could disrupt  the normal lung function, 
which may produce advanced pulmonary sarcoidosis.
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4.12  Conclusion and Future Direction

Several evidences are available implying the involvement of NADPH oxidase- 
derived O2

.−-induced activation of MMPs for progression of lung diseases. The evi-
dences are well studied in the MMPs knockout mice and also by the specific MMP 
inhibitor, which suggests that correlation exists between the NADPH oxidase and 
MMPs activations with lung diseases. It has now become evident that regulation of 
lung health depends on MMP-TIMP balance. Dysregulation of the balance towards 
proteases affects lung heath. Therefore, MMP inhibitors have a great potency as 
useful therapeutic agent to ameliorate lung disease such as COPD, asthma, ARDS 
and associated PH and also lung cancer.

Recent evidence indicates that the recombinant signal regulatory protein for 
immunoglobulin kappa J region (RBPJ) and mastermind like 3 (MAML3) are now 
considered as the novel therapeutic targets for small-cell lung cancer (SCLC); how-
ever, its chemosensitivity may be reduced for long-term treatment [230]. Therefore, 
future research will determine appropriate combinational therapy with other known 
drugs, which may be of use for treating SCLC patients.

The marine actinomycetes product, 1-hydroxy-1-norresistomycin (HNM), has 
been observed to increase lncRNAs expression via transcriptional regulation of p53, 
thereby increasing apoptosis in non-small-cell lung carcinoma (NSCLC) [231]. In 
view of this, HNM is currently considered to be a novel therapy for NSCLC [231]. 
However, further research is needed to develop more potent HNM derivative that 
could be useful for long-term treatment of the disease.

Considering that elastin damage occurs in emphysema, a novel biodegradable 
polymeric nanoparticle (NP) has been developed using doxycycline loaded BSA 
(BSA.NPs). This opens up a promising way of controlling MMPs and, therefore, 
emphysema, thereby stopping further lung damage [232]. However, long-term ther-
apeutic potentiality of BSA.NPs needs to be clearly ascertained by future research.

Anti-muscarinic agents are used for therapy of COPD and to some extent in the 
treatment of asthma because of their broncho-dilatory effects. Recent research 
showed that they also regulate remodeling of small airways by modulating MMPs 
and thereby COPD pathogenesis [233]. Further research is important to clearly 
determine the role of anti-muscarinic agents in ameliorating MMPs and subse-
quently COPD in animal model systems.

Acute pulmonary embolism is a critical condition that occurs due to prolonged 
pulmonary hypertension during abnormal activation of MMPs in pulmonary vascu-
lature. Although doxycycline is being used to partly ameliorate pulmonary embo-
lism and PH, yet more potent agents need to be discovered for clinical use of 
pulmonary embolism and associated PH [234].

Sepsis is a disease of relentless mortality due to non-availability of a potent drug. 
Research in the recent past indicated involvement of systemic inflammatory 
response associated with MMP activation in septicemia [235]. Chemically modified 
tetracycline, CMT-3 is currently used for sepsis, albeit it has limited effect in this 
scenario [235]. Further research is needed to explore the shortcomings of 
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therapeutic use of CMT-3 during different stages of septicemia and its association 
with MMPs.
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Abstract
Globally, respiratory diseases are major cause of disability and mortality, and 
more alarmingly, it disproportionately affects developing countries, which is 
largely attributed to poor quality of air. Tobacco smoke and emissions from com-
bustion of fossil fuel and biomass fuel are the major airborne pollutants affecting 
human lung health. Oxidative stress is the dominant driving force by which the 
airborne pollutants exert their toxicity in lungs and cause respiratory diseases. 
Most airborne pollutants are associated with intrinsic oxidative potential and, 
additionally, stimulate endogenous production of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate 
redox signals and cause irreversible damage to critical biomolecules (lipids, pro-
teins and DNA) and initiate various pathogenic cellular process. This chapter 
provides an insight into oxidative stress-linked pathogenic cellular process such 
as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endo-
plasmic reticulum stress, epigenetic changes, profibrotic signals and mucus 
hypersecretion, which drive the development and progression of lung diseases. 
Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic 
acid, uric acid, vitamin E) antioxidant defences. However, sustained production 
of free radicals due to continuous exposures to airborne pollutants overwhelms 
lung antioxidant defences and causes oxidative injury. Preclinical studies have 
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demonstrated the critical roles and therapeutic potential of upregulating lung 
antioxidants for intervention of respiratory diseases; however, so far clinical ben-
efits in antioxidant supplementation trials have been minimal and conflicting. 
Antioxidants alone may not be effective in treatment of respiratory diseases; 
however it could be a promising adjunctive therapy.

Keywords
Respiratory diseases · Oxidative stress · Lipid peroxidation · Inflammation · Cell 
death · Mitochondrial dysfunction · Endoplasmic reticulum stress · Epigenetic 
changes · Profibrotic signals · Mucus hypersecretion · Lung antioxidants

5.1  Introduction

With growing industrialization and rapid urbanization, the global burden of respira-
tory diseases is rising at an alarming rate and is a major source of disability and 
death following cardiovascular diseases [1, 2]. Globally, around 10% of all 
disability- adjusted life years (DALYs) lost is attributed to respiratory illnesses 
mainly chronic obstructive pulmonary disease (COPD), asthma, tuberculosis, lower 
respiratory tract infection and lung cancer [3]. Respiratory diseases disproportion-
ately affect developing countries [1, 2], which is largely attributed to poor quality of 
air, although socioeconomic and genetic factors contribute significantly. Despite 
being so widespread, environmental respiratory illnesses are highly preventable.

Lungs are at the direct interface between body and the environment, and there-
fore, the major threat to lung health is the air we breathe. An adult individual 
inhales on average 10,000 to 15,000 litres of air every day. Inhaled oxygen along 
with airborne pollutants dissolves in respiratory epithelial lining fluid. The com-
mon pollutants that contaminate air include tobacco smoke, particulate matter, 
biomass fuel smoke, industrial emissions, ozone, oxides of nitrogen, oxides of 
sulphur and carbon monoxide. Most of these airborne pollutants are associated 
with intrinsic oxidative potential, and hence, oxidative stress is thought to be a 
dominant mechanism by which the air pollutants exert their toxicity in lungs. 
Several studies have reported elevated oxidatively damaged biomolecules in the 
exhaled breath condensate, nasal lavage, bronchoalveolar lavage and blood of 
human subjects following acute exposures to airborne pollutants such as cigarette 
smoke, ozone or particulate matter. Prolonged exposures to these airborne toxi-
cants also stimulate endogenous cellular production of free radicals by diverse 
mechanisms including mitochondrial, NADPH oxidase, xanthine oxidase and 
myeloperoxidase activity. To defend against oxidative insult, lungs are endowed 
with powerful extracellular antioxidants in respiratory tract lining fluid as well as 
intracellular antioxidant defences. Measures to improve the air quality that we 
breathe and understanding the underlying mechanisms of disease development 
caused by exposures to airborne toxicants are pivotal to reduce the global burden 
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of respiratory disease. This chapter chronicles the key mechanisms by which oxi-
dative stress mediates development and progression of respiratory diseases. The 
chapter begins with an overview and sources of free radicals in the lungs and a 
brief description of key environmental respiratory diseases mainly COPD, asthma, 
acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Finally, 
the chapter reviews the antioxidants associated with lungs and clinical studies 
testing antioxidant therapy for treatment of respiratory diseases.

5.2  Sources of Free Radicals in Lungs

5.2.1  Free Radicals: ROS and RNS

Free radical is a highly reactive chemical species, which interacts and damages cel-
lular biomolecules (proteins, lipids, DNA and carbohydrates). Free radicals are 
molecules associated with an unpaired electron in their valency shell, which renders 
them intrinsically unstable and reactive. In biological systems, free radicals are 
oxygen-centred radicals and nitrogen-containing radicals collectively called as 
reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. 
ROS comprises of radical species (such as superoxide, hydroxyl radicals, lipid- 
derived hydroperoxides) and non-radical species (singlet oxygen, hydrogen perox-
ide and hypochlorous acid and ozone) (Table 5.1) [4, 5]. RNS includes nitric oxide, 
nitrogen dioxide, nitroxyl anion and peroxynitrite [6]. Elevated cellular levels of 
ROS and RNS with reduced capacity to detoxify or neutralize them or its derivatives 
result in a state of oxidative and nitrative stress, respectively.

Low levels of ROS and RNS function as secondary messengers and play a 
pivotal role in redox cell signalling and regulate diverse beneficial normal physi-
ological processes such as bacterial killing during phagocytosis, vasodilation, 
tissue repair and regeneration [4, 7, 8]. In contrast, higher levels of ROS/RNS 
inflict irreversible damage to biomolecules resulting in cell and tissue injury, and 
if unchecked, it results in onset of inflammatory diseases including respiratory 
disease [9–11].

Table 5.1 List of ROS and 
RNS

ROS RNS
Superoxide (O2

.-) Nitric oxide (.NO)
Hydrogen peroxide (H2O2) Nitrogen dioxide (.NO2)
Hydroxyl radical (HO.) Nitrous acid (HNO2)
Peroxyl radical (RO.

2) Dinitrogen tetroxide (N2O4)
Alkoxyl radical (RO.) Dinitrogen trioxide (N2O3)
Hydroperoxyl radical (HO.

2) Peroxynitrite (ONOO_)
Singlet oxygen (1O2) Peroxynitrous acid (ONOOH)
Ozone (O3) Alkyl peroxynitrites (ROONO)

5 Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases



106

5.2.2  Sources of ROS and RNS in Lungs

5.2.2.1  Endogenous Sources of ROS/RNS in Lungs
The endogenous source refers to free radicals produced by cells. Adult lung com-
prises around 40 different cell types [12], which can be broadly classified as epithe-
lial, endothelial and neuroendocrine cells, smooth muscles, fibroblasts and immune 
cells (macrophages, neutrophils and T cells). All these cells have varied intrinsic 
capacity to generate ROS upon stimulation. In general, ROS/RNS are produced as 
intermediates or byproducts of cellular metabolism catalysed by enzymes localized 
in different organelles primarily plasma membrane, cytosol, mitochondria, peroxi-
somes and endoplasmic reticulum. The key enzymes that produce ROS/RNS in 
lungs include cytochrome c oxidase, NADPH oxidase, myeloperoxidase, xanthine 
oxidase and nitric oxidase synthase. In most of the lung disorders, the mitochondria 
are primary source of excess ROS [4, 9, 13]. Superoxide produced by mitochondria 
is a result of incomplete reduction of oxygen to water due to leakage of electrons by 
mitochondrial respiratory chain [4, 13]. NADPH oxidase (NOX) is a multicompo-
nent transmembrane enzyme complex that generates superoxide as end product via 
one electron reduction of oxygen [8–11]. In humans, there are seven isoforms of 
NOX – NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2. Nox2 is local-
ized in phagosome of phagocytes (macrophages and neutrophils) and produces 
massive ROS to kill the phagocytized bacteria. NOX1, NOX2, NOX4, DUOX1 and 
DOUX2 are distributed in various cell types in the human lung [10, 14]. 
Myeloperoxidase (MPO), a heme-containing enzyme, is localized in lysosomes of 
neutrophils and macrophages [11] and catalyses chlorination of H2O2 to HOCl, a 
highly reactive radical [11]. Additionally, MPO catalyses oxidation of thiocyanate 
to generate hypothiocyanite. Xanthine oxidase, localized in the plasma membrane 
and cytosol, catalyses oxidation of hypoxanthine to xanthine and to uric acid, during 
which superoxide is generated [6, 15]. The enzyme nitric oxide synthase catalyses 
oxidation of L-arginine to citrulline and nitric oxide [7, 16]. Nitric oxide produced 
reacts with superoxide to form very potent RNS intermediate, peroxynitrite 
(OONO−). There are three isoforms of NOS, namely, NOS1 (neuronal NOS, nNOS), 
NOS2 (endothelial NOS, eNOS) and NOS3 (inducible NOS, iNOS). Pulmonary 
cells constitutively express NOS1 and NOS2, while NOS3 is elevated in the lung 
during inflammation [7, 16, 17].

5.2.3  ROS and RNS in Lungs: Exogenous Sources

Inhalation of airborne toxicants such as tobacco smoke, biomass fuel smoke, par-
ticulate matter and gaseous emissions (nitrogen oxides and sulphur oxides), ozone, 
chemical toxins, pesticides and pollen grains largely constitutes the exogenous 
sources of oxidants in lungs [18]. Among the airborne toxicants, ambient air pollu-
tion particulate matter and cigarette smoke are the main contributors of free radicals 
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in human lungs [1, 3, 19, 20]. Depending on the size, the ambient particulate matter 
(PM) exhibits different physicochemical properties [21, 22]. Coarse particles larger 
than 10 microns are composed of natural materials (mineral and silicates) and are 
trapped and cleared by the nose and upper respiratory tract [23, 24]. Fine PM of size 
2.5 microns (PM2.5) and lesser and ultrafine particles (<0.1 microns) are produced 
by the combustion process from anthropogenic activities and are composed of poly-
cyclic aromatic hydrocarbons (PAH), metals, minerals, sulphates and nitrates [23, 
25]. PM2.5 and ultrafine particles could reach deep into distal lungs and cause injury 
to the alveoli [24]. A single puff of cigarette smoke comprises of 1015 free radicals 
[20, 26] and over 4000 chemicals including epoxides, peroxides, semiquinones, 
quinones and PAH. The cigarette smoke free radicals are classified into two phases: 
tar (particle) and gas. Tar phase has 1017 relatively long-lived radical molecules per 
gram such as quinone/hydroquinone (Q/QH2) radicals, which produce O2

•− leading 
to the generation of H2O2 and •OH [27]. Gas phase of cigarette smoke comprises of 
1015 organic and inorganic radicals per puff and includes NO•, NOx and ONOO− 
[28]. Ozone is another powerful exogenous oxidant in the lungs [29]. Plant pollens 
are associated with NADPH oxidase enzyme and are shown to generate superoxide 
in the airways following inhalation. Besides possessing intrinsic oxidative potential, 
the airborne toxicants also stimulate production of ROS by activating NADPH oxi-
dase, damaging mitochondria and by recruitment of inflammatory cells (macro-
phages and neutrophils).

5.3  Oxidative Stress-Associated Pulmonary Disorders

5.3.1  Chronic Obstructive Pulmonary Disease (COPD)

As per the recent estimates by a global burden of disease study [1], COPD kills over 
three million people and is the third leading cause of death. COPD is characterized 
by progressive, irreversible limitation in expiratory airflow and abnormal lung 
inflammation. The disease process involves airway inflammation and remodeling, 
mucus hypersecretion, loss of the terminal bronchioles and destruction of the lung 
parenchyma [30, 31]. Tobacco smoking is the primary causal agent of COPD; how-
ever, recent epidemiological evidence suggests that exposures to indoor and outdoor 
air pollutants are also a major etiological factor, especially in developing countries. 
Genetic polymorphisms in genes coding for alpha-1 antitrypsin, metalloproteinase 
33, superoxide dismutase-3 (SOD3) and tumour necrosis factor-α (TNFα) are addi-
tional risk factors in 10%–20% of the smokers for developing COPD [32–37]. 
Although the underlying pathophysiological mechanisms are complex, the lungs of 
patient with COPD show persistent oxidative stress, increased levels of proinflam-
matory cytokines, increased CD4 and CD8 cells, elevated levels of proteases and 
increased apoptosis and senescence [38–44]. Oxidative stress-driven mechanisms 
are strongly implicated in the initiation and progression of COPD [45].
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5.3.2  Asthma

Asthma is a very common airway disorder affecting both children and adults world-
wide. Clinically, asthmatics show airway hyperresponsiveness, reversible airflow 
obstruction and abnormal airway inflammation [46]. Genetic factors in the combi-
nation of environmental exposures increase the risk of asthma. The common envi-
ronmental agents that trigger asthma include aeroallergens (indoor and outdoor), 
tobacco smoke, dust, air pollutants, cold air and viruses. The hallmark pathological 
features of asthmatic airways include airway remodeling, epithelial desquamation, 
goblet cell hyperplasia and inflammation and are associated with eosinophils, mast 
cells, neutrophils, macrophages and T helper type 2 cells (Th2 cells) [47]. In asth-
matics lungs, allergen exposure triggers immunoglobulin E (IgE) production from 
B cells, degranulation of mast cells and infiltration of eosinophil into airways. These 
events are mediated by Th2 cytokines, namely, IL-13, IL-4, IL-5 and IL-9. Th1 
cytokines (IFN-g, IL-12) and Th17 cytokines (IL-23) are implicated in severe or 
steroid resistance asthma, which is characterized by high neutrophilic inflamma-
tion. ROS through direct injury to airway epithelial cells and via redox signalling 
mechanism are shown to enhance sensitivity to allergens and augment Th2/Th1 
cytokine secretion and, therefore, intricately involved in the pathogenesis of asthma 
[48].

5.3.3  Acute Respiratory Distress Syndrome (ARDS)

Acute lung injury and its severe form ARDS are common complications in patients 
admitted to intensive care unit. ARDS results from direct or indirect injury to lungs. 
Direct injury may be caused by gastric aspiration, pneumonia, inhalation of injuries 
gases and pulmonary contusion. Indirect injury includes sepsis, pancreatitis and 
trauma. ARDS is characterized by alveolar flooding with protein-rich oedema fol-
lowed by a progressive fibrotic phase [49]. Death among the patients with ARDS is 
mainly due to respiratory failure and/or multiorgan failure. Pathogenesis of ARDS 
involves an early injury to alveolar epithelium and capillary endothelium, which 
results in leakage and flooding of alveolar and interstitial spaces with protein-rich 
oedema. This is also accompanied by a massive influx of neutrophils into alveolar 
and interstitial spaces. Neutrophils secrete proteolytic enzymes (elastase and metal-
loprotease), ROS, proinflammatory mediators and further lung injury [50]. The 
early inflammatory exudative phase is followed by a fibroproliferative phase in 
which fibroblast and myofibroblast infiltrate and proliferate within the alveolar and 
interstitial spaces leading to lung fibrosis [51]. Oxidative stress is shown to mediate 
epithelial-endothelial barrier dysfunction and perpetuate inflammation in ARDS 
patients [52, 53].
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5.3.4  Idiopathic Pulmonary Fibrosis (IPF)

IPF is a progressive interstitial pulmonary fibrosis disorder with no known causal 
etiological factor. The lungs of patients with IPF show excessive deposition of 
matrix proteins such as fibronectin and collagen in the alveoli and lung parenchyma, 
which destroys the gas exchange surface leading to respiratory failure [54]. It is 
more prevalent in the USA and Europe than South America and South Asia. IPF 
disproportionately affects individuals above age 65 years, and often it is referred to 
as age-related disorder. Pathogenesis of IPF involves chronic insult to alveolar epi-
thelial cells (AEC), senescence of AEC and fibroblast, increased differentiation of 
fibroblast to myofibroblast [54] and increased accumulation of myofibroblast, 
which is mediated by oxidative injury, mitochondrial dysfunction, proteotoxicity 
and endoplasmic reticulum stress [14, 55]. Emerging evidences implicate ROS by 
Nox4 as a key player in the pathogenesis of IPF [55].

5.4  Oxidative Stress-Driven Mechanisms in Lung Diseases

5.4.1  Oxidative Stress and Lipid Peroxidation

Lipid peroxidation (LPO) in biological systems refers to the oxidation of cellular 
membrane lipids; and uncontrolled LPO is the most significant early biological pro-
cess induced by oxidative stress state. Excess LPO results in defective or dead cell, 
inactivation of critical proteins and activation of proinflammatory responses. 
Together, these events not only initiate but also ensue disease progression. Numerous 
studies have overwhelmingly showed that LPO is a universal pathogenic event in all 
the respiratory diseases including COPD, IPF, ARDS and asthma [56].

Membrane lipids mainly glycerophospholipids (PL) esterified with polyunsatu-
rated fatty acid (PUFA) and to a lesser extent free PUFA are the targets for oxida-
tion. Free PUFAs released by action of phospholipases inside the cells are substrates 
for enzymes such as cyclooxygenase, lipoxygenase and cytochrome P450s, and 
hence, free PUFA undergoes enzyme-dependent peroxidation. PL-PUFAs are pre-
dominantly oxidized by non-enzymatic process and highly depend on the radical 
species. Both radical species (•OH and O−

2
•) and non-radical species (H2O2, HOCl, 

ozone and singlet oxygen) may oxidize PL-PUFA in selective or non-selective man-
ner. The chemical reactions mediating the oxidation of PL-PUFA or free PUFA are 
similar; however, the products generated may vary. LPO process involves three 
phases – initiation, propagation and termination. During the initiation phase, non- 
radical lipid molecule becomes a lipid radical. The radical species abstract hydro-
gen from bisallylic methylene and produce a carbon-centred radical (L•) within 
PUFA, which subsequently reacts with molecular oxygen and forms lipid peroxyl 
(LOO•) radical. During the propagation phase, the LOO• radical abstracts hydrogen 
from bisallylic methylene of another PUFA molecule and transforms itself into a 
lipid hydroperoxide and, concomitantly, generates a new L• radical, and in this man-
ner, the peroxidation chain reaction sustains. During termination process, 
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antioxidant molecule, such as vitamin E, donates hydrogen, reduces lipid radicals 
without transforming itself into radical and thus terminates the LPO chain reaction. 
Lipid hydroperoxides may further participate in additional oxidative reactions such 
as Fenton reaction catalysed by Fe or Cu, intra- and intermolecular oxidative modi-
fication and oxidative fragmentation. Finally, LPO produces diverse reactive alde-
hyde byproducts including widely studied malondialdehyde (MDA) and 
4-hydroxy-2-nonenal (4HNE). The oxidation of PL-PUFA also yields diverse spe-
cies of oxidized phospholipids (Ox-PLs) (aldehyde, alkene, peroxyl and alkane 
derivatives), which exhibit varying carbon chain length, hydrophobicity, reactivity, 
physical stability and biological activity [57]. The oxidized PUFA chain of glycero-
phospholipid may be released by the action of enzymes such as phospholipase A2 
and PAF-acetyl hydrolases [57]. Since the cell membranes are composed of 40–50% 
of phosphocholine (PC) phospholipids, PC-derived Ox-PLs species are the most 
abundant Ox-PLs detected in injured lungs.

LPO products such as MDA, 4HNE and Ox-PLs produced in the lungs are not 
bystanders; rather they actively take part in the pathogenesis of lung disease by 
inducing cell death, epithelial-endothelial barrier dysfunction, inflammation and 
immune responses [58]. Ox-PLs and 4HNE are shown to mediate cytotoxicity 
through disruption of membrane integrity and activating cell death signalling pro-
grams such as apoptosis [59, 60] and ferroptosis [61, 62]. Ox-PLs generated follow-
ing particulate matter exposure caused disruption of the endothelial barrier [62]. 
Ox-PLs are demonstrated to be dominant mediators of acute lung injury following 
gastric aspiration and viral infection [63].

A large body of evidence has reported elevated levels of MDA, 4HNE or Ox-PLs 
or their corresponding protein adducts in the bronchoalveolar lavage fluid, lung tis-
sue and/or serum of patients with various lung diseases such as asthma, COPD, 
ARDS and IPF [43, 64–66]. Immunohistochemical analysis revealed greater accu-
mulation of 4HNE in the airways, alveolar epithelium and inflammatory cells of the 
lungs of COPD patient when compared to smoker non-COPD patient with similar 
smoking history [67]. The bronchoalveolar lavage fluid from COPD patients shows 
higher levels of Ox-PLs when compared to healthy subjects [43, 64, 65]. The lung 
parenchyma of IPF patients showed greater accumulation of LPO products [54, 55, 
68]. In most respiratory diseases, the levels of LPO byproducts increased with the 
severity of the pulmonary diseases, which suggest that the LPO is the central patho-
logical event.

5.4.2  Oxidative Stress in Activating Inflammatory Response

It is proven beyond doubt that oxidative stress is involved in the initiation, promo-
tion and augmentation of inflammation by affecting multiple redox-sensitive signal 
transduction pathways, including Toll-like receptor (TLR) signalling, MAPK kinase 
signalling and inflammasome which ultimately leads to activation of proinflamma-
tory transcription factors particularly nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) and AP-1 [32, 69].
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TLR signalling is central in activating pulmonary inflammatory responses fol-
lowing infectious stress and oxidative stress [70]. During infection, TLRs recognize 
highly conserved microbial motifs referred to as pathogen-associated molecular 
pattern (PAMP) and activate downstream inflammatory signals [71]. In mammals, 
there are 13 TLRs, which are present either on the plasma membrane (TLR1, TLR2, 
TLR4, TLR5, TLR6 and TLR10) or in endosome compartment (TLR3, TLR7, 
TLR8, TLR9) inside the cell. Upon activation by PAMPs, TLRs undergo hetero- or 
homodimer and trigger a downstream signal transduction by recruiting adaptor mol-
ecules, myeloid differentiation factor 88 (MYD88) or Toll-receptor-associated acti-
vator of interferon (TRIF). Except TLR3, a majority of TLRs recruit MYD88 that 
interacts with IRAK4 and phosphorylate IRAK1. Phosphorylated IRAK1 activates 
TNFR-associated factor 6 (TRAF6) through phosphorylation, which subsequently 
stimulates protein kinase C and transforming growth factor (TGF)-β-activated 
kinase 1 (TAK1). Activated TAK1 activates IκK complex and MAPK kinase family 
members (ERK1/2, p38 MAPK and c-Jun terminal kinase (JNK)) by phosphoryla-
tion mechanisms. TLR3 recruits adaptor molecule TRIF and activate TRAF3, which 
then activates TANK-binding kinase 1 (TBK1). Activated TBK1 initiates interferon 
regulatory factor 3 to transcribe IFN-beta cytokine which by autocrine or paracrine 
mechanism elicits interferon signalling pathway activation.

Transcription factor NF-κB is a central node in regulating inflammation leading 
to the pathogenesis of COPD, asthma, ARDS and IPF. NF-κB family is constituted 
of five members – NF-κB1 (P50) (its precursor p105), NF-κB2 (P52) (its precursor 
p100), p65/RelA, RelB and C-Rel – and exists as homo- or heterodimer. Only p65, 
Rel-B and C-Rel members have a transactivating domain. In an unstimulated cell, 
the NF-κB dimmer is sequestered in the cytoplasm by one of the three members of 
IκB protein complex consisting of IκBα, IκBβ and IκBε. Activation of NF-κB may 
occur through canonical or noncanonical pathways. In canonical pathway, signals 
elicited by TLR(s) ligands, TNFα or IL-1β converge at IκK complex constituted of 
IκKα, IκKβ and IκKγ (NEMO). Upon activation IκK complex phosphorylates IκB 
on serine 32 and serine 36, which results in its proteasomal degradation and subse-
quently allows NF-κB to translocate into the nucleus. NF-κB binds to κB element in 
the promoter/enhancer regions and activates transcriptional expression of cytokines, 
chemokines and adhesion molecules, which are involved in coordinating innate and 
adaptive immunity [70–72].

Oxidative stress regulates activation of TLR signalling by multiple mechanisms 
[70]. NADPH oxidase-dependent ROS production is shown to enhance surface traf-
ficking of TLR4 to lipid rafts, thereby augmenting downstream signals leading to 
hyperactivation of NF-κB [72–75]. Suppression of ROS generation by pharmaco-
logical NADPH oxidase inhibitor, genetic ablation of NADPH oxidase or exoge-
nous antioxidants mitigated lipopolysaccharide (LPS)-induced TLR4 trafficking to 
lipid rafts and diminished downstream inflammatory responses [74, 75]. Genetic 
ablation of NADPH oxidase dampened lung inflammation and injury in mice 
exposed to gram-negative bacteria, LPS, TNFα or bleomycin, suggesting a crucial 
impact of NADPH oxidase-elicited ROS in producing inflammation and associated 
tissue injury [55, 74, 76–78]. On the other hand, ROS derived from NADPH oxidase 
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have also been involved in the resolution of lung inflammation [79]. Mitochondria- 
derived ROS also play a crucial role in enhancing TLR1, TLR2 and TLR4 signal-
ling [80] and production of proinflammatory cytokines [81]. ROS is shown to 
augment TLR3 signalling partly by increasing the expression of TLR3 [82]. 
Oxidatively damaged biomolecules also act as danger-associated molecular patterns 
(DAMPs) and engage TLR4 to activate inflammatory responses. For instance, oxi-
dized phospholipids generated in lungs following exposures to chemicals, bacteria 
or virus act as DAMPs and activate TLR4 directed inflammatory responses [83], 
which is shown to play an essential role in the initiation of acute lung injury. In 
contrast, excess oxidized phospholipids may also dampen TLR4 signalling by 
directly interacting with LPS-binding protein, CD14 and/or MD-2 and inhibit 
inflammation and protect from sepsis [84]. Often oxidative or nitrosative modifica-
tion of proteins gives rise to modified proteins, which act as DAMPs and perpetuate 
inflammation. For example, protein adducts of 4HNE or MDA are shown to elicit 
inflammatory and immune responses [85, 86] in the lungs. 4HNE has also been 
shown to activate NF-κB and p38 MAPK and promote inflammation [56]. 
S-nitrosylation of surfactant-D protein switches pulmonary surfactant protein-D 
from antioxidant to a proinflammatory mediator [87].

ROS may regulate NF-κB activation by modulating upstream signal kinases (IκK 
complex) through oxidative modification of signal transducers and/or its binding 
partners [88]. In early phases of oxidative stress, ROS may enhance NF-κB activa-
tion following exogenous stimuli; however sustained oxidative stress may repress 
NF-κB activation [88]. IκK complex, mainly IκKβ, is highly susceptible for redox 
modification. Exposures to H2O2 induced oxidative inactivation of IκKβ, which pre-
vented phosphorylation of IκB protein and thus blocked TNFα-induced NF-κB acti-
vation [89]. In another study, H2O2 posttreatment augmented IκK kinase activity in 
response to TNFα and leads to higher NF-κB activation [90]. H2O2 treatment was 
also shown to enhance NF-κB activation in response to IL-1 cytokine by increasing 
NF-kappa B-inducing kinase activity [91]. IκKβ is also susceptible for 
S-nitrosylation, which inactivates IκKβ resulting in inhibition of NF-κB activation 
[92]. ROS and RNS are shown to directly modify NF-κB or its associated proteins 
and alter its transcriptional activity. ROS-dependent phosphorylation of serine-276 
on REL-A enhanced transcriptional activity of NF-κB [93]. S-nitrosylation of p65 
subunit inhibited NF-κB activity. Kelleher et al. [94] demonstrated that p65 subunit 
is S-nitrosylated in unstimulated lung cells and LPS challenge stimulates denitro-
sylation of p65 resulting in activation of NF-κB. Excess ROS may also inactivate 
proteasome, which impedes IkB degradation and thus inhibits NF-κB activation 
[95]. Certain cellular redox proteins play an important role in modulating upstream 
pathways leading to NF-κB activation. In the nucleus, thioredoxin binds and pro-
tects oxidation of p65 subunit and enhances its DNA-binding activity. It is also 
shown that thioredoxin mediates denitrosylation of p65 following LPS exposure 
and facilitates NF-κB activation [94] in the lungs of mice. Pretreatment with anti-
oxidants such as N-acetylcysteine [96], GSH [97, 98] or increased expression of 
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antioxidant [72, 97, 98] attenuated lipopolysaccharide (LPS)-promoted NF-κB acti-
vation emphasizing the role of oxidative stress in regulating NF-κB activity.

Inflammasome is an intracellular multiprotein complex assembled in the cyto-
plasm, which recognizes microbial or environmental toxins and DAMPs (e.g. ATP) 
and activates inflammatory responses. Several airborne environmental pollutants 
such as silica, ozone, particulate matter and tobacco smoke are shown to activate 
inflammasome, and therefore, inflammasome signalling is implicated in the patho-
genesis of several lung disorders such as acute lung injury, pulmonary fibrosis, 
COPD and asthma [99, 100]. Activation of inflammasome produces active caspase-
 1 via autoproteolytic cleavage, which then mediates proteolytic cleavage of precur-
sor pro-IL1β and pro-IL18 into biologically active cytokines. Among the 
inflammasome members, NLRP3 is redox sensitive, and therefore, intracellular 
ROS generated by NADPH oxidase or mitochondria have been shown to alter the 
activation of NLRP3 inflammasome [101]. Ablation of NADPH oxidase or deple-
tion of mitochondrial ROS inhibited ATP-induced caspase-1 activation and IL-1β 
secretion in macrophages [102, 103]. ROS may also alter NLRP3 inflammasome 
activation by oxidizing redox-sensitive binding partners such as thioredoxin interac-
tion protein (TXNIP) and mitochondrial antiviral sensing (MAVS) protein to 
NLRP3. TXNIP is a negative regulator of thioredoxin. It is shown that ROS gener-
ated in response to a wide range of environmental stimuli oxidizes thioredoxin that 
liberates TXNIP. The liberated TXNIP interacts with NLRP3 and promotes NLRP3 
activation [104]. MAVS regulates type 1 interferon and NF-kB signalling following 
virus infection. It has been shown that ROS may induce MAVS aggregation [105] 
on the outer membrane of mitochondria, which enables interaction with NLRP3 and 
promotes activation.

MAPK kinases, namely, ERK1/2, JNK and p38 MAPK, represent key effectors 
of signal transduction to activate inflammatory responses in the lungs following 
exposure to environmental toxicants [106]. In macrophages and bronchial epithelial 
cells, LPS stimulation induces phosphorylation of p38 MAPK and mediates the 
generation of numerous proinflammatory cytokines such as TNFα, IL-6, IL-1β 
[107] and also T cell (Th1 and Th17)-polarizing cytokines such as IFNγ, IL-12 and 
IL-23 [108]. In cigarette smoke-exposed mouse models, specific activation of p38 
MAPK is shown to be a determinant of susceptibility to emphysema [106]. Several 
investigations suggest that ROS plays a pivotal function in activating and/or per-
petuating MAPK kinase signalling. Exposure of cells to H2O2 induces phosphoryla-
tion of p38, ERK and JNK [109]. Although precisely how ROS activates MAPK 
kinase is less understood, it is postulated that ROS mediates oxidative inactivation 
of protein tyrosine phosphatases and MAPK phosphatases, which inactivate MAPK 
kinase by dephosphorylating [109, 110]. Because MAPK kinase plays a pivotal role 
in regulating inflammation, kinase inhibitors, particularly p38 MAPK inhibitors, are 
shown to be promising drug for treatment of airway disorders such as COPD and 
asthma [111].
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5.4.3  Oxidative Stress in Programmed Cell Death

Apoptosis (a programmed cell death) is involved in removing damaged, infected 
and potentially neoplastic cells, and increased apoptotic cell death is involved in the 
pathogenesis of several lung disorders. Apoptosis can be activated by several factors 
including receptor-mediated signals and DNA damage; however, in most cases, 
ROS functions as an upstream activator of apoptosis. Apoptosis is mediated by 
extrinsic and intrinsic pathways [40, 112, 113]. The extrinsic pathway is mediated 
through interaction of death ligands of the tumour necrosis factor (TNF) family 
(FasL/FasR and TNFǖFC;/TNFR1) with their appropriate cell surface death recep-
tors, while non-receptor-mediated stimuli are involved in intrinsic signalling path-
ways that initiate apoptosis. Oxidative stress may induce these processes by 
activating several signalling pathways, including MAPK (ERK, JNK and p38), cell- 
cycle regulators, protein kinase B and caspases [114]. For instance, 4HNE is 
reported to enhance the mRNA and protein expression of pro-apoptotic regulators/
adaptors such as BAX and caspases [59, 115]. Further, 4HNE can directly interact 
with death ligand (Fas) on the cell membrane and activate apoptotic process [114]. 
Finally, 4HNE alters cytosolic calcium homoeostasis and mitochondrial calcium 
uptake, resulting in apoptosis [116]. Similarly, cigarette smoke exposure is shown 
to activate apoptosis via ROS by activating MAPK/STAT1 pathway [117]. Several 
studies have reported oxidative stress-dependent apoptosis in pulmonary fibrosis, 
obstructive airway diseases and ARDS [12, 40, 41, 44, 113, 118].

5.4.4  Oxidative Stress in Mitochondrial Dysfunction

Besides the ‘powerhouse’ (ATP production by oxidative phosphorylation) of the 
cell, mitochondria physically interact and communicate with other organelles to 
maintain the metabolic homeostasis and many synthetic processes for normal func-
tion and survival of cell [13]. Mitochondria may also sense external stressors and 
alter its function to mount a protective adaptive stress response program [119]. 
However, prolonged exposures to environmental toxicants induce mitochondrial 
dysfunction mainly via oxidative stress mechanisms [120]. Mitochondrial dysfunc-
tion may present in the form of increased mitochondrial ROS, diminished oxidative 
phosphorylation, increased mitochondrial mass, secretion of mitochondrial DAMPs, 
mitochondrial DNA damage, decreased mitochondrial biogenesis and increased 
accumulation of defective mitochondria [13, 119, 121]. Several studies suggest that 
mitochondrial dysfunction is a predominant pathological feature in all lung diseases 
[13, 120, 121].

In lungs, owing to their dynamic function, alveolar type II epithelial cells, bron-
chial ciliated epithelial cells, vascular smooth muscle cells and macrophages are 
richer in mitochondria than other lung cell types. In normal conditions, lung cells 
preferentially use glucose end product, pyruvate, for oxidative phosphorylation. 
However, during stressful physiological or pathological conditions (such as 
increased surfactant production), alveolar type II epithelial cells rely on fatty acids 
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for energy demand. Under chronic stress conditions, mitochondrial bioenergetic 
metabolic function may get altered in lung cells. For example, cigarette smoke 
exposure is shown to damage mitochondrial structure and affect oxidative phos-
phorylation in lung cells [122]. Likewise, primary bronchial epithelial cells from 
severe COPD patients showed accumulation of abnormal mitochondria [122]. 
Airway smooth muscles and diaphragmatic and external intercoastal muscle of 
patients with COPD are associated with altered mitochondrial oxidative phosphory-
lation [123]. Bronchial epithelium in asthmatics is associated with reduced mito-
chondrial oxidative phosphorylation and decreased expression and activity of 
cytochrome c oxidase [120, 124, 125]. To meet the energy demand and mount stress 
response, chronic stress may also induce mitochondrial biogenesis in lung cells. 
Alveolar type II epithelial cells showed increased mitochondrial biogenesis during 
acute lung injury, pneumonia and hyperoxia-induced lung injury [126]. Bronchial 
smooth muscles of asthmatic airways are associated with increased mitochondrial 
biogenesis, and this was linked to higher expression of nuclear respiratory factor 1, 
peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and mitochon-
drial transcription factor A [127]. Abnormal or defective mitochondria in the cells 
are constantly removed by a process called mitophagy, which is regulated by PTEN- 
induced kinase 1 (PINK1). Expression of PINK1 is negligible in healthy mitochon-
dria; however its levels increase on the outer mitochondrial membrane of defective 
mitochondria, which recruits parkin and autophagy proteins and facilitates mitoph-
agy. Impaired mitophagy leads to accumulation of damaged mitochondria in the 
cells, which promotes cellular senescence [128, 129]. Increased cellular senescence 
has been observed in the lungs of COPD and IPF patients [128–130]. Exposures to 
cigarette smoke in lung cells are shown to inhibit mitophagy, increase accumulation 
of damaged mitochondria [128, 129, 131] and induce cellular senescence. Alveolar 
type II cells of IPF patients are associated with abnormal mitochondria due to 
diminished PINK1 expression [132]. In mouse models, PINK1 knockdown impaired 
mitophagy and increased accumulation of defective mitochondria and promoted 
fibrosis in aging lungs [132]. On contrary, increased mitophagy may also contribute 
to pathogenesis of lung diseases. For example, Staphylococcus aureus infection 
increased mitochondrial expression of PINK1 and mediated acute lung injury, 
which was ablated in PINK1 knockout mice [133]. Mitochondrial dysfunction may 
also lead to leakage of cytochrome c, which triggers programmed cell death [116, 
134]. Mitochondria have been shown to regulate various forms of cell death such as 
extrinsic apoptosis, intrinsic apoptosis, necroptosis and pyroptosis [134], and all 
these forms of cell death have been reported in various lung diseases including 
COPD, asthma and IPF.

At physiological concentrations, many mitochondrial-derived molecules includ-
ing ROS help in normal cellular signalling. However, when secreted in excess, 
mitochondrial- derived molecules act as mitochondrial DAMPs (mtDAMPs) and 
contribute to lung injury. Mitochondrial DNA (mtDNA), a well-studied mtDAMP, 
is released by damaged mitochondria, which is shown to engage TLR9 and inflam-
masome to initiate inflammatory responses in lung cells [135, 136]. Circulatory 
levels of mtDNA correlate well with severity and mortality in sepsis and ARDS 
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patients [137]. Excess ATP released in the lungs by dead or damaged cells also acts 
as mtDAMPs and activates inflammatory response via NLRP3 inflammasome [119, 
138]. Elevated levels of ATP are reported in bronchoalveolar lavage fluid of patients 
with COPD [139] and asthma as well as in mouse models of asthma [140] and pul-
monary fibrosis [141]. Other mtDAMPs such as TFAM and N-formyl peptide are 
also implicated in driving inflammatory responses in lungs [119]. Cardiolipin, a 
predominant lipid located in mitochondrial inner membrane, is released by dam-
aged mitochondria and acts as mtDAMP. Levels of cardiolipin increase during lung 
injury and are shown to mediate cell death and activate inflammasome signals [133, 
142]. Additionally, cardiolipin in lung fluid was shown to inhibit surfactant activity 
and worsen lung function in mouse models of pneumonia [143]. Finally, 
mitochondrial- derived ROS plays diverse roles in the pathogenesis of lung diseases 
including perpetuating oxidative stress, augmenting TLR-NF-κB signalling and cell 
death [13, 81, 119, 125, 134, 135, 144].

5.4.5  Oxidative Stress in Promoting Endoplasmic Reticulum 
Stress

The endoplasmic reticulum (ER) is involved in protein biosynthesis and post- 
translational modifications and perturbation of ER homeostasis results in ER stress 
which affects both these process. To overcome the ER stress, cells initiate an evolu-
tionarily conserved mechanism called unfolded protein response (UPR). Activation 
of UPR leads to decrease in protein synthesis by selectively inhibiting translation, 
increases protein folding machinery and removes misfolded proteins through endo-
plasmic reticulum-associated degradation (ERAD) pathway [145]. If UPR fails to 
alleviate ER stress, it activates apoptotic signalling mechanism [146] and, thus, 
helps in removal of damaged or stressed cells. Chronic ER stress is pathological and 
is associated in the pathogenesis of many lung disorders. Markers of ER stress are 
elevated in neutrophil-associated steroid-resistant asthma [147]. In COPD model, 
cigarette smoke exposure elicited ER stress and apoptosis [148, 149]. ER stress was 
found to be elevated in lungs of human IPF and murine models of pulmonary fibro-
sis [146]. ER stress is also reported to be involved in the hyperoxia-induced acute 
lung injury in neonates [150]. Sustained oxidative stress milieu may promote ER 
stress by increasing cellular stress and decreasing the efficiency of protein folding 
pathways [151]. A relationship has been established between ROS generation and 
activation of ER stress response [152]. NADPH oxidase(s) and mitochondria are 
reported as a probable ROS source during ER stress.

5.4.6  Oxidative Stress in Epigenetic Alterations

Chronic oxidative stress state may disturb the epigenetic state of the cell by multiple 
mechanisms. For example, superoxide radicals can directly mediate transfer of a 
methyl group from SAM to a cytosine residue without the need of DNMT by 
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deprotonating C5 [153]. ROS may increase DNMT expression and indirectly affect 
DNA methylation [154]. ROS may also directly or indirectly modify acetylation of 
histones by modifying activity or the expression of histone methyltransferases 
(HMTs) and/or histone acetyltransferases (HATs) [155]. On the other side, ROS and 
RNS are reported to modulate the activity of HDACs (histone deacetylase) that may 
influence the expression of target genes by removing acetyl groups [156–159] on 
histones. Recently, various ncRNAs, in particular microRNAs (miRNAs), are regu-
lated by ROS. Interestingly, some miRNAs such as miR-9, miR-21, miR-200 and 
miR-210 are shown to control cellular ROS levels and are termed as redoximiRs 
[160]. ROS are also shown to interfere with miRNA biogenesis process as well as 
miRNA maturation by modulating Dicer and argonaute RISC catalytic component 
[161]. In the context of the lung, several lines of evidence support that ROS- 
dependent changes in the epigenetic background play an important role in the 
pathogenesis of respiratory diseases. For instance, cigarette smoke exposures inhibit 
HDAC2 enzyme activity through oxidative and nitrosative modification, which 
leads to enhanced inflammatory responses, senescence and steroid resistance in 
COPD [158, 159]. Another study shows that Sirtuin 1 promotes lung epithelial cell 
death following hyperoxia by selectively deacetylating the transcription factor 
nuclear factor (erythroid-derived 2)-like 2 (NRF2), accompanied by reduced levels 
of antioxidant enzymes [162]. In case of asthma, one study reported that exposure 
to environmental particulate matter could lead to demethylation of iNOS gene; sub-
sequently this may lead to increased expression of proinflammatory iNOS, leading 
to lung inflammation [163]. The involvement of many factors including ROS in 
epigenetics of IPF has been reviewed [164].

5.4.7  Oxidative Stress in Profibrotic Mechanisms

Fibrotic lungs are associated with increased oxidative stress, as indicated by the 
elevated levels of biomarkers of lipid, protein and DNA damage, and several reports 
have implicated ROS in profibrotic processes. Activation and proliferation of fibro-
blasts/myofibroblasts are thought to be responsible for the excessive synthesis and 
accumulation of extracellular matrix (ECM) proteins, resulting in fibrosis. During 
the inflammatory phase of fibrosis, ROS along with growth factors (TGF-β, PDGF 
and CTGF) and cytokines (IL-6 and IL-13) stimulate fibroblast to produce 
ECM. Among these, TGF-β is the most dynamic pro-fibrogenic cytokine, which 
regulates important biological processes such as EMT, fibroblast activation and dif-
ferentiation and ECM production [165]. ROS may influence the transformation of 
latent TGF-β complex into its active form, which then binds to its receptors and 
activates signalling pathways such as SMAD-dependent or SMAD-independent 
(e.g. MAPK and PI3K) pathways and enhances the transcriptional activity of vari-
ous profibrotic genes such as α-SMA and COL1 [166]. On the other hand, elevated 
TGF-β itself reciprocally induces the production of NOX4-dependent ROS [167]. 
NOX4 is selectively upregulated in the lungs of IPF patients and is associated with 
the endothelial cell dysfunction and hypoxia [14, 55]. Elevated NOX4-generated 
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ROS triggers DNA oxidation and activates other ROS-dependent signalling path-
ways such as JNK and NF-κB [168]. Silencing of NOX4 by siRNA inhibited TGF- 
β- mediated profibrotic responses in the lungs of mice [55]. Further, NOX4 knockout 
mice and use of NOX4 inhibitor in mice protected against bleomycin-induced acute 
lung injury and the onset of fibrosis [76, 169]. In fibroblasts, mitochondrial ROS has 
been shown to induce the expression of profibrotic genes during fibroblast differen-
tiation [144]. ROS may also modulate integrins, transmembrane receptors that acti-
vate FAK, which in turn activate rac1 protein and initiate production of collagen and 
other profibrotic actors (CTGF and α-SMA) [170]. ROS and RNS may modulate 
activity of matrix metalloproteinases (MMPs) through the inhibition of cysteine 
switch and thus influence ECM degradation. ROS are also shown to induce epithe-
lial cell senescence that may result in a diminished capacity for regeneration of 
epithelium [171]. In IPF, epithelial damage and epithelial cell senescence in the 
lung are interconnected with increased mitochondrial ROS production. Similarly, in 
IPF fibroblasts, ROS generation is reported to require for the maintenance and dif-
ferentiation [172]. Furthermore, oxidative stress may cause ER stress, which facili-
tates fibrogenesis through activation of EMT, pro-apoptotic pathways and 
inflammatory responses [146]. In summary, oxidative stress can alter different cel-
lular processes that amplify fibrotic responses.

5.4.8  Oxidative Stress in Airway Mucus Hypersecretion

A thin layer of gelatinous mucus covers the apical epithelial surfaces of mammalian 
respiratory tract, which forms a protective barrier against airborne microbes and 
toxins, but conversely, excessive mucus production becomes pathologic in muco- 
obstructive airway diseases [173]. Mucus is secreted by goblet cells in the airway 
epithelium and is mainly composed of mucin, which is a large filamentous glyco-
protein [174]. Mucus is also rich in antioxidant scavengers such as glutathione, uric 
acid and ascorbic acid. Chronic airway inflammatory diseases such as chronic bron-
chitis and asthma are characterized by mucus hypersecretion [175], and ROS 
(hydroxyl radicals, superoxide anions and hydrogen peroxides) are key regulators 
of mucus production in goblet cells via transcriptional regulation of mucin genes 
[176]. Of 12 mucin genes, MUC5AC is a major inducible mucin gene in airways 
and reported to be highly expressed in muco-obstructive airway disorders [177, 
178]. Increased intracellular ROS and exposure to hydrogen peroxide stimulate 
EGFR tyrosine phosphorylation and subsequent activation of ERK1/2, resulting in 
increased expression of MUC5AC in lung epithelial cells [176, 179]. Similarly in 
nasal epithelium, exogenous hydrogen peroxides exposure induces MUC5AC 
expression through activation of EGFR-ERK1/2 signalling [178]. Yu et  al. [180] 
reported that ROS depolymerizes hyaluronan into fragments and these hyaluronan 
fragments interact with CD44 receptor to activate tissue kallikrein, which cleaves 
precursors of EGF into mature EGF. Subsequently, mature EGF binds and activates 
EGFR leading to activation of ERK1/2. In addition, ROS is reported to contribute to 
goblet cell metaplasia, a major player in mucin overproduction through JAK/STAT 
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pathway [181]. Likewise, activation of other pathways, such as NF-κB, is also 
linked to ROS-mediated MUC5AC production in airways. However, the majority of 
the studies suggest that EGFR is involved in ROS-mediated mucus hypersecretion 
[173, 177, 178].

5.5  Antioxidant Responses in Lungs

The lungs are exceptionally exposed to greater oxidative environment than other 
organs. The inhaled toxicants are by themselves oxidants or may induce oxidative 
stress inside lung cells. To protect from the inhaled environmental oxidants, lungs 
are endowed with efficient antioxidant defences that includes both non-enzymatic 
and enzymatic antioxidant defences.

5.5.1  Antioxidant System in Respiratory Tract Lining Fluid

The airways are covered with respiratory tract epithelial lining fluid (RTLF) which 
forms a physical barrier between the external environment and underlying respira-
tory tract epithelial cell layer. The respiratory tract lining fluid traps most of the 
inhaled toxicants, and by the help of mucociliary action, these trapped toxicants are 
cleared from the lungs. The respiratory tract lining fluid is rich in many non- 
enzymatic low-molecular-weight antioxidant scavengers, which directly interact 
and detoxify the inhaled oxidants and thereby prevent the direct contact of inhaled 
toxicants with the underlying epithelium. The major antioxidant molecules in the 
RTLF are GSH, ascorbic acid, uric acid and vitamin E (Fig. 5.1). Additionally, air-
way epithelial cells secrete certain antioxidant proteins into RTLF, which also func-
tion as antioxidant scavengers.

5.5.1.1  Glutathione (GSH)
Glutathione, a thiol-tripeptide comprised of glutamate, cysteine and glycine, is the 
most important antioxidant in RTLF, and its levels in RTLF are close to 100 times 
more than in the plasma [182]. GSH scavenges a number of ROS products including 
hydroxyl, H2O2, hypochlorous acid and lipid peroxyl radical generated during expo-
sures to inhaled oxidants such as cigarette smoke, ozone and allergens, and there-
fore, reduced bronchoalveolar lavage GSH levels has been a hallmark feature of 
many pulmonary diseases including COPD, asthma, ARDS and IPF [183]. Besides 
scavenging ROS, GSH is a co-substrate for the enzyme glutathione peroxidase and 
glutathione S-transferase which mediate detoxification of lipid hydroperoxides and 
xenobiotics, respectively. GSH in RTLF also protects secretory antiproteases such 
as alpha-1-antitrypsin, alpha-2-macroglobulin and secretory leukoprotease inhibitor 
from oxidative inactivation [184]. Therefore, a lower level of tissue GSH intensifies 
oxidant-induced lung inflammatory injury. GSH also maintains thiol status of extra- 
and intracellular proteins and facilitates post-translational modification of proteins 
such as S-glutathionylation. Protein S-glutathionylation may alter the function of 
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many intracellular proteins. For example, S-glutathionylation inhibits DNA-binding 
activity of p65 or p50 subunits [185], and S-glutathionylation inactivates IκKβ [186] 
resulting in diminished NF-κB activity.

5.5.1.2  Ascorbic Acid
Ascorbic acid is another major antioxidant in RTLF. It directly reduces the oxidative 
potential of oxidants present in tobacco smoke [187] or particulate matter [188] as 
well as inhibits ROS generation by NADPH oxidase activity [189]. Besides reduc-
ing the inhaled oxidants, ascorbic acid also reduces oxidized antioxidants in RTLF 
such as vitamin E, thereby maintaining the total antioxidant capacity of the lungs 
during oxidative insult. Ascorbic acid is rapidly used in RTLF fluid upon exposures 
to environmental oxidants including ozone, nitrogen dioxide, particulate matter and 
tobacco smoke [190–192] as indicated by the depletion of ascorbic acid levels. 
Supplementation of ascorbic acid protected from cigarette smoke-induced emphy-
sema by inhibiting protein oxidation in mouse models [192] highlighting the anti-
oxidant potential of ascorbic acid in the lungs. Asthmatics are associated with lower 
levels of ascorbic acid [193, 194], and the beneficial effect of supplementation of 
ascorbic acid in asthmatics has been mixed and inconclusive [195]. Ascorbic acid 
has been shown to attenuate acute lung injury caused by inhalation of oxidant chlo-
rine gas [196]. Ascorbic acid may also take part in pro-oxidant activity in the pres-
ence of free iron by taking part in Fenton reaction.

5.5.1.3  Uric Acid
Uric acid formed due to purine metabolism is one of the major water-soluble scav-
engers of singlet oxygen, ozone and peroxylnitrite (ONOO) in RTLF [190] . Uric 
acid has been shown to be a major antioxidant in nasal secretion [197] and RTLF 
and helps in the removal of inhaled ozone and neutralizes the oxidative potential of 
inhaled particulate matter in humans [198]. Uric acid also reacts and neutralizes 
gaseous free radical nitrogen dioxide [190, 199]. The antioxidant scavenging activ-
ity of uric acid greatly depends on ascorbic acid and hydrophilic environment. Uric 
acid reacts with radical species and forms urate free radical which is then quenched 
by ascorbic acid. In lipophilic environment, uric acid fails to stop the self- propagating 
lipid peroxidation reaction. Subnormal levels of serum uric acid were associated 
with greater risk for COPD and greater morbidity, including reduced 6-minute walk 
test and greater burden of exacerbations [200, 201].

5.5.1.4  Vitamin E
Vitamin E (tocopherol) is a lipophilic antioxidant scavenger in RTLF which neutral-
izes ROS and attenuates self-propagating lipid peroxidation reactions in the air-
ways. Patients with asthma and COPD are associated with lower serum levels of 
vitamin E [193] as compared to healthy subjects, and this formed the basis for vita-
min E supplementation trials to prevent respiratory diseases. Vitamin E trials 
reduced levels of markers of oxidative damage in smokers [202]. Dietary intake of 
vitamin E improved lung function in healthy aging population [203]. Vitamin E 
supplements reduced endotoxin-induced sputum eosinophilia in asthma patients 
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[204]. In experimental mouse models, administration of vitamin E isoform 
γ-tocotrienol protected from cigarette smoke-induced emphysema [205] and dust 
mite-induced asthma. However, supplementation of vitamin E showed no benefits 
in the management or treatment of asthmatics [206].

5.5.2  Lung-Specific Secretory Proteins in RTLF as Antioxidants

Pulmonary surfactant which lines the alveoli surface is composed of a mixture of 
90% phospholipids and 10% surfactant proteins. The surfactant proteins included 
high-molecular-weight hydrophilic surfactant proteins A and D and low-molecular- 
weight hydrophobic surfactant proteins B and C. Unsaturated phospholipids and 
surfactant protein are prone for oxidative inactivation following exposures to envi-
ronmental oxidants such as ozone. Both surfactant proteins A and D exhibited direct 
antioxidant activity and protected phospholipids and LDL from copper or ferric 
chloride-induced oxidation [207]. Surfactant proteins A and D also protected mac-
rophages from hydroperoxide-induced cell death [207]. Clara cell-16 (CC16) pro-
tein secreted by clara cells also exhibits antioxidant and anti-inflammatory activity 
[208]. Mice with genetic disruption of CC16 showed elevated oxidative damage and 
structural injury following exposure to cigarette smoke [209]. Low circulating lev-
els of CC16 are shown to be associated with poor lung function growth in children 
[210] and smoking-dependent lung function decline in adults [211] as well as 
patients with COPD and asthma [208].

5.5.3  Enzymatic Antioxidant System in Lungs

Lungs are endowed with robust antioxidant protein defences to minimize oxidative 
stress caused by airborne environmental toxicants. Major pulmonary antioxidant 
enzymes include superoxide dismutase, catalase, glutathione peroxidase, glutathi-
one reductase, hemeoxygenase-1, peroxiredoxin-1, thioredoxin and thioredoxin 
reductase [40, 41, 212, 213]. Exposures to environmental oxidants such as cigarette 
smoke lead to the coordinated activation of all these antioxidant proteins [39–41] 
(as illustrated in Fig. 5.1) and help in efficient detoxification of ROS and lipid per-
oxides generated in the lungs. The importance of individual antioxidant enzyme has 
been exemplified using knockout and transgenic mouse models.

All the three isoforms of superoxide dismutase, extracellular-SOD (EC-SOD), 
copper/zinc-SOD (Cu/Zn-SOD) and manganese-SOD (Mn-SOD), are present in 
lungs and provide first line of defence against superoxide radicals. The importance 
of each of the SOD isoforms in protecting lungs from oxidants has been well stud-
ied. EC-SOD prevented fibrosis in lungs by inhibiting oxidative degradation of the 
matrix proteins, type I and type IV collagen [214]. Cigarette smoke exposure and 
elastase instillation caused greater emphysema in EC-SOD-deficient mice; however 
transgenic EC-SOD mice were protected from emphysema [215]. Similarly, over-
expression of human Cu/Zn-SOD in lungs protected from cigarette smoke-induced 
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emphysema in mouse model [216]. Overexpression of Mn-SOD has also been 
reported in alveolar macrophages during sarcoidosis and in the lung tissue of IPF 
patients [213]. SOD is highly sensitive for oxidative inactivation, and therefore, 
SOD levels are depleted in disease lungs. In IPF, there was no expression of EC-SOD 
in fibrotic areas where there is an enhancement of oxidative burst [214]. Enzyme 
activity of SOD was significantly low in asthmatics as compared to healthy subjects, 
which is further depleted during asthma attack [217, 218]. Oxidative and nitrosative 
modification of Mn-SOD was observed in the airways of asthmatic, which corre-
lated with asthma severity [217]. Therefore, increasing SOD levels in the lungs by 
pharmacological approaches including SOD mimetics are thought to be a promising 
approach for mitigating pathogenesis of pulmonary disorders.

Glutathione peroxidase (GPx) detoxifies hydrogen peroxide and reactive lipid 
hydroperoxides using GSH as an electron donor. In mammalian lungs, four major 
selenium-containing GPx isoforms are expressed – GPX1 (classical GPx), GPX2 
(gastrointestinal GPx), GPX3 (extracellular GPx) and GPX4 (phospholipid GPx). 
Bronchial epithelial cells and alveolar macrophages produce Gpx3 in epithelial lin-
ing fluid, which detoxify lipid hydroperoxides generated in RTLF. GPx2 is a pre-
dominant glutathione peroxidase expressed in the lungs following cigarette smoke 
exposure and silencing GPx2 by RNA interference enhanced cytotoxicity in bron-
chial epithelial cells following treatment with cigarette smoke extract [42]. In com-
parison with wild type, GPx2-deficient mice showed greater levels of oxidative 

Fig. 5.1 Antioxidant defenses in lungs
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damage, airway inflammation and airway hyperresponsiveness in ovalbumin- 
induced asthma mouse model [219]. Basal levels of GPx in lungs were shown to be 
a key determinant of severity of pulmonary fibrosis in mouse models [220]. 
Peroxiredoxins are the family of peroxidase enzymes, which play a dominant role 
in detoxification of hydrogen peroxide within the cells. Human lung expresses all 
the six members of a peroxiredoxin family [221]. Thioredoxin reductase is a 
selenium- containing flavoprotein oxidoreductase enzyme expressed in mammalian 
lungs, which primarily catalyses NADPH-dependent reduction of thioredoxin, an 
important redox protein involved in transcriptional regulation of NF-κB [94]. Heme 
oxygenase-1 (HO-1) is a highly inducible protein in the lungs which exhibits anti- 
apoptotic, anti-inflammatory and antioxidant activities. HO-1 catalyses heme to car-
bon monoxide and biliverdin and the latter is converted to bilirubin. Although the 
mechanism by which HO-1 mediates antioxidant and anti-inflammatory activity is 
less understood, the end byproducts of HO-1 enzyme activity, CO, bilirubin and Fe 
are shown to mediate the beneficial effects [222]. HO-1 knockout mice display 
greater inflammation, apoptosis and tissue injury following an ischemic reperfusion 
injury [223], while lung-specific expression mitigated LPS- and hyperoxia-induced 
lung inflammation [224, 225].

5.5.4  Regulation of Antioxidant Enzymes in Lungs

Many lines of evidence show that transcription factor Nrf2 is a central regulator of 
nearly all cellular antioxidant proteins in the lungs and other organs [226]. In a nor-
mal cell, Nrf2 is held in the cytoplasm by a cysteine-rich, redox sensor Keap1 pro-
tein, which functions as an adaptor molecule and bridges Nrf2 with Cul3-based E3 
ubiquitin ligase [227, 228]. Under normal condition, Keap1-Cul3-based E3 ubiqui-
tin ligase ubiquitinates Nrf2 and directs it to proteasomal degradation. However, 
upon exposure to ROS and electrophiles, Keap1 protein undergoes conformational 
change due to oxidative modification of its cysteine residues, which disrupts the 
interaction of Nrf2 with Cul3-dependent E3 ligase and prevents Nrf2 ubiquitination. 
Stabilized Nrf2 moves into the nucleus and mediates transcriptional activation of its 
target genes by binding to cis-element called ‘antioxidant response element’ in the 
promoter region. Genetic disruption of Nrf2 ablates transcriptional induction of 
antioxidant genes in the lungs and sensitizes the mice to several environmental lung 
diseases such as cigarette smoke-induced emphysema [41], allergen-induced asthma 
[229], LPS-induced acute lung injury [97] and bleomycin-induced pulmonary fibro-
sis [230] and sepsis [72, 74, 231]. In contrast, activation of Nrf2 by pharmacological 
activators and genetic disruption of Keap1 protected mice from development of 
these pulmonary diseases [226]. Nrf2-regulated antioxidant has been shown to be 
downregulated in lungs of patients with COPD [232] and IPF [233], underscoring 
the importance of Nrf2 pathway in protecting the lungs from oxidative stress. 
Besides Nrf2, NF-κB and AP-1 also regulate transcriptional expression of certain 
antioxidant genes in the lungs [88, 234].
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5.5.5  Antioxidant Therapy for Lung Diseases

Despite the compelling evidence from preclinical and clinical studies that pulmo-
nary antioxidants play a pivotal role in protecting from environmental pulmonary 
diseases, clinical trials testing antioxidant therapy have shown modest to no signifi-
cant beneficial effects. Clinical trials with N-acetyl-L-cysteine (NAC) supplementa-
tion have shown mixed results. Meta-analysis of all clinical trials using oral NAC 
concluded that long-term intake of NAC may reduce the acute exacerbations of 
chronic bronchitis [235]. However, more recent randomized double-blinded multi-
centre clinical trial of oral NAC reported no beneficial effect in the prevention of 
lung function decline and COPD exacerbation [236]. Vitamin C and E clinical trials 
showed no improvement on lung function decline in COPD patients [237]. 
Supplementation of Nrf2 activator, sulforaphane, in the form of broccoli sprout 
homogenates reduced bronchoconstrictor hyperresponsiveness in asthmatics [238]. 
In a randomized clinical trial, supplementation of sulforaphane showed no signifi-
cant upregulation of Nrf2-regulated antioxidants in lungs of COPD patients [239]. 
In another study, consumption of broccoli sprout showed no effect on eosinophilic 
inflammation as well as markers of oxidative stress in atopic asthmatic patients 
[240]. In smokers, consumption of broccoli sprout homogenates reduced influenza 
virus-induced inflammation [241]. Consumption of broccoli tea has been reported 
to promote rapid and sustain detoxification of air pollutants in a randomized clinical 
trial in China [242]. The reasons for lack of consistent benefits of antioxidant trials 
for pulmonary disease are still puzzling. Perhaps it could be combination of poor 
efficacy of a single antioxidant agent as well as limited bioavailability.

5.6  Conclusions

Oxidative stress is a central hallmark pathological feature of all the respiratory dis-
ease. Oxidative stress elicits both reversible and irreversible macromolecule dam-
age (oxidative modification of lipids, proteins and DNA). As illustrated in Fig. 5.2, 
besides inducing macromolecular damage, oxidative stress propagates the disease 
by augmenting other pathological processes such as inflammatory responses, mito-
chondrial dysfunction, ER stress, profibrotic signalling, cell death and epigenetic 
changes. Experimental evidences suggest that antioxidant therapy may prevent or 
mitigate oxidative stress-mediated macromolecular damage and abnormal signal 
transductions and, thereby, protect from development and progression of disease. 
However so far, most antioxidant clinical trials have shown poor efficacy to mitigate 
disease progression, which may be attributed to insufficient bioavailability of anti-
oxidant agent in the lungs and also inability to reverse pathogenic events such as 
epigenetic changes, macromolecule damage and mitochondrial dysfunction. 
Antioxidant alone may not be effective in treatment of diseases; however it could be 
a promising adjunctive therapy.
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Abstract
Asthma is a well-recognized global concern with ever-increasing prevalence and 
economic burden worldwide. Genetic susceptibility and exposure to environmental 
triggers such as allergens, pollutants, infectious agents and even lifestyle choices are 
well-established modulators of the disease. Recent studies show that irrespective of 
the nature of causal trigger (allergic or nonallergic), mitochondria and its dysfunction 
is a central player in asthma pathogenesis. This chapter discusses the studies and 
mechanisms through which mitochondria plays its role in causing asthma pathogen-
esis. Under allergic asthma conditions, immune response and epithelial barrier func-
tions are the key players modulating the function of mitochondria. Other mechanism 
that leads to the development of obese- asthma phenotype involves disruption of cel-
lular bioenergetics via modulating nitric oxide levels, calcium homeostasis, etc. 
Repair, reprogramming and/or replacement of the dysfunctional mitochondria are 
some of the possible therapeutic strategies for better management of asthma.
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Abbreviations

12/15-LOX 12/15-lipoxygenase
12-S-HETE 12-S-hydroxyeicosatetraenoic acid
13-S-HODE 13-S-hydroxyoctadecadienoic acid
ADMA Asymmetric dimethylarginine
AMP Adenosine monophosphate
ATP Adenosine triphosphate
CaMKII Ca2+/calmodulin-dependent protein kinase II
CLR C-type lectin receptors
DAMP Damage-associated molecular pattern
DC  Dendritic cell
DRP1 Dynamin-related protein 1
eNOS Endothelial nitric oxide synthase
ETC Electron transport chain
FADH2 2-Dihydro flavin adenine dinucleotide
HDM House dust mite
IgE Immunoglobulin E
IL  Interleukins
LPS Lipopolysaccharide
MCU Mitochondrial calcium uniporter
MetS Metabolic syndrome
MHC II Major histocompatibility complex class II
MSC Mesenchymal stem cell
mtDNA Mitochondrial DNA
NADH Nicotinamide adenine dinucleotide (reduced)
NADPH Nicotinamide adenine dinucleotide phosphate (reduced)
nDNA Nuclear DNA
NF-kβ Nuclear factor kappa-light-chain-enhancer of activated B cells
NFP N-Formyl peptides
NLR Nucleotide-binding domain/leucine-rich repeat receptor
NLRP3 Nod-like receptor family pyrin domain containing 3
NO Nitric oxide
NRF-1 Nuclear respiratory factor-1
OONO− Peroxynitrite
OPA1 Optic atrophy protein 1
OVA Ovalbumin
PAMP Pathogen-associated molecular pattern
PBMCs Peripheral blood mononuclear cells
PC  Phosphatidylcholine
PGC-1α Peroxisome proliferator-activated receptor-gamma coactivator
PKC-δ Protein kinase C delta type
PQQ Pyrroloquinoline quinone
PRR Pathogen recognition receptor
RLR Retinoic acid-inducible gene (RIG-1)-like receptors
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ROS Reactive oxygen species
siRNA Small interfering RNA
TCR T-cell receptor
TFAM Mitochondrial transcription factor A
Th2 Type 2 T helper cells
TLR Toll-like receptor
TNF-α Tumour necrosis factor alpha
TRPV1 Transient receptor potential cation channel subfamily V member 1
UQCRC2 Ubiquinol-cytochrome c reductase core protein II

6.1  Introduction

Asthma is a chronic disorder presenting features such as airway inflammation, 
reversible airflow obstruction and enhanced bronchial reactivity. With as many as 
339 million people affected with asthma worldwide, its global disease burden is 
increasing substantially. Poor management of the disease has been associated with 
reduced quality of life and even premature death in people of all age groups around 
the world. Asthma has multifactorial disease aetiology with both genetic and envi-
ronmental factors playing significant roles [1]. It has now also been recognized as a 
complex, heterogeneous disease with multiple clinical presentations and physiolog-
ical characteristics. Depending on consistent clinical features, a common natural 
history (like age at onset) and predictable responsiveness to therapies, asthma has 
been classified into various subgroups or phenotypes [2]. Due to such underlying 
heterogeneity, some asthma patients do not respond well to the classical interven-
tions of bronchodilators and corticosteroids. However, detailed asthma research is 
now unravelling newer mechanisms of asthma pathogenesis that can provide novel 
handles for treatment of various sub-phenotypes of the disease.

Interestingly, recent studies, in both allergic and nonallergic obese-asthma, have 
shown mitochondrial dysfunction to be central to disease pathogenesis [3–5]. 
Mitochondria are no longer thought to be only involved in cellular bioenergetics but 
have been shown to have significant roles in multiple cellular processes like biosyn-
thesis, signal transduction, danger sensor and cell death pathways [6]. With such 
multifaceted roles, any oxidative stress-induced mitochondrial dysfunction can per-
turb the cellular homeostasis at various levels. Thus, mitochondrial function impair-
ment is now a prominent signature of various inflammatory, respiratory, 
cardiovascular, metabolic, neurodegenerative and infectious diseases [6–8].

In this chapter, we look into the experimental studies connecting mitochondrial 
dysfunction with allergic or nonallergic obese-asthma. In allergic asthma, there 
seems to be a bidirectional interplay, wherein allergens have been shown to induce 
mitochondrial dysfunction, and pre-existing defects in mitochondria have aggra-
vated the allergic asthma phenotype [5]. Further, delving deeper into the underlying 
mechanisms of mitochondrial dysfunction and allergic asthma, we explore the asso-
ciation with immune response modulation and epithelial barrier function. As for the 
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obese-asthma phenotype, we see that mitochondria act as a common thread con-
necting asthma, obesity and metabolic syndrome [9]. Common molecular mecha-
nisms like elevated expression of 12/15-lipoxygenase and perturbed nitric oxide 
metabolism lead to mitochondrial dysfunction in both obesity and asthma, thus 
placing mitochondria at the hub of obese-asthma pathophysiology [3]. Finally, we 
look into the various strategies to restore the function of mitochondria, mainly by 
repairing, reprogramming and replacing damaged mitochondria, as novel tools in 
asthma therapeutics.

6.2  Asthma

Asthma is a chronic disorder of the airways characterized by four major hallmarks, 
namely, increased airway inflammation, reversible airway obstruction, enhanced 
airway responsiveness and mucus hypersecretion. It is also accompanied by airway 
remodelling and epithelial barrier dysfunction. Currently, more than 300 million 
individuals are affected with asthma worldwide [10], and it is estimated that the 
numbers will increase up to 400 million by 2025.

Genetic predisposition along with environmental insults, like exposure to smoke, 
pollution, lifestyle, obesity and house dust mites, are the main causal factors for 
asthma. It is broadly classified into two types: atopic and nonatopic. Atopic asthma, 
triggered by allergic reaction against a plethora of reactants like house dust mites, 
animal dander, pollens and fur, leads to an increase in the level of serum IgE. In 
allergic asthma, there is strong involvement of the immune system. Allergens are 
recognized by membrane-bound pathogen recognition receptors (PRRs) such as 
C-type lectin receptors (CLR), toll-like receptors (TLRs) and nucleotide-binding 
domain/leucine-rich repeat receptors (NLRs). Interaction of these PRRs with aller-
gen induces immune tolerance in healthy individuals, but in asthmatics, they acti-
vate cascade of pathways causing inflammatory immune responses [11].

Antigen-presenting cells especially dendritic cells (DCs) act as a connective link 
between the innate and adaptive immune responses. They pick the external aller-
gens which are then transported to the local lymph node. After processing, the major 
histocompatibility complex class II (MHC II) molecules present them to the naïve 
T cells. Upon binding of allergens, DCs drive the differentiation of naïve T cells into 
T helper cell type 2 (Th2) cells that secrete pro-inflammatory cytokines IL-4 and 
IL-13 that recruits inflammatory cells leading to an inflammatory cascade. The 
primed Th2 cells also activate B cells and convert them to plasma cells causing 
secretion of allergen-specific IgE antibodies [12]. The IgE antibodies then bind to 
their receptors present on mast cell surface causing allergen sensitization. 
Re-exposure of the body to that allergen mediates cross-linking of these IgE recep-
tors, leading to mast cell degranulation and subsequent release of histamine and 
other mediators that lead to vasodilation, smooth muscle contraction and increased 
capillary permeability. This process termed as immune hypersensitivity plays a key 
role in eliciting immune response in allergic/atopic asthma.
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Nonatopic asthma, on the other hand, is caused by factors such as occupation, 
extreme weather conditions, heightened emotions, lifestyle choices and obesity. 
Neither allergen-specific serum IgE nor total IgE levels are seen to increase in patients 
with nonatopic asthma. Therefore, they show negative skin test result against common 
allergens. In addition, clinical or family history of allergy is not observed. Initially, it 
was hypothesized that development of nonatopic asthma involves mechanisms other 
than inflammation or immune response. However, studies now demonstrate involve-
ment of different immune modulators in nonatopic asthma as compared to atopic 
asthma. Increase in the numbers mast cells, eosinophils and T lymphocytes character-
ize the airway inflammation in atopic asthmatics, whereas nonatopic asthmatics 
mainly display high numbers of neutrophils and mast cells, possibly via non-IgE-
mediated hypersensitivity responses in airways [13]. However, the pathophysiological 
mechanisms guiding nonatopic asthma are poorly defined.

6.3  Mitochondria

Human mitochondria are essential organelles of the cells that have been thought to 
have a bacterial descent. According to the endosymbiotic theory, alpha- 
proteobacterium was endocytosed by host cells approximately 2 billion years ago. 
The resultant double-membrane organelle was semi-autonomous in nature, having 
its own genetic material and the ability to code for some proteins using its own 
transcription and translational machinery [14].

Mitochondria have classically been thought to be the powerhouses of the cell as 
they generate energy through oxidative phosphorylation. Citric acid cycle in the 
mitochondrial matrix leads to the formation of metabolites and reducing equivalents 
like NADH and FADH2. Thereafter, in the inner mitochondrial membrane, electrons 
move from these energy carriers through a series of complexes (complex I–IV), to 
the final electron acceptor – molecular oxygen. The proton motive force generated 
by this electron flow powers the production of ATP from ADP and Pi [6]. Apart from 
their central function in bioenergetics, mitochondria are also essential to maintain-
ing cellular homeostasis via biosynthesis. With important roles in synthesis of heme 
molecules and assembling of the iron–sulphur clusters, mitochondria are critical to 
regulation of iron metabolism [15]. Moreover, the metabolites produced during cit-
ric acid cycle also serve as precursors for synthesis of macromolecules like carbo-
hydrates, lipids and proteins. In recent studies, mitochondria have also come up as 
essential signalling organelles [16]. The highly oxidative environment in mitochon-
dria leads to the generation of reactive oxygen species like superoxide (O-.), hydro-
gen peroxide (H2O2) and hydroxyl radicals (.OH). While, under pathological 
conditions, excessive production of ROS causes damaging effects in the cell, under 
physiological conditions, mitochondrial ROS (mROS) act as signalling molecules. 
mROS relay signals between the mitochondria and rest of the cell and are essential 
for regulating innate and adaptive immune responses, oxygen sensing, stem cell 
proliferation and hormone signalling [17]. Thus, this delicate balance of the mROS 
levels is critical to cellular homeostasis and is termed as mitochondrial hormesis or 
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mitohormesis [18]. Mitochondria also play a central role in apoptosis by involve-
ment via disruption of electron transport chain, release of caspase-activating pro-
teins in the cytoplasm and alteration of cellular redox potential [19].

Since mitochondria are at the nexus of important cellular processes, there exist 
multiple quality control measures to ensure higher mitochondrial fitness. One of the 
key pathways in place is mitophagy whereby the damaged, depolarized mitochon-
dria are autophagocytosed, enabling mitigation of mitochondrial stress [20]. The 
dynamic nature of mitochondria – with continuous fission and fusion – also facili-
tates stress attenuation. While mitochondrial fusion is regulated by proteins, optic 
atrophy 1 (OPA1) and mitofusin 1 and 2 (Mfn 1/2), mitochondrial fission is con-
trolled by dynamin-1-like (DRP1) and fission 1 (Fis1). Fusion of mitochondria 
reduces the heterogeneity of mitochondria and helps in diluting the mtDNA muta-
tions and oxidized proteins. Mitochondrial fission also supports quality control. 
DRP1-mediated asymmetric fission enables segregation of healthy, polarized mito-
chondria from the abnormal, depolarized portion. The healthy part can reintegrate 
into the mitochondrial network, whereas the depolarized part is removed through 
mitophagy [21]. Another important quality control pathway is the mitochondrial 
unfolded protein response which enables communication between the nuclear and 
mitochondrial genomes and maintains the mitochondrial proteome [22].

Even with such quality control measures in place, when the mitochondrial stress 
exceeds a critical point, mitochondrial function gets affected leading to disruption 
of energy production, alteration of cellular metabolic profile, dysregulation of sig-
nal transduction pathways and eventual setting in of apoptosis. Any cellular injury 
or stress also leads to release of mitochondrial components like mtDNA, ATP, mito-
chondrial N-formyl peptides and mitochondria-specific phospholipid cardiolipin in 
the cytosol or the extracellular milieu. Due to microbial origin of mitochondria, 
these components have features akin to their bacterial counterparts and thus act as 
damage-associated molecular patterns (DAMPs) [23–25]. These mito-DAMPs are 
recognized by pathogen recognition receptors (PRRs) like NLRP3 inflammasome 
in the cytosol or toll-like receptors (TLRs) outside the cell, leading to activation of 
inflammatory signalling and triggering of immune responses [7]. Overall, mito-
chondrial dysfunction can disrupt critical cellular pathways and is thus central to the 
pathogenesis of various diseases like respiratory diseases, cardiovascular diseases, 
neurodegenerative diseases, autoimmune diseases, inflammatory disorders, meta-
bolic disorders and cancer.

6.4  Mitochondrial Dysfunction in Asthma

6.4.1  Mitochondrial Dysfunction in Atopic/Allergic Asthma: 
Studies and Mechanisms

Asthma has been shown to have a strong hereditary component. Maternal history of 
atopy and asthma is considered to be a significant risk factor for development of 
asthma and other allergic diseases. With maternal transmission of mitochondria, an 
association of mitochondrial genome with asthma and atopic diseases is indicative. 
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A significant association has been observed between mitochondrial haplogroup U 
and elevated serum IgE levels in European population [26]. Moreover, mutations in 
mitochondrial genes encoding mitochondrial t-RNAs have also been shown to play 
a role in increasing the risk to asthma [27]. Also, ATP synthase mitochondrial F1 
complex assembly factor 1 (ATPAF1) has been identified as a candidate gene for 
asthma in Caucasian European children [28]. Along with genetic links, functional 
studies have also shown mitochondrial dysfunction to be associated with asthma 
and allergies. Structural changes in the mitochondria of bronchial epithelia of asth-
matic patients have been reported [29]. In addition, in the murine model of allergic 
inflammation, swollen and fragmented mitochondria have been observed in the air-
way epithelium, associated with activation of apoptotic pathways in the lungs and 
reduction in lung ATP levels [30]. In another study, exposure of airway epithelial 
cells to ragweed pollen extract was shown to cause oxidative damage to an impor-
tant structural protein of complex III of the mitochondrial electron transport chain, 
ubiquinol-cytochrome c reductase core protein II (UQCRC2), which was in turn 
implicated in mtROS generation. Mitochondrial dysfunction induced by downregu-
lation of this core protein prior to pollen extract exposure in mice led to aggravated 
allergic response as seen by increased bronchial hyper-responsiveness and elevated 
mucin secretion [31]. Thus, the study highlights how pre-existing mitochondrial 
dysfunction can increase the allergic phenotype. Environmental oxidative stress 
caused by diesel exhaust particles or tobacco smoke can induce mitochondrial dys-
function, further exacerbating the allergic features in asthmatic and atopic 
individuals.

The above-mentioned studies demonstrate experimental links between mito-
chondrial dysfunction and asthma. Multiple other studies have delved into the 
mechanistic connections that make mitochondrial dysfunction central to pathogen-
esis of allergic asthma. Broadly, defects in mitochondria translate to epithelial bar-
rier disruption and immune response modulations which play an essential role in 
allergic asthma pathogenesis.

6.4.1.1  Mitochondrial Dysfunction and Epithelial Barrier Disruption
Recent studies have highlighted the crucial role of epithelial cells in asthma patho-
genesis. Epithelial cells in the lungs serve as the first line of defence against noxious 
agents like allergens, cigarette smoke and invading pathogens. These cells act not 
just as a structural barrier against allergen sensitization but are also actively involved 
in activating signal transduction cascades and in mounting immune responses [32]. 
Mitochondria, through their control of apoptosis, have been shown to maintain the 
epithelial integrity. Mitochondrial calcium uniporter (MCU) is involved in uptake of 
calcium in the mitochondrial matrix. Calcium overload in mitochondria leads to 
mtROS generation, membrane depolarization and, ultimately, release of cytochrome 
c in the cytosol and induction of apoptosis. In a recent study, Sebag et al. demon-
strated protective response against mitochondrial dysfunction and cellular apoptosis 
caused by IL-13 upon downregulation of MCU in the airway epithelial cells. In 
concert with in  vitro studies, in murine model of ovalbumin-mediated allergic 
inflammation as well, MCU knockout was associated with preserved expression of 
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tight junction proteins and reduced epithelial cell apoptosis [33]. Another study 
highlighted the role of a phospholipid transfer protein (Stard7), which enables 
uptake of phosphatidylcholine in mitochondria, in maintaining mitochondrial 
homeostasis and epithelial barrier function. In vitro downregulation of Stard7  in 
bronchial epithelial cells and lung epithelial cell-specific knockout of the protein in 
mice was shown to alter mitochondrial morphology, change mitochondrial mem-
brane potential and induce mtDNA damage in the cells. This was concomitantly 
associated with impaired epithelial barrier permeability which was restored by 
treatment with mitochondria-targeted antioxidant – MitoTEMPO [34].

6.4.1.2  Mitochondrial Dysfunction and Immune Response 
Modulation

Mitochondrial dysfunction has been shown to activate both innate and adaptive 
immune responses. Association of mtROS and NLRP3 inflammasome has been 
reported in allergic asthma [35]. Inflammasome, a part of the innate immune 
response, is a multi-protein complex that intercepts damage-associated molecular 
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) and causes 
release of pro-inflammatory cytokines like IL-1β and IL-18 [36]. In ovalbumin 
(OVA), lipopolysaccharide (LPS) and house dust mite (HDM) induced murine 
model of allergic inflammation, the mitochondrial ROS levels were found to be 
elevated in the airway inflammatory and epithelial cells. This was also associated 
with damage-associated mtDNA in the lungs of these mice. While mtROS has been 
known to activate inflammasome cascade, mtDNA also acts as a DAMP and coacti-
vates the cascade [37, 38]. In these allergic models, increased mtROS and damage- 
associated mtDNA have been shown to activate the NLRP3 inflammasome. This 
was associated with activation and nuclear translocation of NF-κB as well. Treatment 
of these mice with a mitochondria ROS inhibitor – NecroX5 – led to restoration of 
these changes and inhibition of the pathophysiological features of allergic inflam-
mation. Blockade of IL-1β also alleviated the airway hyper-responsiveness and 
inflammation [35]. These observations suggest a central role of inflammasome in 
the mtROS-driven allergic asthma pathogenesis. On similar lines, another study 
using OVA- and Aspergillus-exposed murine model of allergic inflammation has 
demonstrated activation of oxidant Ca2+/calmodulin-dependent protein kinase II 
(CaMKII) in the mitochondria and increase in mtROS generation. High mtROS was 
further shown to activate NLRP3 inflammasome and nuclear translocation of 
NF-κB. There was a concomitant induction of Th2 cytokines and consequent air-
way inflammation and hyperactivity [39].

Mitochondrial dysfunction can also directly cause mast cell degranulation and 
enhance Th2 responses. Exposure of the mucosal mast cells to ragweed pollen 
extract was found to induce generation of mtROS from the mitochondrial respira-
tory complex III.  This oxidative stress further induced secretion of the biogenic 
amines  – histamine and serotonin from mast cells  – independent of any IgE-
mediated trigger. Concomitantly, the mtROS also led to increased release of IL-4 
from the sensitized mast cells [40].
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6.4.1.3  Other Studies in Mitochondrial Dysfunction and Allergic 
Asthma

Exposure of bronchial epithelial cells to allergens like house dust mite has been 
shown to hamper the mitochondrial dynamics by increasing ER-mitochondrial con-
tacts. Such changes were demonstrated to induce recruitment of mitochondrial fis-
sion protein DRP1 and initiate fragmentation of mitochondria. This was associated 
with release of pro-inflammatory cytokines like IL-8 and IL-1β [41]. In asthmatic 
lungs, along with epithelial barrier disruption, hypertrophy and hyperplasia of 
smooth muscle cells are also key pathophysiological features. In airway smooth 
muscle cells (ASMs) of severe persistent asthma patients, increased number of 
mitochondria has been observed due to increased expression of proteins involved in 
mitochondrial biogenesis. This increased mitochondrial biogenesis has been associ-
ated with hypertrophy of the ASMs causing airway remodelling. However, in fatal, 
young asthmatics, such an increase was not observed in the ASMs [42]. Another 
study in cultured ASMs demonstrates the alteration in mitochondrial calcium flux 
leading to increase in cytoplasmic calcium levels and eventually promoting ASM 
contractility [43]. Thus, mitochondrial function, inflammation and ASM contrac-
tion are interlinked; however, they have different patterns in different asthma 
phenotypes.

6.4.2  Obese-Asthma Phenotype: An Overlap Between Metabolic 
Syndrome and Asthma

The increasing trend of high-calorie diet consumption and lack of physical activities 
is a mark of the modern lifestyle. Such lifestyle modifications over a prolonged 
period of time negatively impact the overall health of an individual leading to devel-
opment of diseases. Metabolic syndrome represents the abnormal metabolic factors 
that increase the frequency of cardiovascular diseases, such as heart failure, throm-
bosis and cardiac arrhythmias, along with increase in incidence of type II diabetes. 
Of the factors that lead to metabolic syndrome (MetS), obesity is a strong risk factor 
for development of asthma and represents one of the members of the triad, with 
dyslipidaemia and hyperglycaemia being the other two [44, 45]. A higher intake 
versus lower consumption of energy leads to an imbalance, causing excessive adi-
pose tissue accumulation and, therefore, obesity. Mitochondrial dysfunction, 
inflammation and perturbed antioxidant defence functions are the hallmarks of 
obesity.

Epidemiological studies have found a strong link between asthma and metabolic 
syndrome. It has been observed that body mass index shows a positive correlation 
with asthma severity, with abdominal obesity showing stronger association to 
asthma as compared to general body mass, leading to development of a subset of 
asthma phenotype termed as obese-asthma [46, 47]. Subjects of this phenotype are 
of particular concern to physicians since most of them are unresponsive to cortico-
steroids and conventional anti-inflammatory therapies. Thus, obese people are not 
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only more prone to asthma, they often experience symptoms of severe asthma with 
poor disease management. In addition to this, neutrophilic airway inflammation, 
low-grade systemic inflammation and increased morbidity are commonly observed 
in these individuals. Asthma and obesity are in fact termed as twin epidemics of the 
developing world [44, 48, 49]. In two studies in Korean population, one with 10,000 
participants and a recent one with 4000 aged subjects, metabolic syndrome was 
found to be significantly associated with asthma [50, 51].

Obese mice show increased airway hyper-responsiveness even without allergen 
immunization and develop severe asthma phenotype in response to asthma predispos-
ing factors [52]. Furthermore, obese patients show improvement in asthma on weight 
loss [53]. This suggests a possible relation between the two diseases. However, the 
mechanism by which they work is hitherto unknown. While obese- asthma subjects 
show altered lung and chest wall mechanics, these do not fully explain the develop-
ment of the phenotype. This is because (1) not all obese subjects develop asthma, (2) 
subjects with metabolic dysregulation with normal body mass also frequently develop 
asthma and (3) maternal obesity is observed to increase risk of asthma incidence in 
offspring, independent of child’s own obesity. This suggests the possible involvement 
of other mechanisms that may lead to either of the two diseases.

6.4.2.1  Mitochondrial Dysfunction in Obese-Asthma (Nonatopic): 
Studies and Mechanisms

Optimal cellular bioenergetics, the key to good health, is largely dependent on mito-
chondria and its function. Chronic high nutrient intake overloads mitochondria, 
increasing ROS levels and therefore oxidative damage that affects mitochondrial 
integrity and its function. This also leads to activation of stress response pathways 
and ultimately loss of healthy mitochondria. In fact, mitochondria from obese sub-
jects were found to be smaller, with diminished biogenetic capacity as compared to 
lean subjects [54]. In genetically obese, as well as diet-induced obese mice, increase 
in mitochondrial ROS and dysfunctional oxidative respiration have been observed 
[55, 56]. Also, mitochondrial biogenesis is compromised in obese individuals due to 
decrease in levels of peroxisome proliferator-activated receptor-gamma coactivator 
(PGC-1α), the master regulator of mitochondrial biogenesis and also of important 
transcription factors such as mitochondrial transcription factor A (TFAM) and 
nuclear respiratory factor-1 (NRF-1). All these provide supporting evidence that 
mitochondrial dysfunction is a key pathological mechanism in obesity.

Multiple studies have shown how mitochondria and its bioenergetics play a cen-
tral role in asthma. In 1985, Konradova et al. showed swollen mitochondria in bron-
chial epithelial cells of three subjects with asthma. Murine models of allergic asthma 
confirmed the observation and found abnormalities in mitochondrial structure as an 
integral part of the asthma phenotype [30]. The key inflammatory mediators of 
asthma, Th2 cytokines like IL-4 and IL-13, were also found to induce mitochondrial 
dysfunction. Emerging evidence therefore suggests mitochondrial dysfunction to be 
the common player in development of these seemingly disparate diseases: obesity 
and asthma.
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Many studies have shown alterations in mitochondrial genome to be associated 
to metabolic syndrome. Although the ratio of mitochondrial DNA to nuclear DNA 
(mtDNA/nDNA) is shown to be markedly reduced, any major genomic deletions are 
not observed. Few polymorphisms in mtDNA that are also risk factors for metabolic 
syndrome have been reported, for example T16189C in both Caucasian and Turkish 
patients and A10398G in Chinese population [57, 58]. These variants may be 
responsible for increased damage to mitochondria, their accelerated clearance and 
reduced bioenergetics.

6.4.2.2  Molecular Mechanisms of Mitochondrial Dysfunctions 
in Obese-Asthma

Molecular mechanisms through which asthma, obesity and metabolic syndrome are 
connected involve proteins and metabolites involved in dysregulation of mitochon-
drial functions. These are discussed below:

 (A) Increase in expression of a non-heme iron dioxygenase, 12/15-LOX, that catal-
yses hydroperoxidation of polyunsaturated fatty acids in adipocytes is observed 
in mice fed on high-fat or western diet. Protection from obesity-related compli-
cations was observed on fat-specific deletion of 12/15-LOX, and its deficiency 
reduced macrophage infiltration in adipocytes, decreasing tissue inflammation 
[59–62]. Also, asthmatic features were seen to be alleviated on genetic ablation 
of the enzyme, 12/15-LOX. Also, the enzyme 12/15-LOX and its metabolites 
such as 13-S-hydroxyoctadecadienoic acid (13-S-HODE) and 
12- hydroxyeicosatetraenoic acid (12-S-HETE) may cause mitochondrial deg-
radation and dysfunction in airway epithelium of asthmatics by activating 
TRPV1 channels, thereby modulating calcium homeostasis [63]. These sug-
gest mitochondrial dysfunction via change in expression of 12/15-LOX to play 
a role in development of the obese-asthma phenotype.

The increase in 12/15-LOX in obese mice also causes ER stress and unfolded 
protein response (UPR) which further leads to macrophage infiltration causing 
activation of pro-inflammatory cytokines such as TNF-α and IL-1β in adipo-
cytes. These mediators reduce the expression of endothelial nitric oxide syn-
thase (eNOS), thereby causing decrease in nitric oxide (NO) production. This 
in turn compromises mitochondrial biogenesis by inhibition of PGC-1α. The 
reduction in mitochondrial biogenesis hampers β-oxidation of fatty acids, caus-
ing their accumulation in adipocytes. The resultant adiposity and release of free 
fatty acids cause mitochondrial dysfunction, impaired oxidative phosphoryla-
tion and elevated level of ROS. Further, the lipid overload increases ER stress, 
decreasing eNOS, thereby leading to a vicious cycle ([64] Fig. 6.1).

 (B) Perturbation of the nitric oxide metabolism is also an important pathophysio-
logical mechanism connecting asthma and obesity. Using L-arginine as a sub-
strate, NO is synthesized by enzymes called nitric oxide synthase (NOS) which 
are of three types: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). 
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Nitric oxide plays an important role in maintaining the function of the airway 
epithelium such as bronchodilation, ciliary movements and mitochondrial bio-
genesis [65]. eNOS shows a protective role in both asthma and metabolic syn-
drome. As explained before, mitochondrial biogenesis is inhibited and fatty 
acid oxidation decreases on reduction in bioavailability of NO. This leads to 
lipid accumulation in adipocytes causing increase in formation of oxidative 
free radicals and mitochondrial dysfunction. Furthermore, decrease in bioavail-
ability of L-arginine is a common pathophysiological feature observed in both 
diseases.

 (C) In addition to that, asthmatic airways show an increase in ADMA level, which 
is an endogenous NO inhibitor that uncouples eNOS to generate reactive oxy-
gen species (ROS) and peroxinitrites causing oxidative stress and mitochon-
drial dysfunction. Interestingly, increase in protein turnover causes ADMA 
levels to increase in obesity. In experimental model of obese-asthma, ADMA 
levels are seen to be high in plasma. Interestingly, features of metabolic syn-
drome are observed in eNOS-deficient mice, while its overexpression in bron-
chial epithelial alleviates asthma features [66]. Independent studies show that 
high dosage of L-arginine supplementation also alleviates features of asthma 
and metabolic syndrome [67, 68].

Fig. 6.1 Obese-asthma at the interface of obesity and asthma: schematic showing possible link 
with mitochondrial dysfunction
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An important pro-inflammatory Th2 cytokine involved in allergic asthma, IL-4, 
also promotes intracellular accumulation of ADMA leading to oxo-nitrative stress, 
hypoxic response and ultimately loss of mitochondria. Thus, elevated levels of ADMA 
in obesity along with high IL-4 levels can potentiate each other and show a bidirec-
tional relationship between the two diseases causing mitochondrial dysfunction.

In obesity (MetS), excess nutrient leads to ER stress via increased expression of 
12/15-LOX in adipocytes causing decrease in eNOS and β-oxidation leading to mito-
chondrial dysfunction. Decreased β-oxidation leads to accumulation of free fatty 
acid, which in turn ends up as a signal for nutrient overload resulting in formation of 
a vicious cycle. The subsequent insulin resistance and central obesity are the key 
features of metabolic syndrome. In asthma, on the other hand, Th2 cytokines such as 
IL-4 increase levels of ADMA and 12/15-LOX, which leads to mitochondrial dys-
function via increase in oxo-nitrative stress and altered calcium homeostasis via acti-
vation of TRPV1 channels, respectively, leading to airway hyper-responsiveness and 
epithelial cell injury in asthma. Thus, mitochondrial dysfunction is the common 
player in MetS and asthma that leads to development of obese-asthma phenotype.

6.5  Mitochondria-Based Therapeutics

Since mitochondrial dysfunction has emerged central to asthma pathogenesis, 
improving mitochondrial function through targeted therapeutics offers a novel han-
dle to tackle the disease. Towards this aim, three basic strategies have been worked 
upon, namely, reprogramming, repair and replacement of defective mitochondria.

6.5.1  Reprogramme

The reprogramming strategy entails modulating the regulatory pathways of mito-
chondria to improve their function. Since the obese-asthma subjects do not respond 
well to the traditional line of anti-inflammatory therapy, such a therapy targeting 
mitochondria dysfunction could have greater benefits in disease management. 
Calorie restriction and physical exercise enhance the production of natural antioxi-
dants, decrease mitochondrial ROS and promote mitochondrial biogenesis [69]. 
While lifestyle modification and weight loss are the first lines of recommendation in 
treatment of obese-asthma owing to obvious health benefits, targeted therapies are 
also required. Using chemicals to mimic calorie restriction such as metformin is one 
of the potential approaches. Metformin acts via AMP-sensitive protein kinases pro-
moting mitochondrial metabolism. Attenuation of allergen-induced inflammation 
on treatment with metformin is observed in mice with high-fat-diet-induced obesity 
[70]. Further, resolution of inflammation is faster in animals treated with metfor-
min. While intrinsic airway hyperresponsiveness in genetically obese mice does not 
show much improvement, other allergen-induced models of asthma show antiasth-
matic effect on treatment with metformin. This suggests shared metabolic processes 
between allergic asthma and dietary obesity play an important role [71].
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Supplementation of L-arginine on experimental models with mitochondrial dys-
function caused by either asthma or metabolic syndrome shows benefits. Mice with 
arginase 2 (Arg2) knockouts show metabolic dysfunction and increased predisposi-
tion to asthma. Also, as per genome-wide association studies, Arg2 genetic variants 
are associated with increased risk to development of severe asthma [72]. Inhibition 
of L-arginine degradation using arginase or restoration of eNOS levels using statins 
and degradation of ADMA has similar effect on metabolism of nitric oxide and 
asthma [67, 73]. A shared interface between obesity and asthma is also suggested 
since metformin also shows important effects on nitric oxide metabolism.

Biomolecules that attenuate asthmatic features in experimental models include 
the following:

 (a) 12/15-LOX inhibitors such as baicalein and aesculetin along with exogenous 
antioxidants that scavenge ROS can reduce mitotoxicity [74, 75].

 (b) Sirtuin activators like resveratrol can stimulate mitochondrial biogenesis [76].

While these pathways are common in both obesity and asthma, their potential 
benefits in allergic as well as obese-asthma patients are yet to be ascertained.

Another novel method of restoring the mitochondrial biogenesis is through a 
microbial derivative – pyrroloquinoline quinone (PQQ). Bacterial origin of human 
mitochondria enables a cross-talk between human mitochondria and the microbiome 
[77]. PQQ is a microbial metabolite that has been reported to stimulate the human 
mitochondrial biogenesis through PGC-1α [78]. The physiological potential of PQQ 
as a strong antioxidant (1000 times better at tolerating oxidation than vitamin C) 
makes it a promising candidate for reprograming mitochondrial dysfunction [79].

6.5.2  Repair

The repair therapy works towards restoring mitohormesis and ensuring that the level 
of mtROS is finely balanced. General antioxidant therapy, involving α-tocopherol 
and vitamin C, has not been as effective as projected [80]. However, antioxidants 
targeted to the mitochondria have shown potential benefits. A combination of 
mitochondria- targeted antioxidants such as coenzyme Q10 (CoQ10) along with 
α-tocopherol and vitamin C was shown to reduce steroid usage [81]. This may be 
particularly important in obese-asthma subjects who are ineffective to glucocorti-
coid treatments. Potent mitochondrial antioxidants such as MitoQ, a modified form 
of CoQ10, MitoTEMPO and tiron are effective in preventing and reversing mito-
chondrial oxidative damage and therefore seem to be promising [8]. As mentioned 
in previous sections, MitoTEMPO has been shown to restore the paracellular leak 
in airway epithelial cells in both in vitro and in vivo models [34]. In experimental 
models of allergic inflammation, another mitochondria-targeted antioxidant  – 
NecroX5 – has been shown to reduce mtROS and alleviate the allergic phenotype 
[35]. Although these repair strategies hold much promise, it must be ensured that the 
oxidant–antioxidant balance is optimized so that mitochondrial hormesis prevails.
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6.5.3  Replacement

An emerging strategy in mitochondrial medicine is the replacement of defective 
mitochondria with functional ones. This can be achieved by multiple methods, 
namely, microinjection of isolated mitochondria, incubation with purified mito-
chondria, gap junction-driven transfer or direct transfer from donor cells [82]. 
Amongst the candidate donor cells, mesenchymal stem cells (MSCs) have come up 
as effective donors of mitochondria whereby they transfer the organelles through 
tunnelling nanotubes or extracellular vesicles. MSCs also have an added advantage 
of having homing properties that direct them to the site of injury for tissue repair 
[83]. In a recent study using murine models of allergic inflammation, mitochondrial 
donation from MSCs to injured epithelial cells was shown to alleviate the allergic 
phenotype. The donation of mitochondria was shown through TNTs, and the mito-
chondrial movement was mediated by Rho GTPase, Miro1 [84]. While such a stem 
cell-based therapy seems to be an attractive option, work needs to be carried out for 
optimization of essential parameters like the source of MSCs, the dose of MSCs and 
their donation potential.

6.6  Conclusion

Asthma is a complex disease originating from a wide spectrum of triggers and with 
multiple phenotypes, but there appears to be a common point of integration at level 
of mitochondria. In allergic asthma, multiple studies demonstrate the involvement 
of mitochondria, which appears to be bi-directional in nature. Also, in obesity, the 
role of mitochondrial dysfunction in the adipose tissue, liver and skeletal muscle has 
been well established by multiple studies. In addition to this, dietary obesity that 
leads to the obese-asthma phenotype seems to involve dysfunctional mitochondria. 
Therefore, irrespective of atopic or nonatopic trigger, mitochondrial dysfunction 
seems to be the unifying thread playing a key role in asthma pathophysiological 
mechanisms. While available clinical data is insufficient, mitochondria-targeted 
therapies are shown to be promising in experimental models. In subjects with severe 
form of asthma who are resistant to conventional clinical interventions, such strate-
gies may improve asthma management.
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Abstract
Oxidative stress plays a role in multiple disorders that include lung diseases like 
chronic obstructive pulmonary disease (COPD) and asthma. The Nrf2 signaling 
pathway is the principal regulator of the oxidative stress response and protects 
against various oxidative stress-related diseases. Nrf2, a bZIP transcription fac-
tor, regulates the expression of a battery of antioxidant and detoxification genes 
in response to oxidative stress. Moreover, Nrf2 signaling responds to multiple 
environmental and physiological inputs such as endoplasmic reticulum (ER) 
stress and insulin signaling. The effects of these inputs are often mediated 
through the molecular regulators of Nrf2 such as kinases, acetylases, and other 
Nrf2-interacting proteins. Additionally, they can also serve as drug targets for 
therapeutic modulation of Nrf2 signaling. Therefore, a comprehensive under-
standing of the molecular mechanism of Nrf2 regulation is important to analyze 
its role in different physiological and pathological conditions and to develop new 
drugs that modulate Nrf2 activity. Development of new Nrf2-inducing drugs that 
can complement current therapeutics is of particular importance for improving 
the treatment of diseases like COPD where Nrf2 activity is suppressed.
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7.1  Introduction

7.1.1  Oxidative Stress Is Implicated in Multiple Diseases

“Oxidative stress” is characterized by an excessive amount of intracellular reactive 
oxygen species (ROS), which are extremely reactive ions including but not limited 
to the hydroxyl radical, the superoxide anion, and hydrogen peroxide. These are 
generated by oxygen metabolism in mitochondria and peroxisomes and also by 
cytochrome C oxidase, membrane-associated NAD(P)H oxidase, and xanthine oxi-
dase [1]. Intracellular production of ROS is counteracted by antioxidant processes 
in the cell that include enzymes like catalase (CAT), glutathione peroxidase (GPx), 
and superoxide dismutase (SOD) and non-enzymatic ROS scavengers such as glu-
tathione, ascorbate, and carotenoids [1]. Generation of ROS is an essential biologi-
cal mechanism in many cellular functions such as the “oxidative burst” in phagocytic 
immune response and signal transduction during growth factor-mediated prolifera-
tion [2]. However, excess ROS can damage nuclear and mitochondrial DNA and can 
modify proteins and lipids. Such damages disrupt cellular functions and can result 
in cellular senescence or apoptosis [3]. In addition to the internal biological sources, 
various environmental sources of ROS including ultraviolet rays, ionizing radia-
tions, hyperthermia, toxins, and chemicals can generate oxidative stress [2]. 
Oxidative stress causes extensive damage to multiple tissues and is implicated in a 
plethora of diseases such as lung diseases, cancer, diabetes, neurodegenerative dis-
eases, and cardiovascular diseases [4].

7.1.2  Nrf2 Signaling Protects Against Oxidative Stress

A host of signaling pathways like NF-κB, JNK, ERK, p38 MAPK, PI(3)K/Akt, p53, 
HSF-1, FOXO, and Nrf2 are activated after exposure to oxidative stress, and they 
mediate the oxidative stress response [5–10]. A typical cellular response depends on 
the nature of the affected tissue and can range from pro-survival mechanisms such 
as increased production of antioxidants, repair and replacement of the damaged 
macromolecules to cellular senescence, and apoptosis to remove malfunctioning 
cells and thereby preserve tissue integrity and organismal homeostasis. Additionally, 
the abovementioned pathways often cross-talk among themselves to bring about an 
integrated response to oxidative stress [2].

Nrf2, a major regulator of the oxidative stress response, plays a central role in the 
antioxidant defense system of the body [11]. Under basal conditions, Nrf2, a bZIP 
transcription factor, binds to its cytoplasmic inhibitor Keap1 [12, 13]. Keap1 seques-
ters Nrf2 in the cytoplasm targeting it for proteasomal degradation and thereby pre-
venting its nuclear localization and binding to the antioxidant response elements 
(AREs) in the regulatory sections of its target genes [14]. In the absence of nuclear 
Nrf2 under basal conditions, the AREs are occupied by homodimers of a small Maf 
protein [15, 16]. Oxidative stress causes sulfhydryl modification of Keap1, and that 
prevents Nrf2 degradation (Fig.  7.1). Inside the nucleus, Nrf2 binds to AREs as 
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heterodimers with small Maf protein to induce a group of antioxidant enzymes and 
detoxifying proteins such as thioredoxins and glutathione-synthesizing enzymes, 
glutathione S-transferases, molecular chaperones, and proteasomal subunits 
[17–19].

The Nrf2-Keap1 signaling pathway is conserved in invertebrates including 
Drosophila and C. elegans. In Drosophila, CncC is the functional and structural 
homolog of Nrf2. Like mammalian Nrf2, Drosophila CncC is activated by oxidative 
stress leading to the induction of an array of antioxidant and detoxification genes, 
thereby protecting against oxidative stress [20]. Similarly, Skn-1 is the ortholog 
Nrf2 in Caenorhabditis elegans and also plays a significant role in the antioxidant 
defenses of the nematode [21].

Nrf2 induces a group of antioxidant and detoxification genes to protect the 
organism against oxidative stress. An absence of Nrf2 in mice (nrf2−/−) makes them 
highly susceptible to damages induced by oxidative stress [22]. Various studies have 
established the protective role of Nrf2 against multiple diseases such as cancer, 
neurodegenerative diseases, pulmonary diseases, and inflammation where oxidative 
stress plays a major role [11, 13, 22]. Interestingly, many of these are age-associated 
dysfunctions, and therefore, it can be surmised that Nrf2 protects different organs 
from age-related diseases. In addition to oxidative stress response, recent studies 
have implicated Nrf2 signaling in the regulation of lipid and glucose metabolism 
and in stem cell maintenance [23–26]. Moreover, Nrf2 signaling also shows 

Fig. 7.1 Nrf2 signaling pathway. In the absence of oxidative stress, Keap1 binds to Nrf2, and that 
leads to ubiquitination and degradation of Nrf2 by proteasomes. Under oxidative stress, the sup-
pression of Keap1-directed degradation of Nrf2 results in increased nuclear localization of Nrf2. In 
the nucleus, small Maf (MafS) dimerizes with proteins Nrf2; the heterodimer binds to antioxidant 
response elements (AREs) and promotes the expression of a variety of antioxidant and detoxifica-
tion genes

7 Regulation of Antioxidant Nrf2 Signaling: An Important Pathway in COPD



164

anti- inflammatory effects in different inflammatory disease models related to lung 
inflammation, inflammatory bowel syndrome, and inflammation associated with 
multiple neurodegenerative diseases [27–30].

7.1.3  Nrf2 Signaling Is Suppressed in COPD

Chronic obstructive pulmonary disease (COPD) is marked by gradual constriction 
of peripheral airways and depletion of the lung parenchyma and is caused by inflam-
mation in the parenchyma of lung and in the respiratory airways [31]. A recent study 
found COPD to be the third leading cause of death globally [32]. Different pollut-
ants including cigarette smoke that cause oxidative stress play a significant role in 
the progression of COPD [33, 34]. It has been demonstrated in COPD patients that 
Nrf2 expression is attenuated in the pulmonary macrophages [35]. As a result of 
which, the expression of different Nrf2 target genes such as glutathione peroxidase 
2 (GPx2), heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase 1 
(NQO1) was decreased [36]. In the absence of robust antioxidant defense mecha-
nisms, the damage caused by oxidative agents like cigarette smoke, pollutants, and 
hyperoxia [31] is increased. On the other hand, activation of Nrf2 by pharmacologi-
cal compounds is beneficial in COPD [37, 38]. However, the molecular mechanism 
involved in the suppression of Nrf2 signaling in COPD patients is not well known.

7.2  Regulation of Nrf2 Signaling

7.2.1  Regulation of Nrf2 by Oxidative Stress and Keap1

The Nrf2 protein contains seven functional “Nrf2-erythroid cell-derived protein 
with CNC homology (ECH)” (Neh) domains, namely, Neh1–Neh7 [39]. The Neh1 
domain carries a bZIP DNA-binding and dimerization motif that is required for the 
binding of Nrf2 to antioxidant response elements (AREs) in DNA and dimerize 
with other transcription factors including Maf [40]. The Neh2 domain, located near 
the N-terminus of Nrf2, contains DLG and ETGE motifs that interact with Keap1. 
In addition, the Neh2 domain carries seven lysine residues that are the sites of ubiq-
uitination by a Cullin-3-dependent E3 ligase that directs proteasomal degradation of 
Nrf2 [41–44], and Keap1 is an adaptor for this ligase. The Neh3 domain of Nrf2 
binds to the chromodomain-helicase-DNA-binding protein 6 (CHD6), which func-
tions as an Nrf2 transcriptional coactivator [45]. Transcriptional coactivator CBP 
that acetylates Nrf2 interacts with the Neh4 and Neh5 domains and induces transac-
tivation of Nrf2 target genes [46, 47]. The Neh6 domain interacts with the β-TrCP 
that promotes Cullin-1-dependent Nrf2 degradation [48, 49]. Finally, the Neh7 
domain interacts with the retinoic X receptor, which represses Nrf2 target gene 
expression (Fig. 7.2) [50].

Oxidative stress modifies the cytoplasmic inhibitory protein Keap1 and thereby 
activates Nrf2 signaling. The Keap1 protein contains five different domains, namely, 
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NTR, BTB, IVR, DGR, and CTR. The DGR domain includes Kelch motifs that 
interact with Nrf2 [51]. The interaction between the BTB domain and the Cullin-3 
E3 ubiquitin ligase complex leads to ubiquitination and proteolytic degradation of 
Nrf2 protein [42, 44]. Furthermore, Keap1 contains several cysteine residues, and 
sulfhydryl modification of these residues by oxidative stress causes a conforma-
tional change in Keap1, which ultimately leads to Nrf2 activation [13, 52]. There are 
four highly reactive cysteine residues in the IVR domain, and two cysteine residues 
out of these four are crucial for Keap1-dependent Nrf2 repression [53, 54].

Independent of the effects of oxidative stress on Nrf2, it is also regulated by 
environmental and physiological signals including calorie restriction, endoplasmic 
reticulum stress, and insulin signaling. Moreover, different molecular modifications 
of Nrf2, like phosphorylation, acetylation, and other proteins that interact with Nrf2 
or Keap1, modify Nrf2 activity. Therefore, multiple environmental and physiologi-
cal inputs are integrated through Nrf2.

7.2.2  Regulation Nrf2 Signaling by Kinases

Nrf2 has been shown to be regulated by different kinases [55, 56]. PKC-δ-mediated 
phosphorylation of Ser40 in mammalian Nrf2 prevents its degradation and facili-
tates nuclear entry [57–59]. In contrast, GSK-3β increases the degradation of 
Nrf2 in a Keap1-independent manner via F-box protein β-TrCP and Cullin-1 [49]. 
Akt phosphorylates and inhibits GSK-3β and thereby activates Nrf2 signaling [60]. 
The Tyr568 residue of Nrf2 can be phosphorylated by the Src-family tyrosine kinase 
Fyn leading to the export of Nrf2 out of the nucleus and its degradation [61]. 
Moreover, phosphorylation of Fyn by GSK-3β can also increase its nuclear accumu-
lation and thus inhibit Nrf2 signaling [62]. p38 has been shown to phosphorylate 
Nrf2 to promote its interaction with Keap1, thereby preventing nuclear transloca-
tion of Nrf2 and suppressing target gene expression [63]. PERK, which is activated 

Fig. 7.2 Peptide domains involved in Keap1-mediated Nrf2 regulation. Keap1 binds to the DLG 
and ETGE motifs in the Neh2 domain of Nrf2 through the DGR domain containing the Kelch 
repeats. The interaction between the BTB domain and the Cullin-3 E3 ubiquitin ligase complex 
leads to ubiquitination and proteasomal degradation of Nrf2 protein. Oxidative stress causes sulf-
hydryl modification of the cysteine residues in Keap1, and that leads to the nuclear localization of 
Nrf2. In the nucleus, Nrf2 forms heterodimers with MafS proteins and binds to the ARE sequences 
through the Neh1 domain and, finally, promotes transcriptional activation of the target genes 
through the Neh4 and Neh5 domains
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by ER stress, has also been shown to phosphorylate and activate Nrf2 [64]. However, 
it should be noted that the substrate sites of phosphorylation for some of the afore-
said kinases are not known. Furthermore, coactivators of Nrf2 such as CBP instead 
of Nrf2 itself might be the actual targets of some of the protein kinases [65].

7.2.3  Regulation Nrf2 Signaling by Acetylation

p300/CBP are transcriptional coactivators that acetylate histones to promote chro-
matin decondensation and recruitment of the RNA polymerase machinery [66, 67]. 
These coactivators have been shown to be associated with Nrf2 protein [46, 68]. 
Under oxidative stress conditions, p300/CBP binds to Nrf2 at its Neh4 and Neh5 
domains acetylating a number of lysine residues within the Neh1 DNA-binding 
region of Nrf2. It has been demonstrated through mutational analysis that acetyla-
tion of multiple residues is required for full Nrf2 inducibility. CBP-mediated acety-
lation of Nrf2 promotes its binding to the ARE sites and its transactivation potential 
but does not affect its stability [68]. Recent studies have shown that acetylation of 
lysine residues in other domains of Nrf2 such as Neh2 and Neh3 also modulates 
Nrf2 activity [69].

7.2.4  Regulation Nrf2 Signaling by Nuclear Receptors

Nrf2 signaling is regulated by various nuclear receptors – the retinoid receptor is 
one of them. There are two distinct classes of retinoid receptors, namely, retinoic 
acid receptor (RAR) and retinoid X receptor (RXR) [70]. All-trans retinoic acid 
(ATRA) can suppress Nrf2-driven transcription by promoting the formation of a 
protein complex of RARα receptor with Nrf2 [71]. A vitamin A-deficient diet 
induced the expression of genes regulated by Nrf2 in the small intestine of mice. 
Wang et al. reported that RXRα interacts with Nrf2 at its Neh7 domain and inhibits 
expression of Nrf2 target genes as well [50].

Estradiol suppresses the expression of Nrf2 independently of Keap1-mediated 
degradation [72, 73]. Yao et al. reported that ERα localizes to the promoter region 
of Nrf2 target gene NQO1 and inhibits its expression in breast cancer cells [74]. On 
the other hand, antiestrogen drug shikonin suppressed this ERα-mediated inhibi-
tion. Dexamethasone, a synthetic glucocorticoid, suppresses the induction of Nrf2 
target gene GSTA2 [75]. In addition, Nrf2-mediated antioxidant response and resis-
tance to H2O2 are suppressed by 11β-HSD1 that activates glucocorticoid receptor 
(GR) through glucocorticoids [76].

7.2.5  Regulation Nrf2 Signaling by BET Proteins

BET proteins have recently been shown to inhibit Nrf2 signaling both in mammals 
and in invertebrate Drosophila [77–79]. BET proteins that contain two 
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bromodomains and an extra-terminal domain interact with acetylated lysine resi-
dues in both histone and nonhistone proteins through their bromodomains. Four 
mammalian BET protein-coding genes (Brd2, Brd3, Brd4, and BrdT) are involved 
in chromosome organization and in the regulation of gene expression [80–83]. It has 
recently been reported that fs(1)h, the only BET protein-coding gene in Drosophila, 
can suppress Nrf2 signaling and consequently regulates oxidative stress responses 
[14, 56, 79]. Likewise, BET proteins were shown to suppress Nrf2 signaling in 
multiple mammalian cell lines, and their inhibition imparts resistance to oxidative 
stress [77, 78]. Interestingly, BET proteins have been reported to inhibit Nrf2 sig-
naling in a Keap1-independent fashion, and as a consequence, a combination of a 
Keap1 inhibitor with a BET inhibitor synergistically activates Nrf2 signaling [79].

7.2.6  The Effect of Calorie Restriction on Nrf2 Signaling

Calorie restriction (CR) is a well-established process for extending lifespan in different 
species. CR also improves several physiological parameters. It increases insulin sensi-
tivity, lowers cancer risk, lowers blood pressure, and improves neuronal function [84]. 
There is no report demonstrating the importance of Nrf2 signaling in CR-mediated 
lifespan extension in mammals. However, CR has been documented to activate antioxi-
dant genes that are regulated by Nrf2  in mice, and this induction was impaired in 
nrf2−/− mice. In addition, it was shown that CR mediated protection against cancer by 
activating Nrf2 [85, 86]. In contrast, in C. elegans, the role of Nrf2-like signaling as the 
mediator of the longevity effects of CR is well established. The activity of Skn-1, the 
Nrf2 ortholog in worms, in ASI neurons is required for CR-mediated lifespan exten-
sion [87]. This indicates that the cell nonautonomous effect of Nrf2 signaling is 
involved in CR-mediated lifespan extension in worms.

7.2.7  Regulation of Nrf2 by IIS/Akt Signaling

Insulin and its downstream signaling mediated through PI3K/Akt are principal ana-
bolic signals for metabolism and growth. Studies across species have shown that 
loss-of-function mutations in the insulin signaling pathway (IIS) can extend lifes-
pan [88–90]. Daf-16/Foxo, which is phosphorylated and suppressed by IIS/Akt sig-
naling, has been characterized as the primary mediator of longevity in response to a 
loss of IIS [91–93]. However, Tullet et al. showed that Skn-1 is also phosphorylated 
and inhibited by Akt [94]. Moreover, IIS signaling affects Daf-16 and Skn-1 func-
tion independently of each other. In contrast, PI3K/Akt signaling activates mam-
malian Nrf2 signaling pathway [95, 96]. Rizvi et al. reported that the suppression of 
PI3K/Akt signaling causes decreased nuclear retention of Nrf2 and increased Nrf2 
ubiquitination. PI3K/Akt suppression, thereby, suppressed Nrf2 target genes lead-
ing to an increase in oxidative stress-mediated cytotoxicity [60]. Interestingly, Akt 
is phosphorylated in response to oxidative stress. Phosphorylated Akt, in turn, phos-
phorylates and inhibits GSK-3β. As discussed earlier, GSK-3β represses Nrf2 
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signaling by promoting the degradation of Nrf2 protein. In addition, it also activates 
Fyn kinase, which phosphorylates Nrf2 to increase its nuclear export and thereby 
suppresses Nrf2 signaling. However, the physiological and evolutionary signifi-
cance of these differential effects of IIS/Akt signaling on Nrf2 and Skn-1 in mam-
mals and worms, respectively, is not clear.

7.2.8  ER Stress and Nrf2 Signaling

An excess of unfolded or misfolded proteins is detrimental to the cellular milieu – 
this gives rise to ER stress. The unfolded protein response (UPR) operates to either 
refold or remove these defective proteins. PERK, which is activated during UPR, 
activates Nrf2 by destabilizing Nrf2-Keap1 interaction [64]. Furthermore, the stress 
signaling pathway JNK, activated by IRE1, activates Nrf2 signaling by promoting 
Nrf2-Keap1 dissociation [97–99]. The activation of Nrf2 signaling by UPR ulti-
mately leads to the induction of detoxification, chaperone, and proteolytic genes 
that help the cell combat ER stress [99]. Interestingly, Glover-Cutter et al. recently 
reported that ER stress in C. elegans can activate Skn-1, which in turn binds to com-
mon downstream targets like XBP-1 and ATF6 to orchestrate the transcriptional ER 
stress response [100]. Therefore, it can be concluded that ER stress-mediated acti-
vation of Nrf2-like signaling is conserved across different species.

7.2.9  Regulation Nrf2 Signaling by Nuclear Lamin

Oxidative stress is implicated in the process of aging, and loss of Nrf2 activity is a 
characteristic of multiple age-related diseases. A recent study by Kubben et al. [101] 
linked loss of Nrf2 signaling to Hutchinson-Gilford progeria syndrome (HGPS) that 
is characterized by accelerated aging. HGPS is caused by mutations in lamin A gene 
that leads to the expression of a truncated lamin A protein (also known as progerin). 
The accumulation of dominant-negative progerin at the nuclear membrane affects 
nuclear architecture and genome stability. Cardiovascular diseases emanating from 
severe atherosclerosis is the principal cause of death in these patients [102]. It was 
found that sequestering of Nrf2 by progerin causes subnuclear mislocalization of 
Nrf2 protein and, thereby, suppression of Nrf2 signaling that leads to heightened 
chronic oxidative stress. Consistent with this observation, genetic or therapeutic 
activation Nrf2 rescued the phenotypes of cells expressing progerin [101].

7.2.10  Regulation Nrf2 Signaling by Pgk1

Phosphoglycerate kinase (Pgk1) is a glycolytic enzyme that has very recently been 
shown to regulate Nrf2 signaling [103]. Bollong et al. reported that inhibition Pgk1 
by a small-molecule inhibitor CBR-470-1 results in Nrf2 protein accumulation and 
subsequent induction of Nrf2 target genes. Inhibition of Pgk1 leads to the 
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accumulation of methylglyoxal, a reactive metabolite. Interestingly, post-transla-
tional modification of Keap1 by methylglyoxal leads to the formation of a methyl-
imidazole cross-link between cysteine and arginine residues (MICA) in Keap1. This 
results in the accumulation of Nrf2 and the transcriptional induction of Nrf2 target 
genes. This study establishes a direct connection between glucose metabolism and 
Nrf2 signaling.

7.3  Conclusion and Future Outlook

Nrf2 signaling is affected in multiple disease conditions, including COPD, diabetes, 
neurodegenerative disorders, and cancer, and consequently is an attractive drug tar-
get [11]. Nrf2 signaling is induced by various types of oxidative stressors such as 
paraquat which affects the mitochondrial electron transport chain or hydrogen per-
oxide (a reactive oxygen species) [104]. Additionally, different categories of small 
molecules such as Michael acceptors (bardoxolone methyl, dimethyl fumarate), 
quinones (tBHQ), isothiocyanates (sulforaphane), dithiolethiones (oltipraz), 
selenium- based compounds (Ebselen), and heavy metals (sodium arsenite, cad-
mium chloride) have been identified as inducers of Nrf2 signaling [105, 106]. Some 
of these compounds including sulforaphane, bardoxolone methyl, oltipraz, dimethyl 
fumarate (DMF), and Ebselen are being studied in clinical trials for the treatment of 
different diseases like COPD, asthma, multiple sclerosis, breast and prostate cancer, 
cystic fibrosis, chronic kidney disease in type 2 diabetes, and nonalcoholic fatty 
liver disease [105, 107]. Interestingly, a number of the known Nrf2 inducers form 
covalent adducts with the sulfhydryl groups of cysteines in Keap1 and thereby affect 
Keap1-Nrf2 interaction. Therefore, they can also react with other cysteine- 
containing proteins and that might result in “off-target” toxic effects [108, 109].

In addition to these compounds, BET protein inhibitors can be used to activate 
Nrf2 signaling and thereby may present a separate therapeutic approach for the 
treatment of these diseases. A recent study by Liang et al. reported that the suppres-
sion of Nrf2 activity in the hippocampus caused by hyperglycemia can be reversed 
by treatment with JQ1 [110]. Moreover, a strong and specific induction of Nrf2 
signaling without the toxic “off-target” effects can be achieved by exploiting the 
synergistic activation of Nrf2 signaling by simultaneous application of BET protein 
inhibitors and Keap1 inhibitors (Fig. 7.3) [111].

Inflammation plays a major role in the etiology of COPD.  However, COPD 
patients are resistant to widely used corticosteroid treatment because they cannot 
recruit histone deacetylase 2 (HDAC2) to suppress active inflammatory genes [112, 
113]. PI3K/Akt-mediated phosphorylation and degradation play a role in the 
decrease in the levels of HDAC2. Incidentally, inhibition of HDAC2 enhances Nrf2 
acetylation and thereby can suppress Nrf2-mediated antioxidant gene expression in 
COPD [114, 115]. Furthermore, the suppression of CncC, the ortholog of mamma-
lian Nrf2 in Drosophila, by BET protein Fs(1)h relies on the acetylation of CncC 
[79]. Therefore, it will be interesting to investigate whether a decrease in HDAC2 
activity in COPD patients leads to an increase in Nrf2 acetylation and thereby makes 
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it more susceptible to inhibition by BET proteins. Moreover, it can also be tested 
whether a combinatorial treatment with a BET inhibitor like JQ1 and a Keap1 inhib-
itor like sulforaphane yields better results in COPD resulting from a robust induc-
tion of antioxidant genes and a better suppression of inflammation through a 
stronger activation of Nrf2 signaling [111]. Thus, a comprehensive understanding 
of the molecular regulation of Nrf2 signaling will lead to new therapeutic approaches 
to induce Nrf2 signaling in the treatment of oxidative stress-associated diseases.
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Abstract
Cigarette smoke (CS) exposes lungs to oxidative stress and inflammation and is 
a major risk factor for the development of chronic obstructive pulmonary disease 
(COPD). COPD is a complex lung disease characterized by chronic inflamma-
tion with limited airflow and chronic bronchitis associated with mucus hyperse-
cretion, thickened small airway walls, and emphysema. CS-induced oxidative 
stress is responsible for altered cellular metabolism, including increased infiltrat-
ing immune cells, pro-inflammatory cytokine production, protease–antiprotease 
imbalance, lipid peroxidation, apoptosis, upregulation of unfolded protein 
response (UPR), and protein misfolding. This chapter reviews the current knowl-
edge on different mechanisms through which both direct and secondhand 
CS-induced oxidative stress in lungs plays a significant role in the pathogenesis 
of COPD. Despite the presence of considerable reports recognizing the harmful 
effects of CS-generated oxidative stress, effective treatment for COPD is lacking. 
Extensive research on the immune and pathogenetic mechanisms of COPD will 
help in developing new treatment strategies. Clinical trials leveraging multiple 
antioxidants, anti-inflammatory processes, and UPR inhibitors are urgently 
needed to advance COPD therapies.
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8.1  Introduction

Chronic obstructive pulmonary disease (COPD) is a leading cause of chronic mor-
bidity and mortality and is becoming a global public health concern. According to 
the World Health Organization (WHO) in “The Global Burden of Disease Study,” 
there were 251 million cases of COPD globally in 2016 [1] and is likely to be the 
third leading cause of death worldwide by 2020 [2]. The two conditions that lead to 
COPD are chronic bronchitis and emphysema. Around 12 million adults are diag-
nosed with COPD, 120,000 deaths are reported each year, and about 12 million 
adults go undiagnosed for COPD [3]. It currently affects about 10–12% of the popu-
lation over 45 years of age, rising to 50% in heavy smokers [4]. COPD is a complex 
disease associated with chronic airflow limitation along with an inflammatory pul-
monary response to smoke and toxic particles. COPD is characterized by lung 
emphysema, with degradation of alveolar structural protein, loss of alveolar tissue 
and loss of lung elastic recoil, and chronic bronchitis with increased deposition of 
structural proteins, narrowing of airway lumen, and mucus hypersecretion [5, 6]. 
Secondary to the structural changes in the airways, reduced airflow in COPD pres-
ents irreversible conditions such as peribronchiolar fibrosis and increased collaps-
ibility due to destruction of elastase in lung tissues [7]. Exposure to both direct and 
secondhand cigarette smoke (CS) has been widely accepted as a major risk factor in 
the pathogenesis of COPD [8, 9]. Although smoking is considered the most impor-
tant risk factor for COPD, not all smokers develop COPD. This implies other con-
tributors including air pollution, exposure to occupational dust, fumes and chemicals, 
and genetic predisposition [10–12]. The most common genetic factor associated 
with COPD is the deficiency of α1-antitrypsin [13]. Individual with α1-antitrypsin 
deficiency has reduced levels of circulating proteinase inhibitor, a protective factor 
against proteolytic attack that leads to emphysema. Although much research has 
focused on the protease and antiprotease theory of pathogenesis of COPD, less 
attention has been paid to the role of the oxidant–antioxidant imbalance in 
COPD.  Besides the detrimental effects of tobacco smoking, secondhand smoke 
exposure from burning tobacco products such as cigarettes, cigars, pipes, and beedi 
or biri also has significant adverse effects on health [14]. Homa et al. [15] reported 
that 2,500,000 nonsmokers have died from different types of health problems caused 
by exposure to secondhand smoke. In this book chapter, we focus mainly on the 
both direct and secondhand CS-induced oxidative stress and its role in the patho-
genesis of COPD.
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8.2  COPD: Pathogenesis and Risk Factors

Although the pathogenesis of COPD remains poorly understood, multiple studies 
have reported that oxidative stress, inflammation, protease–antiprotease imbalance, 
and apoptosis of lung cells are involved [16–18]. All these pathogenic mechanisms 
lead to a series of physiological abnormalities including airflow obstruction, airway 
hyperresponsiveness, hyperinflation of the lungs, dysfunction of cilia, loss of lung 
elasticity, and abnormalities in gas exchange due to destruction of alveoli [19]. 
Figure 8.1 illustrates the pathogenesis of COPD and changes in the lungs due to 
exposure to both direct and secondhand CS. The pathology of COPD can be repre-
sented as a persistent inflammatory immune response and oxidative and chemical 
injury by noxious gases. Next to chronic inflammation of the lungs, systemic altera-
tions have been seen in COPD patients. Systemic inflammation decrease in body 
weight and loss of skeletal muscles are observed as other manifestations of the dis-
ease. COPD patients frequently develop skeletal muscle dysfunction. Oxidative 
stress has been reported to cause posttranslational modifications of specific muscle 
proteins, for example, creatine kinase, rendering them susceptible to increased pro-
tein breakdown leading to muscle loss in smokers and COPD patients [20].

Fig. 8.1 Pathogenesis of COPD induced by both direct and secondhand cigarette smoking
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The most prominent risk factors for COPD are cigarette smoking, passive CS 
exposure, and exposure to other noxious particles including tobacco smoke, fuels, 
and wood smoke [21]. Smoking harms nearly every organ of the body leading to dif-
ferent diseases such as cancer, heart diseases, lung diseases, and COPD. The WHO 
reports that cigarette smoking causes more than 480,000 deaths per year in the United 
States, including more than 41,000 deaths resulting from secondhand smoke expo-
sure [22]. Many oxidants contained in CS induce severe adverse effects through oxi-
dative damage of key biological structures. Inhaled CS induces an aggravated 
inflammatory response and abnormal tissue damage in the lungs of COPD patients. 
The gaseous and particulate phases of CS contain 4000 to 1 × 1015 different chemi-
cals and carcinogens and also produce highly toxic reactive oxygen species (ROS) 
through various processes such as the Haber–Weiss reaction [23]. ROS are able to 
initiate inflammatory responses by altering biological molecules, signaling path-
ways, and antioxidant molecule function predominantly in epithelial cells and 
inflammatory cells in the lung [24]. Chronic inflammatory response in the airways of 
COPD patients is characterized by infiltrating inflammatory cells (neutrophils, eosin-
ophils, macrophages, and CD8+T cells) and enhanced oxidant production in tissues 
such as lipid peroxidation [25], protein and thiol oxidation [26], and DNA oxidation 
[27]. The inflammatory cells release a variety of proteases, known to be responsible 
for the degradation of elastin and thus leading to emphysema development [19]. 
Inhaled CS damages lung epithelial cells and releases various inflammatory media-
tors such as tumor necrosis factor-α (TNF-α), C-reactive proteins, and interleukins 
(IL-6, IL-8) resulting in structural damage to lung parenchyma [28].

8.3  Smoke-Induced Oxidative Stress in COPD

Recent experimental studies and clinical research have established that CS-induced 
oxidative stress is a major predisposing factor for COPD. The increased oxidative 
stress in COPD patients is attributed to the increased burden of inhaled oxidants, 
along with increased amount of ROS produced by several inflammatory, immune, 
and epithelial cells in the lungs [29], and cessation of cigarette smoking does not 
stop progression of this disease. Louhelainen et al. [30] reported that inflammatory 
cells (particularly neutrophils) are continuously recruited to the lungs and released 
more inflammatory mediators such as leukotriene B4 (LTB4) and IL-8 and cause 
continuous oxidative stress after smoking cessation, indicating that endogenous 
ROS/reactive nitrogen species (RNS) resulting from the successive inflammatory 
response might also contribute to the progression of oxidative stress-induced 
COPD.  Oxidative stress interferes with multiple events of lung physiology, thus 
contributing to COPD pathogenesis. Oxidative stress is responsible for inactivation 
of surfactants and antiproteases, hypersecretion of mucus, lipid peroxidation and 
formation of malondialdehyde (MDA), alveolar epithelial damage, and a loss of 
lung elasticity and remodeling of the extracellular matrix (ECM) (Fig. 8.2). MDA 
causes disruption of the membrane lipid bilayer that may lead to the inactivation of 
membrane-bound receptors and increases tissue permeability. As a result, there is 
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induction of pulmonary inflammation, as evident from the observation that the level 
of MDA is increased in peripheral circulation of COPD patients [24, 31]. Birben 
et al. [32] reported that two of the indirect biomarkers of oxidative stress, isopros-
tanes and thiobarbituric acid, were increased in the bronchoalveolar lavage and 
exhaled breath condensate of COPD patients or smokers. Further, CS-induced ROS/
RNS upregulate redox-sensitive transcription factors and activate their downstream 
signaling pathways in lung epithelial and inflammatory cells [24, 33]. In order to 
sustain a pro-inflammatory state, ROS also initiate small G proteins and pro- 
inflammatory transcription factors such as NF-κB [34].

Cigarette smoke has been found to contain several reactive species, such as 
oxides of nitrogen, organic peroxides, and hydroperoxides [35]. Muller et al. [36] 
reported that the peroxynitrite (ONOO−) is formed in aqueous CS fractions as a 
reaction product of superoxide and nitric oxide (NO) which are released by 
CS. Peroxynitrite plays a critical role in the oxidative inactivation of α1-proteinase 
inhibitor. Furthermore, peroxynitrite also inhibits both half-life of CS-induced c-fos 
activity and expression [37]. It has been also reported that CS exposure causes 
increased blood counts of neutrophils and monocytes, which are the main endoge-
nous sources of myeloperoxidase (MPO), which catalyzes H2O2, producing highly 
oxidizing hypochlorous acid (HOCl). The heme enzyme MPO is a potent endoge-
nous scavenger for peroxynitrite and acts as a protective mechanism from oxidative/

Fig. 8.2 Oxidative stress originated by cigarette smoke causes alterations of multiple pathways 
and induces cellular damage and inflammation
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nitrosative stress. Martins et al. [38] reported that serum MPO activity is signifi-
cantly higher in smoker than nonsmoker and thus responsible for imbalance of the 
lung protease–antiprotease activity. Moreover, CS exposure also increases produc-
tion and secretion of metalloprotease by macrophages [39]. It has also been reported 
that the high levels of matrix metallopeptidase 9 (MMP-9) are present in the airways 
and serum and persist after smoking cessation [40]. Hence, both increase activity of 
MPO, and metalloproteases emerge as a critical contributor for the development and 
progression of COPD in smokers.

8.4  Oxidative Stress and Inflammation in COPD

Airway and parenchymal inflammation in patients with chronic airflow limitation is 
the hallmark of COPD. Multiple experimental studies and clinical investigations 
performed by bronchoscopy, sputum analysis, and lung lavage have suggested that 
inflammation plays a critical role in pathobiology of COPD [41–43]. Besides air-
flow limitation and bronchiolar constriction, inflammation may also be responsible 
for fibrosis, mucus gland hypertrophy, increased connective tissue deposition, and 
deforming the airway lumen [44]. CS triggers a cascade of pro-inflammatory 
response at the site of inflammation caused mainly due to the infiltration of leuko-
cytes mediated by pro-inflammatory cytokine signaling (IL-1β and TNF-α) [45], 
upregulation of matrix metalloproteases (MMP-1, MMP-9, etc.), and adhesion of 
monocytes to the endothelium [46]. The activated endothelial cells express higher 
levels of selectins, VCAM-1 and ICAM-1, and promote monocyte adherence [47]. 
The most important cellular players for inflammation in COPD are alveolar macro-
phages, neutrophils, lymphocytes, and epithelial cells [48, 49]. Increased levels of 
monocytes and neutrophils secreting free radicals, elastase, and collagenase have 
been reported in smokers [50, 51]. Many mechanisms could be responsible for 
increased number of neutrophils in the lungs of cigarette smokers with COPD. For 
example, oxidants decrease neutrophil deformability and enhance their sequestra-
tion in small blood vessels [52]. Upregulated expression of E-selectin causes 
increased neutrophil adherence in lung vessels of chronic bronchitis patients [53]. 
CS was found to elicit adhesion of neutrophils to hamster endothelium in vitro by 
inhibiting Cu2+Zn2+-SOD (superoxide dismutase) [54].

Several in vitro studies done on macrophage (U937), alveolar (A549), and bron-
chial epithelial cells (BEAS-2B) reported that ROS induces the expression of cyto-
kines, such as IL-1β and TNF-α that cause inflammation [55–57]. Alveolar 
macrophages and airway epithelium, under direct or indirect oxidant stress, also 
produce TNF-α, which in turn activates epithelial cells to induce pro-inflammatory 
genes, such as IL-8, IL-1, IL-6, inducible nitric oxide synthase (iNOS), ICAM-1, 
MIP-1α, heat shock proteins, and antioxidant enzymes [29, 55]. These genes are 
regulated by redox-sensitive transcription factors NF-κB and AP-1 (activator pro-
tein- 1). Oxidative stress activates the enzyme I-κB kinase, which degrades κB pro-
tein inhibitor, and promotes the release of NF-κB. Intracellular ROS has been also 
reported to inactivate histone deacetylase 2 that leads to increased acetylation of 
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proteins. As a result, there occur chromatin decompaction and greater accessibility 
of transcription factors to the genes [58, 59]. Studies have demonstrated that acety-
lation of histones is associated with the transcription of inflammatory mediators 
such asIL-8 [60], eotaxin and GM-CSF [61], MIP-2 [62], and IL-6 [63].

8.5  Oxidative Stress-Induced Mitochondrial Dysfunction 
in COPD

Mitochondrial dysfunction hampers a multitude of cellular functions, giving rise to 
the onset of various diseases. The major purpose of mitochondria, the “power house” 
of the cell, is production of adenosine triphosphate (ATP). Mitochondria perform 
several other essential functions such as cellular signaling, redox homeostasis, and 
cell survival and proliferation [64]. They are major endogenous source of 
ROS. Alteration of mitochondrial function is associated with a variety of disorders in 
human health [65]. Oxidative stress occurs when exposure of both exogenous and 
endogenous ROS/RNS is enough to overwhelm antioxidant defenses of our body 
(Fig. 8.3). Superoxide anion (O2

−) is generated mainly by mitochondrial metabolism, 

Fig. 8.3 Proposed mechanism of mitochondrial-centered pathogenesis by ROS/RNS of both 
direct and secondhand cigarette-smoke-induced mitochondrial dysfunction in development and 
progression of COPD. Abbreviations: AM Alveolar microphages, PMN polymorphonucleocytes, 
EOS eosinophils, CAT catalase, GSH glutathione, GSSG glutathione disulfide, GPx glutathione 
peroxidase, GRed glutathione reductase, NADP nicotinamide adenine dinucleotide phosphate, 
NADPH reduced NADP, MPO myeloperoxidase, ONOO− peroxynitrite molecule, ONOOCO2

− 
nitrosoperoxycarbonate, cyt c cytochrome c
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molybdenum hydroxylase reactions, arachidonic acid metabolism, heme peroxidase 
system, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-depen-
dent processes in phagocytic cells [66]. Although superoxide anion is unstable, it is 
considered to contribute little to oxidative stress, because of rapid dismutation of 
superoxide anion into hydrogen peroxide (H2O2) by enzyme cytosolic superoxide 
dismutase (SOD1) and mitochondrial SOD2. NO is produced by iNOS which in the 
presence of O2

− forms an extremely reactive ROS, peroxynitrite anion (ONOO−) 
[67]. Peroxynitrite causes oxidation of multiple targets such as lipid, proteins, and 
DNA [25–27]. Nitrosative stress from an upregulated iNOS system and its down-
stream oxidative pathways is involved in different stages of proteolytic pulmonary 
emphysema related to cigarette smoking [68]. CS-induced NO acts as inhibitor of 
electron transport chain (ETC) which increases mitochondrial oxidant (O2

−) produc-
tion and impairs the flow of electron at cytochrome c (cyt c) oxidase (Complex IV). 
Peroxynitrite also inactivates mitochondrial protein SOD2 and mediates a variety of 
biological effects. Furthermore, in the presence of CO2, it produces nitrosoperoxy-
carbonate (ONOOCO2

−), which diminishes oxidation and increases nitration reac-
tion. ROS and RNS are generated by both direct and secondhand cigarette smoke. 
The superoxide anion radical (O2

−) is generated from CS and mitochondrial nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase and can be converted to 
H2O2 by superoxide dismutase (SOD), which can diffuse from mitochondria and act 
as a signaling molecule, or is reduced by GSH to form H2O. In the presence of (Fe2

+), 
H2O2 can produce hydroxyl radicals (OH−) via Fenton–Haber–Weiss reaction or can 
produce highly reactive HOCL by mitochondrial MPO.

CS induces mitochondrial dysfunction by the following mechanisms:

 1. Overproduction of ROS/RNS and overutilizing GSH in mitochondria cause 
defective ETC, which leads to mitochondrial membrane potential loss and 
increased membrane permeability.

 2. Modification of mitochondrial DNA (mtDNA)-associated immune response, 
which will increase mtDNA fragmentation.

 3. Impairment of mitophagy leads to accumulation of damaged mitochondria and 
increased cellular senescence via suborganellar signaling [69–71].

Hence, CS exposure generates excessive oxidation by inducing tremendous 
mitochondrial ROS/RNS burden in the cell, which induces an oxidant–antioxidant 
imbalance in CS-induced COPD [72]. Thus, understanding the underlying mecha-
nisms on oxidant–antioxidant imbalance and involvement of signaling pathway 
may provide important information for therapeutic treatment of pathogenesis and 
progression of CS-induced COPD.

While the role of mitochondria in COPD has not been adequately elucidated, 
several studies have demonstrated that CS disrupts mitochondrial membrane poten-
tial (ΔΨm), reduces ATP content, and lowers complex protein expression [73]. 
Prolonged exposure to CS was found to significantly increase the expression of fis-
sion/fusion markers, oxidative phosphorylation proteins, and oxidative stress mark-
ers [74]. Prohibitin complexes, an essential component of mitochondrial fusion 
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machinery, were found to be downregulated in COPD lung tissue. Moreover, pro-
hibitin levels were associated with the degree of airway destruction [75]. The per-
oxisome proliferator-activated receptors (PPARs) and PPAR-γ coactivator (PGC)-1α 
are key regulators of mitochondrial formation and skeletal muscle oxidative ability 
[76]. Several studies have reported reduced expression of PPARs and PGC-1α in 
peripheral skeletal muscle of patients with moderate-to-severe COPD and muscle 
weakness, suggesting these molecules as potential targets for pharmacological man-
agement of COPD [77, 78]. The genes driving iron regulatory proteins (IRPs), 
known to regulate cellular iron homeostasis, have been identified as major COPD 
susceptibility candidates [79]. Later studies showed that IRP2 is associated with 
mitochondrial dysfunction in experimental COPD, where mice treated with a mito-
chondrial iron chelator showed protection from CS-induced COPD [80].

Mitochondria orchestrate signaling pathways that regulate both innate and adap-
tive immunity. Two mitochondrial proteins, nucleotide-binding domain and leucine- 
rich repeat-containing protein X1 (NLRX1) and mitochondrial antiviral signaling 
(MAVS), have been previously reported to control cytoplasmic, nucleic acid- 
mediated innate immune pathway [81]. Later studies demonstrated that these two 
proteins were implicated in COPD pathogenesis [82]. CS-induced dysregulation of 
NLRX1/MAVS signaling pathway was responsible for enhanced inflammasome 
activation, increased cytokine response, disturbed ROS production, intra-alveolar 
inflammation, and alveolar cell death. The role of NLRX1 in the pathogenesis of 
COPD is also evident from clinical studies. In human COPD cohorts, the suppressed 
expression of NLRX1 was strongly correlated with the degree of airflow limitation 
[82]. Some other mitochondrial regulatory pathways, including mitochondrial Tu 
translation elongation factor and ubiquinol–cytochrome c reductase core protein 2 
(UQCRC2), a subunit of electron transport chain complex III, have been found to be 
relevant in COPD [83, 84]. Mitochondrial signaling is also known to control adap-
tive immunity, including differentiation of CD4+ T cells and formation of CD8+ 
memory T cells. Despite all this, the role of mitochondria in COPD immunology is 
still not very clear. Further studies confirming the participation of other mitochon-
drial molecules and signaling in COPD pathogenesis will help in understanding the 
immunologic aspects and in developing disease-modifying therapeutics.

8.6  Oxidative Stress and Antioxidant Defenses in COPD

Oxidative stress may result from increased exposure to oxidants and/or decreased 
antioxidant capacities, which are central features of COPD. Since oxidants play a 
pronounced role in CS-induced pulmonary damage, the status of pulmonary anti-
oxidant defense mechanisms holds paramount importance. Pulmonary antioxidant 
defenses include both enzymatic and nonenzymatic systems. The major enzymatic 
antioxidants are superoxide dismutase (SOD) and glutathione (GSH) redox system 
[85]. SOD degrades superoxide (O2

−) and catalase, whereas GSH inactivates hydro-
gen peroxide (H2O2) and hydroperoxidases. CS compromises the antioxidant 
machinery of the lung. Acute exposure of airway epithelial cells to CS depletes 
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airway cell GSH [86]. From a cellular perspective, CS irreversibly modifies redox- 
sensitive transcription factors, such as nuclear factor erythroid 2-related factor 2 
(Nrf2) in epithelial and alveolar macrophages which activates antioxidant response 
elements and cytoprotective genes [87, 88]. One study reported that erythrocytes 
from smokers had decreased glutathione peroxidase (GPX) and glucose-6- phosphate 
dehydrogenase (G6PD) activity and were more susceptible to lipid peroxidation 
than erythrocytes from nonsmokers [89]. In contrast, there are various studies show-
ing increased antioxidants in cigarette smokers. Certain cigarette smokers had 
increased GSH and GPX activities in their epithelial lining fluids compared with 
nonsmokers [90]. On a related note, CS increased lung SOD and catalase activities, 
but these responses were unable to protect rats against CS [91]. This imbalance 
between the smoke-induced oxidative stress and antioxidant defense machinery in 
the lung is believed to be a major step in the progression of COPD.

Mukherjee et al. [92] have evaluated the effect of direct and passive CS exposure 
on the activity of antioxidant enzymes and lipid peroxidation in guinea pig erythro-
cytes. Smoke-exposed groups showed increased activity of SOD and decreased 
activities of GPX and NADPH enzymes [92]. A significant increase in the lipid per-
oxidation potential of erythrocytes was also observed in vitro, thus indicating the free 
radical-mediated lung injury. An association between increased peroxidation of 
erythrocyte lipids and incapability of erythrocytes to quench free radicals in smoke- 
exposed animals may be due to a deficiency of antioxidants. Lower levels of vitamin 
C and carotene in plasma of smokers have been reported in some of the earlier stud-
ies [93]. Vitamin A and its metabolites play important role in the respiratory system 
by influencing differentiation and the integrity of the epithelial cells [94, 95]. Several 
studies [95] have been carried out to understand the relationship between level of 
vitamin A, lung function, and lung diseases such as vitamin A deficiency leading to 
type I brittle asthma, degree of bronchopulmonary dysplasia in the neonate, and cel-
lular defense against lung infection due to widespread reduction in the number of 
ciliated cells throughout the trachea, bronchi, and bronchiolar epithelium [94]. 
Earlier study from our laboratory suggests that vitamin A deficiency decreases SOD, 
GSPx, and GSH level in guinea pig lung and simultaneously causes a marked 
increase in microsomal oxidation [96]. Vitamin A deficiency in smokers increases 
the risk of developing COPD [97, 98]. Mukherjee et al. [99] reported in a CS-exposed 
guinea pig model that there is an accumulation of lung retinol and decrease in all-
trans retinoic acid (ATRA) in both mainstream (MS) and sidestream (SS), and these 
are still significantly higher in both groups than sham and room control after cessa-
tion of smoking, suggesting disturbed retinoid metabolism and signaling. 
Furthermore, electron microscopic study also revealed that mainstream CS exposure 
led to massive accumulation of dense amorphous granulated materials and enlarged 
type II cells in the alveolar space. In secondhand CS-exposed guinea pigs, there was 
no accumulation of dense, amorphous granulated materials in the alveolar space. 
However, abnormally enlarged type II cells protruded into the lung alveolar space 
similar to mainstream CS-exposed group indicated a rapid turnover of type II cells in 
guinea pigs exposed to both mainstream and secondhand CS. Furthermore, cessation 
of CS did not improve morphology of the lung of both groups. Above studies suggest 
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that vitamin A plays a crucial role in pulmonary defense system through cellular 
removal of toxic radicals [95–100]. Pinnock et al. [101] reported that a lower serum 
retinol concentration in patients with moderate- to- severe COPD and treatment with 
retinol improves the FEV1 in these individuals.

Several recent evidences suggest that dietary antioxidants vitamin C, vitamin E, 
and β-carotene are positively associated with respiratory function [102, 103]. 
Lutein, a fat-soluble carotenoid without vitamin A capacities, is present in eggs and 
green leafy vegetable, for example, kale, spinach, and collards [104]. It has also 
been reported that lutein plays an important role in ocular health, where it protects 
the eye from inflammation and oxidative stress and in the prevention of stroke, car-
diovascular disorders, and lung cancer. It has been reported that higher lutein blood 
levels were associated with mortality [104]. Grievink et  al. [105] reported that 
α-carotene, β-carotene, and lycopene were positively associated with lung function. 
Recently, we reported vitamin A, tocopherol, β-carotene, and lutein status in the 
lung of mild-to-moderate-to-severe COPD patients as judged by their forced expira-
tory volume (FEV1%) [107]. Figure 8.4 showed retinol (A), retinyl stearate (B), and 
retinyl palmitate (C) levels in different stages of COPD lung.

Fig. 8.4 The level of vitamin A in different stages of COPD lung. Upper panel is demonstration 
of an inverse linear correlation between the degree of emphysema among group of COPD patients, 
expressed in FEV1% values, and calculated amount of specific vitamin A expressed in μg/g lung 
wet weight. Lower panel represents the mean ± SEM values in each group (mild, moderate, and 
severe). A = Retinol, B = retinyl stearate, C = retinyl palmitate
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The resulting graph demonstrates that there is a significant inverse relationship 
between the degree of emphysema among COPD patients, expressed in FEV1% 
values, and content of specific vitamins in subgroup of vitamin A content (Fig. 8.4—
upper panel), whereas Fig. 8.4—lower panel showed the difference between vita-
min A metabolites from mild, to moderate, to severe COPD patients. Unpaired t-test 
indicates that difference in total retinol levels (ROH, Fig. 8.4A) between the mild 
and the severe group was significant (∗p > 0.05), whereas total retinyl palmitate (RP) 
levels (Fig. 8.4C) between moderate and severe were highly significant (∗∗p > 0.05), 
but there is no significant change in total retinyl stearate (RS) level between moder-
ate and severe group among COPD patients (Fig.  8.4B, p  =  0.0142). Our study 
indicates that the level of lung vitamin A reduces with the disease progression. 
Increased local vitamin A deficiency may occur due to high demand for its active 
form all-trans retinoic acid (ATRA), followed by depletion of intracellular retinyl 
ester stores. Previous studies reported that the COPD risk increases with the decreas-
ing level of serum vitamin A, and ATRA-inhalation therapy showed improved sign 
and reduction in inflammatory markers in the serum of patient with severe emphy-
sema [108, 109]. In our study, significant reduction in RP level in the severe versus 
moderate COPD lung tissue indicates the preference of retinyl ester hydrolase 
toward palmitate ester than stearate ester as observed by others [110]. It has been 
reported that inhalation of RP aerosol improved the vitamin A in preschool children, 
and reversal of metaplasia/dysplasia and partial remission in smokers [111].

Figure 8.5 shows an inverse linear correlation (upper panel) and level of different 
subtypes of tocopherol (lower panel) in difference of emphysema among groups of 
COPD patients. Our data indicates that only δ-tocopherol levels (Fig. 8.5C) were 
significantly (∗∗, p  >  0.05) changed between moderate and severe group of 
COPD. Although not significant, a decrease of 25.8% in α-tocopherol levels was 
observed in the severe group compared to samples in the mild group of COPD 
(Fig. 8.5A), whereas level of β/γ-tocopherol showed a nonsignificant increase with 
the increasing severity (Fig. 8.5B). It should be noted that α-tocopherol levels are to 
be found to be higher than β/γ-tocopherol, which are in turn higher than δ-tocopherol. 
α-Tocopherol is the most abundant tocopherol in our body. As reported in our study, 
25.8% reduction of α-tocopherol levels in the lung of the mild-to-severe groups 
reduced availability of this antioxidant, and increased oxidative stress burden in 
CS-induced COPD patients may be a critical risk factor for the development of lung 
cancer in COPD patients [104, 105]. It has been reported that α-tocopherol inhibits 
retinyl ester hydrolase (REH) activity [106]. The decrease of α-tocopherol levels 
may impair its ability to inhibit REH, resulting in reductions in RP in our study 
COPD patients.

Figure 8.6 shows an inverse linear correlation (upper panel) and total concentra-
tion of β-carotene and lutein (lower panel) in difference of emphysema among 
groups of COPD patients. Our result indicates that level of β-carotenes did not 
change between mild, moderate, and severe COPD patients (Fig. 8.6A). In contrast, 
lutein level increases between the mild and moderate (Fig.  8.6B), whereas it 
decreases significantly (∗∗, p  <  0.05) between moderate and severe COPD.  A 
population- based prospective study reported a strong association between lutein/
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Fig. 8.5 The level of tocopherol in different stages of COPD lung. Upper panel is demonstration 
of an inverse linear correlation between the degree of emphysema among group of COPD patients, 
expressed in FEV1% values, and calculated amount of specific tocopherol expressed in μg/g lung 
wet weight. Lower panel represents the mean ± SEM values in each group (mild, moderate, and 
severe). A = α-tocopherol, B = β/γ-tocopherol, C = δ-tocopherol

Fig. 8.6 The level of carotenoid in different stages of COPD lung. Upper panel is demonstration 
of an inverse linear correlation between the degree of emphysema among group of COPD patients, 
expressed in FEV1% values, and calculated amount of specific carotenoid expressed in μg/g lung 
wet weight. Lower panel represents the mean ± SEM values in each group (mild, moderate, and 
severe). A = β-carotene; B = Lutein
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zeaxanthin and FEV1, FVC, and FEV1/FVC% in adults with chronic airflow limita-
tion. However, this study also found that lutein intake was significantly associated 
with lower FEV1/FVC% in current smokers (−1·69 (95% CI −2·93, −0·45) % per 
SD increase of lutein) independent of other carotenoids [107].

Hence, our overall results suggested that the lung levels of retinol, vitamin A, and 
other critical components of antioxidative defense, such as lutein and α- and 
δ-tocopherol, were reduced with the increasing severity of emphysema in COPD 
patients [107]. Recent emerging evidence suggests that tocopherols modulate the 
activity of several signal transduction enzymes such as protein kinase C; protein 
kinase B; protein tyrosine kinases; 5-, 12-, and 15-lipoxygenases; cyclooxygenase-
 2 (COX-2); phospholipase A2 (PLA2); protein phosphatase 2A; protein tyrosine 
phosphatase; and diacylglycerol kinase, with consequent alterations of gene expres-
sion [108]. It has been suggested that excessive activity of COX-2 is associated with 
the development of COPD and bronchial tumors of the patients with chronic COPD 
and a limited activation in idiopathic pulmonary fibrosis [109]. It has also demon-
strated that γ-tocopherol has better antioxidative efficacy and protection against 
emphysema and lung function in COPD than other forms, α, β, and δ [110]. Recently, 
it has been reported that the expression of P27, Bcl2, α-TTP, CYP3A, tropomyosin, 
Il-2, PPAR-γ, and CTGF appears to be upregulated by α-tocopherol, whereas cyclin 
D1, collagen-α1, MMP-1, MMP-19, E-selectin, ICAM-1, integrins, glycoprotein 
IIb, as well as Il-2, IL-4, and IL-β genes are downregulated [111]. This heterogene-
ity of mediators of tocopherol action suggests that tocopherols may play critical role 
in the development of CS-induced COPD. Our study and a recent population-based 
cross-sectional study indicate that there is a stronger association between antioxi-
dant vitamin levels and the CS-induced COPD [107, 112]. We have reported previ-
ously the presence of high-density translocator protein (TSPO) formerly known as 
peripheral benzodiazepine receptors (PBRs), in lung [113] and alveolar type II cells 
[114], which are involved in surfactant synthesis and secretion [115]. We and other 
laboratories also reported that TSPO is predominantly located in the mitochondria, 
playing an important role in steroidogenesis, inflammation, oxidative stress, cell 
survival and proliferation, and mitochondrial permeability transition pore (mPTP) 
formation [113, 116]. Mark and Barnes [117] reported that TSPO is also located in 
submucosal glands in intrapulmonary bronchi of human and airway epithelium and 
alveolar walls of both human and guinea pig [118]. Our laboratory also reported that 
vitamin A deficiency caused a decrease in binding capacity of TSPO in both nuclear 
and mitochondrial fraction of the guinea pig lungs [118]. These reports suggest a 
close functional relationship between vitamin A and TSPO in the lung.

Das et al. [119] reported a group of proteins, called annexins or Ca++-dependent 
phospholipid-binding proteins (PLBP), was identified in alveolar type II cells, 
which play a role in surfactant biogenesis and lung development. The secretion of 
surfactant is mediated by the action of catecholamines on β-adrenergic receptors in 
the lungs [120]. Das and Mukherjee [121] also reported that the treatment with iso-
proterenol (IP) Ro5–4864 (TSPO agonist) increases the secretion of surfactant 
24%, 52%, and 171%, respectively. Our laboratory also reported that MS and SS CS 
exposure causes a significant increase in levels of PLBP in alveolar type II in 
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comparison with that in sham control guinea pig lung, which indicates that rapid 
turnover of PLBP due to CS-induced oxidative stress [122]. This finding explained 
our previous observation of a massive accumulation of dense, amorphous granu-
lated materials in the alveolar space and irregular expansion of type II cells in both 
mainstream and sidestream CS-exposed guinea pig [78]. In a guinea pig model of 
CS exposure, we also observed desensitized β-adrenoreceptors (AR) in guinea pig 
type II cells [123]. Wang et al. [124] demonstrated that chronic CS exposure trig-
gered lung inflammation by increasing TNFα and IL-1β in both bronchoalveolar 
lavage fluid (BALF) and lung tissue and downregulated β2-AR in the rat lung. 
Moreover, CS exposure inhibits both β2-agonist-mediated epithelial permeability 
and transforming growth factor-β1 signaling, which may provide a possible expla-
nation to why CS lowers surfactant level in bronchial lavage. Gavish et al. [125] 
reported that CS exposure causes significant increases of 72 KDa TSPO degradation 
and redox metal-ion-induced oxidative stress. CS-induced progression of COPD is 
associated with small airway obstruction of mucous exudates. It is reported that β2-
AR-β- arrestin2-ERK1/2 signaling was involved in CS-induced mucus hypersecre-
tion in rat and chronic administration of propranolol significantly attenuated the 
CS-induced airway goblet cell metaplasia and ameliorated airway mucus hyperse-
cretion [126]. Taken together, all these studies indicate that CS causes a multifacto-
rial damage to the lungs by interfering with antioxidant machinery, surfactant 
biogenesis, and proper lung regeneration.

8.7  Oxidative Stress and Protease/Antiprotease Imbalance

Proteases are responsible for mucin hypersecretion and mucociliary clearance 
[127]. The deficiency and/or decreased activity of antiproteases contributes to 
mucus hypersecretion and emphysema [128, 129]. There is strong evidence that 
neutrophil infiltration and oxidative stress contribute to the imbalance between pro-
teases and antiproteases by activating various proteases, which further leads to 
COPD pathogenesis [130, 131]. Studies show an acute increase in airway proteases 
in COPD, degradation of airway mucin proteins, and mucus obstruction [132]. The 
three classes of proteases contributing to the etiopathogenesis of COPD are serine 
protease, cysteine proteases, and MMPs. Among serine proteases, neutrophil elas-
tase, cathepsin G, and proteinase-3 degrade elastin and collagen, subsequently 
destroying alveolar tissue [133]. In cysteine proteases, caspase-3, caspase-8, and 
caspase-9 are responsible for ECM degradation and controlling apoptosis. MMPs, 
which act on collagen, laminin, and gelatin [7], play an influential role in severity of 
COPD.  The protease activity is regulated by different inhibitors such as 
α1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor (PI).

One probable mechanism causing protease imbalance is the oxidation of methio-
nine residues at active sites of α1-antitrypsin under oxidative stress conditions. This 
decreases α1-antitrypsin’s in vitro inhibitory ability dramatically [130, 134]. Mutation 
in the α1-antitrypsin gene (SERPINA1) is the best example of genetically induced 
emphysema. α1-Antitrypsin possesses a pleiotropic effect known to inhibit neutrophil 
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chemotaxis and has anti-inflammatory effect independent of neutrophil elastase inhibi-
tion [135, 136]. Deficiency of this protein leads to the release of neutrophil elastase 
creating a pro-inflammatory state within the lungs, accelerating tissue damage and 
emphysema, which is exacerbated by smoking. Neutrophil elastase which is produced 
by activated neutrophils and macrophages causes airway and epithelial cell apoptosis 
via caspase-3 [137] and is a potent inducer of mucus gland hyperplasia [138]. The 
protease–antiprotease balance may be disturbed by insufficient production of 
α1-antitrypsin due to genetic defects or smoking-induced oxidants. Deficiency of 
α1-antitrypsin occurs primarily from the Z allele [Glu342Lys; denoted as protease 
inhibitor (PI) ZZ in homozygote)] which causes polymerization of newly synthesized 
protein [139]. Longitudinal and meta-analysis studies show that even a single allele of 
Z α1-antitrypsin increases the risk for COPD [140, 141]. Besides genetic deficiency, 
smoking also causes protease–antiprotease imbalance by disturbing the functional 
activity of α1-antitrypsin in alveolar lining fluid and lung interstitium [142]. Literature 
suggests that cysteine proteases play a critical role in COPD and pulmonary emphy-
sema by controlling apoptosis [128, 142]. An increase in apoptotic alveolar epithelium, 
lung endothelial cells, and mRNA expression of caspase-3, caspase-8, and caspase-9 
has been reported in COPD cells [143]. Mutation in MMPs is often associated with 
COPD pathogenesis. Single nucleotide polymorphisms (SNPs) in MMP-9, MMP-1, 
and MMP-12 have been associated with COPD in different population [144–146]. One 
study showed that rs652438 SNP, which creates a hyperactive A allele that altered 
MMP-12 activity, increased macrophage infiltration and emphysema in the lungs of 
COPD patients [147]. MMP-9 plays an important role in cell migration and airway 
inflammatory response, affecting the severity of COPD [148]. Since expression of pro-
teases and their inhibitors plays a significant role in COPD, they make obvious targets 
for research and treatment of COPD.

8.8  Oxidative Stress and Unfolded Protein Response 
in COPD

Accumulation of potentially cytotoxic misfolded proteins in the ER is known as ER 
stress. While the effect of CS-associated oxidative stress in COPD has been exten-
sively investigated, the profound effects of oxidative stress on the function of endo-
plasmic reticulum (ER) through disturbed oxidative protein folding, eliciting an ER 
stress, have gained interest in recent years. A triad of ER sensor proteins, namely, 
RNA-dependent protein kinase (PKR)-like ER kinase (PERK), inositol-requiring 
protein 1 (IRE1), and activating transcription factor 6 (ATF6), induces a cascade of 
downstream signaling pathways called the unfolded protein response (UPR) [149] 
(Fig. 8.7). The UPR includes a series of transcriptional, translational, and posttrans-
lational modifications that decrease protein synthesis, enhances protein folding 
capacity, and eliminates misfolded proteins. Diverse functions of the UPR poten-
tially play a role in the pathogenesis of COPD. Multiple studies have reported the 
presence of damaged proteins and impairment of their elimination from COPD 
lungs [150–153]. Elevated levels of UPR targets such as binding immunoglobulin 
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protein (BiP), X-box binding protein 1 (XBP1), and glucose-regulated protein 94 
KDa (GRP94) have been obtained in a variety of lung cancer and extrapulmonary 
cell lines when exposed to CS and aqueous smoke extracts [154, 155]. Cigarette 
smoking is linked with activation of UPR as evidenced by increased protein level of 
chaperones (GRP78, calnexin, calreticulin) and protein disulfide isomerase (PDI) 
[156]. Multiple in vivo studies done in mouse demonstrate increased expression of 
p-eIF2α, CHOP, p50 ATF6N, and ATF4 proteins in lung lysates after cigarette 
smoke exposure at different time points [6, 153]. CS inhibits XBP1 splicing, ame-
liorating IRE1α-XBP-1 axis even when A549 cell line was treated with ER stress 
inducers such as tunicamycin [157].

Oxidant stress due to CS irreversibly damages several lung proteins, thereby 
requiring ubiquitin–proteasome degradation or autophagic degradation. The ubiqui-
tin–proteasome system is required for both the normal turnover of cytoplasmic and 
nuclear proteins and oxidatively modified proteins. CS directly impairs the protea-
some activity in alveolar and lung epithelial cells [158]. The study also reported that 

Fig. 8.7 Schematic illustration of endoplasmic reticulum (ER) stress and unfolded protein 
response (UPR) signaling pathways activated by three sensors, inositol-requiring protein 1 (IRE1), 
RNA-dependent protein kinase (PKR)-like ER kinase (PERK), and activating transcription factor 
6 (ATF6). BiP binding immunoglobulin protein, XBP1  X-box binding protein 1, ERAD 
ER-associated degradation, eIF2α eukaryotic initiation factor 2α, CHOP C/enhancer-binding pro-
tein homologous protein, GADD34 growth arrest and DNA damage-inducible protein 34, S1P/S2P 
site 1 and site 2 proteases, P phosphorylation
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CS induced the accumulation of carbonylated and polyubiquitinated proteins in epi-
thelial cell lines and alveolar macrophages. CS has been reported to cause oxidation 
and misfolding of PDI, an ER-resident foldase, both in  vitro and in  vivo [6]. 
Different constituents of smoke, namely, acrolein, hydroxyquinones, or peroxyni-
trites, cause nitrosylation of PDI and impair its enzymatic activity [154].

CS has been also linked with the autophagy dysfunction. Autophagy is a comple-
mentary degradative pathway that captures and recycles protein aggregates and 
removes defective mitochondria and internalized pathogens [159]. Studies have 
reported increased autophagosomes but with functional immune deficits in the 
lungs of smokers and in epithelial cells exposed to CS extract in vitro [160, 161]. 
The decrease in functional autophagy was attributed to the protein aggregate accu-
mulation, mitochondrial damage, and impaired lysosomal delivery. In summary, 
oxidative stress in the form of CS exposure induces protein misfolding and UPR in 
the lungs and the isolated cells. Due to the major role played by UPR in protein 
metabolism, autophagy, and antioxidant defense, it is potentially of great impor-
tance in the pathogenesis of COPD.

8.9  Oxidative Stress and Antioxidant and/or Anti- 
inflammatory Therapeutic Strategies for COPD

There is considerable evidence that an increased oxidative burden occurs in the 
lungs of patients with CS-induced COPD, and this results in an imbalance between 
pro-inflammatory–anti-inflammatory, oxidants–antioxidants, or oxidative stress, 
which may play a role in many of the processes involved in CS-induced pathogen-
esis of COPD. Hence, it becomes important to target systemic and local oxidative 
stress with therapeutic administration of a variety of antioxidants from diet or drugs 
in the treatment of pathogenesis of COPD and control different signaling molecules 
(such as nuclear factor-kappa B, nuclear erythroid 2-related factor 2 (Nrf2) signal 
transduction) and hence inflammatory gene expression [162–170].

Dietary antioxidant supplementation of vitamin A, vitamin E, vitamin C, 
β-carotene, lutein, and lycopene is the modest approach to modulate antioxidant 
redox system or to improve the endogenous levels of antioxidants to manage 
CS-induced COPD. Table 8.1 describes the mode of action of dietary supplementa-
tion of vitamin and/or carotenoids in pathogenesis of COPD.

In order to counterbalance the lethal effects of ROS/RNS, the normal lung has 
various endogenous antioxidants, which play very important role in both enzymatic 
and nonenzymatic mechanisms. The antioxidant glutathione (GSH) is the most 
abundant cellular thiol, and the glutathione redox cycle is the fundamental compo-
nent of the cellular antioxidant defense system. GSH present in higher concentra-
tions in the epithelial lining fluid than plasma plays a protective role in the airspaces 
and epithelial cells against oxidative stress and in detoxifying and maintaining the 
integrity of the lung airspace epithelial barrier. A reduced level of GSH has been 
reported in the airways of smokers compared with nonsmokers, signifying that CS 
predisposes lung cells to ongoing oxidant stress [179]. It has been observed that 
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direct administration of GSH leads to undesirable effects, which suggests that direct 
therapy with GSH will not be an appropriate way in increasing GSH levels in lung 
airspace fluid and epithelial cells of the CS-induced COPD patients [180]. Table 8.2 
describes the mode of action of thiol-based drugs in pathogenesis of COPD.

Nrf2 is an important transcription factor that interacts with Kep1 and ubiquiti-
nated by Cullin 3 in the cytoplasm. It has been reported that COPD patient lungs 
showed (1) marked decline in NRF2- dependent antioxidants and glutathione levels, 
(2) increased oxidative stress markers, (3) significant decrease in NRF2 protein, and 
(4) significantly decreased DJ-1 levels (a protein that stabilizes NRF2 protein by 
impairing KEAP1-dependent proteasomal degradation of NRF2) than nonsmokers 
[192]. Table  8.3 describes the effect of agonists or modulators of nuclear factor 
erythroid 2-related factor 2 (Nef2) in pathogenesis of COPD.

Enough scientific evidences exist supporting the fact that oxidative stress result-
ing from CS exposure is involved directly in the pathogenesis of COPD. It has been 
reported that the activities of Cu+, Zn+superoxide dismutase (Cu+, Zn+SOD), gluta-
thione peroxidase (GPx), and glutathione-S-transferase are decreased in alveolar 
macrophages of elderly smokers when compared with that of nonsmoker [200, 201] 
as we observed in erythrocytes of guinea pig when compared that with room control 
[92]. NADPH oxidase (NOX) has been suggested as a potential mediator of oxida-
tive stress. Cheng et al. [202] reported that ROS generation from CS particle extract 
(CSPE) is mediated via a c-Src/NADPH oxidase/MAPK pathway which activates 
Nrf2 and finally induces HO-1 expression in human tracheal smooth muscle. MPO 
released after neutrophil activation has a beneficial role in terms of the immune 
response to invading pathogens, but there is considerable evidence that inappropriate 
stimulation of oxidant formation can cause host tissue damage. It has been reported 

Table 8.1 Effect of dietary vitamins and carotenoid supplement in pathogenesis of COPD

Antioxidant Mode of action References
Vitamin Aa Reduces the annual FEV1 and exacerbation symptoms by 

improving oxidant and antioxidant levels
Refs. [171, 
172]

Vitamin Ea Acts as a strong free radical scavenger and inhibits 
progressive inflammatory response in COPD

Ref. [173]

Vitamin Ca Improves antioxidant status by increasing plasma GSH 
level in Male COPD patients

Ref. [174]

All-trans retinoic 
acid (ATRA)a

Regulates various gene expressions and induces 
production of various proteins in rats with elastase- 
induced emphysema

Ref. [95]

β-carotenea Increases plasma antioxidant level and inhibits 
inflammation

Refs. [175, 
176]

Lycopenea Modulates various biochemical pathways of COPD Ref. [177]
Luteina Inhibits DNA damage and lipid peroxidation in COPD 

patients
Ref. [156]

Diet (fruits and 
vegetables)a

Modulates various biochemical pathways and reduced 
COPD incidences in both current and ex-smoker but not 
in never smokers

Ref. [178]

aClinical trial has been done in COPD patient
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that MPO levels in sputum of stable COPD patients were higher than non- COPD 
patients, and this increase was especially pronounced during exacerbations as com-
pared to the stable state [203]. Table 8.4 describes mode of action of antioxidant 
enzyme mimetics, spin traps, and other enzyme inhibitors in pathogenesis of COPD.

The hallmark of COPD is an increase or abnormal inflammatory response of the 
lungs to inhaled CS, which is characterized by increased numbers of neutrophils, 
macrophages, and T lymphocytes. The suppression of this inflammatory response for 
treatment of CS-induced COPD improves symptoms such as mucus secretion and 
cough and reduces exacerbations and disease progression [209]. Table 8.5 describes 
mode of action of anti-inflammatory modulators in pathogenesis of COPD.

The most important source of antioxidants is diet not drugs or supplements. The 
disease-preventing ability of variety of dietary plants, fruits, tea, and wine has been 
attributed to polyphenols and natural antioxidants present in these natural sources. 
Certain micronutrients (vitamins and minerals) and phytochemicals (carotenoids and 
phenols) show protective effect on several diseases such as cancer, COPD, and car-
diovascular disorders. Natural products contain dietary polyphenols and other active 
compounds such as curcumin, green tea catechins, quercetin, resveratrol, and lyco-
pene. Tocotrients, acai, ginkgo biloba, tocotrienols, α-lipoic acid, omega-3 fatty acid, 

Table 8.2 Effect of thiol-based drugs in pathogenesis of COPD

Drugs Mode of action References
N-acetylcysteine 
(NAC)a

Increases intracellular GSH by reducing cysteine to 
cystine disulfide and modulates chemotaxis and NF-κB 
production of c-reactive marker (CRP)

Refs. [181, 
182]

Nacystelyn (NAL) Increases intracellular GSH Ref. [183]
N-isobutyrylcysteine 
(NIC)a

Increases intracellular GSH Ref. [184]

Carbocisteinea 
(mucolytic agent)

Attenuates tumor necrosis factor-α (TNF-α)-induced 
inflammation via suppressing nuclear factor erythroid 
2-related factor 2 (NF-κB) and ERK1/2MAPK 
signaling pathways and reduces exacerbation associated 
with COPD

Refs. [185, 
186]

Erdosteinea Decreases number of respiratory exacerbation and 
reduces bacterial adhesiveness by modulating pro- 
inflammatory cytokines in current smokers with mild 
COPD

Refs. [187, 
188]

Ebselen Reduces the exacerbated BALF inflammation and 
pro-inflammatory cytokine, chemokine, and protease 
expression by modulating glutathione peroxidation in 
COPD mice

Ref. [189]

Fudosteine Reduces airway hyperresponsiveness, inflammation, 
remodeling, goblet cell hyperplasia, subepithelial 
collagenization, and basement membrane thickening by 
decreasing level of MMP-2, MMP 9, eotaxin, IL-4, and 
TGFβ in a murine model of COPD

Ref. [190]

Procysteine Improves macrophage function in CS-induced COPD 
by increasing efferocytosis and availability of GSH

Ref. [191]

aClinical trial has been done in COPD patient
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Table 8.3 Effect of nuclear factor erythroid 2-related factor 2 (Nrf2) agonists or modulators in 
pathogenesis of COPD

Drugs Mode of action References
Crocin Attenuates CS-induced lung injury by modulating Nrf2 

pathway
Ref. [193]

Ursolic acid Downregulates PERK pathway and upregulates Nrf2 
pathway

Ref. [170]

Sulforaphane (SFN)a Protects alveolar epithelial cell injury, attenuates 
G1-phase cycle arrest, and abrogates apoptosis by 
upregulating Nrf2 expression

Refs. [194, 
195]

Oroxylin A Attenuated oxidative stress and CS-induced lung 
inflammation upregulate antioxidant response element 
(ARE) via activations of Nrf2 signaling

Ref. [196]

Platycodin D Inhibits CS-induced malonaldehyde (MDA) and NO 
production by suppressing NF-κB and activating Nrf2 
signaling pathway

Ref. [197]

15-Deoxy- 
prostaglandin J2 
(15d-PGJ2)

Plays a protective role by activating Nrf2 in both rat 
COPD model and human bronchial epithelial cells

Ref. [198]

CDDO-Imidazole Protects against smoke-induced COPD via Nrf2/HO-1 
pathway in mice

Ref. [199]

aClinical trial has been done in COPD patient

Table 8.4 Effect of antioxidant enzyme mimetics, spin traps, and other enzyme inhibitors in 
pathogenesis of COPD

Drugs Mode of action References
SOD mimetics, e.g., 
M40419 and AEOL-10113

Inhibits CS-induced inflammatory response by 
mimicking extracellular SOD and significantly 
reduces lung markers of oxidative stress

Refs. [204, 
205]

GPx mimetic ebselen Reduces the exacerbated BALF inflammation and 
pro-inflammatory cytokine, chemokine, and 
protease expression by modulating glutathione 
peroxidation in COPD mice

Ref. [189]

Thioredoxin Modification of oxidoreductase and ameliorates 
smoke-induced inflammation

Ref. [206]

α-phenyl-N-tert-butyl 
nitrone, STANZ, NXY- 
059, L-NL, and L-NAME

Attenuates emphysema by quenching free radicals 
in animal model

Ref. [177]

Celastrol Decreases free radical formation by inhibiting 
NADPH oxidase (NOX) and stimulates Nrf2

Ref. [207]

2-Thioxanthine (AZ1) Protects morphological change in CS-induced 
emphysema by inhibiting myeloperoxidase in 
animals

Ref. [208]
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and apocynin play a protective role against lung function loss by improving average 
lung function and reducing declined rate [214, 215]. Several studies reported that 
curcumins and phenols have significant positive dose–response relationship between 
their intake and FEV1 and FEV1/FVC in adults [216]. A special benefit of curcumins 
for smokers came into light when the pulmonary function in smokers with curcumin-
rich curry intake was almost equal to that in nonsmokers [216]. Recent studies 
showed the intake of catechins, green tea polyphenols, epigallocatechin gallate, fla-
vonols (e.g., quercetin and kaempferol), and flavones (e.g., apigenin and luteolin) 
was positively associated with FEV1 [217]. Dietary polyphenols have beneficial 
effects due to their antioxidant and anti-inflammatory effects [218, 219]. Figure 8.8 

Table 8.5 Effect of anti-inflammatory modulators in pathogenesis of COPD

Drugs Mode of action References
Ginsenoside Rg1 Attenuates CS-induced pulmonary epithelial–

mesenchymal transition via inhibition of transforming 
growth factor-𝛽1 (TGF-𝛽1)/Smad pathway

Ref. [210]

Salidroside Ameliorates the progression of CS-induced COPD by 
inhibiting the generation of pro-inflammatory cytokines 
(e.g., TNFα, interleukin (IL)-1β, IL-6, and MAPK/
NF-κB)

Ref. [211]

Isoliquiritigenin 
(ILG)

Attenuates inflammation and oxidative stress via 
upregulating Nrf2 and downregulating NF-κB in 
CS-induced COPD

Ref. [212]

Sodium tanshinone 
IIA sulfonate (STS)

Inhibits CS-induced inflammation and oxidative stress 
via blocking the activation of MAPK/HIF-1α signaling

Ref. [213]

Fig. 8.8 Schematic illustration of targets of antioxidant and/or anti-inflammatory agents on 
pathogenesis of COPD induced by both direct and secondhand cigarette smoking
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shows the possible mechanism of action of role of antioxidants and/or anti-inflam-
matory agents in the treatment of CS-induced pathogenesis of COPD.

Although antioxidant treatments have shown promising effects in targeting ROS/
RNS and oxidant-mediated cellular alterations of CS-induced COPD, few antioxi-
dant agents have undergone formal clinical trials to assess the clinical benefit in 
COPD. Development of novel wide-spectrum small molecule antioxidants with a 
good bioavailability and potency is needed in clinical trials of COPD. Furthermore, 
the effects of combination of various antioxidants along with enzyme inhibitors 
and/or blockers are needed for management of COPD.

8.10  Conclusion and Future Perspective

Epidemiological studies have demonstrated that CS is the primary causative agent 
of various respiratory system diseases, including COPD whose pathobiology is 
mainly due to oxidative stress induced by CS. We have endeavored in this chapter 
to highlight the various pathways through which CS-induced oxidative stress and 
chronic inflammation contribute to COPD.  It is evident from several studies that 
lung oxidant–antioxidant balance is disturbed in cigarette smokers. However, it 
remains unexplained why only some cigarette smokers develop COPD. Due to this 
variability among smokers and difficulties in measuring oxidative status, the treat-
ment and prevention of COPD remain challenging. Understanding the oxidant–anti-
oxidant balance, genetic factors, and other intrinsic factors that vary among 
individual smokers is highly necessary. Targeting ER stress proteins and UPR path-
ways in COPD will gain practical advancement only after detailed evaluation of 
their mechanisms in various and robust in  vivo models. As COPD is a major 
inflammation- related lung disease, the role of mitochondria cannot be neglected. 
While no mitochondria-targeted therapies are available for COPD, several 
mitochondria- based antioxidants and oxidative phosphorylation inhibitors are 
undergoing clinical trials in lung diseases. Additional investigation of the COPD 
targets discussed in this chapter is warranted and could pave the way for 
mitochondria- based biomarkers and targeted therapies. Due to complexity of 
COPD, a multi-targeted therapeutic approach is highly required.
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and Restrictive Lung Diseases
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Abstract
The lung has ample and vascularized surface area constantly exposed to endog-
enous and environmental oxidants (in particular cigarette smoke). Thus, the 
imbalance between oxidants and antioxidant defenses has a pathologically 
important role in several lung disorders. This chapter describes the sources of 
free radical generation, ROS-induced signaling pathways, and mechanisms of 
oxidative stress damages in the pathogenesis of obstructive pulmonary diseases, 
idiopathic pulmonary fibrosis, and asthma. ROS are regulatory factors in differ-
ent molecular pathways involved in miscellaneous lung diseases and might rep-
resent potential suggestions for therapeutic approaches. Given the limited 
effectiveness of current strategies, novel experimental approaches to develop 
improved antioxidant therapies are discussed.

Keywords
Oxidative stress · Damage mechanisms · Lung diseases · COPD · IPF · Asthma · 
Antioxidant therapies

9.1  Introduction

Oxidative stress is an insalubrious condition occurring when a variety of free oxygen 
radicals, collectively termed reactive oxygen species (ROS), prevail on antioxidant 
systems and lead to cellular damages [1, 2]. The lung is particularly susceptible to 
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this imbalance being the organ designed for gas exchange, continuously exposed 
with a large surface area and blood supply to high oxygen tensions and exogenous 
oxidants such as ozone (O3) and sulfur dioxide (SO2) [3, 4]. Although some environ-
mental pollutants (e.g., particulate matter, silica, or asbestos) are not oxidants, they 
may promote oxidative stress in the lung through recruitment and activation of ROS-
producing cells and by triggering oxidative chemistry, as Haber-Weiss or Fenton’s 
reactions [5–8]. The endogenous defense against oxidative stress induced by free 
radicals stress involves several preventive, repair, enzymatic, and non- enzymatic 
mechanisms [9]. Molecular antioxidant systems in the lung comprise scavengers 
(glutathione, ascorbic acid, tocopherol, uric acid, β-carotene, or thiol- containing pro-
teins), detoxifying enzymes (superoxide dismutases, catalase, GSH- peroxidase, 
GSH S-transferase, peroxiredoxin-thioredoxin, glutaredoxions, or hemeoxygenase), 
and metal-binding proteins (transferrin or metallothioneins), and mucins [9, 10]. 
Except in some unusual exposures such as those to UV light and ionizing radiations, 
reactive oxygen and nitrogen species (RONS) are naturally generated by the cellular 
metabolism through enzymatic or non-enzymatic electron transfer reactions. These 
reactions are involved in a plethora of cellular processes, including cell signaling, 
microbial activity, cell fate, differentiation, proliferation, vasodilation, inflammation, 
neurotransmission, cell migration/adhesion, and hormone synthesis [11–13]. 
Mitochondrial electron transport chain, NADP oxidases, peroxidases, nitric oxide 
synthase, and xanthine oxidase are only some of the main RONS-generating path-
ways occurring in alveolar macrophage (AMs), fibroblasts, neutrophils, eosinophils, 
bronchiolar epithelial cells, alveolar epithelial cells (AECs), and endothelial cells [4, 
14]. The expression of antioxidant enzymes is finely regulated and often induced in 
response to RONS exposure through transcription factors such as Nrf2 and FoxO3 in 
the bronchial and alveolar epithelium [15, 16].

As the oxidant/antioxidant imbalance is embroiled in the pathogenesis of miscel-
laneous diseases affecting the lung and pulmonary vasculature [3, 15, 17], this 
review will highlight its involvement especially in the chronic obstructive pulmo-
nary disease (COPD) and idiopathic pulmonary fibrosis (IPF) and will provide an 
overview of new therapeutic strategies.

9.2  Mechanisms of Oxidative Stress Damage

Reactive radical species can cause protein, DNA, and lipid oxidation and, through the 
generation of secondary metabolic RONS, can induce a variety of cellular responses [7, 
10, 18]. The higher reactivity of RONS with different macromolecules (due to presence 
of unpaired electrons) leads to tissue damage, cellular dysfunction, and activation of 
different signaling pathways [11]. Proteins are the main target, and the oxidative/nitro-
sative stress through their oxidation, glycation, carbonylation, sulfonation, sulfenyl-
ation, or nitration affects their catalytic activity, conformation, and interactions and 
induces crosslinking [19]. Protein modifications, together with lipid peroxidation, 
impact on the cellular homeostasis; promote catabolite accumulation, cytotoxicity, and 
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apoptosis; and activate immune and inflammatory cytokines and chemokines (through 
TLR, NF-kB, p38-MAPK, or inflammasome pathway), such as IL-1, IL-6, IL-18, and 
TNF-α [e.g., 1, 14, 18]. Moreover the oxidative stress enhances the production of 
advanced glycation end products (AGE, heterogeneous compounds formed by gly-
cated proteins or lipids), which contribute to pro-inflammatory and apoptotic response 
[1]. Positive feedback among the abovementioned inflammatory mediators and RONS 
is well-known, and it might sustain chronic inflammation and lung injury [1]. The 
RONS-induced protein modifications cause Endoplasmic Reticulum (ER) stress and 
the subsequent activation of Unfolded Protein Response (UPR), a protein folding res-
toration pathway [20]. Unresolved accumulation of misfolded proteins overcoming the 
UPR induces apoptosis (or senescence) and inflammation and strengthens the oxida-
tive stress [21, 22]. There is substantial evidence that many respiratory diseases such as 
cystic fibrosis, COPD, IPF, and asthma are associated with excessive ER stress [21, 
22]. RONS (or hypoxia) and ER stress can also regulate autophagy, an homeostatic 
catabolic process involving lysosomal degradation of damaged intracellular structures, 
that seems to influence cell differentiation [23, 24].

Interestingly, oxidative modifications of proteins and lipids are a potential 
source of autoantigens, and a role of oxidative stress in autoimmunity was postu-
lated [2]. RONS damage DNA, and through chromatin remodeling and methyla-
tion inhibition they affect epigenetics, leading to instability, mutagenesis, and 
telomere shortening. Being close to endogenous ROS sources and unprotected by 
histones, the mitochondrial DNA (mtDNA) is more sensitive to oxidative stress 
damages than nuclear DNA.  Thus, together with the well-know induction of 
intrinsic apoptosis or aging acceleration, oxidative damage altered the normal 
mitochondrial function, influencing the electron transport chain and promoting 
aerobic glycolysis (the Warburg effect) [25]. The structure and integrity of mito-
chondria are also compromised with swollen and elongated shape, fusion, and 
reduced cristae definition [26]. The leaks of cardiolipin or mtDNA are additional 
inflammatory and apoptotic signals [27]. The physiological response to mito-
chondrial dysfunction involves sensor proteins such as AMPK and sirtuin that 
further activate antioxidant gene regulators, such as Nrf2 and FoxO3 [28]. As a 
rule, alterations of mitochondrial function are observed in several pulmonary 
diseases and cancers [29].

Oxidative stress triggers the premature aging, through the abovementioned DNA 
instability and by inhibiting sirtuin-1, a regulatory protein of DNA repair system 
[15, 18]. Changes in cell morphology and physiology and their permanent prolifera-
tive arrest (senescence) further increase DNA damage, ER stress, insufficient 
autophagy, mitochondrial dysfunction, and ROS production [19, 28, 30, 31]. 
Furthermore, senescent cells express a peculiar secretory pattern, defined as 
Senescence-Associated Secretory Phenotype (SASP), consisting of cytokines, che-
mokines, and growth factors such as TNF-α, IL-β, IL-1, -6, CCL2, CXCL1, CXCL8, 
and TGF-β [32–34]. The SASP molecular microenvironment is linked with a persis-
tent low level of inflammation and with immunosenescence (i.e., the immune cells, 
although chronically activate, show reduced functioning) [9, 15]. Premature aging 
markers and telomere shortening are often associated with IPF and COPD [31, 35].
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9.3  Oxidative Stress in Chronic Obstructive Pulmonary 
Disease (COPD)

Exogenous oxidative stress and cigarette smoking are recognized as the principal piv-
otal factors in COPD etiology, prompting tissue injury, chronic inflammation, and 
mitochondrial dysfunction, accelerating aging, and altering the protease- antiprotease 
balance [36]. Increased levels of different markers of oxidative stress (such as 8-oxo-
2′-deoxyguanosine, nitrotyrosine, isoprostanes, and AGEs) and pro- inflammatory 
molecules (TNF-α, IL-6, -8, CCL2, CCL3, ICAM-1, and leukotriene B4), as well as 
low levels of antioxidants, characterize biofluids and lung tissue of COPD patients 
[36–38]. The cellular mechanisms promoting the oxidative stress induced by smoking 
are complex and poorly understood; however, the gas and tar phases of cigarette 
smoke contain short-lived oxidants and long-lived radicals, respectively, and these 
compounds can react to form highly reactive molecules such as peroxynitrite or 
hydrogen peroxide [39]. Inhaled particles in ambient air have also the ability to gener-
ate free radicals and to activate cellular oxidative stress- response signaling pathways 
[40]. Thus, the inhalation of cigarette smoke and airborne particles depletes antioxi-
dants (as glutathione), recruits macrophages, encourages AECs and inflammatory 
cells (especially AMs and neutrophils) to produce ROS and to release pro-inflamma-
tory cytokines (through inflammasome, NF-kB, IRAK1, JNK, ERK, or TLR signal-
ing), and, in parallel, induces apoptosis/cytotoxicity through ER stress [38, 41]. In 
fact, higher amounts of ROS and inflammatory proteins (as TNF-α, IL-1β, IL-6, IL-8, 
and CXCL1) as well as an increased number and altered functions of AMs and neu-
trophils are reported in COPD [15, 36, 38]. In particular, AMs from COPD patients 
show reduced phagocytic and antigen- presenting activity contributing to inflamma-
tion, apoptosis induction, reduced T-cell activation, and susceptibility to infections 
[36, 38]. The up-regulation of TNF-α signaling may have a pathogenic role in COPD 
by supporting further recruitment of inflammatory cells and tissue remodeling through 
induction of extracellular matrix (ECM)-degrading enzymes by neutrophils and AMs 
[42]. Indeed, BAL and sputum samples from COPD patients with exacerbations have 
higher TNFRII levels than those from healthy controls, and TNFRII concentrations 
are suggested as a prognostic biomarker of COPD [42]. Furthermore, ROS foster the 
breakdown of several ECM components (collagen, elastin, hyaluronic acid, fibronec-
tin, and proteoglycans) and the inactivation of anti-proteases (α1-antitrypsin and other 
serine protease inhibitors) and, in parallel, induce the transcription and the proteolytic 
activation of proteases (as MMPs, cathepsins, or neutrophil elastase), triggering lung 
tissue destruction [26, 38, 43]. Independently of the smoking history of COPD 
patients, the increase of senescence markers and SASP proteins in their fibroblasts, 
endothelial cells, and AECs compared to controls shows that ROS influence the pre-
mature aging of the lung [15, 19].

ROS-induced mitochondrial abnormalities are reported in airway smooth muscle, 
bronchial epithelial cells, and AECs of COPD patients, and through accelerated cell 
senescence, apoptosis, and inflammation, they contribute to COPD pathogenesis and 
progression [7, 28]. Several protective mechanisms against DNA damage and mito-
chondrial stress are dysregulated by ROS in COPD lung, including reduced levels of 
parkin (a regulator of mitochondrial autophagy), sirtuin1, and FoxO3 [28, 38].
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Nitrogen metabolism, in particular nitric oxide (NO), is hypothesized to impact 
on COPD pathogenesis [41]. It is well-known that oxidative stress can reduce the 
activity of nitric oxide synthase (NOS) positively regulating the metabolism of 
asymmetric dimethylarginine (ADMA), a potent inhibitor of this enzyme, and nega-
tively influencing the production of arginine, a substrate of NOS [44]. Serum from 
COPD patients shows low NO concentration, high ADMA levels, and high ADMA/
arginine ratio as compared to that in controls and correlates with disease severity. 
Interestingly, ADMA is hypothesized to be a comorbidity risk factor, as well as a 
prognosis and mortality biomarker, being increased in serum from non-survivors 
COPD and in patients with pulmonary hypertension or with acute exacerbation as 
compared to COPD stable patients [44]. Another possible mechanism of NOS 
down-regulation in COPD might involve PAR-1 (a ROS-induced protein involved 
in DNA repair and modulating NOS transcription) which is observed to be up- 
regulated in PBMCs from COPD patients [37].

9.4  Oxidative Stress and Idiopathic Pulmonary Fibrosis 
(IPF)

Several pieces of evidence show that oxidative and nitrosative stresses give a substan-
tial contribution to IPF pathogenesis and progression, although they are not the main 
causative factor [26, 45]. Hence, insufficient concentration of antioxidants and high 
levels of oxidative/nitrosative markers (such as isoprostane, hydroperoxides, nitrogen 
oxides, nitrosotyrosine, uric acid, and etane), oxidized lipids, oxidized, nitrated, and 
carbonyl proteins have been found in biofluids or lung of IPF patients as compared to 
healthy subjects [45, 46]. Correlating with progressive worsening of dyspnea, acute 
exacerbation incidence, and BAL neutrophil content, some of these molecules may 
constitute potential prognostic biomarkers in serum or BAL samples from IPF patients 
[3, 4]. Positive and intricate interactions between the transforming growth factor β 
(TGF-β; the most well-known fibrogenic cytokine) and RONS signaling represent 
another important aspect in IPF pathogenesis [26]. TGF-β induces mitochondrial oxi-
dant radical formation in lung fibroblasts by enhancing NADP oxidase, inhibiting 
sirtuin 3 expression and inactivating Nrf2; on the other hand, ROS support the profi-
brotic TGF-β downstream signaling at different levels [28, 47]. In general, ROS 
amplify the TGF-β-mediated pathway through oxidation of redox-sensitive proteins 
such as thioredoxin, which has inhibitory effects in physiological conditions [13]. In 
particular, the induction of NADPH oxidase-4 (NOX4) expression by TGF-β is postu-
lated to have a central role in driving fibrotic response in IPF through ROS generation 
[13, 48]. NOX4 is highly expressed in fibroblast foci of IPF by myofibroblasts and 
AECs with opposite effects: it promotes differentiation (increasing expression of 
α-smooth muscle actin, fibronectin and procollagen I) and apoptotic resistance in 
fibroblasts/myofibroblast as well as apoptosis, mitochondrial stress, and epithelial-to-
mesenchymal transition (EMT) in alveolar epithelial cells [25, 29]. The presence of 
myofibroblasts additionally boosts the ROS-TGF-β positive loop because these cells 
generate high levels of ROS which support myofibroblasts survival, differentiation, 
and contractility through ROCK pathway [49, 50].
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Among the products released by damaged AECs in active sites of fibrosis, tenas-
cin- C and sonic hedgehog (SHH) represent an interesting integration between ROS 
and TGF-β signaling in IPF patients [51, 52]. In AECs, TGF-β promotes tenascin-C 
secretion and inhibits SHH release; vice versa, oxidative stress stimulates the release 
of SHH and the transcription of tenascin-C. Tenascin-C is a profibrotic factor asso-
ciated with EMT and tissue remodeling, while SHH is an AEC proliferative factor 
possibly related to re-epithelialization [51].

Furthermore, increased activity of NOS is observed in IPF lung and NO seems 
also to promote TGF-β and ECM-degrading enzymes in fibroblasts, at least in murine 
models [26, 43].

As abovementioned, the ECM degradation may occur through not only enzy-
matic but also oxidative mechanisms leading to remodeling and fibrosis. In IPF 
lung, there are increased levels of several ECM-degrading enzymes (in particular 
MMPs), whereas antioxidant enzymes (as extracellular superoxide dismutase) and 
pathways (as Nrf2) are barely present in fibroblast foci region [3, 4]. Thus, ROS 
critically contribute to the shedding and activation of latent form of TGF-β that is 
physiologically stored in intact ECM. In addition, low-molecular fragments of ECM 
components (as syndecan and hyaluronic acid) are observed in IPF and have been 
suggested to promote fibrosis and inflammation by facilitating the neutrophil 
recruitment [43, 48].

9.5  Oxidative Stress in Asthma

Oxidative stress may also affect asthma pathology, influencing several aspects associated 
with the disease, including alterations in airway smooth muscle contraction, mucus secre-
tion/clearance, vascular permeability, and airway hyper-responsiveness [26].

In asthma, the observed high levels of oxidative stress markers in biofluids, as 
well as the low levels of NO and decreased activity of pulmonary antioxidant 
enzymes, are associated with disease severity [9, 15, 44]. The boost of oxidative 
stress seems to be related to the altered response to inhaled allergens or inflamma-
tion and is suggested to play a driving role in exacerbations [29]. Alterations in ROS 
production are observed in asthma in different cells. In particular, histamine and 
Th2 cytokines induce secretion of ROS by alveolar and bronchial epithelial cells [9, 
29]. The latter exhibit elevated levels of NADPH oxidases (such as DUOX1 and 
DUOX2), and the activities of inflammasome, NOX4, and TNF-α signaling are 
increased in neutrophils and macrophages as compared to healthy controls [29, 42].

The enhanced inflammation and hyper-responsiveness in asthma airways through 
ROS-mediated mechanisms involve β-adrenergic receptor, DNA damage-response 
(especially PARP signaling), incorrect T cells maturation, and alteration of cyto-
kines secretion by dendritic cells and epithelial cells [53, 54]. Hence, IL-8 (induced 
by NOX), IL-5 (induced by PARP1), and IL-33 and IL-25 (induced by DUOX1) 
foster inflammation, Th2 response, and leukocytes recruitment [29]. Cumulative 
evidence suggested the additional importance of oxidative stress in pathogenesis of 
neutrophilic, severe, and elderly asthma [9].
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9.6  Conclusion and Future Perspectives

The oxidant/antioxidant imbalance and the accumulation of highly reactive mol-
ecules cause damage to DNA, lipids, proteins, and carbohydrates and are impli-
cated in the pathogenesis of diseases affecting the lung and pulmonary vasculature. 
Redox-regulated signaling pathways are important mechanisms to regulate cel-
lular functions, and ROS and RNS have specific targets conferring them signaling 
properties and determining their biologic effects [55]. For instance, GSH and 
NADP homeostasis is regulated by GSH peroxidases, S-transferases, and reduc-
tases, and when the mechanism is altered, the induced signaling pathway pro-
motes airway inflammation in COPD and asthma [55]. There are several methods 
to measure the oxidative stress in lung pathologies such as increased lipid peroxi-
dation products, DNA oxidation, or protein carbonyl formation in lung tissue, and 
several antioxidant scavengers have been tested in clinical trials to restore oxi-
dant/antioxidant imbalance in pulmonary and cardiovascular diseases [4, 19, 36, 
55]. Unfortunately, the results of these studies were conflicting or unsuccessful in 
IPF, COPD, and asthma treatments. Although dietary supplementation with anti-
oxidants (vitamin A, C, E, β-carotene, glutamine, polyphenols, melatonin, and 
coenzyme Q10) may produce some beneficial effects, such as lower risk for 
COPD, asthma incidence, attenuation of inflammation, and lung deterioration, it 
cannot be considered a valid therapeutic strategy [55, 56].

Recently, a double-blinded, placebo-controlled crossover study on asthma 
patients reported that γ-tocopherol may have potential therapeutic effects reducing 
inflammation and eosinophils in the induced sputum [57]. N-acetyl-cysteine (NAC) 
is an antioxidant (acting as scavenger and restoring glutathione), mucolytic, and 
anti-inflammatory drug widely tested in lung diseases yielding contrasting results 
[52, 55]. In the context of COPD (and cystic fibrosis), NAC seems to ameliorate the 
pulmonary function and to reduce the risk of exacerbation, whereas it has not been 
shown to prevent mortality in asthma [52, 55]. Although there is evidence of an 
improvement of 6-min walking test distance, NAC therapy is not recommended 
(even when combined with antifibrotic drugs) for IPF therapy due to the lack of 
beneficial effects in pulmonary functional tests parameters such as DLCO and VC 
and in the mortality rate [52, 55].

Interestingly, pharmacogenomics seems to affect the NAC therapy in IPF, as 
reported by the differential response of patient with different TOLLIP genotypes 
[58]. For this reason, recent insights in personalized medicine are oriented toward 
implementing the efficiency of antioxidant therapy in selected stratified patients. In 
fact, genetic polymorphisms in antioxidant enzymes such as glutathione-S- 
transferase or superoxide dismutase are associated with susceptibility and symptom 
development in asthma and COPD patients [59–61]. Thus, for appropriate therapies 
it seems necessary to consider individual genetic and epigenetic factors that may 
influence the oxidant/antioxidant system. Moreover, the monitoring of oxidative 
stress markers as indicators of treatment response could be helpful in the optimiza-
tion of individual dosage. The asthma management with inhaled corticosteroids 
based on the monitoring of fractional exhaled nitric oxide appears to reduce 
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exacerbations in adult patients [59]. However, the establishment of targeted and 
patient- specific therapies will be a difficult task without appropriate systems to 
directly provide a proper antioxidant, in the right concentration and in a specific 
tissue or cell of the lung environment, especially in the initial disease phase, before 
oxidative stress compromises the tissue integrity.
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Abstract
Chronic obstructive pulmonary disease (COPD) is a lung disease that is often 
associated with chronic bronchitis, bronchiolitis and emphysema. The disease 
pathology is heterogeneous in nature and usually results from several environ-
mental factors including cigarette smoke, biomass smoke particle, diesel and 
automobile exhausts that can potentially expose lung tissues into severe oxida-
tive stress condition. Some individuals, with genetic predisposition, are worse 
affected. The disease pathology becomes complicated and deadly when environ-
mental and genetic factors both work in a concerted manner. In recent years, 
transient receptor potential (TRP) channels have been identified as key factors in 
COPD initiation and progression. TRP channels have been widely implicated as 
potential targets for genetic manipulation and pharmacological intervention to 
control the disease. The present chapter briefly discusses expression pattern of 
different TRP channel members in the lungs and airway epithelium, their physi-
ological role in developing COPD disease pathology with special attention to 
oxidative stress and the pharmacological intervention and possible genetic 
manipulation to tackle the disease in near future.
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Abbreviations

[Ca2+]i Intracellular calcium
4αPDD 4α-phorbol 12, 13-didecanoate
BS Biomass smoke
CGRP Calcitonin gene-related peptide
CNS Central nervous system
COPD Chronic obstructive pulmonary diseases
CRAC Ca2+ release-activated Ca2+ (CRAC) channels
CS Cigarette smoke
EET 5′, 6′-epoxyeicosatrienoic acid (EET)
EGTA Ethylene gycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic 

acid
ER Endoplasmic reticulum
GST Glutathione-S-transferase
NKA Neurokonin A
PM Plasma membrane
SNPs Small nuclear polymorphisms
SOD Superoxide dismutase
SP Tachykinins substance P
STIM Stromal Interaction Molecule
TRP channels Transient receptor potential channels

10.1  Introduction

Chronic obstructive pulmonary disease (COPD) is usually caused by multiple fac-
tors, and it is the fourth leading cause of death worldwide [1]. COPD disease pathol-
ogy is heterogeneous in nature, and it includes chronic bronchitis, bronchiolitis and 
emphysema. The condition is presented by chronic airway inflammation [2], and the 
disease pathology is associated with obstruction of airflow into the lung [3–5]. The 
condition is not fully reversible at the onset of the disease and is usually progressive 
in nature, causing debilitating disability and finally death.

Asthmatic condition is often treated with glucocorticoids, but it is unsuccessful 
in treating COPD-related inflammation. Until now, no effective therapeutic and 
pharmacological intervention is available to reduce COPD-associated mortality [6, 
7]. Extensive research performed in this specific subject area has identified 
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oxidative damage to lung epithelial cells is directly linked to the COPD disease 
pathology [8–10]. Several factors, including smoking, domestic smoke exposure, 
outdoor pollution, socio-economic status, and ethnicity, have been identified as 
major contributors towards developing COPD [11].

Reactive oxygen species (ROS) are known causative agents for cellular oxidative 
stress and tissue damages. Oxidative stress in pathological condition causes oxidant 
burden. Free dioxygen radical (O2

−.) in oxidative stress condition may function as 
signal transduction molecule in initiation and progression of the COPD disease 
state. Transient receptor potential (TRP) channels have been widely implicated in 
relation to COPD initiation and progression [12–15]. TRP channels are polymodal 
cation selective ion channels that sense and respond to environmental changes and 
stimuli such as pH, temperature, osmolarity and exposure to chemical agents. TRP 
channels also play a significant role in several cellular processes, including apopto-
sis and neural functions. The mechanism of calcium influx through ROS-sensitive 
channel and subsequent cellular signaling mechanisms are still largely unknown.

In recent past, scientists put significant effort in order to inhibit ROS-activated 
TRP channels by antioxidant treatment. TRPM2, one subgroup of the TRP chan-
nels, have been reported to be ROS-sensor [16]. Recent development in this specific 
area has identified TRPM2 channel as a potential candidate in order to modulate the 
antioxidant enzyme glutathione peroxidase activity [17].

TRPA1, expressed in the chemosensory C-fibers, has been reported to be acti-
vated by most of the oxidizing and electrophilic chemicals including but not limited 
to chlorine, acrolein, isocyanates and tear gas. The chemical stimuli exert their toxic 
effects by activating TRPA1 through covalent protein modification [18].

COPD disease pathology is not only restricted to lungs, but it has been estab-
lished as a systemic disease that significantly affects multiple organ systems. 
Smoking cigarette is directly linked to developing COPD-associated morbidities, 
and the beneficial effect of quitting smoking has been emphasized as a first line of 
correcting measure to treat the disease [19].

Human body is constantly exposed not only to oxidants from exogenous sources 
but also to the reactive oxidant species (ROS) produced endogenously. Glutathione-
S-transferase (GST) and superoxide dismutase (SOD) are two main antioxidant 
enzymes responsible for scavenging ROS activity and play pivotal roles in main-
taining redox homeostasis. Cigarette smoke and other environmental pollutants irri-
tate various immune cells located in the lung and cause oxidative stress. Epithelial 
cells being first line of defense is usually worse affected. This phenomenon ulti-
mately leads to a disruption in redox homeostasis and cause severe damage, which 
in turn contributes toward developing COPD [20].

Different experimental approaches have identified TRP channels respond to sev-
eral exogenous stimuli to the airway sensory neurons. The stimuli include harmful 
chemicals, stimuli causing pain, glandular secretion, depression, cough and other 
protective responses.

Till date, about 30 TRP channels have been identified. These are further subdi-
vided into seven main subfamilies on the basis of sequence homology. These are 
TRPC (canonical), TRPV (vanniloid), TRPM (melastatin), TRPP (polycystein), 
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TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like). TRPN channels 
are found only in invertebrates and fish, and the expression of other six subfamilies 
has been confirmed in human. The subsequent effect of TRP channel activation 
leads to either neurogenic inflammatory and/or brain-mediated responses of the air-
ways. If undiagnosed and left untreated, these responses mature into severe breath-
ing problem, and eventually COPD disease pathology sets in. The exact and specific 
roles of individual TRP channels in specific disease conditions are still largely 
unknown.

10.2  TRP Channel-Mediated Chemosensation and Associated 
Responses

Trigeminal chemosensory nerve endings located in the nasal mucosa is the first line 
of defense in combating exposure of toxic chemical-induced pathological events in 
the airway [21]. Release of calcitonin gene-related peptide (CGRP), neurokinin A 
(NKA) and tachykinins substance P (SP) occurs from the nerve ending because of 
chemical stimulation. The associated downstream signaling events include neuro-
genic inflammatory vasodilation and leakage, leading to constriction and obstruc-
tion of the nasal passage [22, 23].

Oxidative stress and other noxious chemical compounds activate unmyelinated 
bronchopulmonary C-fibers and initiate action potentials that conduct centrally to 
evoke unpleasant sensations (e.g. coughing, dyspnea and chest tightness) and to 
stimulate/modulate reflexes (e.g. cough, bronchoconstriction, respiratory rate and 
inspiratory drive) [24].

Key components of this pathological event are highly sensitive to regulation of 
intracellular calcium concentration ([Ca2+]i) and play a significant role in nocicep-
tion and other exogenous stimuli-induced responses. This finding actually empha-
sizes the importance of cellular calcium mobilization and calcium-mediated signal 
transduction. As COPD pathology is usually associated with cellular signaling 
mechanisms initiated by an increase of [Ca2+]i as a result of cellular calcium influx, 
TRP channels draw wide attention due to its cation selective gating properties with 
a focused interest of calcium influx, specifically through these channels [25].

Localization of different subtypes of TRP channels was confirmed in the epithe-
lium and smooth muscle of the lung tissue. Cigarette smoke, industrial pollutants, 
aldehyde, chlorine and fragrances are the known activators of TRP channels in the 
human lung epithelium and in the airways. During signal transduction event, cal-
cium is released into the cytoplasm from endoplasmic reticulum (ER), and the 
immediate effect is store-operated calcium entry through store-operated calcium 
influx channels, including TRP channels [18]. TRP channels are mostly plasma 
membrane (PM)-bound (except nuclear membrane and mitochondrial membrane) 
and selectively allow influx of cations including of Ca2+, Mg2+ and trace metal ions 
[26].

One of the important mechanisms of cellular calcium influx happens through 
Store-Operated Calcium Entry (SOCE) [27]. ER calcium store is usually 

A. Mandal et al.



227

replenished by such a mechanism in a faster way after store depletion. Stromal 
Interaction Molecule 1 (STIM1) with PM localization has been discovered as criti-
cal communicating protein that controls SOCE [28] when the store becomes empty. 
Immediately after STIM1 discovery, ER Ca2+ sensor Orai1 has been identified as the 
pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channels [29–31]. 
STIM1 mediated activation of SOC channels require Orai and TRPC1 interaction 
[32–40]. The role of STIM1 and Orai1 variants in SOCE has been reviewed exten-
sively in Ref. [41].

10.3  Oxidative Damage and COPD

COPD pathogenesis mainly happens due to oxidative stress in the lung tissue. 
Exposure of lung to inhaled exogenous oxidants along with endogenously produced 
oxidative stress in the lung due to ageing and various metabolic processes creates 
significant oxidative damage. Oxidant and COPD-associated pathology includes 
but not limited to cell membrane damage due to destruction of membrane lipid 
bilayer, proteins and nucleic acids [42].

Cigarette smoke (CS) has long been identified as a major cause of COPD due to 
oxidative stress produced in the lower airways [43]. CS-induced damage to the 
lung tissue and the development of COPD depends on the extent of inhaled ciga-
rette smoke exposure. Hydroxyl radical (OH−.) in the inhaled CS causes lipid per-
oxidation of the cell membrane proteins. OH−., upon reacting with unsaturated 
fatty acids of the membrane phospholipid, generates organic acid free radicals and 
causes membrane damage [44]. The secondary metabolite formed due to rapid 
degradation of the unstable intermediate oxidant molecules causes further lipid 
peroxidation. The intermediate oxidants molecules include alkanes (e.g. ethane/
pentane) and aldehydes (e.g. malondialdehyde). The concentration of thiobarbitu-
ric acid reactive substance (TBARS) has been found in higher quantities in smoker 
lungs with COPD [45].

Non smoking-associated COPD development and progression of the disease has 
been linked to several factors. Deficiency of α1 antitrypsin, presence of chronic 
asthma, ROS-exposure due to polluted air, biomass smoke (BS) exposure, etc. has 
been found to be the major cause of nonsmoking-associated COPD [45].

Smoker lungs have been shown to have elevated high granular density alveolar 
macrophages, which has been identified as a major contributor for increased ROS 
production [46, 47]. The deadly association among H2O2, O2

−. and OH−. radicals 
results in bronchial hyper responsiveness in COPD patients [48].

Endogenous cell-derived ROS produced in metabolically active cells is a result 
of enzymatic reactions involving a group of oxidant enzymes. Three main members 
of such an oxidant enzymes are NADPH oxidase, eosinophil peroxidase (EPO) and 
myeloperoxidase (MPO) [49]. Mitochondria are the source of reactive nitrogen spe-
cies (RNS), O2

−. and H2O2 production [50, 51]. Sources of exogenously produced 
ROS are CS [52] and the lipid peroxidation in inflammation of airway epithelium 
due to environmental ozone exposure [53].
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10.4  TRP Channels and COPD

Increased TRPC6 mRNA expression in human alveolar and lung tissue macro-
phages has been reported in COPD patients [54]. The pathophysiological roles of 
non-neuronal TRPV1/TRPA1 channels have been widely studied in infection, 
inflammation and immunity. The sensory input of non-neuronal TRP channel medi-
ated signal transduction mechanisms ultimately results indirect neurogenic pain or 
inflammation.

TRPV1/TRPA1 activation has been positively correlated with airway neurogenic 
inflammation. Non-neurogenic inflammatory responses produced by non-neuronal 
TRPA1 results inflammatory airway diseases. Thus TRPA1 has been identified as a 
prominent target to treat inflammatory respiratory diseases [55]. TRP channels are 
also involved as active removal mechanisms of foreign toxic substances in the cell. 
TRPV1/TRPA1 isoforms are widely expressed in lung sensory neurons, and those 
specific TRP channel activation causes alteration in vagal output associated with 
change in respiratory pattern, blood flow and coughing behavior.

TRPV2/TRPV4 expressed in the alveolar macrophages play critical roles in 
immune response initiation [56]. Contribution of different TRP channel family 
members in relation to COPD development is summarized in Fig. 10.1.

10.4.1  TRPC6

TRPC6 and TRPC7 both gene expression has been detected in lung tissue [57]. 
TRPC6 being predominantly expressed in macrophages, lymphocytes and neutro-
phils [12] and also in the airway epithelium became a target gene for inflammation-
induced lung diseases.

Increased TRPC6 gene expression has been reported in macrophages isolated 
from COPD patients [54]. In COPD patients phospholipase C (PLC), one of the 
important modulators of TRPC channels including TRPC6, has been found to be 
activated [58] as a result of CXC chemokine receptor activation. Thus TRPC6 acti-
vation and CXC chemokine receptor activation-mediated inflammation in COPD 
has been emerging as an interesting area of research.

10.4.2  TRPC4

Expression of TRPC proteins has been reported in endothelial cells, vascular smooth 
muscle cells and mast cells [59]. Discovery of TRPC4 knock out (KO) mouse model 
[60] opened up the possibility of detailed study for the role of TRPC4 in lung dis-
eases and in COPD. Vascular endothelial cells of lungs in TRPC4 KO mice have a 
defective Ca2+ influx mechanism which has been found to be induced by thrombin 
[61]. Investing future research effort on TRPC4 in context to COPD and respiratory 
diseases certainly has potential to shed lights on COPD disease pathology.
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10.4.3  TRPM2

Recently TRPM2 channel has been described as an oxidant sensor [62]. TNF-α and 
lipopolysaccharides (LPS) are two known potent activators of TRPM2 channels 
[63]. TRPM2 channel is largely expressed in inflammatory cells, including endog-
enous ROS-producing cells. Primary human monocytes have been shown to cause 
TRPM2 mRNA upregulation upon LPS or TNFα challenge [63]. Targeted gene 
knockdown studies of TRPM2 employing specific siRNA have been shown to 
reduce TNF-α, IL-6, IL-10 and [Ca2+]i rise upon LPS exposure [63].

Direct activation of TRPM2 and IL-8 production by H2O2 and subsequent cellu-
lar calcium influx have been shown in human monocyte cell line [64]. TRPM2 has 
been identified as an important target in oxidative damage-induced cellular inflam-
matory processes. The involvement of TRPM2 channel-mediated oxidative stress-
induced cellular inflammatory processes has been tested in TRPM2−/− mice 
compared to WT counterparts [65, 66]. Further research on monocytes isolated 
from TRPM2−/− mice has shown reduced Ca2+ influx and reduced macrophage 
inflammatory protein-2α (MIP-2α or CXCL-2α) production in response to oxidative 
stress compared to WT mice [67].

Research from Heiner group [68] has shown involvement of TRPM2 in the neu-
trophil chemotaxis in human. Yamammoto group [64] also has provided the evi-
dence for the existence of similar TRPM2-mediated mechanisms in experimental 
mice model. All those immune cell-induced cellular inflammatory pathways have 
been so far characterized in the COPD disease state.

10.4.4  TRPM8

Expression of TRP channels has been confirmed in vagal afferent neurons. Cold and 
menthol, a TRPM8 ligand, both have been reported as TRPM8 activators [69]. 
So-called thermoreceptor sensory function of TRPM8 channels operating at non-
physiological low temperature zone has not proved to be of beyond doubt. Cold air 
is known to cause airway constriction, mucus secretion, cough and plasma protein 
infiltration which is characteristic to processes associated with inflammatory airway 
diseases [70, 71]. COPD being one of the well-characterized inflammatory airway 
diseases certainly draws attention with a possible linkage between TRPM8 pathol-
ogy and the disease presentation. Presence of a functional variant of TRPM8 protein 
in human epithelial cell has recently been reported that promotes ER calcium release 
and subsequent increase in inflammatory cytokine transcription [72, 73].

Consistent with this notion of the presence of oxidant and TRM8-mediated 
mechanisms in COPD has been further supported by the fact that menthol cigarette 
smokers in COPD patients had shown severe airway inflammation compared to 
non-menthol smokers with COPD individuals [74]. In the same study employing 
in vitro model, the degree of ROS production has been compared between non-
menthol cigarette smoke extract (Non-M-CSE) and menthol cigarette smoke extract 
(M-CSE) groups. Initially similar degree of increased extracellular ROS production 
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has been reported in both groups. However, M-CSE group eventually produced a 
robust cytoplasmic calcium elevation, MAP Kinase (MAPK) activation, NF-κB sig-
naling and release of IL-8. N-acetyl-cysteine (NAC), a ROS scavenger, was able to 
block the ROS-induced responses in both CSE treatment groups.

Additionally EGTA (an extracellular Ca2+ chelator) and AMTB (a TRPM8 
antagonist), or both were able to completely inhibit both CSE-induced responses. 
Those findings strongly indicate a functional role of TRPM8 channel in oxidant-
induced airway inflammation and possibility of TRPM8 being a therapeutic tar-
get to treat COPD.  When menthol has been introduced into the Non-M-CSE 
groups, the rise in cytoplasmic calcium and release of IL-8 had been significantly 
increased compared to the Non-M-CSE only group. The involvement of 
TRPM8 in oxidative stress-induced inflammatory responses in smokers has been 
supported by employing either TRPM8 knocked down cells or TRPM8 knock out 
animal models [75].

10.4.5  TRPA1

Involvement of TRPA1 channel has been proved beyond doubt as major signaling 
mechanisms in COPD disease pathology [76]. Cigarette smoke extract (CSE), acro-
lein and crotonaldehyde have been shown to produce contraction of bronchial rings 
in guinea pigs which has been shown to be prevented by pretreatment with 
HC-030031, a specific TRPA1 antagonist and not by capsazepine, a TRPV1 antago-
nist or reactive oxygen scavengers [77].

Covalent modification of the N-terminus cysteine residues of TRPA1 by prosta-
glandins is one of the well-studied mechanisms of the channel activation [78, 79]. 
Another important activation mechanism is the lipid peroxidation, a mediator of 
cigarette smoke-induced inflammation [80, 81]. TRPA1 agonist-induced tussive 
responses in preclinical guinea pig model were found to be inhibited by HC-030031 
[82]. Considering COPD disease etiology, the involvement of TRPA1s role in neu-
rogenic inflammation is not well established. Recent evidence also suggests the 
involvement of TRPA1  in the non-neurogenic inflammatory pathways in experi-
mental mice model [55].

TRPA1-induced neurogenic inflammation is usually associated with COPD [77]. 
Studies on preclinical animal models have provided evidence that TRPA1 channels 
play a significant role in cigarette smoke-induced bronchial inflammation [77]. 
Cigarette smoke is a complex mixture of several irritants known for potentially 
activating TRPA1 channel. Acrolein and crotonaldehyde [77, 83–86], along with 
nicotine [87] present in cigarette smoke, have been identified as direct TRPA1 acti-
vators. Biomass smoke (BM), mainly produced by burning wood, has been recently 
identified as activator of TRPA1-induced chemosensation in cultured jugular gan-
glia isolated from guinea pig [88]. Primary cultures of human airway fibroblasts, 
smooth muscle cells and epithelial cells have been reported to release IL-8 upon 
cigarette smoke-induced TRPA1 stimulation [55].
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10.4.6  TRPV1

Neuronal TRPV1 channels are mostly expressed in C- and Aδ- fibers of primary 
sensory neurons. This channel has been widely described as nociceptors. TRPV1 
channels are major intra and intercellular communication channels of the respira-
tory tract covering nose, alveoli, smooth muscle and blood vessel [13, 89].

Present TRPV1 research in relation to COPD is revolving in the areas of TRPV1’s 
role in sensory nerves and, especially, in tussive response associated with COPD 
[90, 91]. Involvement of neuronal TRPV1 responses in COPD pathology in human 
is still questionable while the role of non-neuronal TRPV1-response is becoming 
more evident in recent years [92].

Heat, protons, voltage, endogenous chemicals (including lipoxygenase products) 
and exogenous chemicals (including capsaicin and resiniferatoxin) are the known 
activators of TRPV1 [57]. Protein kinase A (PKA), protein kinase C (PKC) and 
other kinase-induced direct phosphorylation also activate TRPV1 channel [93, 94]. 
Phospholipase C (PLC) also has been shown as a TRPV1 mediator [95]. TRPV1-
induced release of TNF-α and downstream proinflammatory response in sensory 
neurons has been reported [96]. Elevated levels of endogenous TRPV1 activators 
such as arachidonic acid metabolites involved in PKA, PKC and PLC pathways 
have been found in the lungs of COPD patients.

Low pH, a known TRPV1 activator, has been found in the exhaled breath con-
densate of COPD sufferers [97]. Hypersensitive tussive response upon capsaicin 
inhalation has been noted in COPD patients, an indicator of TRPV1 signaling 
mechanisms [98]. In experimental rat model, hypersensitivity of capsaicin-induced 
airway inflammation responses in pulmonary myelinated primary afferents was 
reported [99]. A systematic meta-analysis also suggests a strong correlation of 
TRPV1 in COPD disease pathology [100].

Apoptosis caused by inhaled airborne particulate material has been found to be 
completely inhibited by capsazepine in human airway epithelial cells and in 
TRPV1−/− mice [101]. Parallel studies also reported TRPV1 agonist-induced ER 
stress and loss of cell viability in BEAS-2B and A549 airway epithelial cell lines 
[102]. TRPV1 stimulation also caused release of IL-6, a proinflammatory cytokine 
from airway bronchial epithelial cells [103]. These evidences strongly support the 
role of non-neurogenic TRPV1 responses in COPD.  Back in 1984, it has been 
reported that capsaicin treatment-induced ablation of TRPV1 in neonatal rats were 
resistant to cigarette smoke (CS)-induced increase in vascular permeability in the 
airways. In recent years, TRPV1 homozygous KO (TRPV1−/−) mice were found to 
be resistant to LPS-induced inflammation and bronchial hyperactivity, and that pre-
treatment with TRPV1 agonist SA13353 failed to produce both neutrophil influx 
and increase in cytokines TNFα and CXCL1 [104].

Tiotropium, a widely prescribed drug for COPD treatment as bronchodilator 
opened up the initial idea about possible linkage of TRPV1 in COPD disease pathol-
ogy [105]. Tiotropium was found to inhibit capsaicin, a potent TRPV1 agonist-
induced cough (Tussive stimulation) and single C-fiber firing in the guinea pig 
model [105] and in other preclinical studies [106].
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Both TRPV1 and TRPV4 mRNA have been found to be upregulated in patients 
with COPD and were shown to be involved in CS-induced elevated ATP release in 
the COPD airways [107].

10.4.7  TRPV4

Known functions of TRPV4 channels include epithelial cell volume control, epithe-
lial and endothelial permeability, bronchial smooth muscle contraction and partici-
pation in autoregulation of mucociliary transport. Those functions of TRPV4 appear 
important for the regulation of COPD pathogenesis, and thus TRPV4 emerges as a 
candidate gene for COPD. TRPV4 is widely expressed in heart, lung, kidney, CNS 
and skin [108]. In the lungs the highest levels of TRPV4 expression have been found 
in the epithelial linings of the trachea, bronchi and lower airways and the alveolar 
septal walls [109, 110].

TRPV1 and TRPV4 both channels are thermo- and osmo-sensitive [111]. TRPV1 
has been emerging as a hyperosmotic sensor and TRPV4 as hypoosmotic [112] and 
mechanical sensor [113]. TRPV4 also senses and responds to chemical stimuli 
including, 4α-phorbol 12, 13-didecanoate (4α PDD) [111], GSK1016790A [110] 
and 5′, 6′-epoxyeicosatrienoic acid (EET) [114]. TRPV4 is important in controlling 
epithelial and endothelial barrier function, especially in response to increased vas-
cular pressure and stretch. TRPV4 channel activation has been implicated in cellular 
ATP release mechanisms and subsequent downstream purinergic signaling path-
ways. It is important to note that increased levels of ATP have been found in bron-
choalveolar lavage fluid (BALF) from COPD patients [115]. Recently association 
of small nuclear polymorphisms (SNPs) in TRPV4  in relation to COPD disease 
pathology has been confirmed [25].

10.5  ROS and RNS: Potential Activators for the TRP Channels

Infiltrating neutrophils, eosinophils and macrophages into the lung alveolar space 
significantly increases the pulmonary oxidant burden by generating ROS including 
O2

−., H2O2 and hypochlorite. The NO produced by the inflamed tissue occasionally 
reacts with ROS and results in more damaging reactive nitrogen species (RNS) 
including peroxynitrite (ONOO−) and nitrogen dioxide (NO2). RNS cause addi-
tional nitrative stress in airway diseases [116].

TRPV1 and TRPA1 both have been identified as a potential target for ROS/RNS-
mediated cellular calcium signaling processes in both chronic and acute responses 
to oxidative stress into the lung. ROS-mediated activation of different TRP channels 
expressed in airway epithelial cells and in sensory nerves towards neurogenic 
inflammation is schematically shown in Fig. 10.2.

RNS damages the membrane integrity by directly attacking the unsaturated 
fatty acids (e.g. oleic acid) of the cell membrane and generates highly reactive 
nitro-oleic acid [117]. Oxidative stress can directly activate TRPA1 channels by 
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Fig. 10.2 Schematic diagram showing the ROS-induced activation and signal transduction events 
of TRP channels expressed in sensory nerves and in airway epithelial cells. ROS-induced TRP 
channel activation following release of proinflammatory mediators leads to the neurogenic inflam-
mation. PGE2 Prostaglandin E2, NGF nerve growth factor, and TNF-α tumor necrosis factor-α. 
(Taken from Ref. [152])

oxidizing cysteine residue of the cytoplasmic N Terminal [118]. TRPA1 channels 
are found to respond to both the electrophiles and the oxidizing agents entering in 
the airways. 3-Niro-tyrosine (3-NT), with high biological activity, is one of the 
several RNS generated by the reaction between RNS and NO and has potential to 
be used as a marker for NOO−-mediated cellular damages in vivo. Reactive lipid 
aldehydes are usually formed by an autocatalytic pathway in lipid peroxidation of 
the cell membrane.

10.6  Biomass Smoke and TRP Channel Activation

The correlation between COPD and biomass smoke (BS) exposure is now well 
established. At present there is around 3 billion COPD sufferer worldwide. Burning 
biomass fuel such as wood and coke is common in developing countries as a cheap 
alternative to the conventional source of energies including electricity and gas. 
Burning of these materials releases several air pollutants in large quantities that 
includes nitrogen oxides, sulphur oxides, hydrogen chloride, polyaromatic hydro-
carbons, volatile organic compounds, methane, furans, dioxins and aerosol particu-
lates of both organic and inorganic origin [119]. In COPD patients, inhaled BS has 
been identified as a major contributing factor towards developing inflammatory 
responses. The late responses of such inflammatory processes result in tissue pro-
liferation in small airways and severe tissue damage in lung parenchyma. 
Additionally, the disease state contains recruitment of immune cells to the airway 
compartments [120].
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10.7  Diesel Exhausts Particle and TRP Channel Activation

Diesel exhausts particle (DEP) is a very common component in the city environ-
ment generated by the automobiles. DEP inhalation has been widely implicated in 
developing COPD and chronic asthma worldwide. The role of DEP as a direct acti-
vator of lung-specific afferent sensory nerves in relation to initiation of respiratory 
symptoms has been studied. The study on the effect of organic extract of diesel 
exhaust (DEP-OE) on human and in vitro studies and in vivo electrophysiological 
studies has identified a list of compounds causing TRPA1 activation. DEPs contain 
high amount of polyaromatic hydrocarbons (PAHs) on their surface and exert toxic 
and carcinogenic effects. Phenanthrene, a common PAH found in DEP has been 
found to cause depolarization of vagus nerve [121]. DEP exposure in human pri-
mary airway epithelia has been reported to reduce ciliary beat frequency and results 
in increased oxidative damage, NF-κB pathway activation and increased secretion 
of proinflammatory cytokines. Some of the secreted immune-responsive biomole-
cules also act as mediators and sensitize airway sensory neurons [122–130]. Signal 
transduction pathways specifically responsible for such a DEP-evoked events are 
not fully understood.

Electrophiles activate TRPA1 channels and involve covalent modification of the 
cysteine residues on the N-terminus (Cytoplasmic domain) [131, 132]. This finding 
possibly provides clues why endogenously produced oxidative stress causes TRPA1 
activation as an integral event in intracellular oxidative stress [118, 133]. Robinson 
et  al. [121] have shown that H2O2 or DEP-OE depolarizes the vagus nerve in a 
TRPA1-dependent manner [134, 135], and this response was inhibited by the anti-
oxidant N-acetyl cysteine (NAC).

10.8  Genetic Contributors of COPD

Finding key genetic contributor for the chronic diseases has been a challenge for the 
investigators and COPD is no exception. Earlier studies [136, 137] have shown 
evidence that genetic factors are linked to pulmonary function and COPD. Existence 
of familial aggregation of COPD strongly suggests this notion [136]. Till date, it is 
not very clear how genetic factors are associated for COPD development and pro-
gression. Environmental pollutants have been shown to produce adverse reactions 
to the bronchial epithelium and recruit inflammatory cells causing pulmonary dis-
ease pathology [138]. Association of COPD with polymorphisms of genes like 
α1-antitrypsin, TNFα and surfactant protein B genes has been suggested in case 
control studies [139–141]. A study on Indian population exposed to industrial pol-
lutants has shown evidence that microsatellite (MSI) instability is weakly associ-
ated with smoker’s age and the extent of exposure to exogenous toxins, which are 
the known cause for developing COPD [142].

α1-antitrypsin deficiency has been previously positively correlated with COPD 
development in young adults [143]. Phosphorylated serine 19 residue in TRPV4 
protein, a human genetic polymorphism, has been previously documented as COPD 
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susceptibility locus. This specific polymorphism has been directly linked to matrix 
metalloproteinase (MMP1) activation associated with increased calcium influx and 
downstream signaling pathways [25, 144, 145].

10.9  Modulators of TRP Channel Expression and Function

Significant development took place in recent years in order to find both competitive 
and non-competitive inhibitors for the TRP channels in order to control disease 
states including asthma, COPD and several other airway diseases. The development 
of TRP antagonists happened slowly, but in recent years, there has been a wide 
interest in developing TRPV1 and TRPA1 antagonists because of their potential 
therapeutic role in targeting neuropathic pain. Ruthenium red (RR), a non-selective 
calcium channel blocker, blocks several TRP channels including TRPV1. 
Unfavorable cytotoxicity prevented this potent molecule to be considered as poten-
tial candidate for further drug development perspective. In recent years (±) camphor 
has been identified as week TRPA1 antagonist [146, 147]. SB-705498, a potent 
TRPV1 antagonist developed by GSK cleared its Phase 1 clinical trial in 2007. 
SB-705498 has shown promise for further clinical trials as it has been shown to be 
well tolerated in Phase 1 clinical trial with no serious adverse effects. Topical appli-
cations of SB-705498 have also been tested in two Phase 2 clinical trials in relation 
to chronic cough and non-allergic rhinitis [148].

Competitive TRP channel antagonists are therapeutically attractive because of 
their direct mode of action without upregulating or activating the receptors for the 
respective channels and usually do not associate with unwanted drug use-related 
side effects [149]. So far TRPA1 and TRPV1 both appear to be potential target of 
therapeutic intervention in order to treat respiratory airway diseases including 
COPD [150].

10.10  Conclusions and Future Directions

TRP channels have now gained wide interest because they have been documented 
as sensors for environmental stimuli that can sense and respond to exogenous stim-
uli. The multifunctional roles played by different TRP channels are important in 
terms of understanding how the cellular sensors work to respond to exogenous stim-
uli in normal and pathophysiological conditions and how these channels are linked 
to the mechanisms of disease progression.

A wide variety of exogenous and endogenous stimuli-induced activations of dif-
ferent TRP channels play a significant role in COPD development and progression. 
Targeting TRP channels has enormous potential in treating pulmonary diseases 
including COPD. TRP channels appear to be a family of endogenous defense sys-
tem to combat noxious stimuli-induced cellular damages and play critical immuno-
logical roles in many lung diseases including COPD. Rise in cytoplasmic calcium 
through TRP channel and subsequent cellular signaling pathways that lead to 
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hyperactivated proinflammatory and immunological responses including activation 
of different transcription factors, chromatin remodeling and altered gene expression 
have potential to shed lights on the mechanisms of the COPD for future drug devel-
opment to combat the disease. Identification of specific TRP genes responsible for 
COPD will provide further knowledge about how a specific population of chronic 
COPD is predisposed to the disease and what genetic manipulation and pharmaco-
logical intervention could be done in order to prevent or slow down the disease 
progression.
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Abstract
Lung pathogenesis is associated with the oxidative stress which is one of the 
major causes of the lung damage. Oxidative stress is an important factor (cause) 
for development of chronic and degenerative diseases including cancer, aging, 
rheumatoid arthritis, diabetes, cataract, chronic inflammatory diseases, autoim-
mune disorders, cardiovascular and neurodegenerative diseases. Emerging evi-
dences suggest that the glutathione redox couple may entail dynamic regulation 
of protein function by reversible disulfide bond formation on kinases, phospha-
tases, and transcription factors. Reactive oxygen species (ROS) enhances inflam-
mation through the activation of transcription factors, such as nuclear factor 
(NF)-κB and activator protein-1 through various kinases (c-Jun-activated kinase, 
extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase). 
This results in enhanced expression of proinflammatory mediators. Many envi-
ronmental pollutants play an important role in causing oxidative stress leading to 
lung damage. In present chapter impact of paraquat, a known herbicide has been 
discussed in detail for its effects on oxidative stress and lung inflammation caus-
ing injury.
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11.1  Introduction

11.1.1  Oxidative Stress, Free Radicals, and Inflammation

Oxidative stress and inflammation is related to a variety of chronic diseases mainly 
cardiovascular diseases, neurodegenerative diseases, liver diseases, cancer, and 
aging. It is an imbalance between the production of free radicals and the body’s 
defense mechanism through antioxidant system. The term free radicals is used to 
define molecular species which contains one or more unpaired electrons, and there-
fore, radicals are unstable and highly reactive because they have a tendency to 
donate or accept an electron from other molecules [1, 2]. Oxygen-derived radicals 
are collectively known as reactive oxygen species (ROS), and nitrogen-derived radi-
cals are reactive nitrogen species (RNS) that include hydroxyl radical, oxygen sin-
glet, superoxide anion radical, hydrogen peroxide, hypochlorite, nitric oxide, 
nitrogen dioxide, and peroxynitrite radical [3–5].

Development of chronic and degenerative diseases including cancer, aging, rheu-
matoid arthritis, diabetes, cataract, chronic inflammatory diseases, autoimmune dis-
orders, and cardiovascular and neurodegenerative diseases are due to oxidative 
stress condition [6].

When any harmful stimuli, virus, bacterium, or fungus infects or affects a part of 
our body, there is a body’s response to remove it, and this phenomenon of body’s 
attempt of self-protection is known as inflammation. It is the protective mechanism 
of body which involves immune cells and blood vessels, redness, hotness, swelling 
and pain as signs of inflammation [7, 8]. Due to excessive secretion of cytokines and 
more expression of inflammatory genes, inflammation, a defensive mechanism of 
the body, turns into lethal process, like generation of acute lung injury (ALI) condi-
tion [9, 10]. These reactive oxygen species are produced either internally in the 
human body by metabolic processes or from externally exposed sources such as 
environmental pollutants, radiation, certain drugs, industrial chemicals and pesti-
cides [11, 12].

11.1.2  Commonly Used Herbicides Available in India (http://
www.agriinfo.in)

• 2, 4-D (2,4-dichloropnenoxy acetic acid)
• DICAMBA: (3,6-dichloro-2-methoxybenzoic acid)
• SIMAZINE: (2,chloro-4,6-bi(ethylamino)-s-triazine)
• Paraquat (1,1-diethyl-4-bipyridinium ion)
• Diquat (6,7-dihydrodipyrido (1,2:2, I-C) Pyrazinediiumaion)
• Benthiocarb or thiobencarb: (S-(4-chlorobenzyl) N,N-diethyl-thicarbamate)

Environmental toxins include exposure to paraquat (a commonly used herbi-
cide), and chronic ethanol consumption is an established example of lung injury. 
Here in the present chapter, we are discussing paraquat-induced inflammation and 
its mechanism in detail.
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11.1.3  Paraquat (PQ)

Paraquat (N,N′-dimethyl-4,4′-bipyridinium dichloride) is a quaternary nitrogen- 
containing compound. Paraquat dichloride, Gramoxone, and methyl viologen are 
other common trade names of paraquat [13, 14]. Paraquat is the third best-selling 
pesticide in the world and is used on over 100 crops in more than 120 countries 
across the world [15]. It is the most widely used herbicide because it is quick-acting, 
non-selective contact herbicide which acts on the photosystem I of the chloroplast 
[16]. Paraquat is a broad-spectrum herbicide, and due to its many uses in crops, it 
has increased the productivity in agriculture. However, this herbicide is highly toxic 
and has acute toxicity; its use has been restricted in some countries due to health 
issues. But, it is a cheap and labor-saving herbicide, therefore popular in developing 
countries [15].

11.1.4  Structure of Paraquat

Chemical formula of PQ is C12H14N2 Cl2. The structural formula of PQ is given 
below (Fig. 11.1):

IUPAC name is 1,1′-Dimethyl-4,4′-bipyridinium dichloride.

11.1.5  Properties of Paraquat (Table 11.1)

11.1.6  PQ Toxicity

PQ is toxic to human beings and animals; in humans, PQ poisoning causes 
Parkinson’s disease (PD) and severe lung damage. Self-poisoning is a major health 
issue in the developing countries is associated with PQ [17, 18]. Since its introduc-
tion in agriculture, thousands of deaths occur yearly due to accidental or intentional 
ingestion. PQ has been reported to be a major health hazard because it can cause 
severe lung injury in human and experimental animals. It is a well-characterized 
pneumotoxicant [19].

PQ affects the lungs, heart, liver, kidneys, cornea, adrenal glands, skin, digestive 
system, and central nervous system, but lungs, liver, and kidneys are mainly organs 
from affected PQ toxicity and irreversible lung injury is the most common cause of 
death from PQ poisoning [20, 21].

Fig. 11.1 Structure of 
paraquat (wssroc.agron.
ntu.edu.tw)
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The PQ toxicity basically depends on its amount, route of exposure and amount. 
The most frequent routes of PQ exposure to the body are its ingestion, or direct 
contact with damaged skin, and it can be rapidly absorbed by inhalation [22, 23]. 
PQ causes damage when it comes in direct contact with the skin; normal (intact) 
skin is barrier to paraquat absorption, but if the skin is broken or wound is present, 
its absorption may lead to death in humans [24]. Paraquat ingestion (either inten-
tional or accidental) is the most common cause of death due to paraquat toxicity. PQ 
is one of the common suicidal ingestions and is the major health problem in devel-
oping countries, and after ingestion, PQ can damage the inner layer of the stomach 
and intestine by inducing burning sensation and irritation, resulting in nausea, vom-
iting, abdominal pain, and diarrhea [25].

Poisoning by inhalation is the most common route of exposure for people work-
ing with paraquat in agriculture [14]. In the case of PQ poisoning, inhalation is not 
considered too toxic due to its low volatility and the formation of large droplets 
during spray in field. PQ has not been shown to cause serious systemic toxicity from 
inhalation because spray droplets are too large to be inhaled into small airways, but 
these large droplets of paraquat can deposit and may cause local irritation in the 
upper respiratory tract [15, 26].

11.2  Lungs: Target Organ for Paraquat Toxicity

PQ is extremely toxic, causing multiple organ failure, and its toxicity leads to lung 
injury. Lungs are main target organs for paraquat-induced toxicity in rats and 
humans [27]. The most widely accepted reason for lung specific toxicity of paraquat 

Table 11.1 Properties of Paraquat

Molecular 
Formula

C12 H14 N2 (cation only)
C12 H14 N2 Cl2(dichloride salt) (Worthing 1983)

IUPAC name 1,1′-Dimethyl-4,4′-bipyridinium dichloride
Molar mass 257.16 g·Mol−1

Appearance Yellow solid (NIOSH pocket guide to chemical hazards)
Physical state White crystalline solid (pure salt); dark red solution (technical product). 

Technical product >95% pure (Worthing 1983)
Odor Faint, ammonia-like (NIOSH pocket guide to chemical hazards)
Density 1.25 g/cm3

Decomposition 
temperature

Approximately 300c (pure compound) (Weed Science Society of America 
5th ed.)

Boiling point Salts decompose at high temperatures, charring rather than melting or 
boiling (Weed Science Society of America 5th ed.)

Solubility in water High
Vapor pressure Nonvolatile. Vapor pressure of salts is very low, below 1 × 10−7 mmHg 

(pure compound) (Weed Science Society of America 5th ed.)
Other names Paraquat dichloride; Methyl viologen dichloride; Crisquat; Dexuron; 

Esgram; Gramuron; Ortho Paraquat CL; Para-col; Pillarxone; Tota-col; 
Toxer Total; PP148; Cyclone; Gramixel; Gramoxone; Pathclear; AH 501
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is its tendency to concentrate in lung tissue than any other organ [28–30]. Many 
studies have suggested that the higher concentration of paraquat is retained in lungs 
in comparison to other organs, and its concentration has been found six to ten times 
more in the lungs than in the plasma [31–33]. Therefore, it is clear that lung specific 
toxicity by paraquat is associated with its accumulation process [31]. The explana-
tion of more accumulation of PQ in lung cells is that alveolar epithelial cells have 
higher polyamine uptake system as compared to other organs and PQ uptake into 
lung cells occur through a polyamine uptake system because it is structurally similar 
to the diamines and polyamines [34–36]. After paraquat intoxication, lungs are the 
most affected and severely damaged organ due to its ability to accumulate and retain 
PQ which is completely independent of its level in plasma, where PQ level decreases 
with time [30, 37].

11.2.1  PQ: A Potent Inducer of Oxidative Stress and Inflammation

The toxicity of PQ is based on oxido-reduction cycle of PQ which leads to produc-
tion of superoxide radicals, and these free radicals trigger inflammatory response 
and oxidative stress in lungs. Several studies have been conducted to determine 
whether the PQ-induced oxidative stress in humans or animals is related to their 
toxic effects. Many studies have suggested that paraquat is potent oxidative stress 
inducer, and its toxicity is linked with the free radical generation [38, 39]. Reactive 
oxygen species which are produced from redox cycling of paraquat are highly reac-
tive compounds to degrade cellular macromolecules which induce lipid peroxida-
tion and protein and nucleic acid degradation that leads to oxidative stress and 
finally cell death [40]. PQ-induced ROS generation and cellular and subcellular 
effects on the splenocytes were studied in albino mice. Oxidative stress and spleno-
megaly induced by PQ lead to the activation of the pathways responsible for inflam-
mation, immunomodulation, and apoptosis in murine splenocytes [42]. Many 
experimental studies have confirmed that airway inflammation is characteristic fea-
ture of PQ-induced lung injury in which airway obstruction occurs due to infiltra-
tion of inflammatory cells [43, 44] (Figs. 11.2 and 11.3).

11.2.2  PQ-Induced Lung Inflammation

Histopathological analysis of lung tissues after PQ intoxication has shown recruit-
ment of many inflammatory cells like neutrophils, macrophages and lymphocytes 
[44].

Neutrophils being one of the inflammatory cells have significant impact in the 
lung pathogenesis [45, 46]. Neutrophils and monocytes synthesize and secrete 
myeloperoxidase (MPO), which is a peroxidase enzyme that contributes to oxida-
tive stress and inflammation by generation of reactive oxygen species [47]. After 
measuring the MPO activity in lung tissue and BALF, some experimental studies 
found that PQ intoxication caused influx of neutrophils into the lungs [48, 49]. 
These recruited neutrophils, after activation, release superoxide (O~) and hydrogen 
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peroxide (H202) and other toxic oxidant which further cause the parenchymal cell 
injury [50, 51]. Nowadays, neutrophil-to-lymphocyte ratio (NLR) is being used as 
an inflammatory indicator in many diseases [52, 53]. A recent study evaluated the 
hematological parameters in PQ-poisoned patients and found significantly higher 
leukocyte, neutrophil counts and increased neutrophil-to-lymphocyte ratio, whereas 
lower lymphocyte counts were observed in non-survivors as compared to survivors 
with PQ poisoning [54]. Cytokines are a large family of secreted proteins released 
by numerous cells and act as signaling molecules that mediate and regulate the cells 
of the immune system, and it is accepted that cytokines are main mediators to induce 
inflammatory responses [55]. Previous studies confirm that proinflammatory cyto-
kines and inflammatory mediators also play an important role in the PQ-induced 
lung damage. Free radicals act as inducers of cytokine secretion at the sites of 
inflammation and stimulate the immune responses [56]. In PQ-induced toxicity, the 
great amount of ROS is generated, which evokes inflammatory cell recruitment, and 
after activation these inflammatory cells such as macrophages, neutrophils, and 
lymphocytes release IL-1𝛽, TNF-α, and other cytokines. It was reported that the 
level of proinflammatory cytokines like TNF-α, IL-1β, and IL-6 was induced due to 
PQ intoxication [44].

Fig. 11.2 Redox cycle of paraquat (PQ) [41]
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Fig. 11.3 The important intermediate species or products (SOD superoxide dismutase, CAT cata-
lase, GPx glutathione peroxidase, Gred glutathione reductase, PQ2+ paraquat, PQ·+ paraquat 
monocation free radical) which is involved in in vivo toxicity of PQ. The increased number of 
these intermediates causes imbalance between oxidant and antioxidant system of body [13]
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11.3  Free Radicals-Induced Lipid Peroxidation

It has been reported in a number of in vitro and in vivo studies that paraquat has 
potential to damage the cell membrane by initiating the process of lipid peroxida-
tion [57–59]. Lipid peroxides act as mediators for paraquat cytotoxicity because cell 
rupture and impaired cellular functioning occurs due to the peroxidation of mem-
brane lipids [60]. The study conducted by Hara et al. (1991) to determine the mech-
anism of PQ-stimulated lipid peroxidation in mouse brain and pulmonary 
microsomes suggested that superoxide and singlet oxygen may be responsible for 
stimulation of PQ-induced NADPH-dependent microsomal lipid peroxidation in 
both the brain and lung [61]. Some other studies have also reported that singlet 
oxygen lead to lipid peroxidation [62, 63]. Low physiological levels of NADPH, 
due to depletion in redox cycling of PQ and lipid peroxidation, can lead to cell 
death.

11.4  PQ-Induced Structural Changes in Lungs

Environmental toxins, medications and infection may cause pulmonary fibrosis 
[64–66]. Pulmonary fibrosis is a chronic respiratory disease associated with irre-
versible fibroproliferative and wound healing cascades. Various reports have sug-
gested that PQ intoxication leads to pulmonary fibrosis or pulmonary structural 
remodeling (interstitial lung disease) and is characterized by increased fibroblast 
mass, their migration, and excessive accumulation of matrix-associated proteins 
[67–69]. In this process, transition of fibroblasts into myofibroblasts in both the 
interstitium and the intra-alveolar space of the lungs leads to production and deposi-
tion of collagen fibers. Many in vivo and in vitro studies report that the pulmonary 
toxicity caused by PQ is associated with enhanced matrix metalloproteinase expres-
sion [70]. In earlier studies it has been reported that ECM modulation plays a vital 
role in the pathogenesis of PQ-induced pulmonary fibrosis [71–74].

On the basis of substrate specificity, domain organization and sequence homol-
ogy, MMPs are classified as collagenases, gelatinases, stromelysins, matrilysins, 
membrane-bound and others [75]. Ouchi et al. (2008) studied the role of collage-
nases in bleomycin-induced pulmonary fibrosis model, and they found collagenase 
is strongly associated with fibrosis phase than inflammatory phase [76]. It has been 
reported that increased activity of MMP-2 and MMP-9 is associated with pulmo-
nary fibrosis. MMP-2 and MMP-9 can cause disruption of the alveolar epithelial 
basement membrane because it is well known to damage type IV collagen [74, 77].

11.5  PQ-Induced Lung Damage: Acute Lung Injury (ALI)

Acute lung injury (ALI) is an inflammatory response of the lungs due to respiratory 
failure, a life-threatening condition. It may be caused by many ways.
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• Direct lung injuries are caused by lung infections, exposure to various pesti-
cides (chemicals) aspiration, transfusion, pulmonary contusion and pneumonia 
that directly affect the lungs [78, 79]

• An indirect lung injury is caused by different condition elsewhere in the body. 
These include: sepsis, trauma, severe bleeding, fractures, pancreatitis, burns and 
a car accident etc. [80, 81]. An initial inflammatory phase is followed by disrup-
tion of both lung endothelial and alveolar epithelial cells which is followed by 
the destruction of epithelial basement membranes leading to severe fibrotic phase 
[82]

PQ induces lung injury in two phases:

 (A) Early destructive phase: Early phase of ALI characterized by pulmonary 
edema, alveolitis and infiltration of inflammatory cells. There are many studies 
which proved through histopathological analysis that PQ intoxication caused 
alveolar damage with infiltration of inflammatory cells [49]. Mainly neutro-
phils play a critical role in the pathogenesis of PQ-induced ALI. After activa-
tion, neutrophils release certain proinflammatory cytokines such as tumor 
necrosis factor (TNF), interleukin-1 (IL1), IL6, and IL8 and some harmful 
mediators like reactive oxygen species (ROS) and matrix metalloproteinases, 
which caused further damage [83]. Through the generation of reactive oxygen 
species, PQ intoxication causes oxidative damage to the cells.

 (B) Proliferative phase/fibrotic phase: The vascular injury in acute phase is fol-
lowed by fibroproliferative phase and leads to severe fibrosis phase, which 
evolves from early destructive phase approximately after 1–2 weeks approxi-
mately. Pulmonary fibrosis is an interstitial lung disease; during fibroprolifera-
tion, the degraded epithelial cells are replaced by myofibroblasts and fibrotic 
phase characterized by proliferation of fibroblasts, migration, and excessive 
accumulation of extracellular matrix proteins and collagen deposition resulting 
in airway remodeling due to PQ intoxication [67–69, 71, 72]. PQ exposure 
induces an alveolitis comprised of neutrophils and macrophages that play a 
role in the development of fibrosis. Activated alveolar macrophages release a 
chemotactic factor for neutrophil recruitment and also play a role in the recruit-
ment and replication of fibroblasts by releasing fibronectin and a growth factor 
for fibroblasts [84].

It has been proved by many experimental studies that interstitial and intra- 
alveolar fibrosis is characteristic findings in PQ-induced structural remodeling of 
the lungs. PQ intoxication shows similar symptoms like pulmonary fibrosis (inter-
stitial lung disease), i.e., fibroblast proliferation, migration, and excessive accumu-
lation of extracellular matrix proteins [85, 86]. Interstitial fibrosis is characterized 
by thickening in the alveolar septa, whereas in intra-alveolar fibrosis, activated 
fibroblast migrates through the gaps of epithelial basement membrane to alveolar 
lumen and collapsed alveoli which undergo fusion [72, 87, 88]. The extracellular 
matrix also plays an important role in regulating cellular growth and migration of 
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cells during lung development, and it provides mechanical support to the epithelial 
cells [71, 89]. As reports suggest, higher molecular weight proteins mainly ECM 
like fibrous collagen and elastin are secreted by fibroblasts [89, 90]. Collagens with 
type I and type III are the most abundant components of matrix, and some experi-
mental studies have demonstrated excessive deposition of type I and III collagens in 
lung fibrosis [91]. In PQ-induced toxicity, recruitment of inflammatory cells and 
excessive secretion of proinflammatory cytokines such as TNF-α, IL-6, and IL-1β 
initiate the inflammatory cascade [92, 93] which further caused the structural 
changes in lungs. Transforming growth factor (TGF-β1) is a profibrotic cytokine 
responsible for the fibroblast proliferation, migration and gene expression of colla-
gen in fibrosis phase [94, 95]. Many experimental studies have suggested that 
TGF-β is a strong stimulus for the induction of pulmonary fibrosis by PQ [49, 67–
96]. Many evidences suggest that matrix metalloproteinases (MMPs, a family of 
zinc-dependent endopeptidases) have a critical role in ECM disruption and remod-
eling in lung injury [75]. MMPs play a major role by acting on chemokines, cyto-
kines, growth factors, and cell surface proteins in airway inflammation [73, 97]. 
Reports also suggest that MMP-2 and MMP-9 are being related to pulmonary fibro-
sis because of their well-known ability to promote the degradation of type IV col-
lagen [98, 99]. Studies have also shown that in ALI, proliferation phase begins much 
earlier than reported which contradicts the finding where fibrotic phase begins after 
2 weeks of PQ intake [100]. Therefore, on the basis of above findings, we tested the 
hypothesis that a single toxic dose of PQ could activate the fibroproliferation after 
48 h of PQ exposure (Fig. 11.4).

11.6  PQ-Induced Toxicity and Signaling Pathway

Many evidences have suggested that PQ act as a stimuli to activate a number of 
intracellular signaling cascades that are associated and responsible for its toxicity in 
cells, for example, PQ activates protein kinase B and the members of the 

Fig. 11.4 Structure of alveolus with alveolar type I and II cells; (a) (http://ib.bioninja.com.au) (b) 
(https://embryology.med.unsw.edu.au)
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mitogen- activated protein kinase (MAPK) family, NF-κB, and increased ROS [82, 
101, 102]. Several studies have shown that PQ is a potent inducer of reactive oxygen 
species, which plays a primary role in PQ-induced lung damage. More ROS produc-
tion causes disruptions in cell and tissue function by inducing oxidative stress con-
dition, protein, and DNA damage. Other than ROS-induced pathology, inflammation 
is the second factor which is responsible for PQ poisoning and disease pathogene-
sis. ROS act as intrinsic signal transduction molecules in the pathogenesis of 
PQ-induced toxicity. It is a well-known fact that ROS act as a second messenger and 
are involved in many signaling pathways such as NF-kB and MAPK pathway [103–
107]. The role of MAPK signaling has been already studied in the pathogenesis of 
various human diseases including respiratory diseases [108, 109].

It is well known that paraquat toxicity is mediated via oxidative stress and the 
members of MAPK family activate the stress condition. After PQ exposure, the 
activation of ERK1/2 and JNK1/2 generates more oxidative stress condition. Some 
experimental studies have shown that by using selective inhibitor (SP 600125) of 
JNK1/2 pathway, PQ-induced cell death was significantly reduced [110]. Several 
evidences suggest that PQ stimulates the expression of p-38 MAPK, which act as 
mediator to regulate inflammation and apoptosis. Many studies have demonstrated 
that the activation of p-38 MAPK pathway is associated with over expression of 
proinflammatory cytokines such as TNF-α and IL-1β [111, 112].

Prostaglandins are naturally occurring compounds derived from arachidonic acid 
by the action of cyclooxygenase (COX) isoenzymes, and these prostaglandins are 
involved in various homeostatic and inflammatory processes [113]. Cyclooxygenase 
exists in two isoforms known as COX-1 and COX-2 where COX-1 is constitutively 
expressed in most tissues and COX-2 is an inducible isoform which is mainly 
responsible for prostaglandin formation in inflammation, and its expression was 
upregulated by different types of inflammation stimulus such as cytokines, mitogen, 
and growth factors [113]. It has been already reported that PQ intoxication increased 
COX-2 expression in lungs, liver and kidneys in rats [114]. Some recent studies 
have linked the biosynthetic pathway of prostaglandins with the activation of MAPK 
signaling pathway [115]. The study conducted by Pei et al. (2014) suggested that 
p38 MAPK signaling cascades play a vital role in regulating the IL-1β and TNF-α 
proinflammatory cytokine production in PQ-induced lung injury [116].

Nuclear factor kappa B (NF-κB) is considered as a major transcription factor for 
regulating inflammation, lung injury and repair process. It is activated during oxida-
tive stress condition by ROS and proinflammatory cytokines such as interleukin 1 
(IL-1) and tumor necrosis factor α (TNF-α). IκB (nuclear factor of kappa light poly-
peptide gene enhancer in B cells) is a cellular protein that keeps NF-κB in an inactive 
state in the cytoplasm and blocks its nuclear localization signals, but after degradation 
of IκB, activated NF-κB is translocated to the nucleus where they bind to the promot-
ers of target genes to enhance gene expression and amplification of proinflammatory 
genes including cytokines, chemokines, and adhesion molecules [117, 118].

It is well known that NF-κB have major induction of the expression of proinflam-
matory gene, but some studies have suggested its anti-inflammatory role to regulate 
inflammatory resolution [119]. The activation of transcription factor (NF-κB) is 
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important in the regulation of various cellular processes including proliferation, 
inflammation, also control angiogenesis and many other biological processes. The 
role of NF-κB in lung development and diseases was described earlier [120]. 
Transcription factor, NF-κB, is associated with the pulmonary diseases such as 
acute lung injury, cystic fibrosis, asthma, and severe sepsis, and extensively studied 
evidences suggest that activation of NF-κB signaling plays an important role in the 
pathogenesis of PQ-induced toxicity [109–111].

11.6.1  Treatment Strategy for PQ Toxicity

The major cause of high mortality rate in case of PQ poisoning is lack of antidote 
(antagonists) against PQ toxicity. Although there is no effective therapy for PQ 
intoxication, antioxidants and anti-inflammatory drugs are the drug of choice in 
clinical treatment regimen for PQ-intoxicated patients.

Bipyridylium herbicides, like PQ, tightly bind to the clay minerals and are easily 
absorbed by soil [85]. On the basis of above ability, it also has shown strong binding 
with montmorillonite [121]. Fuller’s Earth is a calcium montmorillonite, and till now, 
it is one of the most common treatments for PQ toxicity. In various studies, it has been 
investigated the potential of fuller’s Earth for treatment of PQ poisoning [121–124].

Clinicians have tried a number of treatments such as antioxidants (vitamin C or 
E), nitrous oxide, N-acetylcysteine, desferroxamine, some corticosteroids and cyto-
toxic agents [125–128]. Unfortunately, none of them helped to reduce the mortality 
rate due to paraquat poisoning. Generally, corticosteroids and immunosuppressive 
drugs are used to treat PQ-induced lung injury [129]. According to a preliminary 
report of Lin jl et al. (1996), cyclophosphamide and methylprednisolone by inhibit-
ing the inflammation and fibrosis may prove useful to severe paraquat poisoning. In 
many cases, hemodialysis (HD) and hemoperfusion (HP) are part of the treatment 
for PQ poisoning, but the conclusion of some clinical studies is that HD/HP was 
effective to remove PQ from plasma but was ineffective in reducing paraquat lung 
exposure [130]. Hence, the overall outcome of these treatment methods and immu-
nosuppressive therapies are not well effective for PQ-poisoned patients. There is 
urgent need of suitable antidote to treat PQ-poisoned patients with no side effects. 
It is clear that PQ toxicity is due to generation of reactive oxygen species which 
further initiates inflammatory cascades. So, the treatment strategy against 
PQ-induced toxicity should be to select a molecule with anti-inflammatory and anti-
oxidant properties. The human body has a defense system to prevent oxidative stress 
by producing antioxidants. Antioxidant is the basic defense mechanism to inhibit 
oxidative damage in the human body. These antioxidants have free radical scaveng-
ing property because antioxidants are molecules which neutralize the free radicals 
by donating an electron to it. A number of studies suggested the role of antioxidant 
in case of paraquat toxicity [125, 131]. The body makes some of the antioxidant 
enzymes such as catalase, superoxide dismutase (SOD), and glutathione and the 
other principle antioxidants including vitamin A, E, C, and B carotene found in the 
diet. It has been reported that deficiency of vitamin C and E is directly associated 
with the development of acute paraquat toxicity [132–135].
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11.7  Herbal Drugs

The relationship between plants and man is associated from the very beginning of 
human existence, and it can be said that plants play a central role in the development 
of human civilization around the whole world. Plant-based products have been used 
for centuries for various purposes. The ancient medicine system of India known as 
“Ayurveda” uses mainly natural plant products and its formulations to treat various 
human diseases. Many of these natural plant products are secondary metabolites 
produced by higher plants, used as a drug against infections and diseases because 
these products have many pharmacological or biological activities [137–140].

11.7.1  Curcumin: As an Antioxidant and Anti-Inflammatory 
Molecule

About two centuries ago, Curcumin was discovered by Vogel and Pelletier from the 
rhizomes of Curcuma longa (turmeric). Curcumin (diferuloylmethane) is a low 
molecular weight phenolic compound and a major component of the golden spice 
turmeric (Curcuma longa). Curcumin, a yellow pigment, is mainly attributed to the 
medicinal properties of the turmeric which contains 2–5% curcumin [138]. 
Curcumin being an immunomodulatory agent with antioxidant and anti- 
inflammatory properties may prove to be an effective treatment strategy for 
PQ-induced airway inflammation, oxidative stress, and structural changes in lungs.

11.7.2  Properties of Curcumin

Curcumin (diferuloylmethane) is (1E,6E)-1,7-bis (4-hydroxy- 3-methoxyphenyl) 
-1,6- heptadiene-3,5-dione. It is a polyphenolic and lipophilic molecule which is 
soluble in ethanol, DMSO, methanol, and acetone and insoluble in water and ether. 
Its molecular formula is C21H20O6, and its molecular weight is 368.38  g/mol 
(Fig. 11.5). It has low aqueous solubility at both acidic and neutral pH but soluble 
at alkaline pH. Curcumin exhibits keto-enol tautomerism that has a predominant 
keto form in acidic and neutral solutions and a stable enol form in alkaline solution 
[141, 142].

Fig. 11.5 Molecular structure of curcumin. This scheme shows the keto and enol forms of cur-
cumin which exist in two tautomeric forms in solution (Moussawi and Patra 2016)
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Majority of the studies suggested that curcumin is a potent scavenger of reactive 
oxygen species including hydroxyl radicals, superoxide anion radicals, and nitrogen 
dioxide radicals [143]. Due to the ability of curcumin to scavenge hydrogen perox-
ide and other free radicals, it may be used in free radical-related disease therapies. 
There are many evidences that curcumin has the ability to modulate the immune 
system and disrupt the proinflammatory cascade through a variety of mechanisms, 
including antioxidant effects and alterations in cell signaling pathways [144]. There 
are overwhelming reports from both in vitro and in vivo studies which have identi-
fied the therapeutic potential of curcumin and characterized it as a potent “drug” for 
treatment of diseases of diverse nature. As an alternative route of drug delivery, 
Intranasal administration (i.n) has a long tradition. As described earlier, intranasal 
drug administration has been highly investigated by the scientific community.

The drug administration by nasal route has more potential for medical purposes 
because mucosal surface of nasal cavity is well supplied by blood vessels which 
ensures rapid drug absorption [145, 146]. Curcumin administration by intranasal 
route avoids the first pass metabolism which is major problem of its administration 
via oral route. Two separate studies done in our laboratory revealed that curcumin 
administration via nasal route is effective against airway inflammation and in 
chronic asthma as it directly targets the lungs [147, 148].

Curcumin inhibits lipid peroxidation, which is one of the major reasons of 
PQ-induced lung injury [149]. So being an antioxidant, curcumin administration 
prior to PQ intoxication may attenuate the PQ toxicity. Our results demonstrated 
that PQ-induced intracellular ROS production and cellular inflammation were sig-
nificantly suppressed by intranasal curcumin (5 mg/kg) pretreatment. We found that 
total inflammatory cell count (mainly neutrophils and lymphocytes) was signifi-
cantly increased after 48 h of PQ exposure, whereas pretreatment with both cur-
cumin and dexamethasone has significantly reduced infiltration of inflammatory 
cells [150]. These results are also consistent with histological analysis of mice lungs 
which revealed suppressed lung injury after curcumin pretreatment by inhibiting 
inflammatory cell infiltration to the lungs (Figs. 11.6 and 11.7).

Cytokines being signaling molecules are thought to play a critical role in patho-
genesis of ALI. In our study where animal model of ALI is induced by PQ, we sug-
gested that TNF-α plays a critical role in PQ-induced lung toxicity (Fig. 11.8). We 
found that after 48 h of PQ intoxication, TNF-α level was significantly increased as 
compared to control whereas curcumin pretreatment has significantly ameliorated 
its level [150].

Therefore, the balance of oxidant-antioxidant defense mechanism is vital for the 
treatment of ALI. It has been reported that polyunsaturated fatty acids undergo lipid 
peroxidation in presence of superoxide after PQ intoxication, and curcumin is 
known to inhibit lipid peroxidation [149]. Our results have also demonstrated sig-
nificant increase in MDA content and decrease in SOD and catalase activities which 
is consistent with the previous findings (Fig. 11.9) [150–152].
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11.7.3  Immunomodulatory Potential

Inflammation is an uncontrolled condition of activated immune responses, and 
many reports have suggested that curcumin plays a vital role in the modulation of 
immune responses. The study conducted by Srivastava et al. (2011) [144] described 
the effectiveness and regulation of immune responses by curcumin in various dis-
eases. In pathological conditions, curcumin have potential to affect both innate and 
adaptive immunity, and its anti-inflammatory action plays a vital role in the treat-
ment of immunological disorders.
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Strong evidences support potential of curcumin to modulate the function of neu-
trophils, macrophages, monocytes, B cells, T cells, and dendritic cells (DCs) [153–
155]. Several studies have evaluated that curcumin inhibits the neutrophil-mediated 
inflammatory response by affecting its activation or infiltration [156]. An indepen-
dent study [157] suggests that curcumin (40–60  mg/kg) through oral route sup-
pressed the LPS-mediated neutrophil infiltration in the liver, and they also have 
shown that the reduction of neutrophil infiltration was correlated with altered levels 
of ICAM-1 and VCAM-1, a type of adhesion molecules. In another report [158], the 
impacts of curcumin on activated neutrophils both in  vitro and in experimental 
arthritis were investigated, and they found that curcumin decreased activity of neu-
trophils by inhibiting the protein kinase C.

Curcumin (10 or 20 mg/kg, BW) administration through intraperitoneal route 
has suppressed recruitment of eosinophils and other inflammatory cells and 
decreased the level of IL-4 and IL-5  in bronchoalveolar lavage fluid along with 
expression of iNOS in lungs in a murine model of ovalbumin-induced asthma [159]. 
An independent study has also shown that curcumin can inhibit IgE-mediated aller-
gic response and the degranulation of mast cells along with inhibiting secretion of 
IL-4 and TNF-α [160]. An in vitro study has reported that curcumin (10 μM) inhib-
its immunoglobulin production from rat spleen lymphocytes [161]. An independent 
study has suggested that curcumin inhibits mitogen-induced lymphocyte prolifera-
tion at two different concentrations (0.01 and 0.05 μg/ml) [162], and another study 
reported reduced proliferation of rat thymocytes by curcumin after Con-A induction 
[163]. Some in vivo studies conducted in a mice model to check the immunomodu-
latory effects of curcumin revealed that curcumin can increase CD8+ T cells and NK 
cell populations [164, 165]. Cytotoxic T cells (CTLs) with CD8 marker play a pro-
tective role against viral-infected tumor cells; it has been found that curcumin 
exhibits antitumor activity by increasing the number of CD8+ T cells and CD4+ T 
cells in tumor-bearing animal models [166]. Therapeutic effects of curcumin were 
studied in chronic lymphocytic leukemia (CLL) patients, where a number of CD4+, 
CD8+, and NK cells were enhanced and absolute lymphocyte counts (ALC) were 
reduced [172].
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11.8  Conclusion

Airway inflammation, pulmonary hyperpermeability and oxidative stress due to 
production of ROS are major characteristics of acute lung injury and damage. So an 
ideal mouse model of PQ-induced lung injury was developed to replicate these hall-
marks of acute lung injury. After 48 h of intraperitoneal administration of PQ, mice 
were used to study inflammatory responses and oxidative stress leading to lung 
damage. Number of studies have suggested molecular mechanism of PQ toxicity 
based on production of superoxide anion and other oxygen free radicals. Numerous 
evidences suggest the roles of ROS as regulators of cell function and as a second 
messenger in intracellular signaling cascades. PQ intoxication increased the con-
centration of MDA, which suggests that this toxic dose of PQ induces lipid peroxi-
dation. We also observed elevated level of nitric oxide (NO) after PQ intoxication 
which was consistent with earlier reports, where NO was shown to play a crucial 
role in PQ-induced lung damage. More infiltration of inflammatory cells leads to 
increase in alveolar and vascular capillary permeability, and we also have observed 
enhanced BALF protein concentration as an indicator of increased pulmonary 
permeability.

Intranasal curcumin has shown better efficacy over glucocorticoid (dexametha-
sone) as it may directly target lungs and proved much better than intraperitoneal 
route. Based on these evidences, we may conclude that intranasal curcumin by 
inhibiting the oxidative stress, infiltration of inflammatory cells, and secretion of 
inflammatory cytokines could inhibit PQ-induced acute lung injury.
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Abstract
Pulmonary fibrosis (PF) is a fatal lung disorder with high mortality rate. Foreign 
bodies can easily enter into the lung, and, therefore, the lung is armed with sev-
eral defence mechanisms including antioxidants and immune systems (innate 
and adaptive immunity systems). Importantly, inflammasomes in the lungs have 
been observed to play an important role in the progression of PF. Apoptosis of 
alveolar epithelial cells (AEC) is crucial for inducing environmental and occupa-
tional contaminants such as silica and asbestos and some cancer drugs especially 
bleomycin-induced PF. In the past, PF has been believed to occur due to inflam-
mation of AECs with subsequent proliferation of fibroblasts followed by colla-
gen deposition that leads to fibrosis. However, recent research revealed that PF 
proceeds due to epithelial-fibroblast pathway in association with interstitial 
inflammation that results in collagen deposition. Notably, cell membrane- and 
mitochondria-mediated ROS generation with the involvement of inflammasomes 
play a crucial role in the pathogenesis of PF caused by environmental and occu-
pational agents like asbestos, silica and also certain drugs like bleomycin.

It has been hypothesized that initial injury by oxidants during asbestos, silica 
or bleomycin treatment targets to AECs. Upon injury to type I AECs, the types II 
AECs proliferate in the exposed basement membranes. The hyperplastic type I 
AECs die during the repair process, and the remaining cells are differentiated 
into normal type I AECs. In PF pathology by TGF-β, fibroblasts differentiated 
into myofibroblasts that secrete collagen and other fibrotic proteins. Compounds 
that target fibroblast activation and the synthesis of ECM are currently under 
evaluation for therapies of PF.
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12.1  Introduction

Fibrosis occurs due to proliferation and accumulation of connective tissue by replac-
ing normal parenchyma. Fibrosis leads to a marked deposition of exuberant ECM 
components and interstitial tissue in the epithelium and mesenchymal cells, i.e. 
myofibroblasts, the cells in between fibroblast and smooth muscle cells [1–5].

Pulmonary fibrosis is a pathologic condition that occurs due to a marked increase 
in the generation of ECM molecules in the lungs [6, 7]. To understand the mecha-
nism of PF, agents such as bleomycin, asbestos and silica are generally used in 
studies of different animal model systems [6, 7]. The pathology of PF caused by 
environmental, occupational and cancer drugs (silica, asbestos and bleomycin, 
respectively) proceed initially due to damage of the alveolar walls. Fibrotic lung 
occurs due to thickening of alveolar upon narrowing of alveolar spaces upon infil-
tration of immune cells and fibroblasts into the lung interstitium resulting in the 
production of a marked increase in collagen and fibronectin [2–4]. Myofibroblasts 
are known to be responsible for the generation of ECM, which are accumulated in 
the lung interstitium [1]. Type I myofibroblast cells take up the alveolar space for 
about 90% and elicit critical effects on gas exchange by type II cells. Type II cells 
are observed in the surroundings of alveoli, produce surfactant and serve as progeni-
tor for type I cells upon damage of the lung. The type II cells differentiate to type I 
cell in the recovery process. In the progression of PF, however, a sequence of patho-
logical changes occur starting with the deposition of fibrin into the intra-alveolar 
space followed by haemorrhage and subsequently hyperplasis of type II pneumo-
cytes [8]. The resultant deposition of excessive collagen in intra-alveolar and alveo-
lar wall spaces causes microcyst associated with epithelial cuboidalization. This is 
a common feature of the fibrotic lung, which exemplifies sustained epithelial prolif-
eration. Type II epithelial cell hyperplasia has been observed to be prominent in the 
pathogenesis of PF [8–10].

Alveolar macrophages have been suggested to start these inflammatory responses 
via NOD-like receptor (NLR family member) PYD domain-containing protein 3 
(Nalp3),  a component of the inflammasomes that along with the adaptor ASC 
(apoptosis-associated speck-like protein with a CARD) protein (PYCARD) forms a 
complex with caspase-1 for activation of IL-1β, a proinflammatory cytokine [1]. 
Nalp3 inflammasomes act as a pathogen recognition receptor (PRR), which accepts 
pathogen-associated molecular patterns (PAMPs) and detects products of damaged 
cells and subsequently triggers innate immune response [1, 11–13]. The Nalp3 
inflammasomes are also activated by changes in intracellular K+ due to its efflux via 
relevant ion channels present in the cell surface [14]. ROS-mediated regulation of 
Nalp3 is well known, albeit the underlying mechanism of such regulation is 
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currently unclear [15]. Stimulation of macrophages, for example, with silica causes 
activation of caspase-1 in a Nalp3-dependent manner [16]. Macrophages deficient 
in Nalp3 inflammasome components are unable to secrete the proinflammatory 
cytokine, interleukin-1β in response to silica, asbestos and bleomycin. Nalp3 
inflammasomes activation requires both an efflux of intracellular K+ and generation 
of ROS [14–16].

At low levels, ROS may activate antioxidant defence, but a discernible increase 
in ROS level may trigger cellular dysregulation, DNA damage, p53 activation, cell 
cycle blockade and associated apoptosis and/or necrosis. All of these have been sug-
gested to be important in the manifestation of fibrotic response [17–19].

12.2  Role of Reactive Oxygen Species

Oxidative stress causes change in cellular, molecular, tissue and organ functions due 
to increase in the generation of reactive species, especially, ROS along with a 
marked decrease in antioxidant defence [20, 21]. Lung is the most prominent target 
of oxidant generating environmental contaminants. At low levels, ROS ameliorates 
cell proliferation due to triggering of antioxidant defence; however, at higher levels, 
ROS embraces DNA damage, stimulates transcription factors and blocks cell cycle 
and cell death through pathways that regulate apoptosis and/or necrosis. Collectively, 
all of these have been suggested to be important for producing PF [1].

Several evidence suggested that ROS is a critical determinant for the progression 
of PF [1, 22, 23]. These are as follows: (i) oxidized lipid and protein like 8- isoprostane 
and carbonylated proteins, respectively, have been observed in bronchoalveolar 
lavage fluid, lung tissue and exhaled air from patients with fibrotic lung diseases; 
(ii) PF induced by cancer drugs, for example, bleomycin has been observed to be 
associated with ROS-mediated production of oxidized lipid and proteins; and (iii) a 
marked increase in oxidative DNA damage has been identified in PF of experimen-
tal animals exposed with silica, asbestos and bleomycin [22, 24].

12.3  ROS Production by NADPH Oxidase

NADPH oxidase (NOX) is one of the most important and dedicated mechanisms for 
generation of ROS of different organs of human and animals. NOX, especially 
NOX-4, is known to play a critical role in the initiation and progression of PF [25, 
26]. NOX-4 is induced by profibrotic stimulants, for example, transforming growth 
factor-β (TGF-β) has been shown to promote myofibroblast differentiation and sub-
sequently impair re-epithelialization leading to PF [27].

A marked increase in NOX-4 level was found in animals, for example, rodents 
with bleomycin-induced PF [25, 26]. A discernible increase in the expression of 
NOX-4 has been shown to contribute to the disease pathology. Using NOX-4 inhibi-
tors, attenuation of PF has been demonstrated in an animal model system [25, 26]. 
This inhibition was observed with a marked decrease in the components of ECM 
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such as fibronectin and collagen gene transcripts. Hypoxia-inducible factor (HIF), 
TGF-β, plasminogen activator inhibitor-1 (PAI-1) and NOX with the involvement of 
NOX-4 have been shown to contribute to AEC remodelling, which subsequently 
play an important role in PF. It has been observed that inhibition of NOX-4 activity 
attenuates TGF-β-mediated increase in profibrotic gene expression and subse-
quently inhibits fibroblast to myofibroblast differentiation and thereby  decreases the 
progression of PF [27–29]. Thus, targeting NOX-4 could prove useful as a therapeu-
tic measure to ameliorate PF.

NOX-4-dependent production of O2
.- and subsequent generation of other ROS 

were shown to play an important role in TGF-β-induced myofibroblast differentia-
tion and subsequently ECM production. Using siRNA or chemical inhibitors of 
NOX-4 was shown to attenuate bleomycin-induced PF in mice [26, 30]. NOX-4 
expression has also been shown to increase the production of hyperplastic epithe-
lium especially alveolar type II (AT2) cells [27]. Notably, mice lacking NOX-4 
showed protection against pulmonary inflammation-mediated by bleomycin [28–
30]. NOX-4 inhibitors have been obsered to attenuate TGF-β-induced ROS genera-
tion and AEC apoptosis [26]. Thus, NOX-4-dependent ROS production seems to be 
important for AEC apoptosis during the progression of PF (Fig. 12.1).

Fig. 12.1 Induction of ROS by environmental (silica), occupational (asbestos) and cancer drug 
(bleomycin) in TGF-β production and subsequent progression of pulmonary fibrosis
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12.4  ROS Production by Mitochondria

H2O2 generation by alveolar macrophages (AM) mitochondria was found to be 
important in producing asbestos-induced PF [31–33]. Asbestos-induced H2O2 pro-
duction in AMs has been observed to be attenuated upon knockdown of complex III, 
a major site of O2

.- generation in the electron transport chain of mitochondria [31–
33]. In mice AMs, an increase H2O2  generation by asbestos  has been observed to 
stimulate inflammation, which causes cellular injury leading to asbestosis [31–33]. 
The role of H2O2 in mediating PF has been exemplified by the fact that catalase 
gives protection against asbestosis in an animal model system [34]. Environmental 
contaminants such as silica and asbestos fibres were shown to augment ROS pro-
duction in AECs mitochondria, which in turn results in PF [34, 35].

TGF-β is known to augment production of ROS production in lung epithelial 
cells, which increases fibrotic gene expression, epithelial–mesenchymal transition 
(EMT) and myofibroblast differentiation leading to PF [36–40]. Exogenously 
expressed mitochondrial thioredoxin was shown to inhibit TGF-β caused mRNA 
expression of fibronectin and a non-histone chromosomal high mobility group 
AT-hook 2 (HMGA2), a central mediator of epithelial–mesenchymal transition- 
EMT). This has been suggested to be a crucial mechanism for TGF-β-induced gene 
expression in mitochondria [41]. Different mechanisms have been proposed for 
TGF-β-induced production of ROS by mitochondria. TGF-β was shown to induce a 
sustained production of mitochondrial ROS via a discernible decrease in the activity 
of complex IV of mitochondrial respiratory chain activity in lung epithelial cells 
[42]. In the recent past, Sundarson et al. [43] indicated that GSK-3α and -β subunits 
phosphorylation could contribute to the inhibition of the complex, which augments 
ROS production in mitochondria during stimulation with TGF-β. Notably, Jain et al. 
[44] have demonstrated that an increase in TGF-β stimulates ROS generation both 
in normal and fibrotic human lung fibroblasts by blocking complex III (electron 
transport chain of mitochondria) activity. They also observed that treatment with 
mitochondrially targeted antioxidants upon genetically disrupting the activity of the 
mitochondrial complex III attenuates the expression of profibrotic genes induced by 
TGF-β [44]; however, TGF-β could not produce any discernible change in Smad 
phosphorylation. This suggests that generation of ROS could mediate fibrogenic 
activity of TGF-β, which appears to be independent of Smad pathway [44]. It has 
also been observed that activation of mammalian target of rapamycin (mTOR) asso-
ciated with TGF-β-induced mitochondria-derived ROS generation [45].

12.5  Cross-Talk between NADPH Oxidase and Mitochondria

Cross-talk between mitochondria-generated ROS and cell membrane NADPH 
oxidase- mediated ROS generation play a major role in lung epithelial cells. 
Mitochondria-derived ROS contributes to significant increase in the expression and 
activation of NOX-4 under agonists, for example, TGF-β triggered condition [46]. 
A marked increase in the expression of NOX-4 has been observed in mice 
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mitochondria. Abrogation of NOX-4 expression by its siRNA attenuates ROS level 
in mitochondria, which has been shown to be reversed by NOX-4 siRNA [46]. This 
indicates that a relationship exists between mitochondria-generated ROS and NOX- 
4- generated ROS, and that together plays an important role for augmentation of 
oxidative stress during ageing [47]. TGF-β caused increase in the expression of 
profibrogenic proteins such as α-SMA and CTGF, which have been shown to occur 
via stimulation of mitochondria, derived ROS.  Antioxidants can be targeted to 
inhibit the expression of profibrotic genes and also expression of NOX-4 induced by 
TGF-β [48–51]. Thus, an interaction between mitochondria and NOX-4 during 
exposure of lungs with environmental and occupational agents, such as silica and 
asbestos, and some cancer  drugs e.g. bleomycin plays a critical role in TGF-β- 
induced production of PF (Fig. 12.1).

12.6  Silocosis and Asbestosis

Airborne silica particles and asbestos fibres are implicated for PF especially for 
workers of different occupations such as mining, construction, manufacturing and 
farming. Inhalation of these particles triggers the pathogenesis associated with the 
chronic interstitial lung diseases, silicosis and asbestosis [52, 53]. IL-1β produced 
by alveolar macrophages (AMs) is known to be involved in the initiation of silica- 
or asbestos-induced inflammatory responses [33, 54].

Prolonged exposure to silica and asbestos induces inflammation and subse-
quently progression of PF, which has been exemplified by prolonged leukocyte 
infiltration with eventual proliferation of fibroblasts, and subsequently collagen 
deposition. AMs are known to respond to stimuli during initial inflammatory 
responses. Exposure of silica and asbestos to lung causes macrophages to undergo 
apoptosis due to the production of ROS, which include SOD, OH.- and ONOO− [55, 
56]. Generation of ROS eventually causes lung damage via increase in the expres-
sion of inflammatory cytokines like IL-1β, TGF-β and TNF-α. These cytokines acti-
vate signalling pathways mediated by isoform-specific PKC, MAPK and 
transcription factors (e.g. NF-κB), which trigger inflammation and thereby cause 
proliferation of pulmonary fibroblasts with a marked increase in the production of 
collagen [1, 57, 58]. This eventually leads to the formation of lung granulomas. 
Silicosis and asbestosis reduce normal functions of the lung and are of current major 
global health concern [57, 58].

12.7  ROS and DNA Damage in PF

ROS dose-dependently activates the transcription factor, p53, which modulates 
expression of downstream target genes involved in DNA damage by increasing 
DNA repair thereby inhibiting the progression of PF [1].

Oxidative injury to mtDNA is important in driving ROS induced PF. Oxidative 
stress mediated by asbestos, silica and bleomycin predominantly activates mtOgg1 
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rather than nuclear Ogg1 [59] in order to attenuate mitochondrial DNA damage in 
lung mesothelial cells [60]. Ogg1 is a DNA glycosylase enzyme that is important 
for base excision repair. Ogg1 is known to be involved in the excision of the mura-
genic base byproduct, 8-oxoguanine (8-Oxo-G), that results from ROS exposure 
[61]. The bifunctional glycosylase, Ogg1, can cleave the glycosidic bond of the 
mutagenic lesion and also causes strand break in the DNA backbone. The activity of 
Ogg1in mitochondria is threefold higher compared to the nucleus. MtOgg1 overex-
pression regulates AEC upon exposure of agents like silica and asbestos [62, 63].

Aconitase (ACO2), involved in the formation of isocitrate from citrate in mito-
chondrial TCA cycle, can be inactivated by O2

.- and that has been obsered to be 
prevented by Mn-SOD [64, 65]. Overexpression of mtOgg1 and ACO2 has been 
shown to inhibit mtDNA damage that occurs under oxidative stress. Several evi-
dence suggest association between p53, ACO2 and Ogg1 in ROS-mediated DNA 
damage and associated signalling. Importantly, P53 regulates the transcription of 
the Ogg1 gene. Ogg1 decreases oxidative stress-mediated fibroblast apoptosis 
through p53-dependent signalling in lungs of mitochondria during exposure to 
asbestos and silica [66]. The significance of ACO2 transcription in maintaining the 
integrity of mtDNA and subsequent attenuation of PF is currently unknown and 
requires further investigation. Ogg1 and ACO2 along with p53 have been suggested 
to play a crucial role in mtDNA maintenance.

12.8  Antioxidant Defence Mechanisms

Lungs express a myriad of antioxidants to attenuate oxidative stress. Inhibition of 
antioxidant defence may occur due to excessive generation of ROS, which aug-
ments PF. The primary lung antioxidant defence that plays a role in ameliorating PF 
includes the enzymes: glutathione peroxidase, SOD and catalase in addition to the 
transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) that regulates 
generation of antioxidant enzymes [1]. Intratracheal administration of catalase in 
asbestos-treated mice can prevent PF by attenuating H2O2 generation via Rac-1 in 
inflammatory cells [67]. In a rodent model, the antifibrotic role of the GSH precur-
sor, N-acetylcysteine (NAC), has been observed in rodent models where NAC aug-
ments the level of GSH and inhibit bleomycin-mediated PF [68, 69]. NAC has been 
shown to dramatically decrease PF upon decreasing ROS formation [70]. In a mouse 
model, it has been observed that an increase in the activity of catalase (CAT) is 
associated with a marked decrease in PF [71]. Thus, increase in the expression of 
endogenous antioxidants, which appears to be a novel therapeutic approach to ame-
liorate PF [72].

Available evidence suggest that endogenous antioxidant defence is based mainly 
on dietary vitamins and nutraceuticals. Antioxidants, therefore, may improve ROS- 
induced dysfunction of alveolar type II cells [1]. Therefore, development of phar-
macological agents aimed at increasing antioxidants level in the lung could prove 
useful in the treatment of PF.
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12.9  Inflammasomes

Inflammasomes, which consist multiprotein oligomers, have been shown to act as a 
molecular platform and induce production of proinflammatory cytokines, for exam-
ple, IL-1β in response to cellular stress to provide innate immune response. 
Activation of Nalp3 inflammasomes plays a critical role in many degenerative dis-
eases [58, 73].

Recent research suggest that silica and asbestos particles activate innate immu-
nity, which releases proinflammatory mediators and growth factors to target fibro-
blasts leading to initiation and progression of PF [74, 75]. Asbestos and silica 
exposures have been shown to cause production of proinflammatory cytokines like 
IL-1β, which occur in caspase-1/Nalp3 inflammasome-dependent manner [74, 75]. 
Nalp3 forms the inflammasome oligomer upon recruiting the adaptor protein, 
apoptosis- associated speck-like protein containing a caspase recruitment domain 
(ASC) and procaspase-1, which activates procaspases and cleaves pro-IL-1β into 
IL-1β and subsequently triggers inflammatory response leading to the pathogenesis 
of PF [76, 77] (Fig. 12.2).

Nalp3 inflammasome activation occurs via two-step mechanisms; the initial sig-
nal comes upon stimulation of Toll-like receptors (TLRs), which enhances Nalp3 
expression and subsequently activates pro-IL-1β via NF-κB-dependent manner 
[14]. TLR belongs to a family of pattern recognition receptors (PRRs) that elicit a 

Fig. 12.2 Environmental (silica), occupational (asbestos) and cancer drug (bleomycin)-induced 
oxidative stress-mediated IL-1β production and subsequent progression of pulmonary fibrosis
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critical role in inflammasome-mediated innate immune response to determine 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs). Members of the TLR family use myeloid differentiation primary 
response 88 (MYD88), a key adaptor molecule that recruits IL-1β receptor- 
associated kinases (IRKs) for downstream signalling events leading to the activation 
of NF-κB [78–80] (Fig. 12.2).

AMs, the predominant immune cells in the lung, enter into the lung parenchyma 
and mediate inflammation upon releasing IL-1β to elicit inflammatory responses 
[81]. Nalp3 inflammasome is known to mediate IL-1β production [82]. IL-1β binds 
to its receptor and recruits MyD88. MyD88 then phosphorylate the IL-1β associated 
kinases 1–4 (IRAK 1–4) leading to activation of IKK with consequent inactivation 
of IкB. This leads to stimulation of the transcription factor, NF-kB [3, 83, 84, 85], 
followed by upregulation of IL-1β RNA expression. The role of IL-1β has been 
exemplified by the fact that exogenous IL-1β augments lung inflammation followed 
by remodelling of lung tissues for the progression of PF [85, 86] (Fig. 12.2).

MyD88 signalling mechanism occurs in response to mobilization of silica parti-
cles in the lung for (i) granuloma formation, (ii) inflammatory response associated 
with Th17-mediated inflammatory processes, and (iii) neutrophil accumulation. Th 
lymphocytes play an important role in the progression of neutrophilic granulomatous- 
mediated silicosis [87]. Notably, Thlymphocytes has also been implicated in elas-
tase –mediated cigarette smoke, bleomycin, inorganic dusts induced inflammatory 
lung diseases [88, 89] (Fig. 12.2).

MyD88 is associated with activation of mitogen-activated protein kinases 
(MAPKs) [90]. MyD88 plays a critical role in the progression of silica- and asbestos- 
induced inflammation and granulomas. TNF-α upon activation of innate immune 
cells plays a crucial role in the progression of silicosis and asbestosis. Silica- and 
asbestos-mediated lung inflammation and subsequent granuloma formation were 
reduced by administration of inhibitors of TNF-α receptors [23, 91]. Repeated trig-
gering of innate immune response upon exposure with LPS can amplify silica- 
induced granulomatous response in a mice model system [92] (Fig. 12.2).

A large number of stimuli have been observed to activate the Nalp3 inflamma-
somes [93]. Importantly, efflux of cellular K+ seems to be a common point where 
these stimuli induce Nalp3-mediated activation of caspases [94]. K+ efflux upon 
P2X7 purinergic receptor activation is currently considered to be an important sig-
nalling pathway for activation of Nalp3 inflammasomes [95]. An increase in extra-
cellular K+ has been observed to significantly inhibit silica-induced IL-1β production 
from macrophage. Additionally, an increase in extracellular K+ has also been shown 
to inhibit IL-1β production, which is dependent on Nalp3 inflammasome [94–96]. 
Notably, silica and asbestos require cellular K efflux to activate caspase-1 [93, 97]. 
Overall, depletion of cytosolic K leads to Nalp3 inflammasomes activation, which 
stimulates caspase-1 with subsequent production of IL-1β leading to PF (Fig. 12.2).

Another mechanism of Nalp3 inflammasomes activation is associated with the 
actions of lysosomal enzymes stimulated, for example, by silica, which is relatively 
big in size and difficult to get entry in to lysosomes. This causes incomplete (abor-
tive) phagocytosis of crystals of silica and asbestos fibres leading to lysosome 
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swelling and rupture and subsequently releases cathepsins for activation of Nalp3 
inflammasomes [98].

The implication of intracellular Ca2+ ([Ca2+]i) signalling in Nalp3 inflammasome 
activation has been exemplified by Brough et al. [99, 100], who observed a marked 
decrease in IL-1β using BAPTA-AM (Ca2+ chelator) in ATP triggered murine mac-
rophages [100]. A marked increase in [Ca2+]i has been shown to augment production 
of mitochondrial ROS (mtROS) generation, which subsequently cause damage to 
the mitochondria [101, 102]. Thus, mitochondrial dysfunction due to high [Ca2+]i 
levels may trigger Nalp3 inflammasome activation [103, 104]. Importantly, block-
ing mitochondrial Ca2+ uniporter has been shown to prevent not only accumulation 
of mitochondrial Ca2+ but also IL-1β production [105, 106]. In neutrophils and mac-
rophages, Nalp3 can be rapidly deubiquitinated under different stimulations, while 
pretreatment of deubiquitinase inhibitors has been observed to decrease caspase-1 
activity and IL-1β production via disruption in the assembly of NAlp3 inflamma-
somes [107, 108] (Fig. 12.2).

Receptors for P2X subfamily of purinergic receptors play a critical role in the 
production of cytokines in AMs, which is induced by extracellular ATP upon stimu-
lation of the assembly of Nalp3 inflammasomes and caspase-1-dependent genera-
tion of IL-1β and IL-18 [109] (Fig. 12.2).

12.10  Innate Immunity, Inflammation and PF

Th1- and Th2-mediated activation of cytokines was suggested to be important for 
inflammation and fibrosis. T cells are known to be the key player in the pathogenesis 
of silicosis and asbestosis [110, 111]. T cell influx into the lungs has been observed 
to play an important role in the immune response to silica and asbestos [110, 111]. 
However, T cell genetically abrogated mice elicit inflammation associated lung 
injury upon concomitant increase in neutrophil response to silica, asbestos and 
bleomycin with a marked increase in collagen deposition leading to PF [111–113]. 
This observation was supported by Helene et al. [114], who demonstrated that in 
bleomycin-induced PF, involvement of T cells is not essential, indicating that innate 
immunity is not the only requirement for the pathogenesis of PF. Thus, inflamma-
tion leading to PF by silica and asbestos exhibits separate pathways, which require 
activation of immunological responsiveness. Silica- and asbestos-mediated lung 
inflammatory response is associated with MyD88-dependent innate immunity. 
Therapeutic strategies are currently aimed at dissociating inflammation from this 
pathway and to link it with T cell-mediated immunosuppression, a new concept to 
manage PF of asbestosis and silicotic patients [87, 114].

NK cells in the lungs play an important role during silica exposure. Initial inter-
action between silica and phagocytic cells trigger functional alterations of NK cells 
[115]. However, the exact role of NK cells in PF induced by silica, asbestos and 
bleomycin remains to be determined.

NF-κB is known to play a pivotal role in altering the inflammatory cytokine pro-
duction owing to ROS production especially in macrophages, for example, silica, 
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and subsequently inhibits the pathogenesis of PF [85]. A large number of researches 
implicated involvement of PI3K/Akt signalling components as upstream activator 
of NF-κB signalling cascade [116, 117]. PI3K-dependent activation of Akt may 
promote the transcriptional activity of NF-κB by increasing the degradation of IKK 
and phosphorylation of NF-κB/p65. P-AktSer473 and also the NF-κB/p65 levels 
were enhanced during the progression of silica- and asbestos-induced PF 
[118–120].

12.11  Proteases and Pulmonary Fibrosis

Uncontrolled activation of proteases has been suggested to be associated with the 
progression of PF. In an animal model of elastase-mediated pulmonary inflamma-
tion, it has been observed that inflammation is IL-1β and Toll/IL-1 signal transduc-
tion adaptor MyD88 dependent [121]. Elastase augments IL-1β, TNF-α, 
keratinocyte-mediated secretion of chemokines and subsequent recruitment of 
neutrophils in the lung [122]. These are markedly reduced upon inhibition of Il-1β 
or MyD88. The effect produced by elastase on PF depends on activation of inflam-
masomes, which subsequently increases production of IL-1β. IL-1β, therefore, is 
currently considered as an important mediator of silica-, asbestos- and bleomycin-
induced PF and appears to be its potential therapeutic target.

An imbalance between MMPs and TIMPs has been implicated in a variety of 
lung diseases, for example, PF [123, 124]. MMPs are expressed at low levels in 
normal lung tissues, but their levels are increased upon inflammation leading to tis-
sue damage [125]. MMP-2 damages alveolar basement membrane upon solubiliz-
ing several ECM proteins such as elastin, fibronectin and type IV collagen [126], 
and assists immune cells and fibroblasts to migrate to intra-alveolar space [127]. In 
order to counter the effects of MMPs, and thereby to attenuate matrix degradation 
and enhancement of fibroblast or myofibroblasts growth for increasing deposition 
of collagen in ECM [128, 129]. Dysregulation of MMP/TIMP expression may 
cause epithelial disruption [130]. Bleomycin-induced increase in the production of 
apoptotic or damaged cells cannot be cleared from the lungs. Some of these mole-
cules play a role in activating the damage-associated molecular patterns (DAMPs) 
[131], which increases sustained inflammatory response. BLM groups augment 
mRNA and protein expression of Fas and other apoptotic proteins such as Bax and 
caspase 3. Inhibitors of caspase-1 or interleukin-1β activation or use of IL-1β recep-
tor antagonist have been shown to abrogate bleomycin-induced lung inflammation 
[78, 132] (Fig. 12.2).

Many peptides, e.g. elastin-derived peptides, are cleaved by proteases [133–135]. 
Some of the peptide fragments have chemoattractive activity and were shown to 
trigger the chemokine, CXCR2-mediated inflammation of the lung [136]. 
Additionally, CXCR3 signalling seems important for PF that is triggered by 
inflammation- induced elastase [136, 137].
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Instillation of elastase in lungs activates Nalp3/ASC inflammasomes. This acti-
vation process has been shown to be triggered mainly by two signals: The first 
proceeds upon activation of TLR or Nalp3 expression in inflammasomes, which 
leads to generation of pro-IL-1β. The second one is provided by dying cells uric 
acid, which stimulates the Nalp3-ASC inflammasomes leading to activation of cas-
pase- 1 followed by production of IL-1β [138] (Fig. 12.2).

12.12  Ageing and Pulmonary Fibrosis

Ageing is an established factor of PF [139, 140], albeit the pathogenic mechanisms 
associated with advanced ageing remain mostly unexplored. Telomeric repeat- 
containing RNA (TERRA) exhibits a type of long noncoding RNA, which plays a 
critical role in PF [141].

TERRA expression has been observed to be markedly enhanced in the peripheral 
blood mononuclear cells in patients with PF and that have been implicated as impor-
tant physiological indicators of fibrogenesis [142]. RNA interference on TERRA 
expression has been shown to ameliorate the functions of mitochondria and genes 
that are associated with telomerase reverse transcriptase, cyclin E, cyclin D, MMPs 
and members of the Bcl-2 family. Notably, inhibition of TERRA expression by its 
siRNA was shown to improve functions of the antioxidant enzymes such as catalase 
and SOD [141–143].

Chronic and progressive pneumonia may produce PF, which occurs primarily in 
adults [144]. The incidence of PF has often been observed in aged patients. Young 
individuals are normally unaffected by PF. It, therefore, appears conceivable that a 
correlation probably exists between age and the disease. ROS abrogates oxidant- 
antioxidant balance in tissues and that has been suggested to play a critical role 
during ageing. López-Otín et al. [145] have observed a positive correlation between 
telomeres shortening and associated epigenetic changes that cause mitochondrial 
dysfunction and subsequently contribute to age-related PF. Understanding the regu-
latory function of TERRA may be of significance to identify therapeutic target(s) 
that could prove useful in the treatment of age-associated PF.

12.13  Bleomycin-Induced PF

Bleomycin is commonly used for the treatment of different types of cancers. 
However, bleomycin treatment causes unwanted deleterious side effects and the 
most prominent of which is PF. Using proteomic approach, annexin A2 (ANXA2) 
has been identified as a target of bleomycin-induced PF. In a mice model, genetic 
depletion of ANXA2 has been shown to mitigate bleomycin-induced PF [146].

Glu139 (E139) of ANXA2 has been observed to be important for the binding of 
bleomycin in lung epithelial cells. In lung epithelial cells, ANXA2E139A mutation 
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produced by a CRISPR-Cas9 technique attenuates bleomycin caused activation of 
transcription factor EB (TFEB), a prime regulator of autophagy, leading to a marked 
acceleration of autophagic flux in pulmonary epithelial cells [147, 148]. This subse-
quently attenuates apoptosis of the proliferative epithelial cells and eventually ame-
liorates PF. Importantly, a decrease in TFEB level was observed in human PF tissues 
compared to normal condition indicating an important role for TFEB- mediated 
autophagy in PF [147, 148]. ANXA2, therefore, is considered to be the target of 
bleomycin binding with ANXA2, which impedes TFEB-induced autophagic flux 
and subsequently PF [147, 148].

ROS increases expression of profibrotic genes such as α-SMA and type1 colla-
gen [1]. In vitro silencing of Nalp3 attenuates IκBα degradation and, thereby, 
decreases the synthesis of type I collagen [149]. Nalp3 inflammasomes were acti-
vated by bleomycin, and this activation was relieved by an inhibitor of nuclear fac-
tor NF-κB [150]. Thus, Nalp3 inflammasome is involved in bleomycin-induced 
ROS-mediated type 1 collagen synthesis, which is mediated by the NF-κB signal-
ling pathway and contributes to the development of PF.

12.14  Therapeutics

12.14.1  Sirtuin 3 as Regulator of Mitochondrial Antioxidant 
Response

ROS has been shown to cause alveolar epithelial cell injury mainly due to increase 
in fibroblast-myofibroblast differentiation (FMD), which is one of the critical steps 
for the pathogenesis of PF [151]. Expression of sirtuin 3 (SIRT3), a regulator of 
antioxidant response, has been observed to be reduced in human lung fibroblasts in 
response to TGF-β [152]. A marked decrease in SIRT5 (a mitochondrial deacylase) 
was shown to promote acetylation (inactivation) of mitochondrial stress response 
enzymes, for example, SOD. Decrease in SIRT3 level in fibroblast of human lung 
has been shown to promote FMD.  However, overexpression of SIRT3 has been 
observed to attenuate TGF-β-induced FMD and SMAD3 expression [152, 153]. 
Administration of resveratrol has been shown to stimulate SIRT3 expression and 
also inhibits SIRT3 acetylation induced by TGF-β. Mice deficient in SIRT3 have 
been observed to be susceptible to mice with PF and elicit a marked increase in 
SMAD3 expression. Recent research demonstrated that interaction between SIRT3 
with TGF-β during ageing elicits a prominent role in PF pathogenesis [153].

12.14.2  Role of Fasudil

PF is mediated by several routes under oxidative stress, which include inflamma-
tion, epithelial-mesenchymal transition and coagulation processes. The effector of 
RhoA, the Rho-kinase (ROCK), could imply different biochemical routes, which 
contribute to the initiation of PF. Fasudil, a selective ROCK inhibitor, has recently 
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been successfully tested in mice to ameliorate PF caused by bleomycin [154]. In the 
lung of bleomycin-treated mouse, hydroxyproline content decreases in response to 
fasudil treatment. This may be one of the mechanisms by which fasudil attenuates 
bleomycin induced infiltration of inflammatory cells in bronchoalveolar lavage fluid 
(BALF) [154]. Fasudil has also been shown to reduce bleomycin-mediated increase 
in mRNA and protein expression of TGF- β, α-SMA and PAI-1. [155]. Thus, fasudil 
could prove useful for treatment of PF.

12.14.3  Role of Salidroside

Bleomycin (BLM) application is experimental animals, e.g. rat elicited a prominent 
stimulation in the production of malonaldehyde (MDA) in lung tissues, which was 
inhibited by salidroside. In addition to MDA production, BLM-induced oxidative 
injury was shown to attenuate levels of antioxidants such as SOD, GSH and GSH-Px 
in the lung [156]. However, upon administration of salidroside, the levels of these 
antioxidants were restored to basal level, indicating the efficacy of salidroside for 
clinical use in PF [157].

12.14.4  Role of Corilagin

In bleomycin-treated mice lung, MDA, NF-κB, IKKα, TNF-α and IL-1β expression 
have been observed to be increased, albeit a marked decrease in the I-κB expression 
was noticed. These effects of bleomycin were reduced by corilagin [158]. Corilagin 
has also been shown to inhibit TGF-β and α-SMA expression in lung tissue, thereby 
attenuates BLM-induced oxidative stress-mediated lung epithelial cell injury and 
fibrosis of lung due to inhibition in the release of proinflammatory cytokines and 
concomitant signalling of NF-κB and TGF-β [159]. Corilagin has recently been 
considered as a potential therapeutic agent to attenuate PF [158].

12.14.5  Role of Fluofenidone

Fluofenidone (FD) has been demonstrated to abrogate asbestos- and silica-induced 
accumulation of ROS.  It inhibits the interaction of Nalp3 inflammasome-associated 
molecules and decreases caspase-1 and IL-1β levels in THP-1  in lungs of mice 
[160]. FD was shown to inhibit NF-кB-mediated nuclear transcription instead of 
IKKα or IkB-α phosphorylation, the upstream signals for translocation of NF-κB to 
the nucleus. Importantly, FD attenuates bleomycin caused inflammation and fibro-
sis of lung by inhibiting the IL-1β/IL-1βR/MyD88/NF-kB signalling pathway [147, 
148]. However, the exact target of FD on component(s) in the pathway is currently 
unknown and needs further exploration.
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12.14.6  Role of Oleanolic Acid

Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid; OA), a pentacyclic terpenoid, 
is present in vegetable oil, food and certain medicinal herbs as free acid, or an agly-
cone of triterpenoid saponins. OA has the ability to reverse the oxidant/antioxidant 
balance, and also can decrease production of cytokines and collagen in lung by 
modulating AKT/NF-κB signalling pathway in silica-induced PF [161].

PI3K/Akt pathway is a proximal inducer of NF-κB signalling cascade [117]. 
Upon activation, AKT promotes transcription of NF-κB by enhancing the degrada-
tion of IKB upon NF-κB/p65 phosphorylation. OA attenuates the stimulation and 
translocation of NF-κB to the nucleus, thereby inhibiting agonists such as silica- 
and asbestos-induced inflammatory response [162, 163]. The levels of phosphory-
lated Akt and NF-κB/p65 were found to be increased in silica-induced PF in rats OA 
treatment has been observed to attenuate the phosphorylation of AKT and decreases 
the level of NF-κB/p65 [163, 164]. OA inhibits pulmonary inflammation and fibro-
sis, conceivably by altering AKT/NF-κB signalling mechanism. This indicates that 
inhibition of NF-kB activation with OA decreases the severity of PF caused by 
agents such as silica and asbestos [164].

12.15  Conclusion and Future Direction

8-Oxoguanine DNA glycosylase (Ogg1), mitochondrial aconitase (ACO2) and the 
transcription factors like NF-κB were shown to play a critical role in silica-, asbes-
tos- and BLM-induced ROS-mediated mitochondrial DNA (mtDNA) repair mecha-
nism. The association of oxidative stress with environmental (silica and asbestos) 
and cancer drugs (bleomycin) induced ROS generation of TGF-β and IL-1β and 
subsequent initiation and progression of PF have also been delineated in this review 
(Figs. 12.1 and 12.2).

The role of ROS in mitochondrial dysfunction due mainly to mtDNA damage 
and cross-talk between AECs and AMs in the progression of PF induced by the 
environmental and occupational  agents,  and cancer drugs have also been briefly 
portrayed in this review.

A mere imbalance between ROS levels and antioxidant defences does not explic-
itly depict the multiple independent pathways involved in the pathogenesis of 
PF. Mitochondria- and p53-associated mechanisms and also the ER stress-mediated 
AEC apoptosis have been observed to play a crucial role during the early stages of 
the initiation of PF by asbestos, silica and bleomycin. Cross-talk among mtOgg1, 
ACO2 and p53 to repair mitochondrial DNA damage induced  by the environmental 
occupational agents, and cancer drugs to modulate PF of a variety of signaling path-
ways require further investigation.

Although extensive researches have been performed to gain insights into the 
mechanisms of PF, our current understanding of its pathogenesis is limited. Several 
key questions remain to be addressed. Future studies need to focus on prognostic 
significance of common complications of PF and the risk factors (biochemical, 
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clinical and genetic) for the development of PF. Mechanisms of the therapies involv-
ing steroids and anticoagulants in ameliorating PF require thorough investigations. 
Understanding of the epidemiology of this condition seems important to design 
future drug trials for treatment of PF. Till date no definitive therapy for PF has, 
however, been available. Considering our current knowledge on ROS induced PF, 
this article enumerates novel insights that may be considered for the development of 
therapeutic strategies to ameliorate PF.

Studies on the correlation of the mechanisms associated with the pathobiology of 
ARDS and PF seem important because it is possible that similar biochemical mech-
anism underlie their pathogenic processes. Conceivably, development of therapies 
targeting patients with ARDS could prove useful for treatment of PF.
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Abstract
Respiratory viral infections remain the major cause of severe lower respiratory 
tract disease in both children and adults worldwide. Respiratory syncytial virus 
(RSV) is a negative-sense single-stranded RNA virus of the family Pneumoviridae, 
which is responsible for acute lower respiratory tract infections (LRTI) in chil-
dren and is a major cause of severe respiratory morbidity and mortality in the 
elderly and immunocompromised. These LRTI in young children are often char-
acterized by wheezing and are defined as “bronchiolitis.” RSV bronchiolitis in 
infancy is strongly associated with the subsequent development of asthma and 
other forms of bronchial disease. Currently, there is no effective vaccine or spe-
cific therapy available for RSV infection, and natural immunity is inadequate, 
resulting in reinfections through adulthood. The high risk of recurrence and mor-
tality rates of respiratory viral infections in young children and the elderly 
explains the importance for continuing efforts to understand the pathogenesis of 
respiratory virus-induced lung inflammation in order to design better therapeutic 
strategies. Lung epithelial cells are the major targets of RSV infection and play a 
central role in orchestrating the response to oxidative stress. Although the patho-
genic mechanisms of RSV-induced acute airway disease and associated long- 
term consequences are still unclear, experimental evidence suggests that early 
inflammatory and immune events in the lung play a fundamental role in the out-
come of the disease. Moreover, oxidative stress plays an important role in the 
pathogenesis of many inflammatory lung diseases including asthma and chronic 
obstructive pulmonary disease. Studies have shown that the oxidative stress 
response in the airways, which results from an imbalance between reactive oxy-
gen species (ROS) production and lung antioxidant defenses, plays a major role 
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in the pathogenesis of RSV-associated lung inflammatory disease as RSV induces 
excess oxidant production and inhibits antioxidant enzymes expression. Studies 
have also demonstrated the role of ROS as important intracellular messengers of 
RSV-induced cellular signaling leading to the expression of key proinflamma-
tory mediators, such as cytokines and chemokines. This chapter reviews the vari-
ous mechanisms of RSV-induced oxidative stress and associated pathogenicity. 
Specifically, we will focus on recent studies demonstrating the role of ROS as 
important regulators of respiratory virus-induced cellular signaling and inflam-
matory responses induced as a result of RSV-induced oxidative stress.

Keywords
RSV · Human airway epithelial cells · Oxidative stress · Reactive oxygen species 
· Oxidants · Antioxidants · Antioxidant enzymes · Cellular signaling · Inflammation 
· TLR · RAGE · NF-κB · MAPK · STAT · IRF · Monocytes · Macrophages · 
Eosinophils · Dendritic cells

Abbreviations

4-HNE 4-hydrynonenal
AECs airway epithelial cells
AMs alveolar macrophages
AOE antioxidant enzymes
AP-1 activator protein-1
ARE antioxidant response element
BHA butylated hydroxyanisole
bZIP basic-leucine-zipper
CF cystic fibrosis
CNC cap-n-collar
COPD chronic obstructive pulmonary disease
DCFDA 2′,7′-dichlorodihydrofluorescein diacetate
DCs dendritic cells
DHE dihydroethidium
DNA deoxyribonucleic acid
DUOX dual oxidase
eNOS endothelial type nitric oxide synthase
ERK 1/2 extracellular signal-regulated kinase 1/2
GPx glutathione peroxidase
GSH reduced glutathione
GSSG oxidized glutathione
GST glutathione S-transferase
H2O2 hydrogen peroxide
HIF hypoxia-inducible factor
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HIV human immunodeficiency virus
HPLC high performance liquid chromatography
IFN interferon
IL interleukins
iNOS inducible type nitric oxide synthase
IRF interferon-regulatory factor
Keap 1 kelch-like ECH-associated protein 1
LRTI lower respiratory tract infections
MAPK mitogen-activated protein kinase
MDA malondialdehyde
MDA-5 melanoma differentiation antigen-5
Mn manganese
MSK1 mitogen- and stress-activated protein kinase 1
MΦs macrophages
N2O3 dinitrogen trioxide
N2O4 dinitrogen tetroxide
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor-kappa B
nNOS neuronal type nitric oxide synthase
NO. nitric oxide radical
NO2

- nitrite
NO2 nitrogen dioxide
NO3 nitrate
NOS nitric oxide synthase
NOX NADPH-oxidase
NQO1 NAD(P)H:quinone oxidoreductase
Nrfs nuclear factor (NF)-E2-related transcription factors
O.2

- superoxide ion radical
OH. hydroxyl radical
ONOO- peroxynitrite
P13K phosphatidylinositol 3-kinases
pDCs plasmacytoid DCs
PRR pattern recognition receptors
RIG-I RNA helicases, retinoic acid-inducible gene-I
RNA ribonucleic acid
RNS reactive nitrogen species
RO. alkoxyl radicals
ROO. peroxyl
ROS reactive oxygen species
RSV respiratory syncytial virus
SOD superoxide dismutases
STAT signal transducer and activator of transcription
TLR Toll-like receptor
TNFα tumor necrosis factor α
XO xanthine oxidase
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13.1  Introduction

Respiratory viral infections are the most common causes of wheezing illness in both 
children and adults and are also associated with asthma exacerbations in patients 
with preexisting lung inflammatory diseases ( [1, 2]). Bronchiolitis is a major clini-
cal syndrome in hospitalized infants, accounting for up to 60% of all lower respira-
tory tract infections (LRTI) during the first year of life and is primarily associated 
with infections that are caused by respiratory syncytial virus (RSV). In a screen for 
viral and atypical bacterial respiratory pathogens, RSV was the most prevalent 
(43.3%) as it was found to infect young children below 5 years of age with acute 
respiratory infection, as well as being an extremely common agent (44.1%) in cases 
of co-infection with two or more pathogens in the same cohort [3]. RSV presents a 
unique challenge to epidemiologists as it exhibits distinct infection and disease pat-
terns compared to other respiratory viral pathogens. High-risk groups for severe 
RSV infection include: infants with a history of premature birth, children with con-
genital heart disease, cystic fibrosis (CF), or other chronic lung diseases; immuno-
compromised patients or those with congenital immunodeficiencies; and the elderly. 
Currently, no efficacious vaccine or specific therapy available for RSV infection and 
natural immunity is inadequate, resulting in repeated infections throughout life [4].

Airway epithelial cells (AECs) are the major targets of RSV infection. Initially, 
virus replicates in nasal epithelial cells but will spread to epithelial cells of the lower 
airways, where it activates and modulates several signaling cascades to control the 
host immune and inflammatory response, including cellular oxidant and antioxidant 
pathways. These pathways regulate expression of a variety of transcription factors, 
proinflammatory mediators, activate the adaptive immune response for virus clear-
ance, and facilitate the clinical features of the disease. Although the molecular 
mechanisms of RSV-induced acute lung disease are not fully understood, experi-
mental evidence suggests that early lung inflammatory and immune responses play 
a central role in the outcome of the disease.

This chapter will comprehensively discuss the impact of RSV disease, clinical 
aspects of the RSV, cellular responses to RSV infection, the role of ROS in RSV 
pathogenesis and associated cellular signaling pathways, and the oxidant/antioxi-
dant response to RSV infection.

13.2  Respiratory Syncytial Virus (RSV): A Major Human 
Pathogen

13.2.1  Clinical Features of RSV Infection, Common Risk Factors, 
and Its Impact

RSV, also called human Orthopneumovirus, is an enveloped, anti-sense, single- 
stranded RNA virus of the Pneumoviridae family (Orthopneumovirus genus and 
Mononegavirales order). The RSV genome is about 15.2 kb and possesses 10 genes 
that encode for 11 proteins [5–7]. In 1956, RSV was first isolated from a 
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chimpanzee with common-cold-like illness and was then recovered from young 
children with severe lower respiratory tract disease [8]. Since its isolation, RSV has 
been identified as a leading cause of epidemic LRTI and is responsible for most 
hospital visits during infancy and childhood throughout the world [4, 9, 10]. There 
are two subtypes of RSV, type A and B, which differ in the envelope proteins pres-
ent on the viral shell. Both subtypes are infectious, with some evidence that type A 
is the more common cause of severe RSV infections [11–13].

RSV accounts for ~64  million clinical infections and ~160 thousand deaths 
annually worldwide as estimated by the World Health Organization [14] and is 
responsible for the hospitalization of >200,000 individuals and the deaths of 4500 
children every year in the USA alone [15]. RSV infection is most common in infants 
and young children, with nearly all children being infected by age three. It is the 
most common etiologic agent that cause severe bronchiolitis, a clinical syndrome 
characterized by wheezing, dyspnea, respiratory distress, and radiological evidence 
of hyperaeration of the lung [16]. About 30–40% of adults exposed to RSV infec-
tions will develop a spectrum of respiratory tract diseases ranging from a common 
cold to otitis media and to pneumonia with wheezing. RSV infections are also 
linked to the development and severity of asthma. Recurrent respiratory symptoms 
are observed in ~30% of children hospitalized for acute bronchiolitis in consistent 
with airway hyperreactivity in the years following infection, and RSV bronchiolitis 
has been proved to be the dominant risk factor for the development of asthma [17, 
18]. Moreover, recurrent incidents of wheezing in asthmatic subjects are often pre-
cipitated by RSV infections. In addition to the clinical and epidemiological relation-
ship between bronchiolitis in infancy and asthma later in life, the two diseases are 
also linked by the histopathologic findings of profound inflammation of the airway 
mucosa. Surprisingly, viral antigen has been found in only a small amount and 
patchy in distribution in autopsy samples from patients with RSV bronchiolitis [19]. 
These findings suggested that other secondary pathogenic mechanisms are respon-
sible for the damage of the airway mucosa observed in RSV bronchiolitis. Although 
the pathogenic mechanisms underlying the severity of RSV bronchiolitis are 
unknown, studies have shown that excessive oxidative responses in the lung play a 
central role.

13.2.2  High-Risk Population of RSV Infections

RSV infections often manifest as a mild cold in healthy adults but can cause serious 
illness in the infant population. The severity of the disease is influenced by environ-
mental and genetic modifiers, including passive smoke exposure, day care atten-
dance, the presence of school-aged siblings, and birth within 6  months of RSV 
season. Young children and the elderly population are highly susceptible to RSV 
infection. Children with immunosuppression due to transplant are particularly at 
high risk for RSV related complications. Children with immature lungs, as in pre-
mature infants, are at higher risk for LRTI. Children with CF are more susceptible 
to RSV infection and greater incidence of hospitalization because the CF mutation 
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results in impaired immune function that inhibits inducible nitric oxide synthase 
(iNOS) expression [20]. Rates of RSV hospitalizations and significant morbidity 
and mortality are much higher in infants and children with congenital heart disease, 
bronchopulmonary dysplasia, and asthma [21–24], as well as in adults with under-
lying cardiopulmonary diseases [14, 25, 26], and immunocompromised adults 
receiving organ transplantation, including heart transplants.

13.2.3  Treatment of RSV Infections

The treatment of RSV infection is mainly symptomatic, except in high-risk infants, 
the elderly, and immunocompromised individuals [27]. The supplemental oxygen 
administration to maintain oxygen saturations of ≥93% and the replacement of fluid 
deficits are sufficiently effective for infants hospitalized with severe RSV infection. 
Treatment of RSV infection with bronchodilators such as albuterol and epinephrine, 
and corticosteroids including dexamethasone, prednisolone, methylprednisolone, 
and hydrocortisone are ineffective in reducing the rate of hospitalization when 
administered to outpatients and in shortening the length of hospitalization among 
inpatients. Apart from Synagis (palivizumab), a monoclonal antibody specific for the 
F protein of both subtypes of RSV, and Ribavirin, the only antiviral drug approved 
for the treatment of serious lung infections caused by RSV, there are no potential 
vaccines available to prevent RSV infections [28–30]. In children born with heart 
problems, Synagis was associated with low blood oxygen levels and abnormal heart 
rhythms. Use of Ribavirin is restricted to high-risk or severely ill infants, and its use 
has been limited by its cost, toxicity, variable efficacy, and tendency to generate 
resistant viruses [28, 31]. As shown by the studies with RSV, administration of 
immune globulin, humanized monoclonal antibody, or antiviral agents alone are 
unlikely to be of benefit in post-infectious treatment, despite their efficacy when used 
in prophylaxis regimens [32]. Thus, despite the fact that a specific antiviral therapy 
for RSV is currently not available, the current belief is that such an approach alone 
would not be sufficient to treat RSV bronchiolitis. The current need for additional 
effective combination therapies, which include anti-RSV agents and anti-inflamma-
tory or immunomodulatory agents, is well-acknowledged [33].

Several treatment approaches are being investigated targeting different proteins 
associated with the replication and/or infection processes of the virus with the 
promise to treat RSV infections. However, they are either in preclinical develop-
ment or early clinical trials, suggesting that even if successful, they will not be avail-
able for years to come. Development of vaccines for RSV infection are hindered due 
to the limited knowledge of the pathogenic mechanisms that determine the severity 
of acute LRTI caused by the virus. Studies from the formalin-inactivated vaccine 
that led to more severe disease in those exposed to natural RSV infections have 
contributed significantly to the understanding of the immune-mediated mechanisms 
responsible for the enhanced disease that occurred in a subset of the vaccinated 
infants [34, 35]. Extensive studies on RSV-mediated airway illness revealed the role 
of the host response and immunopathogenesis, either as an induced immune/

Y. M. Hosakote and K. Rayavara



303

inflammatory response in the airways or as a failing to control or stop viral replica-
tion as a result of impaired immune response. Thus, understanding the molecular 
mechanisms that control the viral-induced immune/inflammatory response is criti-
cally important to identify new therapeutic strategies to treat acute LRTI caused by 
RSV and other respiratory viruses.

13.3  Cellular Responses to RSV Infection

13.3.1  Airway Epithelial Cell Responses to RSV Infection

The respiratory epithelium is the first protective physical barrier against injurious 
inhaled stimuli and pathogens, and it represents the major target site of respiratory 
virus infections. Specifically, airway epithelial cells (AECs) are armed with 
pathogen- sensing membrane and cell-surface pattern recognition receptors (PRR), 
such as the Toll-like receptor (TLR) family and cytosolic PRRs, which include the 
RNA helicases, retinoic acid-inducible gene-I (RIG-I), and melanoma differentia-
tion antigen-5 (MDA-5), to initiate innate immune responses upon sensing the pres-
ence of viral patterns [36, 37]. After exposure to infectious agents or environmental 
toxicants, AECs has been shown to secrete a variety of molecules involved in the 
antiviral and innate immune response and play a major role in the inflammatory and 
infectious processes in the lung [38–42]. The mechanism(s) of RSV-induced acute 
airway inflammatory disease and its associated long-term consequences are largely 
unknown, but the delicate balance between immunopathology and immuno- 
protection in the airway mucosa appears to be altered by an exuberant local inflam-
matory response [43]. In this regard, RSV is considered among the most potent 
known biological stimuli for inducing the expression and/or secretion of proinflam-
matory mediators in association with evidence of oxidative “stress” (i.e., lipid per-
oxidation) [39, 40, 42]. RSV induces intracellular signals during the process of viral 
replication leading to activation of a subset of transcription factors, including 
nuclear factor-kappa B (NF-κB), interferon-regulatory factor (IRF), signal trans-
ducer and activator of transcription (STAT), and mitogen-activated protein kinase 
(MAPK) signaling cascades that regulate the expression of a number of important 
immune/inflammatory mediators [44]. Activation of these transcription factors fol-
lowing RSV infection occurs through redox-sensitive pathways [44, 45]. These 
events have been extensively demonstrated in AECs, the primary site of RSV repli-
cation, and play a central role in orchestrating the response to oxidative stress. RSV 
infection elicits severe oxidative damage to AECs by significantly inducing the pro-
duction of lipid peroxidation products/ROS [46, 47]. Also, RSV infection of human 
AECs results in a remarkable downregulation of the level of expression of several 
anti-oxidant gene products [47, 48]. Studies in experimental animal models and in 
human infants with natural infections have confirmed that many inflammatory gene 
products, as well as some that have not yet been described, are induced or upregu-
lated in the airway mucosa during RSV infection and can play a significant role in 
the pathogenesis of lung inflammation [41, 49, 50]. Conserved structural motifs 
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expressed by microbial pathogens are recognized by AECs via TLRs expressed on 
their surface. Although TLRs are expressed at low levels under normal physiologi-
cal conditions in AECs, their expression is increased under inflammatory conditions 
and during infection with pathogens [51–53]. Reports also show that A549 cells, a 
carcinoma-derived airway epithelial cell line, behave very similarly to primary 
AECs, such as human small alveolar epithelial (SAE) cells, in response to RSV 
infection and are suitable airway epithelial cell models for RSV infection [40, 54].

13.3.2  RSV Infection in Immune Cells

After the initial encounter with AECs, RSV next comes in contact with innate 
immune cells such as monocytes, alveolar macrophages (AMs), and dendritic cells 
(DCs) in the airways [55]. As blood leukocytes and respiratory tract epithelial cells 
actively contribute to inflammation during infection, the levels of proinflammatory 
mediators may be indicative of disease severity. These cells produce significant 
amounts of proinflammatory cytokines and chemokines in response to viral infec-
tion that are involved in controlling adaptive immunity by their interaction with T 
helper cells.

Monocytes, macrophages (MΦs), and DCs, which share common morphologic 
and functional features, are the major part of the first line of immune defense against 
a wide range of pathogens, including RSV, and contribute significantly to acute 
inflammation during infection [56, 57]. AMs are the predominant cell population at 
the alveolar space, and they work as major innate sentinels for pathogen recogni-
tion. AMs are required for the early immune response against RSV and promote 
viral clearance as well as control immunopathology through multiple mechanisms, 
including pathogen phagocytosis, cytokine production, direct interaction with 
helper and cytotoxic T cells, and antigen presentation [58]. Studies have shown that 
AMs and AECs respond to RSV infection distinctly in kinetics, magnitude, and 
TLR utilization. RSV induces IL-1β, IL-6, IL-8, IL-10, IL-12, and TNF-α in AMs 
[59], whereas RSV-infected AECs secrete several distinct groups of CC, CXC, and 
CX3C cytokines [40].

DCs are the major antigen-presenting cells with a low phagocytic capacity and 
their function is to process antigens and present them to T cells to promote immu-
nity to foreign antigens and secrete cytokines to regulate immune responses [56, 
60]. A lower number of blood plasmacytoid DCs (pDCs) and increased lung pDCs 
as well as induced expression of inflammatory and immunomodulatory cytokines, 
including TNF-α, IL-6, IL-1β, IL010, and IL-12p70, have been associated with 
RSV bronchiolitis [61–63]. Eosinophils are leukocytes produced in the bone mar-
row that migrate to tissues throughout the body in order to fight against infections, 
and have been shown to be activated during the acute phase of RSV LRTI and con-
tribute to antiviral immunity [64–67].

RSV infection elicits a strong systemic neutrophil response, which becomes acti-
vated during the initial pathogenesis of RSV LRTI that coincides with disease sever-
ity and viral burden [68–74]. Reduced circulating T cell counts are observed in 
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children with severe RSV illness compared to those with less severe infection [70, 
75–78], whereas during the course of RSV disease the circulating T cell counts 
increase [75, 79]. Increased circulating B cells were observed in infants with RSV 
LRTI [76, 80, 81]. RSV infection also results in reduced total systemic natural killer 
cell counts, which correlates with greater severity of infection [75, 82, 83]. Studies 
have also shown that RSV can infect basal cells and alter human airway epithelial 
differentiation [84].

13.4  Oxidative Stress and Lung Inflammation

13.4.1  Reactive Oxygen Species

Reactive oxygen species (ROS) are ubiquitous, unstable, highly reactive molecules 
derived from molecular oxygen produced during the normal cellular aerobic metab-
olism. ROS are classified into two groups: radical and non-radical. Members of the 
radical group, also called free radicals, include superoxide ion radical (O.2-), 
hydroxyl radical (OH.), nitric oxide radical (NO.), peroxyl radical (ROO.), and alk-
oxyl radical (RO.) and have at least one unpaired electron in the outer orbital and 
readily donate or accept an electron to attain stability [85–89]. The non-radical 
group includes hypochlorous acid (HClO), hydrogen peroxide (H2O2), organic per-
oxides, and aldehydes. ROS can be generated from both endogenous and exogenous 
substances. ROS toxicity depends on the presence of a “fenton catalyst,” such as 
iron ions and peroxidases, which, in the presence of O2

- and H2O2 give rise to the 
extremely reactive (OH.) radicals. ROS and particularly (OH.) can interact with a 
variety of molecules, like membrane lipids, leading to lipid peroxidation, that 
impairs membrane functions, inactivates receptors, and increases tissue perme-
ability [90]. Aldehydes including malondialdehyde (MDA) and 4-hydrynonenal 
(4-HNE) are generated during the process of lipid peroxidation and attack targets 
far from the site of the original free radical generation after they leaked from cells.

ROS formation occurs continuously in every cell during metabolic processes. 
Cellular sites for ROS generation include the mitochondria, cytochrome P-450 
metabolism, peroxisomes, microsomes, inflammatory cell activation, and various 
enzymes like cyclooxygenase, lipoxygenase, xanthine oxidase, and membrane- 
bound nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) 
(Fig. 13.1) [91]. Enhanced levels of ROS can be generated by increased activation 
of NOX (mitochondrial and plasma membrane-associated) as well as by several 
other mechanisms that induce excessive ROS production due to mitochondrial dys-
function or increased activity of the above-mentioned enzymes.

Mitochondria are the most important physiological sources of free radicals in 
living organisms and are known to generate significant amounts of ROS. ROS are 
generated as byproducts by the partial reduction of oxygen during the mitochondrial 
electron transport of aerobic respiration or by oxidation of nutrients in order to gen-
erate energy. They are also generated during the cellular response to xenobiotics, 
cytokines, bacterial invasion, and infection with certain viruses [90, 92–96]. In 
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addition to endogenous ROS, exogenous compounds like air pollutants, cigarette 
smoke, radiation, heavy metals, etc., can generate ROS that have been shown to 
modulate the expression of several genes, which highlights their role as redox regu-
lators of intracellular signaling (Fig. 13.1) [97–99]. Mitochondria are also involved 
in the generation of nitric oxide (NO.) free radicals via the nitric oxide synthase 
(NOS) reaction, which reacts with O.2- radicals to form another harmful oxidant, 
peroxynitrite (ONOO-), a potential source for OH. radical. The endoplasmic reticu-
lum is another source of ROS where resident cytochrome P-450 oxidizes unsatu-
rated fatty acids and xenobiotics such as pollutants, drugs, infectious agents, and 
toxins to generate O.2

- and H2O2. The xanthine oxidase (XO) is a form of xanthine 
oxidoreductase enzyme that catalyzes the reaction of NO with O.2- leading to the 
generation of highly reactive ONOO-. ROS are also generated as byproducts during 
metabolism of arachidonic acid, which occurs in every cell. During the respiratory 
burst in response to xenobiotics, NOX generate ROS from activated phagosomes in 
neutrophils and macrophages, by reacting with the intracellular NADPH, to reduce 
molecular oxygen superoxide [100].

13.4.2  Reactive Oxygen Species-Mediated Cellular Signaling

Low levels of ROS in the cells act as redox regulators of several cellular signaling 
pathways including those involved in the regulation of the antiviral and 
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Fig. 13.1 Reactive oxygen species generation: Intracellular superoxide (O2
-) is primarily pro-

duced from the oxidation of NADPH by oxidase enzymes (NOX) or from mitochondrial electron 
transport by aerobic respiration. Superoxide is rapidly converted into hydrogen peroxide (H2O2) by 
compartment-specific superoxide dismutases (SODs), which may be converted to H2O by cellular 
antioxidants, such as glutathione peroxidase, glutathione reductase, and catalase. Hydoxyl radicals 
(OH.) accumulates when H2O2 levels increase uncontrollably through the reactions with metal 
cations and irreversibly damage cellular components
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proinflammatory response induced by paramyxoviruses [98, 99, 101]. In contrast, 
oxidative stress refers to the damaging side of excessive ROS levels that can modify 
cellular components, induce mitochondrial permeability transition, and signal the 
induction of several biological processes such as autophagy, apoptosis, and necrosis 
[90]. ROS regulate signal transduction pathways through the cyclic oxidation/
reduction of cysteine residues in kinases, phosphatases, and other regulatory fac-
tors. Signaling pathways play specific roles in different phases of the cell cycle and 
regulate cellular processes that are influenced by the oxidative state of the cell. NO 
is an intra- and extracellular messenger that transmits signals to cells in the cardio-
vascular, nervous, and immune system and mediates activation of several signaling 
cascades and has been shown to play a major role in various physiological processes 
[102]. Superoxide and H2O2 in association with antioxidant enzymes (AOE) play a 
role in turning enzymes on and off by redox signaling [102]. ROS-mediated mito-
genic signaling activates receptor tyrosine kinases, which in turn activates MAPK 
cascades required for cell proliferation. Activation of these signaling cascades leads 
to the generation of H2O2 from several enzyme catalysts, including NOX, which 
interacts with SOS-RAS- RAF-ERK and P13K/Akt pathways to promote cell prolif-
eration, nutrient uptake, and cell survival [103, 104]. Low-level increases in H2O2 
result in increased reentry into the cell cycle, while sustained high levels of H2O2 
lead to cell arrest and eventual apoptosis after prolonged arrest.

In addition to aerobic metabolism, ROS are generated physiologically through 
PRR signal transduction pathways. The innate and adaptive immune systems are 
critical for pathogen-specific defense and immunological memory and play a cru-
cial role in tissue repair. It is evident that ROS are second messengers in innate and 
adaptive immune cells [105, 106], but increased ROS levels within the immune cells 
can result in hyperactivation of the inflammatory response that results in tissue dam-
age and pathology [107]. Adaptive immunity involves the expansion of T cells and 
B cells specific for pathogens via rapid proliferative responses and has been shown 
to be mediated by redox signaling [108–110]. Ligation of TLRs induces ROS gen-
eration, which is critical for the activation of key transcriptional mediators of the 
innate immune response [111, 112]. Likewise, ligation of the TNF receptor induces 
ROS and oxidative DNA damage [113]. Studies have shown that PRR-generated 
ROS plays an important role in signal transduction by controlling phosphorylation 
[113–115]. Low levels of ROS in the immune system might enhance normal immune 
function but high levels lead to elevated levels of proinflammatory mediators and 
promote inflammation [116]. ROS have been shown to induce an inflammatory 
response through activation of NF-κB and activator protein-1 (AP-1). Interleukin 
(IL)-8 expression has been shown to be redox-sensitive following influenza, rhino-
virus, and RSV infection, since antioxidant treatment significantly reduces its secre-
tion from viral-infected AECs [94, 95, 117]. The likely mechanism of 
antioxidant-mediated modulation of viral-induced IL-8 expression is through inhi-
bition of viral-induced NF-κB and AP-1 binding to its cognate site on the IL-8 
promoter [94, 118]. NF-κB-regulated genes have been shown to play a major role in 
regulating the amount of ROS in the cell, and ROS have several inhibitory or stimu-
latory effects on NF-κB activation. ROS have been reported to stimulate NF-κB 
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pathways in the cytoplasm, but inhibit NF-κB activity in the nucleus, suggesting 
ROS involvement in both activation and repression of NF-κB signaling [119].

13.4.3  Intracellular Antioxidant Response to Oxidative Stress

Oxidative stress refers to the imbalance due to excess ROS or oxidants over the 
antioxidant capacity of the cell resulting in direct or indirect damage to nucleic 
acids, proteins, carbohydrates, and lipids that play a critical role in the preservation 
of essential biological functions (Fig. 13.2). Oxidative stress has been implicated in 
many disease states such as cancer, diabetes, aging, COPD, CF, and asthma [120–
127]. Cells are protected against oxidative damage due to exogenous and endoge-
nous ROS by well-developed enzymatic and nonenzymatic antioxidant systems. 
Endogenous antioxidants comprise a number of enzymes, such as SODs [three iso-
forms of SOD: the cytoplasmic Cu/Zn SOD or SOD1, the mitochondrial Mn SOD 
or SOD2, and the extracellular EC SOD or SOD3], catalase, glutathione reductase, 
glutathione peroxidase (GPx), and glutathione S-transferase (GST) [90]. The non-
enzymatic antioxidants include transferrin, ferritin, and vitamins A and C.  Each 
enzyme system plays a significant role in limiting intracellular and extracellular 
oxidative stress, and it depends on the source and type of ROS generation. 
Glutathione (GSH) is the major nonenzymatic oxidant defense system, which is 
present in large amounts in most mammalian tissue and helps to detoxify peroxides 
and generate a number of antioxidants [128]. Reduced GSH is generated from its 
oxidized form (GSSG) by the action of an NADPH dependent glutathione 
reductase.

Exogenous sources Endogenous sources

Pollutants,Drugs/alcohol, 
Toxicants
Radiation,
Pathogens-
Virus/Bacteria/fungi

Mitochondrial ETC
NOX, NOS, oxidases 
peroxidases and metals
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Fig. 13.2 Sources of reactive oxygen species. Reactive oxygen species (ROS) are generated by 
endogenous as well as exogenous sources, and leads to accumulation of oxidized proteins, lipids 
and DNA, which cause cellular damage. These ROS activates/modulate the cellular signaling path-
ways that alters gene expression by up/down regulation of antioxidant enzymes, transcription  
factors, cytokines, chemokines, followed by altered cellular responses such as inflammation,  
mitochondrial and other organelle damage, cell death, cell proliferation, and cell survival
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Antioxidant enzymes (AOE) can either directly metabolize ROS (SOD and cata-
lase) or indirectly eliminate ROS using reducing agent GSH. SOD enzymes convert 
O.2- anion to H2O2 and molecular oxygen, while catalase converts H2O2 to water and 
oxygen [129]. GPx functions in the detoxification of H2O2 and lipid peroxides in a 
glutathione and other cofactors dependent reaction. GST catalyzes the addition of 
GSH to endogenous and xenobiotic substrates and plays an important role in xeno-
biotic and endobiotic compounds detoxification and metabolism [130]. 
Peroxiredoxins (Prdx) are cysteine-dependent peroxidases that catalyze the reduc-
tion of H2O2 and alkyl hydroperoxides in the presence of thioredoxin and NADPH 
[131–134].

The antioxidant response element (ARE) is a cis-acting regulatory sequence 
present in the 5′ region of the genes encoding antioxidants and phase-2 detoxifica-
tion enzymes/cytoprotective proteins and mediates the transcriptional activation of 
many oxidative stress-inducible genes [135]. Nuclear factor (NF)-E2-related tran-
scription factors (Nrfs) are basic-leucine-zipper (bZIP) proteins belonging to the 
cap-n-collar (CNC) family of transcription factors that regulate the expression of 
antioxidant and phase 2 metabolizing enzymes in response to oxidative stress by 
binding to the ARE sequence. Nrf1, Nrf2, Nrf3, and p45NFE2 are closely related, 
and Bach1 and Bach2 are distantly related factors of the CNC family. CNC-bZIP 
factors interact with the small Maf family of bZIP proteins to form heterodimers 
and homodimers among themselves. The homodimers repress gene expression, 
while the small Maf-Nrf heterodimer activates it. Nrf1 and Nrf2 have been shown to 
be positive regulators of ARE-dependent gene transcription [135]. On the other 
hand, Nrf3 and Bach 1 seem to function as negative regulators of ARE-mediated 
gene expression [136, 137]. The key transcription factor that regulates the expres-
sion of antioxidant defense enzymes is Nrf2. During normal levels of ROS genera-
tion, Nrf2 is retained in the cytoplasm by kelch-like ECH-associated protein 1 
(Keap 1), which targets Nrf2 to ubiquitin-dependent degradation. Under oxidative 
stress, Nrf2 dissociates from Keap 1 and translocates into the nucleus, where it 
binds to ARE in the promoter regions of antioxidant genes and regulates their 
expression.

13.4.4  Measurement of Reactive Oxygen Species

ROS are continuously produced in the cells during metabolic processes, which are 
counterbalanced by AOE. ROS measurement in samples is dependent on the ana-
lytic target along with the ROS in question. At the cellular level, ROS can be indi-
vidually assessed from tissue culture. At the animal level, however, typically the 
effects of oxidative stress are measured from various biological samples including 
serum, plasma, and urine samples. ROS levels are measured indirectly either by 
using redox-sensitive cell membrane permeable compounds (2′,7′-dichlorodihydro-
fluorescein diacetate, DCFDA; dihydroethidium, DHE, etc.), which are trapped 
intracellularly after cleavage by cellular esterases and become quantifiable fluores-
cent products once oxidized by ROS, or via quantification of cellular oxidation 

13 Respiratory Syncytial Virus-Induced Oxidative Stress in Lung Pathogenesis



310

products. Measurement of GSH subcellular levels and its localization is critical in 
understanding the modulation of cellular redox status as well as the mechanisms of 
detoxification. GSH to GSSG ratio is a good indicator of oxidative stress within 
cells, which can be determined by HPLC [138], capillary electrophoresis [139], or 
biochemically [140], including a luminescent and fluorescent-based, and colorimet-
ric assays for the detection and quantification of GSH in cells and biological sam-
ples [141, 142].

Lipid peroxidation is a key indicator of oxidative stress and is widely used as an 
indicator of free radical formation. Lipid peroxides are unstable and decompose to 
form a highly reactive carbonyl compounds such as MDA [143]. F2-isoprostanes 
(F2-like prostanoid derivatives of arachidonic acid) are stable and are not produced 
by any enzymatic pathway but are formed by lipid peroxidation and can be mea-
sured using fluorescent derivatives [144–148]. Superoxide detection is based on its 
interaction with other compounds to generate a measurable result [149–153]. The 
generation of ROS in mitochondria can be observed using fluorescence microscopy 
with MitoSOX Red reagent [154]. Hydrogen peroxide concentrations can be mea-
sured using either fluorogenic or colorimetric substrates [155–158]. Intracellular 
oxidative activity is also detected by calcein-acetoxymethylester, a fluoregenic cell 
permeable compound that is converted by intracellular esterases into the cell imper-
meant anion calcein, which is fluorescent [159]. NO. radical has a very short half- 
life and reacts with several different molecules to form either nitrate (NO3) or nitrite 
(NO2

-), which can be determined by either colorimetric or fluorescent assays [160–
162]. Genetically encoded fluorescent protein-based biosensors have been devel-
oped for the detection of the ROS in situ in real time and can be targeted to specific 
cellular compartments [163–166].

13.4.5  Reactive Oxygen Species and Lung Inflammation

Oxidative stress plays an important role in the pathogenesis and development of 
many acute and chronic inflammatory airway diseases [123, 127, 167–169]. The 
lung is a highly specialized organ that is exposed to high levels of oxygen due to its 
unique structure that provides an enormous surface area to outside ambient air. This 
makes the lung vulnerable to a wide range of environmental pollutants, toxicants, 
oxidants, and numerous infectious agents with the potential to induce oxidative 
damage [170]. ROS are produced from pulmonary epithelial and endothelial cells or 
released from activated macrophages and leukocytes as a result of inhaled toxic air 
pollutants and microorganisms that cause damage to the lungs, which in turn initiate 
the cascades of pro-inflammatory reactions propagating pulmonary and systemic 
distress [171]. Several studies have either directly or indirectly demonstrated the 
role of ROS generated by pulmonary epithelial and inflammatory cells in the patho-
genesis of acute and chronic lung diseases such as acute respiratory distress, asthma, 
acute lung injury, pulmonary fibrosis, lung cancer, and COPD [123, 127, 
172–175].
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ROS plays a major role in enhancing lung inflammation through the activation of 
stress kinases, redox-sensitive transcription factors, and histone modifications such 
as acetylation, phosphorylation, and methylation that results in increased expression 
of a battery of distinct proinflammatory mediators and promotes inflammation 
[175]. Increased nitrated proteins, lipid peroxides, and O2

- and XO activity was 
observed in COPD and asthma patients, compared to normal subjects [174, 176–
180]. Elevated levels of DNA (8-hydroxydeoxyguanosine), lipid (MDA, 
F2-isoprostane, 7-ketocholesterol, and 7-hydroxycholesterol), protein (carbonyl 
content), and sterol oxidation have been reported with influenza infection [181–
184]. Increased ROS, inducible type NOS (iNOS), and decreased antioxidants have 
been observed with influenza, Sendai virus, human metapneumovirus, and rhinovi-
rus infection [48, 95, 185–192]. In order to restore normal physiological functions, 
elimination of pathogenic insult and injured tissue components occurs in the tissue 
as a part of the inflammation process. Currently, several studies have focused on the 
molecular mechanisms by which oxidants exert their pathological effects on the 
lungs and are still the subject of debate.

13.5  RSV-Induced ROS in Lung Inflammation

13.5.1  Reactive Oxygen Species Generation During RSV Infection

ROS generation has been shown to be induced by various viruses, including influ-
enza, hepatitis B and C virus, rhinovirus, and HIV-1 in a variety of cell types [193, 
194]. Enhanced production of ROS is observed in response to respiratory viral 
infections like influenza and rhinovirus [187, 189]. ROS plays a major role in the 
pathogenesis of acute bronchiolitis caused by RSV [47, 48, 98, 195]. Severe RSV 
infections can promote oxidative stress in respiratory epithelial cells and induce 
production of lipid peroxidation products that are responsible for the magnitude of 
the response to stress in relation to the disease severity [47]. Elevated total ROS 
levels and lipid (MDA and F2-isoprostane) peroxidation products have been 
reported in AECs and in RSV-infected patient samples [44, 47, 48, 196]. 
Accumulation of lipid peroxidation products and oxidized glutathione (GSSG) as 
well as decreased GSH/GSSG ratio in the plasma of infants with RSV-induced 
acute bronchiolitis were indicative of increased oxidative stress [195]. Mitochondrial 
ROS, specifically O.2- formation, occurs due to the leakage of electrons from elec-
tron transport chains located on the inner mitochondrial membrane during the pro-
cess of oxidative phosphorylation. RSV infection induced a dramatic increase in the 
formation of O.2- anion radicals as detected with MitoSOX by immunofluorescence 
microscopy and flow cytometry [196], indicating that the ROS generated by RSV is 
of mitochondrial origin. DNA damage observed in RSV infection is attributable to 
mitochondrial ROS, which are able to induce double-strand breaks, and antioxidant 
treatment alleviates symptoms of RSV infection. RSV infection of phagocytes, 
including monocytes, neutrophils, and eosinophils, leads to O.2

- production, which 
becomes the substrate for myeloperoxidase that leads to the release of potent 
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pro- oxidative mediators in the extracellular environment [197, 198]. RSV-induced 
O.2- generation, chemokine secretion, and activation of IRF and STAT proteins is 
mediated via an NADPH oxidase-dependent pathway [45, 199, 200]. RSV-induced 
oxidative stress likely contributes to the preservation and augmentation of the 
inflammatory response [201].

13.5.2  Reactive Nitrogen Species and RSV Infection

ROS such as O.2
- can rapidly react with NO to form reactive nitrogen species (RNS) 

via nitric oxide synthase (NOS), which in turn induces nitrosative stress by covalent 
modification of protein tyrosine residues and adds to the proinflammatory burden of 
ROS. RNS including NO, ONOO-, and nitrogen dioxide (NO2) have been shown to 
be involved in the pathophysiology of many inflammatory lung diseases. NO is a 
gaseous nitrogen-centered inorganic free radical synthesized endogenously by the 
oxidative deamination of L-arginine to L-citrulline by a family of three NOS, which 
includes a neuronal type (nNOS), an inducible type (iNOS), and an endothelial type 
(eNOS) [202]. Among these, iNOS gene expression is significantly induced under 
inflammatory conditions due to its transcriptional regulation by proinflammatory 
cytokines, redox-sensitive transcription factors, and viral infections [203]. NO as a 
mediator of tissue injury, the immunoregulatory as well as toxic effects of NO are 
due to its ability to react with molecular oxygen and oxygen-derived free radicals. 
Under aerobic conditions, NO is rapidly oxidized to RNS as NO2, dinitrogen triox-
ide (N2O3), and dinitrogen tetroxide (N2O4), with N2O3 being the major oxidative 
product in biological systems.

The free radical NO has been implicated in the pathogenesis of many inflamma-
tory lung diseases as they are produced in different cell types, including human 
AECs that express eNOS and iNOS, with the latter one being highly induced after 
exposure to proinflammatory mediators and oxidants [204, 205]. NO production has 
been demonstrated with several viral infections including RSV, and iNOS induction 
has been considered as a likely universal event in all viral infections [203, 206–211]. 
Although iNOS gene expression can be regulated through cytokine secretion [203, 
212], its initial induction appears to be independent of cytokine stimulation as 
observed with other viruses [206, 213, 214]. Increases in iNOS protein levels with 
increased nitrite levels have been reported in AECs after RSV infection, which is 
viral replication-dependent [209]. RSV-induced NO production was significantly 
reduced with IL-4 pretreatment, and no change in iNOS expression was observed, 
indicating that Th1/Th2 affects the ability of AECs to produce NO in response to 
RSV infection [209]. Studies have also reported that RSV infection has no effect on 
NO production in human immune cells [209]. Significant induction of NO and 
iNOS has been reported in RSV-infected mice [215]. In contrast to the in vitro and 
animal studies, no change in NO generation was observed in adult volunteers who 
were experimentally infected with RSV compared to control subjects [216]. In addi-
tion, a reduction of exhaled NO was observed in infants with acute RSV bronchiol-
itis, compared to healthy controls, which returned to normal levels during the 
convalescence phase [217]. High levels of NO metabolites, including nitrites and 
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nitrates, were observed in the spinal fluid from RSV-infected infants with central 
nervous system symptoms [218].

NO generation in respiratory viral infections has been shown to inhibit viral rep-
lication, cause viral mutation, and play a major role in disease pathogenesis [67, 210, 
215, 219]. Studies show that iNOS constitutive expression and NO production in 
AECs results in reversible, dose-dependent inhibition of RSV replication, whereas 
treatment with increasing concentrations of the chemical donor S-nitroso-N-acetyl-
penicillamine did not affect the viral replication. This suggests that NO derived from 
endogenous iNOS expression was more effective in RSV replication inhibition than 
exogenous NO addition via chemical donor [210]. Several signaling molecules are 
regulated by NO including NF-κB, AP-1, and kinases, as they contain critical cyste-
ine residues that undergo nitrosylation [220]. Treatment of AECs with iNOS inhibi-
tors such as L-arginine methyl ester, L-NG-monomethyl arginine, and amino 
guanidine did not have a significant effect on RSV-induced chemokine secretion sug-
gesting that NO does not affect the intracellular signaling pathways leading to RSV-
induced NF-κB, AP-1, and interferon regulatory factor (IRF) activation [44, 118]. 
However, treatment with free 3-nitrotyrosine inhibited viral replication and chemo-
kine secretion via formation of α-tubulin [221]. NO production in response to RSV 
infection has been shown to modulate ion channel activity as well as the stabilization 
of the transcription factor hypoxia-inducible factor-1α (HIF-1α), a master regulator 
of mammalian oxygen homeostasis [211, 222, 223]. Studies have also shown the 
association of excessive NO production with RSV severity, and prevention of its 
formation significantly decreased inflammatory cell recruitment and airway hyper 
responsiveness, suggesting that NO modulation during early events in the course of 
RSV infection could ameliorate the resulting lung disease in children [215].

13.5.3  ROS-Mediated Cellular Signaling in RSV Infection

Airway epithelial cells are the major targets of RSV infection and have been shown 
to secrete a variety of proinflammatory molecules that play a key role in inflamma-
tory and infectious processes in the lung [38]. Several studies have characterized the 
transcriptional mechanisms that control gene expression in lung epithelial cells, 
which is mediated through redox-sensitive signaling pathways (Fig.  13.3). RSV 
infection results in the activation of the several cellular signaling cascades involved 
in the expression of early response genes, including cytokines, chemokines, and 
type I interferons (IFN), which is coordinated by a subset of transcription factors. 
Several redox-sensitive transcription factors, including nuclear factor-IL6 (NF- 
IL6), NF-κB, AP-1, IRF, HIF-1α, and STAT proteins, which regulate the expression 
of a variety of proinflammatory/immunological mediators, such as cytokines and 
chemokines (Fig.  13.3). RSV infection of AECs induces NF-IL6, in a time- 
dependent manner and is replication-dependent [224].

RSV infection induces NF-κB activation in AECs [44, 225, 226]. NF-κB is 
required for the transcription of several RSV-inducible inflammatory and immuno-
regulatory genes and/or are dependent on an intact NF-κB-signaling pathway. 
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NF-κB activation is crucial for RSV-induced expression of cytokines, chemokines, 
secreted proteins, and signaling molecules [227–230]. Several NF-κB family mem-
bers, in particular RelA, have been shown to be phosphorylated on specific serine 
(ser) residues, which is required for optimal NF-κB activity. RSV induces RelA 
phosphorylation on ser-276 and ser-536, and this depends on activation of mitogen- 
and stress-activated protein kinase 1 (MSK1), a serine/threonine kinase downstream 
of extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38 MAPKs that 
play key roles in several cellular processes [115, 231]. RSV-induced NF-κB phos-
phorylation has been shown to be regulated by TLR3 [229, 232], and oxidative 
stress has been shown to play a major role in TLR3 activation [233]. Several mem-
bers of the AP-1 family, including c-Jun and activating transcription factor-2, are 
activated by RSV-induced oxidative stress and regulate RSV-induced gene expres-
sion [234, 235]. ROS generated in response to RSV infection can activate IRF and 
STAT family transcription factors and regulate signal transduction cascades leading 
to chemokine expression [44, 45]. The Janus-activated tyrosine kinases (JAK) have 
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Fig. 13.3 Redox-sensitive signaling pathways in RSV infection: RSV infection in airway epithe-
lial cells activates a multitude of redox-sensitive signaling pathways. RSV infection via Toll-like 
receptors (TLRs) activates NF-κB/ERK/MAPK pathways, which subsequently activates JAK/
STAT signaling pathways via MyD88, and is mediated through reactive oxygen species (ROS). On 
the other hand RSV-induced ROS via NADPH oxidase (NOX) activates STAT pathways and pro-
motes translocation of NF-κB, ERK1/2, STAT1/2, and interferon regulatory factors (IRFs) to the 
nucleus and binds to interferon sensitive response element (ISRE) and induces interferon stimu-
lated genes (ISGs) to produce cytokines and chemokines that induces inflammation and cell dam-
age. RSV-induced ROS promotes Nrf2 translocation to the nucleus and induces histone deacetylases 
(HDACs) that leads to nuclear deacetylation of Nrf2 and dissociation from antioxidant response 
element (ARE) that causes inhibition of antioxidant gene expression
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been shown to phosphorylate STAT proteins, leading to an induction of gene expres-
sion. RSV infection leads to the activation of HIF-1α via NO-stabilization, which 
regulates the expression of several genes, including vascular endothelial growth 
factor, CD 73, and cyclo-oxygenase-2 [236].

13.5.4  Antioxidants in RSV Infection and Their Use 
as Therapeutics

Oxidative stress is the result of an excess of oxidants and/or depletion of antioxi-
dants. Respiratory viruses have been shown to induce ROS generation and reduce 
cellular antioxidant defenses. Decreased antioxidant levels, another marker of oxi-
dative stress, were observed in RSV-infected infants, mice, and cells (Table 13.1) 
[47, 48, 115, 237]. Several studies suggest antioxidant activity is impaired in lung 
inflammation [238–240]. Upregulation of protective antioxidants has also been 
observed as a result of increased oxidative stress in cells along with its proinflam-
matory mechanisms. Studies have also shown increased levels of antioxidants in 
children with post-infectious bronchiolitis obliterans, which suggests that enhanced 
antioxidant enzyme activity preserves redox status homeostasis as well as their 
actuation as a defense mechanism for oxidative damage [48]. RSV infection induced 
increased expression of antioxidant enzymes as a protective mechanism only at 
early stages of infection, including SOD1, SOD3, catalase, GST, and GPx, but their 
expression progressively decreased as the infection progressed. Meanwhile, SOD2 
levels continued to increase during the course of RSV infection, suggesting that 
RSV infection results in enhanced intracellular H2O2 production that is not detoxi-
fied by AOEs, which leads to the generation of (OH.) free radicals that can react 
with lipids, proteins, and DNA and cause cellular damage [47, 48]. RSV infections 
result in oxidation of Prdx antioxidant family members, including Prdx-1, Prdx-3, 
and Prdx-4, and their inhibition has been shown to enhance ROS production and 
protein carbonylation [48]. RSV infection leads to a decrease in nuclear levels of 
Nrf2, and several studies show that the Nrf2-ARE pathway plays a protective role in 
RSV- induced lung injury [47, 241]. Studies have shown that RSV induces RNS and 
NOS in the lungs of infected mice, and that inhibition of NOS expression signifi-
cantly reduces RSV-induced lung inflammation [215]. These studies suggest that 
airway oxidant-antioxidant imbalance as a result of RSV infection could play a 
major role in the pathogenesis of RSV-induced inflammatory lung disease.

Several studies have explored antioxidants as novel therapeutic strategies to treat 
RSV infections. RSV infection induces ROS generation in AECs and pretreatment 
with the antioxidant such as butylated hydroxyanisole (BHA), and synthetic SOD, 
and catalase mimetic compounds blocks RSV-induced signal transduction cascades 
that lead to chemokine expression through inhibition of IRF and STAT family tran-
scription factors [44, 45]. Treatment with the pan-NOX inhibitor, dibenziodolium 
chloride, significantly inhibited ROS generation induced by influenza virus, RSV, 
and rhinovirus [187, 189]. Several RNA viruses, including RSV, modulate cellular 
oxidative stress through the involvement of NOX/DUOX pathway, downregulation 
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of AOE, increased production of ROS as well as induced antioxidant response [44, 
47, 101, 115]. N-acetylcysteine treatment drastically reduced the damaged nuclei 
with decreased viral titer. Similarly, reduced GSH ethyl ester, a cell-permeable 
derivative of GSH, reduced DNA damage foci and virus titer suggesting that these 
antioxidants might also influence virus entry into cells [196]. Studies in transgenic 
mice have demonstrated that a deficiency in SOD, especially SOD 2 and 3, reduces 
survival and increases lung injury in response to hyperoxia, while overexpressing 
SODs results in improved survival [242]. This suggests that suppression of oxida-
tive stress can be achieved by the overexpression of AOEs. Recombinant SOD, and 
several SOD mimetics that have been developed based around organo-manganese 
complexes, and their therapeutic potential have been explored in a variety of disease 
models. Most commonly studied SOD mimetic compounds include metalloporphy-
rin-based compounds (such as AEOL10113 and 10150), cyclic polyamine-based 
molecules (such as M40403 and 40419), and the salen-manganese compounds 
(such as EUK-8, EUK-134, and EUK-189 with significant catalase and peroxidase 
activity) [243]. Significant inhibition RSV- induced IL-8 and RANTES secretion in 
AECs was observed with EUK-134 treatment [47]. Although the specific mecha-
nisms by which antioxidants protect the cells in the context of RSV infection are 

Table 13.1 Antioxidants levels in respiratory syncytial virus infection

Antioxidants Model system Change in levels References
GSH/GSSG Cells

Mice
Human

Decreased [47, 115, 195, 237]

SOD1 Cells
Mice
Human

Decreased [47, 48, 244]

SOD2 Cells
Mice
Human

Increased
Decreased
Unchanged

[47, 48]

SOD3 Cells
Mice
Human

Decreased [47, 48]

Catalase Cells
Mice
Human

Decreased [47, 48]

Glutathione peroxidase Cells
Mice
Human

Decreased
Decreased
Increased

[47, 48, 195]

Glutathione S-transferase Cells
Mice
Human

Decreased [47, 48]

Peroxiredoxin Cells
Mice
Human

Decreased [48]

Thioredoxin Cells
Mice
Human

Decreased [48]
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unclear, attenuation of inflammation is likely playing a major role. Currently, there 
is no effective antioxidant therapy that has good bioavailability and potency is avail-
able. These studies suggest that RSV infection induces ROS generation that leads to 
the disruption of the antioxidant system. The modulation of ROS generation may 
enhance cellular antioxidant capacities that might attenuate RSV-induced 
inflammation.

13.6  Summary and Future Directions

RSV is an important human pathogen, which induces enhanced ROS/RNS genera-
tion in lung epithelial cells and leads to severe oxidative stress that is likely to play 
a major role in initiating and amplifying lung injury and inflammation. ROS gener-
ated in response to RSV infection can activate and modulate intracellular signal 
transduction cascades including NF-κB, IRF, and JAK-STAT pathways in host sen-
tinel cells in the airways leading to induced expression of proinflammatory media-
tors and promoting inflammation. Modulation of ROS/RNS production and 
oxidative stress via antioxidant approach could represent a novel therapeutic strat-
egy to ameliorate severe lung disease associated with RSV infection. Studies have 
shown that RSV infection alters antioxidants/antioxidant pathway/ARE/Nrf2 in the 
airways and that modulation of these pathways has the potential to develop novel 
therapeutics against RSV and other respiratory viral infections. Therefore, further 
studies are required to develop therapeutics that could significantly impact the mor-
bidity of RSV infection. Future antioxidant-based therapeutic interventions need to 
address the concerns regarding the route of administration, bioavailability, and tis-
sue distribution as antioxidant supplementation would only be effective if the drug 
was available at the site of infection/inflammation.
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Abstract
Reactive oxygen species (ROS) are important biological radicals essential for 
determining different stages and phenotypes of cells from quiescence to prolif-
eration, differentiation, self-renewal and even apoptosis. Low ROS favours qui-
escence and self-renewal in contrast to high ROS that dictates proliferation, 
differentiation or apoptosis. Such wide variety of cell fates depends upon specific 
signalling pathways that regulate the cellular ROS, thus contributing to tissue 
homeostasis. Imbalance of ROS causes several pathological conditions including 
cancer which is associated with higher level of ROS that supports tumour devel-
opment and progression. However, to restrain from the excessive oxidative dam-
age of ROS, cancer cells efficiently control the antioxidative pathways, thus 
favouring its own survival and maintenance at the same time. Furthermore, 
importance of ROS has been an active field of research in ‘cancer stem cells’ 
(CSCs), a subpopulation of cancer cells with stem cell-like properties and fea-
tures. CSCs possess low ROS level that make them resistant to the existing che-
motherapy or radiotherapy that ultimately leads to cancer recurrence. Though 
several evidences have proved the role of ROS in self-renewal and stemness of 
CSCs, there is a lot to explore about ROS-regulated signalling mechanisms in 
CSCs. An understanding of ROS regulation in CSCs can provide an idea about 
the application of oxidative stress as a therapeutic strategy in treatment of cancer. 
In this book chapter, we have raised the debate as to whether ROS acts as ‘friend 
or foe’ for cancer cells. Moreover, exploring the significance of ROS and redox 
regulation in lung cancer stem cells has been our major focus. Finally, it is sug-
gested that in order to get an effective treatment and recurrence-free survival, 
sensitization of the cancer stem cells to high ROS environment is a must.
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14.1  Introduction

Reactive oxygen species (ROS) are the by-products of general metabolic pathways 
of the biological system and are essential for cell signalling and maintenance of tis-
sue homeostasis. These include several free radicals and a number of reactive mol-
ecules which are derived mostly from the molecular oxygen as produced in the 
mitochondrial electron transport chain. Generally, low ROS level favours growth 
and proliferation, whereas high ROS level is known to promote apoptosis and oxi-
dative damages of the cells [1–3]. The excessive damage caused by ROS is neutral-
ized by the cellular antioxidant pathways, thereby maintaining the redox balance of 
the cells. Several normal cellular activities are the manifestations of different ROS 
levels which comprise of proliferation, differentiation, cell cycle, apoptosis, etc. 
However, abnormal change in ROS level results in many deleterious effects such as 
oxidative modification of proteins, DNA damage and activation of signalling path-
ways [4, 5] which are linked to many pathological disorders and diseases.

In fact, oxidants and antioxidants imbalance in human system may lead to a 
plethora of lung-related ailments including lung cancer. Evidences have shown how 
ROS can channelize specific signalling pathways to induce apoptosis in non-small 
cell lung cancer [6, 7]. ROS level remains elevated in cancers due to higher rate of 
metabolism [8, 9] which allows tumour development and progression. But, aberrant 
level of ROS is responsible for cancer cell death [10]. To counteract the killing 
effect, cancer cells exhibit higher antioxidant capacity which remains under their 
intricate regulations. ROS, thus, acts as ‘friend or foe’ depending upon the amount 
of intracellular ROS which dictates whether it supports cell survival or demise. 
Cancer cells can bear the modest increase in ROS, which is supportive for cancer 
cell growth, for prolonged period of time [11] indicating the role of ROS as a 
‘friend’ in this context. Also, the role of ROS can be regarded as oncogenic as it 
efficiently regulates multiple signalling networks contributing to cancer initiation, 
development, progression, invasion and metastasis. Induction of ROS and its pro-
motion is appreciated as witty mechanism in various cancer therapies including 
chemotherapy and radiotherapy [12, 13]. In this regard, ROS acts as a foe for cancer 
cells by showing its tumour-suppressive actions [11]. ROS-mediated cancer cell 
elimination has been made possible by using effective chemotherapeutics or phar-
macological agents that can elevate ROS level beyond its normal threshold. 
However, in spite of the several breakthroughs in cancer treatment, the 5-year sur-
vival rate for all patients with lung cancer is 17% – a statistic that has not changed 
significantly in decades.

Years of research have introduced the idea of a special subpopulation of cancer 
cells within a tumour, known as cancer stem cells (CSCs) or tumour-initiating stem 
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cells [14]. CSCs are endowed with the properties of self-renewal and differentiation 
[15] and have been found in a large range of cancers [16, 17]. CSCs bear the poten-
tial of tumour development and metastatic dissemination and exhibit resistance to 
chemotherapy as well as radiotherapy, thus maintaining a rich pool of tumorigenic 
cells that gives rise to recurrence [18–20]. Doherty et al. [21] showed that exposure 
to chemotherapeutic agents or radiation though reduces the tumour bulk and 
enriches CSC repertoire, eventually causing cancer recurrence. This leads to the 
understanding that targeting only the cancer cells would not yield satisfactory ther-
apy response, but treatment has to be specific for elimination of CSCs. Reports 
suggested that in contrast to the rest of the tumour cells, increased ROS scavenging 
systems and lower level of ROS in CSCs protect them from the cytotoxic effects of 
chemotherapy and radiation [22–24]. Furthermore, presence of low intracellular 
ROS is possibly attributable to the increased drug-resistant nature of the CSCs in 
comparison to the rest of the tumour cell population [25]. Several mechanisms con-
tributing to lung cancer resistance include increased expression of drug efflux 
pumps, increasing drug inactivation by enzymes, defective apoptotic machineries, 
DNA repair systems, etc. [26–30]. Henceforth, it is worthy to understand the redox 
signalling of the CSCs in order to employ ROS in cancer therapy in a more effective 
manner. This could help design therapies that would effectively target the CSCs by 
manipulating the oxidant-elevating or oxidant-depleting pathways.

In this chapter, we shall discuss about the significance of these redox networks 
functional within lung CSCs and the possibilities of manipulating ROS to induce 
apoptosis in these highly resistant cells.

14.2  Generation of ROS and Its Role in Regulation of Tissue 
Homeostasis

14.2.1  ROS in Normal vs Cancer Cells

ROS are generated as a result of normal cellular metabolism and are known to regu-
late the redox homeostasis under physiological conditions within the cell. This 
function protects the biological system from oxidative stress via several redox- 
based mechanisms. A fine balance between oxidants and antioxidants is, therefore, 
essential to avoid a plethora of diseases including that of various pulmonary ail-
ments, e.g. chronic obstructive pulmonary disease (COPD), lung cancer, etc.

ROS accounts for the reactive molecules which include superoxide radical (O2−), 
hydroxyl radical (OH∙), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), per-
oxynitrite (ONOO) and ozone (O3) [31]. These reactive species are generated from 
various endogenous sources as well as exogenous sources (Fig.  14.1). Epithelial 
cells, alveolar macrophages, endothelial cells and inflammatory cells account for 
endogenous ROS [32]. Several enzymatic reactions in the body play significant 
roles in ROS generation such as reactions carried out during mitochondrial respira-
tion involving cytochrome P-450, cyclooxygenases, lipoxygenase, peroxidases, etc. 
Besides, radiation, particulate matters and chemical carcinogens act as exogenous 
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sources of oxidative stress [33]. Electron transport chain of the mitochondrial respi-
ratory system forms a basis of biochemical reactions for the oxidative metabolisms 
in living system. In the process of electron transfer and energy production, one- 
electron reduction product like O2- (superoxide) is produced along with highly reac-
tive ROS and RNS (reactive nitrogen species) [34]. Controlled functioning of such 
potentially destructive reactive species is carried over by different well-regulated 
antioxidant systems in normal cells. Normal cellular activities such as cell division, 
differentiation and proliferation are highly dependent on reactive species that act as 
redox signalling molecules. Normal stem cells remain quiescent at lower ROS level 
and self-renew, whereas increased ROS level is well-efficient to induce cellular dif-
ferentiation, proliferation, senescence and even apoptosis in a dose-dependent fash-
ion [34]. The redox signalling molecules are empowered to control a variety of 
signal transduction proteins and gene expression pathways. But, the redox by- 
products of oxidative metabolism are efficient to manipulate the antioxidant path-
ways resulting in changes in the genetic material of the living system. These 
alterations are reflected as mutations in the form of base damage, adducts or dele-
tions to the DNA [34]. Though such mutations are repaired by high-fidelity proof-
reading machineries of the biological systems, some of the genetic damages easily 
escape and begin to accumulate with time, thus compromising the normal metabolic 
processes and enhancing the generation of reactive species. As a consequence of 
which, the accelerating mutated metabolic machineries lead to massive deteriora-
tion of biological structures and functions which manifest in the form of degenera-
tive diseases and cancer too.

Carcinogenesis is highly associated with ROS-induced oxidative DNA damage 
that involves single- or double-stranded DNA breaks, modifications of purine and 
pyrimidine and DNA cross-linking, ultimately leading to cell cyle arrest, induction 
of protein synthesis, inflammation, etc. in many cancers [35]. Association of higher 
ROS production with genetic instability has been explained by Wallace [36] in 
nuclear and mitochondrial genes mutation within the components of ETC (electron 
transport chain). Also, Petros et  al. [37] proved that increasing ROS is strongly 

Fig. 14.1 ROS generated from different sources. Reactive oxygen species (ROS) generated from 
reactions catalyzed by various enzymes as endogenous sources of ROS (left) and ROS released 
from several exogenous sources including radiation and chemical carcinogens
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associated with cancer progression. Furthermore, reactive nitrogen species (RNS), 
such as peroxynitrites and nitrogen oxides, have also been implicated in DNA dam-
age [37]. Higher amount of nitric oxide (NO) increases apoptosis in some cancer 
cells, whereas lower amount promotes vascularity and protects against apoptosis 
[38], as in case of lung cancer. Since ROS exhibits various functions depending on 
its level, it is believed to be regulated by intricate signalling networks within the 
cell. Cancer cells show elevated level of ROS due to their higher metabolic rates [8, 
9]. In addition, they are able to evade and regulate the destructive level of ROS via 
their increased antioxidant capacities which would otherwise cause cancer cell 
apoptosis or necrosis [10]. Such a delicate balance of ROS level by the cancer cells 
allows their survival, which indicates that depending upon its concentration, ROS 
plays a dual role in cancer cell working either in its favour or against its survival, i.e. 
either as a ‘friend’ or a ‘foe’. To gain an insight about the strategies how the cells 
maintain and regulate these reactive species in their favour, it is worthy to look at the 
various signalling networks and the associated components that actually modulate 
the main player ‘ROS’.

14.2.2  Molecular Signalling Hubs Regulated by ROS in Normal 
and Cancer Cells

Low to high level of ROS is known to exert different pathological effects which are 
actually commenced via specific signalling pathways. In contrast to low ROS level 
which is particularly responsible for self-renewal proliferation and differentiation 
[39–44], increased level has detrimental consequences on normal stem cells. Slight 
enhancement in cellular ROS can impair self-renewal property but promote its pro-
liferation and differentiation that lead to exhaustion of stem cells [45–47]. Further 
rise in ROS level even results in senescence through the redox-dependent activation 
of p38-p16 pathway [48]. Ultimately, excessive ROS production can induce stem 
cell apoptosis by activating p53 pathway following the DNA damage response [49, 
50]. Though mounting evidences have suggested the involvement of wide variety of 
ROS-mediated mechanisms, they need detailed investigation. Activation of mitogen- 
activated protein kinase (MAPK) family member of proteins and downregulation of 
the pluripotent transcription factors Oct4, Nanog and Sox2 [51] have been shown to 
play role in ROS-mediated human embryonic stem cell (ESC) differentiation to 
mesendodermal lineage. Specific MAPK family members have been implicated in 
ROS-induced cardiovascular differentiation of ESCs [44, 52]. Among the various 
sources of ROS, NOX (nicotinamide adenine dinucleotide phosphate oxidase) is 
greatly required by cells for ROS production. Besides the classical NOX found in 
phagocytes, seven isozymes have been discovered in non-phagocytic mammalian 
cells [53]. Among the various NOX isoforms, lung tissue hosts NOX2, DUOX1 and 
NOX4 [53, 54]. It is reported that lung cancer tissue predominantly expresses NOX4 
isoform [55, 56]. Additionally, presence of DUOX-1 and DUOX-2 has been sug-
gested in airway epithelial cells [57], but their mRNA level remains downregulated 
in lung cancer tissues [58]. Most of the signalling mechanisms studied so far hire 
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ROS, e.g. H2O2 as a second messenger [59, 60] to support cancer cell activities. 
Such molecular signalling involves receptor tyrosine kinases, protein tyrosine phos-
phatases, transcription factors [61, 62], etc. that act as the targets for the reactive 
species. Some of the ROS-mediated biological pathways in cancer include MAPK/
ERK axis, phosphoinositide-3-kinase (PI3K)/Akt-regulated signal transduction cas-
cade, as well as the IκB kinase (IKK)/nuclear factor κ-B (NF-κB)-activating signal-
ling axis (Fig. 14.2). For example, cancer cell proliferation is linked to H2O2-induced 
Erk1/2 activation [63, 64] where Ras may act as an upstream activator of Erk1/2 that 
undergoes oxidative modification [65]. Another study indicated increased ROS, 
resulting from the loss of mitogen-activated protein kinase phosphatase 3 (MKP3), 
elevates Erk activity [66]. Multiple cancers and studies in lung cells have also sug-
gested connection between ROS and Erk1/2 [67, 68]. However, role of ROS in 
cancer cell survival is context-dependent [69, 70]. To be specific, in vitro studies 
proved that scavenging ROS promotes apoptosis [71, 72], whereas human glioma 
and pancreatic cancer cells are prone to death when treated with exogenous ROS 
which is due to their high basal level of ROS [73, 74]. PI3K/AKT signalling is 
another pathway controlled by the oxidants. Akt regulates cell survival via phos-
phorylation or inactivation of its substrates such as Bad, Bax, FOXO, etc. [75, 76]. 
Evidences suggest that ROS derived from oestrogen metabolism activates PI3K/Akt 
signalling pathway [77, 78], and H2O2 generated from EGF signalling in human 
ovarian cancer cells activates Akt and p70 S6K1 [79]. A highly studied redox sensor 
protein for oxidative stress is NF-κB [80] that is known to be activated by ROS [81]. 

Fig. 14.2 ROS-mediated cellular signalling. NADPH oxidase (NOX)-activated ROS, regulated 
by growth factor signalling, induces important signalling cascades via MAPK (Erk1/2, p38, JNK), 
PI3K/Akt and NF-ƘB activation. These involve the activation of several kinases like src, abl and 
PKD-1 and transcription factor FOXO. ROS-mediated DNA damage induces p53-induced apop-
totic pathway, whereas senescence is promoted via p38-p16 cascade. ROS-mediated regulation of 
Oct-4, Sox-2 and Nanog favours differentiation of human embryonic stem cells
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ROS-dependent NF-κB activation has been observed in SOD-silenced carcinoma 
cells [82]. Some groups suggested IKK-dependent NF-κB-inducing signalling in 
elevated oxidative stress environment via various ways including that of inhibition 
of intracellular glutathione system [35, 83]. Here, PLD1 and many other kinases 
like Src, Abl, etc. regulate NF-κB via PKD1/IKK-β axis [35, 83–86]. Oxidant- 
regulated NF-κB-mediated IL-8 production has been reported in lung epithelial 
cells [87]. Moreover, mechanism of non-small cell lung cancer is linked to ROS- 
regulated HIF-1ǖFC; expression [88]. The role of ROS-induced upregulation of 
HIF-1ǖFC; activity in oxygenated condition in metastatic colonization of lung can-
cer has been suggested by Cho et al. and Zhao et al. [89, 90]. All these studies elu-
cidate how intricately cellular signalling networks are dependent on ROS for their 
functioning (Fig.  14.3). In the next section, we have discussed different ROS- 
dependent functions in cancer cells.

14.3  ROS-Specific Functions in Cancer

A wide variety of cellular activities are modulated by oxidative stress-linked mecha-
nisms. Such relevant ROS-regulated activities include cell survival, proliferation, 
cell cycle progression, apoptosis, cell motility, adhesion, etc. (Fig. 14.3).

Fig. 14.3 Changes in cell behaviour with respect to varying ROS level. Normal cellular ROS at a 
low level maintains cells at a quiescent stage. Elevating ROS results in cell proliferation and sur-
vival. In addition, increased ROS level cause DNA damage and genetic instability; EMT and 
metastasis thus, acting as oncogenic. Excessive ROS generated in cancer cells can lead to cell cycle 
arrest, senescence or apoptosis
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14.3.1  ROS: A Friend in Need

14.3.1.1  In Cell Proliferation
Mitochondria-generated ROS regulates proliferation as well as senescence via 
MnSOD (manganese superoxide dismutase) activity [91]. Lower MnSOD activity 
induces proliferation due to higher level of superoxide and lower level of hydrogen 
peroxide in contrast to higher enzymatic activity that favours quiescent stage in the 
presence of increased hydrogen peroxide [92]. ROS-mediated effect has been docu-
mented in cancer cell proliferation, where it involves the role of Erk1/2 MAPK 
activation and transcription factor CREB (cyclic AMP response element (CRE)-
binding protein) [63, 92]. Such study explains how the change in cellular level of 
ROS is reflected in different physiological effects. Function of ROS in cell cycle 
regulation has also been well-observed. ROS controls a wide range of molecules 
including cyclin B2, cyclin D3, cyclin E1 and cyclin E2 in the event of G1 to S-phase 
transition [92]. Several cell types have witnessed the important attributes of ROS, 
where its effects have been either escalated or neutralized [93, 94]. Doubling time 
of cells is greatly dependent on various ROS-regulating enzymes and their activities 
which include endogenous MnSOD, Cu/ZnSOD, catalase and glutathione peroxi-
dase [73, 95]. Moreover, ATM (ataxia telangiectasia mutated)-lacking individuals 
suffer critical oxidative damages which prove that ROS efficiently modulates ATM, 
an essential molecule for cell cycle control [96, 97].

14.3.1.2  In Metastasis
Reactive oxygen species exhibits interesting role in regulating motility and contrib-
uting to metastatic progression of cancer. Endogenous ROS at its higher level 
favours reduced motility of cancer cells. However, orthotropic tumours developed 
from these cells possess metastatic capacity [98]. Few evidences recommend that 
redox state can modulate the events of metastatic process such as cell adhesion to 
extracellular matrix (ECM), anchorage-independent survival, migration, invasion 
and so on. Adhesion of cells to ECM accompanies a spike in mitochondrial ROS, 
followed by increased cytosolic ROS that governs cytoskeleton remodelling [99, 
100]. In this process of adhesion, substrates for mitochondrial ROS are SHP-2 and 
FAK (focal adhesion kinase), in contrast to cytosolic ROS which targets phospha-
tases LMW-PTP and SHP-2, receptor tyrosine kinases, Src-family kinases and 
many more [99]. Here, adhesion and migration are regulated by integrin receptors 
via cyclooxygenase-2 [101] and 5-lipoxygenases (5-LOX) [102] .An important role 
of ROS is evident in tumour cells where it protects them in adhesion-free environ-
ment. Non-transformed cells require ECM as a physical scaffold to execute its 
mitotic activities, whereas ROS facilitates such action [61, 99] through Rac-1- 
dependent pathway [103]. But, loss of contacts from the ECM results in cellular 
death in comparison to transformed cells, where increased ROS evades this phe-
nomenon and allows their survival by controlling autocrine/adhesive signals, which 
are otherwise mediated by growth factor and integrin signalling in normal cells 
[103, 104].
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14.3.2  ROS: A Foe Indeed

14.3.2.1  In Apoptosis
Involvement of ROS in promotion of apoptosis is due to several factors that include 
downregulation of antioxidant pathways, chemotherapy treatments, endogenous 
sources of reactive oxygen species, etc. Very well-known mechanism of apoptosis 
is through increased mitochondrial oxidative stress accompanied by cytochrome c 
release and caspase activation [105, 106]. Apoptosis induction can also be initiated 
via superoxide activated Rac-1/NADPH oxidase pathway [107]. H2O2 and NO are 
the activators of cJun N-terminal kinases (JNKs)-mediated cell death [105, 108], by 
downregulating Bcl-2 and Bcl-XL.  Moreover, ROS-mediated JNK activation 
depends on Ask-1 (apoptosis signal-regulating kinase-1) signalling, regulated 
through a redox-regulated protein thioredoxin [109, 110]. Additionally, forkhead 
transcription factors, FOXO3a, p66Shc, p53, etc., have gained importance as induc-
ers of apoptosis in the presence of ROS [75, 111]. Other than these, some of the 
receptor-mediated cell death signalling has also been observed that rely on 
ROS. TNF receptor I promotes ROS generation through mitochondria in the process 
of cell death [112]. In addition, TRAF4 (TNF receptor-associated factor4), a part of 
the TNF-α signalling axis, associates with NADPH oxidase complex to activate 
JNK [113]. Hence, such pathways indicate how receptor-based ROS induction plays 
a role in cellular apoptosis.

Precise signalling mechanisms that are context-dependent are essentially respon-
sible for ROS inducing different cellular activities like proliferation, differentiation, 
cell cycle arrest, apoptosis and so on. Hence, from the above scenario and the evi-
dences mentioned in the context of ROS-sensitive signalling mechanisms till now, 
it is clear that specific strategies are required to target the cancer cells.

14.4  Cancer Stem Cells and ROS: A Deadly Liaison

Although there have been mounting evidences for therapeutic strategies in favour of 
cancer reduction, a number of reports regarding the failure of treatment have also 
been suggested. One of the crucial reasons behind such failure is the presence of a 
subpopulation of cancer cells within the tumour known as cancer stem cells (CSCs) 
that are sparsely targeted by chemotherapy or radiotherapy. These CSCs are highly 
responsible for conferring tumour resistance and causing cancer recurrence too. 
Many researchers have reported that CSCs exhibit reduced ROS level in comparison 
to the non-stem cells in cancers [25]. Such an environment favours slow division of 
cells in CSC-enriched population in contrast to the highly proliferative cancer cells. 
Consequently, the effect of chemotherapy is suppressed and resistance develops. 
Additionally, large numbers of genes and proteins are present in CSCs that act in 
co-ordination with ROS defence, contributing to the therapy resistance. Henceforth, 
it becomes essential to understand the ROS-manipulation mechanisms of the CSC- 
enriched population in the tumour, in order to achieve an effective remedy for 
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cancer. In this regard, we have discussed the relevance of oxidative stress in cancer 
stem cell regulation in the following section.

14.5  Lung Cancer Stem Cells

The lung CSCs manifest robust endogenous resistance enabling them to survive the 
chemotherapeutic regimen. The enhanced survivability of this population has been 
attributed to numerous factors such as impeded apoptotic regulation, elevated DNA 
damage response and repair, increased function of drug efflux pumps, maintenance 
of redox homeostasis, etc. [114, 115]. Since the dawn of research in the field of 
CSC, the focus has remained on the identification of CSCs within the tumour popu-
lation, which largely relies on specific biomarkers. Initial approaches for isolating 
lung CSCs involved identification by ‘side population’ (SP) phenotype [116] or by 
measuring enhanced ALDH activity [117]. Subsequently, identification of numer-
ous membrane bound surface markers such as CD44 [118], CD 133, CD90 [119], 
etc., present in CSCs gained importance (Fig. 14.4). CD44 is an important redox 
mediator, and its crucial functions have been discussed in the latter sections. Lung 

Fig. 14.4 Phenotypic characteristics of lung CSCs. Lung CSCs are characterised by specific sur-
face biomarkers such as CD44, CD133 and CD90. They also harbour upregulated expression of 
drug efflux pumps such as ABCG1/2 alongside anti- apoptotic proteins such as Bcl-2, Bcl-XL and 
Mcl-1
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CSCs overexpress ATP-binding cassette (ABC) transporters which result in reduced 
intracellular drug levels, thereby protecting them from drug-induced cytotoxicity 
[116]. Both ABCG1 and ABCG2 are significantly upregulated in lung CSCs facili-
tating drug resistance [120, 121]. ABCG2 also manifests a protective role against 
oxidative stress [122]. Apart from this, lung CSCs mediate drug resistance by over-
coming DNA damage inflicted by genotoxic drugs via efficient DNA repair path-
ways which is destined to reduce oxidative stress. Yu et al. [123] depicted enhanced 
DNA repair potential in lung CSCs which negated cisplatin-induced cytotoxicity 
and ROS generation. Also, the altered expressions of anti-apoptotic proteins impair 
cell death induction. Bcl-2, Bcl-XL and Mcl-1, which promote cell survival, are 
upregulated in lung CSCs [124, 125]. Bcl-2 is also a redox modulator which is 
involved in maintaining reduced intracellular ROS levels [126]. Therefore, redox 
homeostasis is another crucial mechanism of survival depicted by the CSCs.

14.6  Role of ROS in Preserving Attributes of CSCs: 
Contribution of a Real Friend

ROS has been suggested to be intricately involved in various cellular networks and 
serves as a signalling molecule. Its critical role in tumour development has been 
discussed in the previous sections. Relevance of ROS in reference to CSCs is also 
noteworthy. Recent developments have recognized that stem cells inhabiting the 
niches are characterized by low ROS levels, which is particularly crucial for stem-
ness maintenance. Subsequently, elevated ROS levels significantly enhance the dif-
ferentiation potential (Fig. 14.5) [127]. CSCs also employ a similar mechanism of 
redox balance that helps in maintenance of self-renewal. They also maintain low 
level of inherent ROS as compared to the rest of the tumour mass which essentially 
contributes to resistance [25]. An increase in ROS levels results in cell differentia-
tion with a subsequent decline in CSC population (Fig. 14.5). Also, ROS prevents 
β-catenin activity by perturbing its interaction with TCF4 which might ultimately 
block self-renewal of CSCs [128, 129]. Thus, high ROS has a negative impact on 
CSC survival. In CSCs, fructose-1, 6-biphosphatase (FBP1) is epigenetically 
silenced as a consequence of which there is increased glycolysis and ROS reduc-
tion, ultimately favouring β-catenin activation for CSC maintenance [130].Hence, 
low ROS levels are favoured by CSCs which critically aid in survival, and thus, it is 
also plausible that antioxidants may boost CSCs. In relation to this, the administra-
tion of antioxidants during cancer therapy still remains a disputable issue due to 
failure of clinical trials [131]. Therefore, it is conceivable that the cellular level of 
ROS acts as critical determinant for survival and functioning of CSCs, suggesting 
that manipulating the oxidant molecule may potentially help to eradicate this resis-
tant population. Additionally, it becomes important to decipher the mechanisms of 
ROS regulation in CSCs and culling strategies to overcome the oxidative stress.
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14.7  How Do Lung CSCs Conspire with ROS to Overcome 
Oxidative Stress?

Redox equilibrium is essentially involved in the maintenance of self-renewal ability 
of stem cells along with its differentiation potential [132]. This low level of ROS in 
CSCs might be due to production of ROS at small level and/or elevated antioxidant 
system for scavenging ROS. The low ROS generation in CSCs may be attributed to 
the slow division process. The slowly proliferating CSCs act like ‘quiescent’ stem 
cells and maintain low inherent ROS levels [133]. Alternatively, upon investigation 
by Diehn and colleagues, it was determined that upregulation of glutathione (GSH) 
enabled detoxification of ROS and, thus, helped reduce oxidative stress inflicted 
upon CSCs (Table 14.1) [25]. Lan et al. critically observed that exogenous GSH 
enhanced cisplatin resistance in lung cancer [134]. Also, the variant form of the lung 
CSC marker CD44 is known to help enhance GSH biosynthesis by assisting cyste-
ine uptake (Table 14.1) [135]. In line with this, peroxiredoxin II, an antioxidant 
enzyme, contributes significantly in redox regulation of lung CSCs [136–138]. The 
elevated level of this enzyme shows protective effect in response to oxidative stress. 
Chandimali et  al. [139] have explored the role of peroxiredoxin II in attributing 
stemness characteristics to lung CSCs (Table 14.1). Also, it mediates redox regula-
tion by facilitating JNK-dependent DNA repair, thereby protecting against DNA 
damage [140]. Therefore, peroxiredoxin II plays a critical role in maintaining stem-
ness and provides protection against oxidative stress. In a similar manner, the lung 
CSCs overexpress the antioxidant proteins, thioredoxin and thioredoxin reductase, 

Fig. 14.5 ROS level is a critical determinant for CSCs. CSCs maintain a low level of cellular ROS 
when compared to cancer cells. An increase in ROS levels in CSCs stimulates its differentiation to 
cancer cells
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for maintaining redox homeostasis [141]. Following this, numerous ROS-responsive 
transcription factors help in maintaining the redox balance. The nuclear factor ery-
throid 2-related factor (NRF2) is one such critical regulator which governs the 
expression of various detoxification genes enabling protection against environmen-
tal stressors [142]. NRF2 is normally inhibited by Keap1, but alterations in Keap1 
functions leads to activation of NRF2 which in turn has been observed to facilitate 
lung cancer growth [143]. In addition to this, recent evidences have clearly por-
trayed that NRF2 is involved in ROS modulation which ultimately facilitates CSC 
growth and resistance (Table 14.1). It functions as a redox modulator enhancing the 
expression of glutamate-cysteine ligase and cysteine transporter for elevating GSH 
levels. Also, NRF2 upregulates glutathione peroxidases and GSH reductase, thereby 
facilitating regeneration of reduced GSH. Other detoxification proteins such as thio-
redoxin 1, peroxiredoxin 1/6, thioredoxin reductase 1, etc. are also regulated by 
NRF2 [144]. NFκB is another crucial factor which is worthy to be discussed in 
redox regulation. It typically boosts cellular survival. ROS induction causes an 
NFκB response and the target genes function to attenuate the upregulated ROS 
enabling survival [145]. Another highly conserved transcription factor FOXM1 
which is a member of forkhead box transcription factor family is a cardinal regula-
tor of oxidative stress during carcinogenesis (Table 14.1) [146]. It is significantly 
overexpressed in lung cancer [147] where it downregulates ROS by triggering the 
expression of ROS scavenging factors like catalase, manganese superoxide dis-
mutase (MnSOD) and PRDX3. Thus, FOXM1 works in a negative feedback loop, 
wherein the increased oxidative stress induces its expression which in turn counter-
acts the escalated ROS levels, thereby exerting protective function in the tumour 
cells [146]. Also, the critical role of FOXM1 has been discussed by Kwok et al. in 
human embryonic stem cells [148]. This transcription factor aids in defence against 
oxidative stress and its knockdown-impeded embryonic stem cell proliferation. 
Recent reports have indicated the role of FOXM1 in maintenance of lung CSCs, 
thereby enabling redox regulation within it [149]. Thus, numerous factors contrib-
ute to redox equilibrium in lung CSCs which essentially help them survive in 
response to oxidative stress.

Table 14.1 Factors facilitating redox regulation in CSCs

Factors Functions
Glutathione (GSH) Detoxification of ROS
CD44 Enhancement of GSH biosynthesis by assisting cysteine uptake
Periredoxin II Protective effect against oxidative stress
Thioredoxin and 
thioredoxin reductase

Maintaining redox homeostasis

Nuclear factor erythroid 
2-related factor (Nrf2)

Governs expression of various detoxification genes
Upregulates glutathione peroxidases and GSH reductase

FOXM1 Downregulates ROS by triggering expression of ROS scavenging 
factors like catalase, manganese superoxide dismutase (MnSOD) 
and PRDX3
Defense against oxidative stress
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14.8  Strategies to Break the Evil Friendship Between CSCs 
and ROS: A Friend Turned Foe

The redox homeostasis which is prevalent in lung CSCs contributes notably towards 
their survival. Thus, as a means of developing potential therapeutic strategies for 
targeting this resistant population, exploiting the redox status may serve as a novel 
therapeutic approach. Surpassing the inherent low ROS level of CSCs may improve 
oncologic therapies. Antineoplastic agents are known to selectively kill cancer cells 
by increasing ROS levels; however, it will be interesting to observe whether they 
can eliminate the CSCs. Induction of high ROS level in tumour niches may activate 
differentiation of CSCs, which may be a possible therapeutic strategy using chemo-
therapeutic agents [127]. Furthermore, CD44, a lung CSC marker, which, as dis-
cussed previously, plays a significant role in redox homeostasis, has been targeted 
recently by hyaluronan-based nanoparticles in lung cancer (Fig. 14.6) [150]. Also, 
a microRNA-based treatment strategy was used for targeting peroxiredoxin II. mir- 
122 successfully downregulated peroxiredoxin II and the associated stemness char-
acteristics in lung CSCs, along with induced apoptosis (Fig. 14.6) [139]. In line with 
this, the thioredoxin and GSH systems also serve as potential targets for interrupting 
the redox homeostasis in CSCs [151]. Interestingly, Lagadinou et al. [152] observed 
that the CSCs having low ROS exhibit upregulated BCL-2 expression. Subsequently, 
BCL-2 inhibition also eliminates the CSCs via interruption of BCL-2-dependent 
oxidative phosphorylation (Fig. 14.6). In fact, the decreasing GSH level leads to 
increase in oxidative stress that ultimately kills the CSCs [152].

Fig. 14.6 Targeting CSCs via redox modulation. The conventional chemotherapy fails to conquer 
the CSCs. One of the strategies of overcoming therapy resistance in CSCs is by modulating its 
redox homeostasis. Downregulation of the redox factors such as CD44, Nrf-2, FOXM1, Bcl-2, etc. 
might help target the CSCs. Also, microRNA-based treatment strategy using mir-122 enabled dis-
ruption of redox balance
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The role of NRF2 as a master regulator in protecting CSCs form oxidative stress 
has been discussed in the previous sections. Hence, targeting this regulator might 
provide means of eliminating the CSCs. Brusatol, which is an NRF2 inhibitor, pro-
moted ROS generation and thereby sensitized lung CSCs to radiation therapy 
(Fig.  14.6) [153, 154]. Likewise, fenretinide was observed to exhibit cytotoxic 
effect towards CSCs. Fenretinide-induced cytotoxicity was linked to rapid ROS 
production along with repression of NFκB-associated genes [155]. Similarly, target-
ing FOXM1, another important redox regulator, may represent beneficial therapeu-
tic strategy for lung CSCs [149]. Thus, numerous approaches are being developed 
for targeting the lung CSCs by redox modulation. However, there is still dearth of 
information on redox regulation in CSCs. Given the essential role exhibited by 
redox homeostasis in self-renewal and survival ability of CSCs, further studies in 
this direction may open greater avenues for treatment.

14.9  Conclusion

Reactive oxygen species essentially behave both as a ‘friend’ and a ‘foe’ of lung 
cancer. ROS regulates cellular signalling networks in lung cancer, thereby mediat-
ing numerous cellular functions such as cell proliferation, apoptosis, cell cycle pro-
gression, adhesion, metastasis and many more. The equilibrium between 
pro-oxidants and antioxidants is a critical determinant for cancer cell survival and 
progression. It is implicated that ROS-regulated networks manipulate the survival 
of cancer cells. A sudden spike in ROS enables cancer cell proliferation and boosts 
cell motility favouring metastasis. Furthermore, the dawn of the emerging field of 
CSCs has significantly revealed their important role in carcinogenesis and relapse. 
Hence, deciphering the redox networks in CSCs is vital. The CSCs harbour low 
inherent ROS facilitating their survival. Increase in cellular ROS level accelerates 
the differentiation of CSCs to cancer cells. Thus, surge in ROS may lead to hostile 
conditions for CSC survival and may prove beneficial from therapeutic viewpoint. 
Therefore, it is plausible to eliminate the resistant CSCs by manipulating its ROS 
content. Consequently, the differentiated CSCs can further be targeted by conven-
tional chemotherapeutic agents which were previously ineffective against CSCs. 
Therefore, our discussion emphasizes on the omnipresent role of ROS in lung car-
cinogenesis. Modulating the redox homeostasis may enable us to target this disease 
by attacking multifaceted signalling networks which promote cancer cell survival. 
Hence, in the near future, we can plausibly discover newer therapeutic regimens in 
order to overcome the shortcomings of current treatment methods.
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15Role of Noncoding RNA in Lung Cancer

Angshuman Bagchi

Abstract
Long noncoding RNAs are RNA molecules that typically are more than 200 
nucleotides long. Though they are called noncoding RNAs, they do have the 
capacity to code for small peptides. Long noncoding RNAs play important roles 
in many of the cellular processes. They are found to be the causes of many of the 
diseases, and lung cancer is one such disease that is heavily influenced by 
lncRNAs such as EPEL. In this chapter, the relationship between lncRNAs and 
their influence on the onset of lung cancer is elucidated.

Keywords
Long noncoding RNAs (lncRNAs) · Lung cancer · EPFL · Mutations

15.1  Introduction

Long noncoding RNAs belong to the class of RNAs which are 200 or more nucleo-
tides long molecules. Previously, they were considered to be junk molecules. These 
RNA molecules are very much abandoned in the genomes of the organisms. 
Majority of the lncRNAs are tissue specific [1–16].
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15.2  Some Important Characteristics of Long Noncoding 
RNAs

 (a) They are generally 200 or more nucleotides long.
 (b) They have conserved sequences.
 (c) These RNA molecules are transcribed mostly from the intronic part of the 

genome. However, some lncRNAs are transcribed from the genomic portions 
which code for proteins as well.

 (d) The nucleotide sequences of the lncRNAs remain somewhat conserved.
 (e) The nucleotide sequences belonging to the lncRNAs’ promoters are highly con-

served. The nucleotide sequences of the promoter regions are more conserved 
than the sequences of the lncRNAs.

 (f) The lncRNAs can be classified depending on their origin as (i) sense, (ii) anti-
sense, (iii) intronic, (iv) intergenic, and (v) bidirectional.

 (g) Though they are called noncoding RNAs, some of them do code for peptides.
 (h) These RNA molecules have conserved secondary structures.
 (i) The actual functions of the lncRNAs are still not very clear. However, these 

RNA molecules have their involvements in the following biological processes:
 (i) As signaling molecules for transcriptional regulators.
 (ii) As guides for protein localizations.
 (iii) As protein-binding scaffolds.

 (j) These RNA molecules function in modification and remodeling of histone and 
chromatin, regulating the gene expressions and their silencing, methylation of 
DNA, heat shock response, and embryogenesis [17–48].

The lncRNAs are associated with lung cancer. Several lncRNAs are found to be 
either up- or downregulated in lung carcinoma.

15.3  A Few Words on Lung Cancer

The most commonly used term for lung cancer is lung carcinoma. It represents a 
tumor with uncontrolled growth in the lungs of a living being. The tumor in lung is 
characterized by uncontrolled growth of cells in lung tissues. The growth is so 
severe that it is able to spread to other nearby tissues by a process called metastasis. 
The lung carcinoma is categorized into two main classes: small-cell lung carcinoma 
(SCLC) and non-small-cell lung carcinoma (NSCLC) [49–58].

15.4  Signs and Symptoms

The most important symptoms of lung carcinoma are as follows:

 (a) Symptoms pertaining to respiration: The patients have severe coughing and 
sometimes blood comes through cough. The patients feel shortness of breath.
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 (b) Symptoms pertaining to whole-body system: loss of weight, weakness. The 
patients have mild fever.

 (c) Other symptoms: pain in the chest and bone, obstruction in superior vena cava 
obstruction. The patients might find it difficult to swallow food. Sometimes 
pneumonia might occur. The patient loses appetite [19–59].

15.5  Possible Causes

Though it is really very difficult to pinpoint the exact cause of the disease, still the 
following might be considered as useful guides to take preventive measures against 
the disease:

 (a) Smoking: Consumption of tobacco is considered to be the root cause of the 
disease. Nearly 90% of deaths of the lung cancer patients occur due to smoking 
of tobacco.

 (b) Radon gas: It is one of the important causative agents of lung carcinoma.
 (c) Asbestos: It is another important causative agent of lung carcinoma. Tobacco 

smoking and asbestos both are equally important in the onset of lung 
carcinoma.

 (d) Air pollution: Another source of the disease is air pollution. The chemicals 
released from burning of fossil fuels are the main causative agents. Sulfate aero-
sols and nitrogen dioxide are the substances that lead to the onset of the 
disease.

 (e) Genetics: Though it is not fully established, about 8% of the total lung carci-
noma is genetically inherited.

 (f) There are certain other factors that also known to cause the lung carcinoma. 
Among them are compounds of metals like aluminum, cadmium, nickel, and 
beryllium; compounds of arsenic; incomplete combustion of coal; ionizing 
radiations; and toxic gases like methyl ether and sulfur mustard [59–73, 78].

15.6  Different Classes of Lung Carcinoma

Lung cancers are classified on the basis of histology. This classification is based on 
how the malignant cells look like and how big the cells are.

 (a) Non-small cell carcinoma: This is the type of lung cancer that infects the epi-
thelial cells. This type of carcinoma accounts for nearly 85% of the lung can-
cers. They are relatively insensitive to chemotherapy. There are several types of 
non-small cell carcinoma. Among them the most frequent ones are squamous 
cell carcinoma, large cell carcinoma, and adenocarcinoma. Lung adenocarci-
noma is the commonest form of lung carcinoma in nonsmokers. It is mainly 
observed around the periphery of the lung tissues. On the other hand, tobacco 
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smokers generally have squamous cell carcinoma. It is more common in men 
than in women.

 (b) Small-cell carcinoma: This is a type of carcinoma which is highly malignant. 
This type of carcinoma infects mainly the central airways leading mainly to 
narrowing of the bronchial passages [47–77]; Kumar et al. [60, 78, 79]; [80–
85]; Usman et al. [86–88].

15.7  Disease Pathogenesis

As in the case of other types of cancers, lung cancer is also caused by oncogenic 
activations or the deactivations of tumor suppressor genes. Mutagenic carcinogens 
induce genetic changes in these genes leading to the onset of cancer.

The genes which are mainly involved in inducing lung cancer are K-ras, c-MET, 
NKX2-1, LKB1, PIK3CA, BRAF, and EML4-ALK. K-ras is a proto-oncogene and 
it is involved in mainly 10–30% of lung adenocarcinoma. On the other hand, EML4- 
ALK tyrosine kinase fusion gene is involved in the development of nearly 4% of 
non-small-cell lung carcinoma.

Apart from the direct genetic mutations, there are certain epigenetic changes 
which also induce lung carcinoma. Such, epigenetic changes are DNA methylation, 
modification of histone tail, regulations of noncoding RNA molecules, etc. It is also 
well known that cancer cells are resistant to oxidative damages. Under such condi-
tions, the cancer cells remain unaffected by the cellular immune systems which 
would otherwise be able to destroy the cancer and tumor.

Another important protein is the epidermal growth factor receptor (EGFR). 
EGFR is known to regulate cell proliferation, apoptosis, angiogenesis, and tumor 
invasion. In non-small cell lung carcinoma patients, the EGFR is found to be heav-
ily mutated.

Other possible routes associated with lung carcinoma involve abnormal activa-
tion of stem cells, neuro-dendritic cells, etc.

The most important aspect of lung carcinoma is the metastasis. It is the process 
that involves transitions of the epithelial cells to mesenchymal cells. In metastatic 
lung carcinoma, the following signaling pathways are activated: Akt/GSK3Beta, 
MEK-ERK, Fas, and Par6 ([74–77]; Kumar et  al. [60, 78, 79]; [80–85]; Usman 
[86–88]).

15.8  Involvements of lncRNAs in Lung Carcinoma

Recently, lncRNAs are found to play important roles in several of diseases. One of 
such diseases is lung carcinoma. The following are the different types of lncRNAs 
associated with lung carcinoma:

 (a) E2F-mediated cell proliferation enhancing lncRNA (EPEL): EPEL is also 
known as LOC90768 and MGC45800. This lncRNA was found to be associated 

A. Bagchi



357

with the multiple occurrence and survival of patients suffering from lung can-
cer. This lncRNA is also associated with lung cancer cell proliferation via the 
activation of E2F target genes. In other words, this lncRNA is known to pro-
mote the cancer cell proliferation via the activation of E2F target genes. The 
knockdown of lncRNA EPEL is known to specifically downregulate the expres-
sion of cell cycle-related E2F target genes, including cyclin B1 (CCNB1), in 
lung cancer cells. However, it is not linked to apoptosis- or metabolism-related 
E2F target genes. The lncRNA EPEL is known to interact with E2F1. In this 
way, it regulates the expression of the E2F target genes. The lncRNA is known 
to make changes on the binding efficiency of E2F1 to the E2F target promoters. 
Therefore, it could be safely concluded that the expression levels of EPEL and 
CCNB1 both alone and together are prognostic biomarkers for lung cancer 
([89] and references therein).

 (b) The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1): 
The lncRNA MALAT1 was identified to be associated with patient survival. 
The lncRNA is known to affect the genes associated with cancer like cellular 
growth, movement, proliferation, signaling, and immunoregulation and so on. 
Furthermore, the amount of MALAT1 was found to be higher in brain metasta-
sis. The lncRNA MALAT1 induces metastasis of lung cancer cells by enhanc-
ing epithelial-mesenchymal transition (EMT). The actual mechanistic detail of 
the involvement of MALAT1  in lung carcinoma is not yet fully understood. 
However, it was speculated that MALAT1 regulates DNA methylation. It also 
helps in the upregulation of Bcl2 and its interacting partners to induce non- 
small cell lung carcinoma ([89, 90] and references therein).

 (c) HOX antisense intergenic RNA (HOTAIR): It is a 2.2 kilobase noncoding 
RNA. The lncRNA HOTAIR is known to facilitate the tumor development in 
non-small cell lung carcinoma. However, it is not linked to the carcinogenesis 
of non-small cell lung carcinoma. It was also revealed that HOTAIR is involved 
in the modification of the promoter of p53 and thereby enhancing histone H3 
lysine 27 trimethylation. This indicates a negative correlation between HOTAIR 
and p53 in non-small cell lung carcinoma cells. Furthermore, HOTAIR is 
known to activate Wnt/β-catenin signaling pathway in esophageal squamous 
cell carcinoma ([90] and references therein).

 (d) HOXA distal transcript antisense RNA (HOTTIP): HOTTIP is known to be 
an antisense noncoding RNA transcript. It is also known to be placed at the 
distal end of HOXA gene cluster. The expression of HOTTIP is found to be 
higher in non-small cell lung carcinoma than in the corresponding adjacent nor-
mal tissues. It thereby helps in contributing to cell proliferation and migration. 
The lncRNA HOTTIP also regulates HOXA13 and thereby functioning as 
oncogene ([90] and references therein).

15 Role of Noncoding RNA in Lung Cancer



358

15.9  Concluding Remarks

It has been reported in different recent studies that lncRNAs do play very important 
roles in the development of non-small cell lung carcinoma and thereby leading to 
lung cancer-related deaths. In this review I tried to analyze the link between lncRNA 
and lung cancer. Recent studies suggest that patients suffering from lung carcinoma 
have invariably differential expression patterns of different types of lncRNAs. 
However, the mechanistic details of the involvements of lncRNAs in the onset of 
lung carcinoma are not well described. Different lncRNAs like MALAT1, HOTAIR, 
etc. are constantly being targeted by scientists to analyze their effects in different 
disease conditions especially in lung carcinoma. The main aim of the review is to 
provide some insight into the effects of lncRNAs in disease onset.
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Abstract
Oxidative stress, caused by an imbalance between oxidants and antioxidants, is 
implicated in the etiology and progression of many types of cancer including 
lung cancer. The most common type of lung cancer, NSCLC, is the leading cause 
of cancer-related deaths worldwide. The lung tissue is particularly vulnerable to 
oxidative stress because of its direct interface with ambient air which exposes it 
to a variety of oxidants. In order to protect itself from oxidative stress, lung tissue 
is equipped with a robust endogenous antioxidant defense system mostly con-
trolled by the redox-sensitive transcription factor Nrf2 which is negatively regu-
lated by Keap1 protein. Lung cancer cells are reported to contain increased levels 
of ROS. However, administration of antioxidants has failed to show any obvious 
effectiveness in the prevention or cure of lung cancer. On the other hand, a pro-
oxidant approach has been proposed to successfully kill cancer cells by generat-
ing ROS. Cancer cells, owing to their high basal ROS, are considered to be more 
vulnerable to the toxic effect of exogenous ROS-generating agents as opposed to 
normal cells. A major challenge in this mode of therapy is the acquisition of drug 
resistance in cancer cells. This is attributed to an elevation in the antioxidant 
system in cancer cells, leading to “redox adaptation,” which facilitates survival 
under enhanced oxidative stress. Incidentally, lung cancer cells have been 
reported to exhibit constitutive overexpression of Nrf2. Therefore, impairment of 
the Nrf2/Keap1 antioxidant pathway might be a promising strategy to control 
NSCLC. In this chapter, the importance of ROS as a signaling molecule in regu-
lating some of the hallmark feature of cancer, such as proliferation, apoptosis, 
angiogenesis, metastasis, etc., is discussed. Furthermore, the various ROS- 
modulating therapeutic approaches to treat NSCLC presently under investigation 
at experimental and clinical setting are also discussed.
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16.1  Introduction

Lung cancer accounts for majority of cancer deaths and is also the most common 
cancer diagnosed worldwide. Histologically, two main types of lung cancer are non- 
small- cell lung cancer (NSCLC) representing approximately 85% of all lung cancer 
cases and small cell lung cancer (SCLC) constituting the remaining cases [1]. To a 
large extent, lung cancer survival and treatment modality are governed by the stage 
of the disease [2]. The standard treatment recommended for stages I and II is surgi-
cal resection along with adjuvant therapy; radiation with chemotherapy is the mode 
of treatment for locally advanced inoperable stage IIIA tumors; for stage 3 IIIB and 
IV chemotherapy along with supportive care is the standard treatment. More 
recently, chemotherapy is being replaced by tyrosine kinase inhibitors (TKIs) as the 
first line of treatment [3]. Despite the evolution of targeted therapy, lung cancer 
prognosis is still very poor with a meager 17.8% 5-year survival rate [4] which is 
much lower than many other leading cancer sites. Approximately 50% of the lung 
cancer cases are detected at an advanced metastatic stage and the average median 
survival for such patients is 10–12 months [5] which have been found to marginally 
increase to 18–25 months with the use of TKIs [3]. Such dismal survival rates and 
poor prognosis are attributed to high recurrence, metastasis, and the development of 
drug resistance in majority of patients.

Oxidative stress is implicated in the pathophysiology of lung diseases including 
lung cancer [6]. An imbalance between production of oxidants and their neutraliza-
tion by the antioxidant defense systems in our body is termed as oxidative stress. 
Elevated levels of intracellular ROS, which are by-products of aerobic metabolism, 
are frequently encountered during oxidative stress. The term ROS includes several 
free radicals, e.g., superoxide (O2

•−), peroxyl (RO2
•), hydroxyl radical (OH•), hydro-

peroxyl (HO2
•), and some non-radical oxidants such as hydrogen peroxide (H2O2). 

Considerable evidence suggests that redox imbalance and deregulation in redox sig-
naling are associated with cancer progression and drug resistance [7]. Increased 
production of ROS has been associated with many human metastatic tumors [8] 
including lung cancer [9, 10] and is linked to tumor aggressiveness resulting in poor 
prognosis [11]. This persistent high level of ROS in cancer cells, resulting from 
genetic and metabolic alterations [12], promotes tumor growth and aggressiveness 
by regulating several key cellular processes such as proliferation, apoptosis, angio-
genesis, invasion, and metastasis [13]. Therefore, it is logical to speculate that the 
molecular and biochemical alterations caused by elevated ROS in cancer cells can 
lead to the emergence of drug-resistant cells during disease progression [14]. 
Although drug resistance mechanisms are extremely complex and depend on the 
mode of treatment and genetic constitution of cancer cells, ROS-mediated 
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mechanisms can be assumed to have an important participation in the evolution of 
drug-resistant phenotype.

Paradoxically, as ROS are extremely reactive and can damage cellular macro-
molecules, the elevated intrinsic ROS in cancer cells provide a unique opportunity 
to selectively kill cancer cells based on their vulnerability to further oxidative stress. 
These contradictory roles of ROS have important implications in designing antican-
cer therapies based upon modulation of ROS levels. Therefore, modifying ROS 
levels by either enhancing or depleting their concentrations have been proposed for 
cancer treatment.

Herein the various signaling pathways through which ROS may modulate cancer 
phenotypes are described. The therapeutic implications of this escalated ROS levels 
in lung cancer is also discussed. Some clinical studies correlating ROS levels with 
tumor prognosis will also be detailed in this chapter.

16.2  Redox Signaling in Lung Tissue

The primary function of lung is to facilitate exchange of CO2 for O2. As compared 
to other organs, lungs are more vulnerable to oxidative stress because they are 
exposed to highest amount of oxygen [15]. Moreover, adult human lungs exchange 
between 10,000 and 20,000 l of air daily [16].This exposes the lungs to a wide vari-
ety of infectious agents and toxicants including mutagens and carcinogens. 
Therefore, in order to maintain the sterility of airways, lung cells have equipped 
themselves with NADPH oxidase (Nox) enzymes which are widely expressed in 
both upper and lower respiratory tracts [17] and participate in innate immunity and 
host defense of the lungs [16]. The Nox enzymes catalyze the reduction of molecu-
lar O2 to superoxide (O2

°−) which is involved in maintaining lung integrity [17]. 
Expression of Nox and Nox-derived ROS are considered to participate significantly 
in the development of an oxidative environment which provides pro-oncogenic sur-
vival and proliferative signals [18]. Considerable studies now suggest a positive 
correlation between Nox expression/activity and lung cancer [19]. Apart from Nox, 
another endogenous source of ROS in lung tissues is polymorphonuclear neutro-
philic leukocytes (PMNs) which are significantly higher in numbers in the pulmo-
nary circulation than the systemic circulation [20]. Protection of lung tissue against 
such oxidative insult is mediated by a variety of endogenous antioxidants, for 
instance, glutathione S-transferase (GST), glutathione peroxidase, superoxide dis-
mutase (SOD), catalase, thioredoxin reductase, and reduced glutathione (GSH) 
(L-γ-glutamyl-L-cysteinyl-glycine) [21]. The principal regulator of antioxidant 
enzymes is nuclear factor erythroid 2-related factor 2 (Nrf2) which plays a vital role 
in providing cytoprotection in response to oxidative stress.

Higher levels of ROS which play a positive role in carcinogenesis have been 
reported in lung cancer cells. To counteract the toxicity of such elevated ROS, lung 
cancer cells increase their antioxidant defense system (as shown in Fig. 16.1) [22, 
23]. The augmented antioxidant level in response to oxidative stress is largely gov-
erned by the activity of the redox-sensitive transcription factor Nrf2. Under 
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unstressed condition, a cytosolic inhibitor of Nrf2, termed Kelch-like ECH- 
associated protein 1 (KEAP1), targets it for proteasomal degradation. Accumulating 
evidence indicate alterations of the Keap1-Nrf2 pathway in lung cancer, including 
somatic mutations, loss of heterozygosity, and epigenetic changes in the promoter 
region of Keap1 [24]. Thus, it has been postulated that cancer cells not only gener-
ate high levels of ROS but also can withstand these levels by activating antioxidant 
pathways, predominantly the Nrf2-Keap1 pathway, that drive their proliferation and 
survival [25].

16.3  ROS in the Regulation of Cell Behavior

16.3.1  ROS as a Mediator of Cell Proliferation

Binding of many polypeptide growth factors including epidermal growth factor 
(EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), etc., 
to receptor tyrosine kinases (RTKs) has been reported to induce ROS production 

Fig. 16.1 Main sources and scavengers of ROS in the lung alveolar space. Nox family of oxido-
reductases is widely expressed in different cell types of the lung alveoli such as type I and type II 
pneumocytes, alveolar macrophages, and neutrophils which create an oxidative environment in the 
lung tissue. Macrophages and neutrophils also generate ROS during oxidative burst. Lung tissue 
protects itself from this enhanced ROS by activating Nrf2-/Keap1-mediated antioxidative defense 
mechanism
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which facilitates growth-factor-induced receptor tyrosine phosphorylation [26]. 
Oxidation of cysteine (Cys) residues in proteins and other thiol-containing com-
pounds in the cell by ROS is considered to play a vital role in a variety of signaling 
pathways [27]. Experiments have shown that H2O2 can oxidize and inactivate 
receptor- associated EGF-associated phosphatases such as protein-tyrosine phos-
phatase 1B (PTP1B) [28, 29]. Thus, inactivation of these phosphatases by H2O2 
increases phosphorylation of tyrosine residues in the growth factor receptors thereby 
promoting activation of downstream signaling pathways such as mitogen-activated 
protein kinase (MAPK) pathway, signal transducer and activator of transcription 
(STAT), and phosphatidylinositol 3-kinase (PI3K)-Akt which are known to control 
cell proliferation, migration, and survival [30]. H2O2 can also promote the activation 
of Ras which in turn activates PI3/Akt/mTOR and MAPK/ERK pathways [7].

16.3.2  ROS as a Mediator of Cell Survival

As mentioned in the above sections, in response to oxidative stress, Nrf2, after being 
released from Keap1, escapes proteasomal degradation and transactivates the 
expression of genes related to cell survival. Among these are genes for antioxidant/
detoxifying enzymes such as catalase, glutathione peroxidase, superoxide dis-
mutase, thioredoxin, and glutathione S-transferase that can scavenge free radicals, 
thereby reducing ROS-induced cytotoxicity [31]. Nrf2 has also been shown to bind 
to the promoter region of the antiapoptotic protein Bcl-2 in response to oxidative 
stress. Nrf2-mediated upregulation of Bcl2 is reported to downregulate proapoptotic 
Bax and caspase 3/7 which protected cells from undergoing apoptosis and become 
drug resistant [32]. There are evidence of an association between increased accumu-
lation of Nrf2 and augmented Bcl2 levels in lung cancer cells [32]. Another impor-
tant transcription factor which promotes cell survival during oxidative stress is 
NF-κB [33]. NF-κB influences and is being influenced by ROS.  Enhancing the 
expression of antioxidants, such as MnSOD [34], ferritin heavy chain [35], GST 
[36], and haemoxygenase 1 (HO-1), is one of the most important ways in which 
NF-κB moderates ROS levels [37].

16.3.3  ROS as a Mediator of Apoptosis

Apoptosis is mediated by extrinsic or intrinsic pathways. Extrinsic pathway involves 
the recruitment of death receptors on the cell surface, while the intrinsic pathway 
primarily pivots upon the mitochondrial outer membrane permeability. ROS is a 
critical inducer of apoptosis. H2O2-induced apoptosis is reported to be accompanied 
by an increase in p53, Noxa, Puma, and Bax expressions in several cell lines [38]. 
The activity of caspases is also known to be redox regulated as the cysteine residues 
located at the catalytic site of caspases are vulnerable to oxidation. In addition, sus-
ceptibility of procaspase-3, procaspase-9, and the active caspase-3 toward 
S-glutathiolation has also been observed [39, 40].
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ROS have been intricately associated with mitochondrial pathway of apoptosis 
because it is the organelle where most of the intracellular ROS is produced. 
Mitochondria-derived ROS can damage mt-DNA which impairs transcription of 
electron transport genes, thereby compromising mitochondrial membrane potential 
[41]. These events ultimately result in intrinsic pathway of apoptosis. Additionally, 
ROS can also stimulate cytochrome c release from mitochondria and induce mito-
chondrial permeability transition pore (MPTP) opening by oxidizing protein com-
ponents of MPTP [39].

Evidence indicate link between ROS and extrinsic pathway of apoptosis as well. 
Experiments have shown the involvement of ROS such as H2O2 in the activation of 
Fas-L, translocation of FADD to the plasma membrane, and activation of caspase 
8 in many cancer cell lines [42, 43].

Newer evidence have recognized ROS-induced receptor clustering and lipid rafts 
as important redox signaling platforms for apoptotic induction. Death receptor- 
ligand binding has been reported to cause lipid raft formation which facilitated 
recruitment of Nox and ROS generation [44].

16.3.4  ROS as a Mediator of Angiogenesis

Exogenous ROS has been found to induce vascular endothelial growth factor 
(VEGF) in several types of cells and also promote the proliferation and migration of 
endothelial cells [45]. Upregulation of VEGF and its receptors are cellular responses 
under hypoxia which have been reported to trigger the generation of H2O2 by mito-
chondria [46]. ROS is also found to enhance the DNA-binding activity of the tran-
scription factor hypoxia-inducible factor-1α (HIF-1α), which can activate the 
expression of genes such as VEGF in response to hypoxic stress. Intracellular ROS 
production mediated by NADPH oxidases, Nox2 and Nox4, has been reported to 
promote endothelial cell proliferation and survival via p38, ERK, and Akt signaling 
[47, 48].

Nox1-induced ROS production has also been shown to activate ras-induced 
upregulation of VEGF and angiogenesis [49]. Endothelial cell migration has also 
been reported to be facilitated by ROS.  Mechanistically, this involves tethering 
Nox-2 to actin cytoskeleton at the leading edge of migrating endothelial cells by the 
actin-binding scaffold protein, IQGAP1, leading to ROS production which facilitate 
cell migration [50].

16.3.5  ROS as a Mediator of Invasion and Metastasis

Evidence suggest that exposure of various cancer cells to ROS enhance their migra-
tory and invasive property [51, 52]. Metastasizing cancer cells have been reported 
to possess higher levels of cytoplasmic and mitochondrial ROS as compared to 
primary tumors. It is now widely established that detachment of cancer cells from 
extracellular matrix (ECM) causes a robust increase in ROS [53]. ROS is known to 
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induce cell–cell dissociation by regulating the activity of Src kinase [54] which 
mediates internalization of N-cadherin and activation of Rho/Rho kinase pathways 
via phosphorylation of p-120 catenin [55]. The effect of this elevated ROS on the 
viability of disseminated cells is an active area of research now. Subsequent studies 
have shown overexpression of SOD and CAT in ECM-detached cells promoted the 
survivability of these disseminated cancer cells [56] and facilitated evasion from 
anoikis [57]. A study conducted by Piskounova et al. have shown inducible increase 
in endogenous antioxidants glutathione and NADPH in metastatic tumors indicat-
ing that metastasizing cancer cells acquire adaptive response to counteract the ele-
vated oxidative stress. In the same study, it was revealed that treatment with 
N-acetylcysteine (NAC) augmented the existence of circulating tumor cells [58]. 
This is in agreement with a previous study which showed that activation of Src by 
ROS, in addition to facilitate cell-cell dissociation (as mentioned above), also acti-
vates NF-κB resulting in MnSOD expression to decrease the oxidative stress [55]. 
Thus possibly oxidative stress is essential for the initial steps of metastasis, but not 
for the later stages of metastatic cascade. In other words, high ROS content in meta-
static cancer cells as well as their ability to effectively mitigate the oxidative stress 
during migration through the blood vessels and colonization at secondary sites 
determines efficient dissemination and seeding of metastatic cancer cells [59].

Tipping the balance from ROS-induced tumor, promoting events to ROS-induced 
apoptotic signaling is a major challenge for designing effective therapeutic 
strategies.

16.4  Modulation of ROS as Anticancer Strategy 
against NSCLC

As compared to normal cells, cancer cells are known to possess an altered redox 
status which can be explored for potential therapeutic benefits. Cancer initiation and 
progression is frequently associated with oxidative stress. Therefore, antioxidants 
have been proposed to help fight against cancer. Alternatively, another approach to 
target cancer cells is to exploit the vulnerability of cancer cells to further ROS 
insults. However, it has also been observed that cancer cells become adapted to 
persistent increased intrinsic oxidative stress and develop an enhanced antioxidant 
defense system leading to drug resistance. Therefore, modulating such redox adap-
tation is yet another strategy to eliminate cancer cells (Fig. 16.2).

16.4.1  Targeted Therapy

FDA-approved tyrosine kinase inhibitors (TKIs) for the treatment of lung cancer 
patients such as gefitinib, erlotinib, etc., are specifically targeted against epidermal 
growth factor receptors (EGFR) [60]. As mentioned in the above sections, ROS- 
induced oxidative stress is involved in tumor progression mediated by 
EGFR.  Oxidative stress has been demonstrated to activate EGFR in a 
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ligand-independent manner which does not involve receptor dimerization [61, 62]. 
Apart from functioning as mediators of the EGFR signaling pathway, ROS also act 
as regulators of the oxidation status and activation of the EGFR protein. Low and 
high ROS play contradictory roles in the EGFR signaling pathway. Oxidation of 
tyrosine phosphatases and/or specific cysteine residues in EGFR caused by mild 
level of ROS promotes the EGFR signaling pathway [63]. However, excessive ROS 
is reported to cause overoxidation of Met residue of EGFRT790M, thereby inhibiting 
the survival signaling pathway [64]. One study has demonstrated that treatment with 
TKIs increased ROS in cells with intact Keap1 and loss of Keap1 inhibited this 
increase. Keap1 knockout leads to Nrf2 overexpression which caused increased cell 
survivability by reducing ROS levels in the presence of drug [65]. In line with this 
study, one group of researchers have shown that the histone deacetylase inhibitor, 
vorinostat, increases the efficacy of erlotinib or gefitinib against NSCLC when 
administered in combination by downregulating Nrf2 and upregulating Keap1 [66]. 
A natural naphthoquinone, shikonin, was shown to sensitize wild-type EGFR 
NSCLC cells toward the anticancer activity of TKIs which was associated with ER 
stress and ROS [67]. A combination treatment of resveratrol and erlotinib was also 
found to enhance ROS generation and cause apoptosis in NSCLC cells [68].

Acquired drug resistance during TKI therapy is a common problem which 
severely limits treatment outcomes and is responsible for poor prognosis of lung 

Fig. 16.2 Therapeutic modulation of altered redox status of cancer cells. There are mainly 
three ROS-modulating strategies to fight against cancer: (1) using antioxidants to scavenge the 
enhanced ROS in cancer cells, thereby inhibiting carcinogenesis, (2) treating cancer cells with 
prooxidants which would make them more vulnerable to ROS-mediated cell death, and (3) target-
ing and inhibiting the Nrf2-/Keap1-mediated endogenous antioxidant defense system in order to 
jeopardize redox adaptation of cancer cells
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cancer patients [69]. TKI-resistant NSCLC cell lines were reported to contain high 
levels of basal ROS [60, 64]. In addition, corroborating the high basal ROS levels, 
the same study showed high Nox-2 expression in clinical lung tumors which was 
associated with poor patient survival [60, 64]. ROS generated by chronic gefitinib 
treatment has been correlated with EMT which is a classical hallmark of drug- 
resistant tumors as well as alterations in mitochondrial structure and function [70]. 
In a separate study, NAC was found to inhibit EGFR-TKI resistance induced by 
ROS generated from cigarette smoke extract in NSCLC cell lines [62]. The find-
ings from this study suggested that antioxidants might provide therapeutic benefit 
by scavenging TKI-induced ROS and EMT. However, contrary to these reports, 
other studies have shown induction of apoptosis in TKI-resistant NSCLC cells by 
upregulating ROS levels. Combined treatment with erlotinib and a flavonoid 
ampelopsin caused increased accumulation of ROS via upregulating NOX2 enzyme 
which resulted in apoptotic cell death in erlotinib resistance NSCLC cells [71]. 
Another natural compound dioscin is also reported to overcome TKI resistance in 
NSCLC by downregulating transcription of Src homology 2 (SH2) domain-con-
taining PTP2 (SHP2) gene through p53 induction in response to ROS generation 
[72]. A small molecule, sanguinarine, which can elevate ROS level [73], is also 
reported to kill gefitinib-resistant NSCLC cells by upregulating NOX3 resulting in 
EGFR overoxidation, degradation, and apoptosis [64]. Studies have also reported 
that exposure to oxidative stress in EGFR-overexpressed NSCLC cell lines resulted 
in TKI resistance.

16.4.2  Chemotherapy

Apoptosis induced by classical cytotoxic chemotherapeutic agents including DNA 
alkylating agents (e.g., cyclophosphamide), anthracycline antibiotics (e.g., doxoru-
bicin), platinum compounds (e.g., cisplatin), etc., is known to be partly mediated 
through generation of ROS [74]. However, due to the nonselective cytotoxicity of 
these agents which compromises the viability of normal cells as well, research is 
now focused in identifying agents which can selectively target cancer cells. The 
sustained oxidative stress in cancer cells owing to constitutively enhanced ROS 
generation or impaired antioxidant systems can selectively increase the sensitivity 
of cancer cells toward prooxidant cancer therapy which has been observed by sev-
eral groups [14, 75]. In other words, cancer cells with high basal ROS levels are 
more susceptible to the toxic effects of additional exogenous ROS [76]. The 
approach to selectively kill cancer cells by ROS-mediating mechanisms is being 
explored to develop effective selective therapeutic agents. A lot of preclinical stud-
ies have established that various agents can induce apoptosis in NSCLC by exerting 
oxidative stress. Teroxirone, a triepoxide currently undergoing clinical trial, exerted 
oxidative stress on human NSCLC cells by disrupting the mitochondrial membrane 
permeabilization, generating ROS, and promoting ultimate apoptotic cell death 
[77]. Riluzole, an amino acid channel blocker, has been found to increase ROS 
beyond the tolerance limit of cisplatin-resistant NSCLC leading to cell death [78]. 
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Rotenone increased the sensitivity of NSCLC cells toward apoptosis induced by 
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through ROS gen-
eration. Many phytochemicals such as sotetsuflavone, withaferin A, physalin A, and 
withasteroids have been reported to cause apoptosis or cell cycle arrest in the 
NSCLC cell line A549 by increasing the amount of intracellular ROS [79–82].

Chemotherapeutic agents such as motexafin gadolinium and anthracyclines 
(doxorubicin and daunorubicin) may react with flavoenzymes, viz., NAD(P)
H:quinine oxidoreductase (NQO1) and cytochrome P450 reductase, to produce 
superoxide in the presence of reduced NADPH. These agents are, hence, known as 
redox cyclers [83, 84].

Conversely, antioxidants have also been proposed to induce reductive DNA dam-
age leading to cell death. Such a reductive damage to DNA was shown to be medi-
ated by the green tea flavonoid epigallocatechin gallate (EGCG) due to the donation 
of its weakly bound electron to DNA which resulted in A549 cell death [85].

16.4.3  Radiotherapy

Radiotherapy is an important mode of treatment for unresectable advanced human 
lung cancer. In radiotherapy, high- and low-linear energy transfer (LET) radiations 
are delivered to cancer cells which induce damage to cellular macromolecules 
including DNA, ultimately leading to cancer cell killing. X-rays, γ-rays, and 
β-particles constituting low LET radiations and electrons, protons, α-particles, and 
other heavy ions comprising high LET radiations can damage DNA directly or indi-
rectly via free radicals such as OH°, O2

−, and H2O2 generated from ionization of 
cellular water component [86, 87]. However, treatment outcome is severely limited 
due to two factors: undesirable toxicity to normal cells and development of radiore-
sistance in cancer cells [88]. Therefore, there has been a two-pronged attempt to 
improve treatment outcome of radiotherapy: (1) identifying radioprotective agents 
which would offer protection to normal tissues without hindering the tumoricidal 
activity of radiotherapy and (2) identifying potent radiosensitizers which would 
overcome radioresistance.

Whole-grain flaxseed was found to provide protection against radiation-induced 
lung injury in murine model without inhibiting tumoricidal doses of radiation [89]. 
Subsequently, the same group has identified lignan complex of flaxseed as the bio-
active component which upregulates antioxidant enzymes such as HO-1 and NQO1, 
thereby exerting radioprotective effect [90]. Contrary to the effect of radioprotectors 
which are mostly antioxidants, radiosensitizing strategy includes induction of DNA 
damage through ROS generation or inhibiting antioxidant defense system.

Oridonin, a natural diterpenoid compound in combination with radiation, was 
found to greatly enhance ROS generation and DNA damage, thereby increasing 
apoptosis in the H460 NSCLC cell in  vitro [88]. Luteolin pretreatment of NCI- 
H460 and H1299 NSCLC cells before irradiation with γ-ionizing radiation-enhanced 
apoptotic cell death through p38 mitogen-activated protein kinase (MAPK) phos-
phorylation and ROS accumulation [91].
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X-ray irradiation when administered in combination with coroglaucigenin, iso-
lated from stems of Calotropis gigantea, increased radiosensitivity in human lung 
cancer cells (NCI-H446, NCI-H460, A549) accompanied by a reduction in Nrf2 
levels [92]. Blocking Nrf2-dependent antioxidant activity by various agents such as 
brusatol [93], 4-(2-cyclohexylethoxy)aniline (IM3829) [94] have been found to 
enhance the effectiveness of radiotherapy in several human NSCLC cells through 
generation of ROS.

16.4.4  Conquering Drug Resistance by Tempering Redox 
Adaptation in Cancer Cells

Although preferential killing of cancer cells by using exogenous ROS-promoting 
agents has shown success in the experimental systems [11], it has not tasted wide-
spread success in the clinical setting. Moreover there are reports of high ROS levels in 
chemotherapy- and radiotherapy-resistant tumor cells [95, 96]. A study has reported 
elevated ROS in cisplatin-resistant cells including those derived from patients [78]. 
Decreased expression of thioredoxin-1 (TRX1), which is a major endogenous antioxi-
dant peptide, was found to be an important mediator of ROS in cisplatin-resistant lung 
cancer cells. One of the reasons might be that a few cancer cells have become adapted 
to this high intrinsic ROS by elevating antioxidant defense system. This upregulated 
antioxidant defense not only ensures survival of cancer cells under enhanced intracel-
lular ROS but also endows cancer cells with a mechanism to resist the action of anti-
cancer drugs. Endogenous antioxidant defense comprising SOD, GST, and GSH have 
all been implicated in the development of drug resistance. Overexpression or hyperac-
tivity of these antioxidants can neutralize chemotherapy-induced oxidative stress, 
thereby leading to drug resistance [97]. A growing number of studies reveal that 
impairment of Nrf2-Keap1 pathway, the master regulator of the transcription of these 
endogenous antioxidants, exists in lung cancer [24]. Loss-of-function mutation in 
Keap-1 and gain-of-function mutation in Nrf2 leading to increased Nrf2 activity have 
been reported in lung cancer by various groups [98–100]. Such aberrant activation of 
Nrf2 is known to contribute to resistance against oxidative stress induced by chemo-
therapy or radiotherapy in cancer cells [100, 101]. HO-1, a transcriptional target of 
Nrf2, is overexpressed in NSCLC [102]. One study has reported decreased chemosen-
sitivity of lung cancer cells toward cisplatin treatment through MAPK-dependent acti-
vation of Nrf2 leading to upregulation of HO-1 [103]. In line with this study, inhibition 
of Nrf2 has been shown to enhance the cytotoxicity of anticancer drugs. Administration 
of a PDGF inhibitor CP-673451 with cisplatin was found to cause synergistic antican-
cer effect against NSCLC in vitro through Nrf2 inhibition and consequent ROS pro-
duction [104]. Inhibition of Nrf2 nuclear translocation was also found to augment the 
toxicity of adaphostin, a dihydroquinone derivative, in NSCLC cell line NCI-H522. 
Brusatol, which has been identified to be an inhibitor of Nrf2 pathway, is found to 
sensitize A549 lung cancer cells to cisplatin [105]. Therefore, targeting Nrf2 may be 
important for those drugs which kill or sensitize cancer cells to apoptosis through the 
generation of ROS.

16 Reactive Oxygen Species (ROS): Modulator of Response to Cancer Therapy…



374

16.5  Redox Modulators in Lung Cancer Therapy: Human 
Intervention Studies and Clinical Evidence

ROS are mutagenic thereby promoting tumor growth. Under this condition, antioxi-
dants have become popular among general population and in the scientific commu-
nity as agents that can protect and fight against cancer. However, clinical trials with 
antioxidants have failed to show beneficial effects against cancer.

Genomic analysis of 178 lung squamous cell carcinomas reveals that genes 
related to oxidative stress response were frequently altered pathways in lung cancer. 
Mutations or copy number alterations were observed in 34% of cases [106]. Another 
study has shown that biallelic inactivation of Keap1 is a frequent genetic alteration 
in NSCLC leading to constitutive activation of Nrf2-dependent antioxidant enzymes 
[98]. These findings suggest that modulation of redox state presents an important 
therapeutic opportunity in lung cancer.

16.5.1  Scavenging ROS

In order to find out the effect of dietary supplementation with α-tocopherol or β-carotene 
or both on the incidence of lung cancer, a randomized double-blind placebo- controlled 
study, termed the Alpha-Tocopherol, Beta Carotene Cancer Prevention Study, was con-
ducted in Finland. During the trial, 847 new cases of lung cancer were diagnosed. 
Among these newly diagnosed lung cancer patients, there wasn’t any reduction in lung 
cancer incidence in men receiving alpha-tocopherol as compared to those who did not. 
Ironically, consumption of β-carotene led to a higher incidence of lung cancer in men 
as compared to nonconsumers [107]. In yet another randomized trial, supplementation 
with retinyl palmitate and/or N-acetyl cysteine for 2 years caused no difference in over-
all survival of head and neck or lung cancer patients [108].

16.5.2  Enhancing ROS

Anticancer drugs such as platinum coordination complexes (carboplatin, cisplatin) 
generate huge amount of ROS which can induce apoptosis in cancer cells. 
Combination of these drugs with inhibitors of the enzyme poly (ADP-ribose) poly-
merase (PARP), e.g., veliparib or olaparib, has yielded promising results in different 
types of cancer including lung cancer. Inhibiting the activity of PARP, which is 
involved in maintaining DNA integrity during genotoxic stress including oxidative 
stress, can compromise the capacity of tumor cells to respond to oxidative stress. 
Phase I/II clinical trial of olaparib in combination with carboplatin or cisplatin and 
other drugs (e.g., topotecan, vinorelbine, paclitaxel, gemcitabine, bevacizumab, or 
radiation) is underway for NSCLC patients [109].

Another drug which is approved for clinical trial in lung cancer is NOV-002 
which mimics endogenous glutathione disulfide (GSSG) and hence alters the redox 
status by manipulating intracellular GSSG/GSH ratio [110, 111].
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Increased levels of GSH protect cancer cells from apoptosis and are associated 
with drug resistance [112]. Inhibitors of another thiol-based antioxidant, thiore-
doxin, have been shown to have promising antitumor activity. Drugs such as motex-
afin gadolinium are thioredoxin reductase inhibitors that can sensitize cancer cells 
to oxidative stress. This drug has shown potent radiosensitizing activity in NSCLC 
patients with brain metastasis undergoing whole-brain radiation therapy in a phase 
III clinical trial [112].

16.6  Discussion

Conventional therapies in cancer, viz., radiotherapy and chemotherapy, cause sub-
stantial increase in cellular ROS levels so as to induce tumor cell apoptosis [113]. 
However, the main limitation to these therapies is their nonselective cytotoxicity 
toward normal cells of the patient. Several studies have reported increased oxidative 
stress and decreased antioxidant enzyme in lung cancer patients undergoing chemo-
therapy [114]. Therefore, there was a general notion that antioxidant supplementa-
tion during cancer therapy might help alleviate ROS-induced damage to normal 
cells, but clinical evidence supporting the efficacy of antioxidants and vitamins in 
cancer prevention or cure are inconsistent and therefore inconclusive. For instance, 
in a Phase I/II clinical trial with high-dose intravenous vitamin C and cytotoxic 
chemotherapy, a 73-year-old female stage IV lung cancer patient had stable disease 
after 2 treatment cycles, but after further 2 more cycles, a new nodule was observed 
in the lung which suggested disease progression. Usually, stage IV lung cancer 
patients experience progressive disease after the first-line chemotherapy itself. 
Therefore, the brief enhancement in the period of stable disease of this patient might 
be attributed to vitamin C. However, no such benefit was noted in case of another 
lung cancer patient whose condition deteriorated very fast [115]. Thus, no conclu-
sive evidence regarding the therapeutic benefit or harm of using vitamin C in con-
junction with cytotoxic chemotherapy in patients with advanced cancer could be 
obtained.

It might seem quite perplexing that despite the proven implication of oxidative 
stress in lung diseases including lung cancer, antioxidant therapeutic approach has 
failed to improve outcome in lung cancer patients. Rather, some studies have 
reported increased risk of lung cancer following administration of antioxidants 
[107, 116, 117]. Various reasons, e.g., inadequate dose, inadequate tissue delivery, 
or selection of a proper timing for an antioxidant, have been attributed to this failure 
of antioxidant therapies [118]. Another very important point that needs to be consid-
ered is that ROS are essential signaling molecules in normal cells. Therefore, anti-
oxidants may indiscriminately scavenge ROS, thereby interfering with the normal 
physiologic roles of ROS leading to undesirable patient outcome. In addition, anti-
oxidants also have been reported to mitigate the effect of chemotherapy on cancer 
cells which is dependent on ROS-induced cytotoxicity [119]. Due to the overall 
negative impact of antioxidant therapies, alternative approaches to target cancer 
cells by exploiting the fact that cancer cells have increased basal level ROS than 
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normal cells are being explored extensively. Interestingly, in order to withstand the 
impact of increased oxidative stress, cancer cells elevate their endogenous antioxi-
dant defense system. According to Prof Jim Watson, incurability of cancer partly 
results from a heightened antioxidant levels in the cancer cells which can block the 
effect of prooxidant therapy [120]. The impairment of antioxidant defense system 
therefore provides a new strategy to selectively target cancer cells.

As discussed in the preceding sections, one of the main mechanisms involved in 
NSCLC progression and chemotherapy resistance is constitutive overexpression of 
Nrf2 leading to activation of cellular antioxidant and xenobiotic defense system [98, 
121]. A study reported Nrf2 overexpression and decreased Keap1 expression to be 
common abnormalities in NSCLC which associated with poor clinical outcome 
[122, 123]. Further, siRNA-mediated inhibition of Nrf2 was found to increase sen-
sitivity of tumor cells toward chemotherapy in a NSCLC mouse xenograft model 
[123]. Therefore, targeting the Nrf2-/Keap1-mediated antioxidant defense system in 
NSCLC might be a promising strategy to control tumor growth and overcome ther-
apy resistance.

To develop effective ROS-modulating therapeutic agents, a more patient-specific 
approach may be needed which would require knowledge of individual genetic 
variation in the antioxidant defense system. Many antioxidant and xenobiotic detox-
ifying enzymes have been reported to be polymorphic which definitely would have 
an impact on disease progression and drug response [118]. Hence, such background 
patient information will help clinicians select patients who will be benefitted from 
treatment with redox-modulating agents.

In conclusion, the crucial role played by ROS in tumor progression and drug 
resistance is well proven. Therefore, manipulating ROS levels may have significant 
therapeutic implications. The dual role of ROS as cellular signaling and toxic mol-
ecules renders it to promote cancer development, on one hand while, on the other 
hand, causes damage to cellular macromolecules leading to apoptosis. This leaves 
scope for the development of both antioxidant and prooxidant-based therapeutic 
strategies against cancer. However, at present, there are a lot of discrepancies in 
designing anticancer therapies which involve either of the above therapeutic strate-
gies. A promising new approach in this direction is to target the redox adaptation in 
cancer cells. This is especially important in the context of NSCLC where there is 
constitutive activation of Nrf2-/Keap1-mediated antioxidant pathway which corre-
lated with poor patient prognosis. Moreover, in order to effectively and selectively 
kill cancer cells, it is important to comprehend and appreciate the multifarious redox 
adaptations in cancer cells, especially in cancer stem cells which are considered to 
play pivotal role in cancer relapse cancer and drug resistance.
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Abstract
Lung diseases, leading to lung cancer, are incommodious maladies often leading 
to dire patient prognosis and death all over the world. Lung cancer 5-year sur-
vival rate is only 15%. Death due to lung cancer alone is comparable to deaths 
due to breast, pancreas, colon, and oral cancers together. Lung cancer preferen-
tially occurs in people who are 65 or older. A minority of patients diagnosed with 
the disease are younger than 45. Different treatment modalities have been imple-
mented for treatment of lung disorders over the past three decades, and modern-
ization of strategies has brought hope for the affected. Counteracting oxidative 
stress has been of major concern for treating lung cancer, though with limita-
tions. Cancer stem cells, a subpopulation of cells within a tumor, are believed to 
confer resistance to standard chemotherapy and radiotherapy. Several studies 
have investigated the specific mechanisms of tumor recurrence driven by cancer 
stem cells; however, oxidative stress and cellular metabolism are often neglected 
attributes. Metabolism of cancer stem cells is still poorly understood and consti-
tutes a promising area in cancer research. Distinct metabolic phenotypes in these 
cells depend on the type of cancer, the model system used, or the experimental 
design; however, controversies still need to be resolved. Specific alterations in 
metabolite levels and metabolic enzymes that regulate cancer stemness need to 
be verified, as does the long noncoding RNAs which modulate the expression of 
several factors which modulate oxidative stress. Identifying the role of metabo-
lism in conferring resistance to therapy, mostly by the presence of cancer stem 
cells, is an opportunity for designing novel therapeutic targets, which will elimi-
nate this resistant population, and additionally eradicating the whole tumor to a 
relapse-free condition and better patient prognosis.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9366-3_17&domain=pdf


386

Keywords
Cancer stem cells · Treatment modalities · Oxidative stress · Metabolic criteria · 
Novel therapeutics

17.1  Introduction

Cancer continues to be a major cause of illness along with immense personal, social, 
and economic burden. The numbers of cases increase yearly due to modern screen-
ing and enhanced detection methods. However, deaths arising from cancer are typi-
cally due to malignant and metastatic disease. Malignant tumors are capable of 
invading and spreading to surrounding tissue and to distant body sites, in a process 
known as metastasis, through the circulatory or lymphatic system, giving rise to 
secondary tumors [1]. At initial diagnosis, more than 50% of patients will have 
clinically detectable metastatic disease [2], rendering challenging treatment and 
unfavorable prognosis. Metastatic tumors are largely responsible for cancer mortal-
ity; therefore, early tumor detection can improve patient prognosis and enhance 
survivability [3].

Disorders of the lung are extensive. It includes pneumonia, lung abscess, pulmo-
nary fibrosis, tuberculosis, cystic fibrosis, pulmonary hemorrhage, and aspergil-
loma, to name a few. The quality of air we breathe determines the health of the lungs 
and definitely, with the increased incidence of lung disorders, the quality has been 
severely compromised. The most fatal outcome is lung cancer, which contributes to 
the highest number of deaths due to cancer all over the world, and the 5-year lung 
cancer survival rate is only 15% [4]. Sadly enough, even the nonsmokers are not 
spared, since air pollution is the most significant threat to health worldwide. Lung 
cancer is the leading cause of cancer-related deaths among men (26% of all deaths) 
and women (25% of all deaths), mostly occurring in people at an average age of 
70 years [5].

A total of 10,000 l of air enters the lungs every day from which 420 l of oxygen 
is used for human survival and function. The quality of air we breathe therefore 
determines the health of the lungs, as well as other organs. Indeed clean air is a basic 
requirement of good human health and well-being. However, air pollution continues 
to pose a significant threat to health worldwide. The World Health organization 
(WHO) reported that in 2012 around 7 million people died due to exposure to air 
pollution, substantiating that air pollution is now the world’s largest single environ-
mental health risk [6]. More significant was the fact that household air pollution was 
the leading risk factor for poor health in South Asia. The quality of air inside homes, 
public buildings like offices, schools, day care centers, malls, and healthcare facili-
ties where people spend a large part of their life is an essential determinant of 
healthy life and well-being. Hazardous substances emitted from indoor equipment 
due to human activities, such as combustion of fuels for cooking or heating, also 
lead to a broad range of respiratory disorders.

U. Chatterji



387

Air Pollution and Impact on Health in India As one of the world’s most populous 
countries, India too has seen a significant rise in incidence of respiratory diseases 
such as asthma and COPD over the last decade. COPD in India has been estimated 
to be about 15 million (males and females contributing to 9.02 and 5.75 million, 
respectively), causing about 500,000 deaths per year. Use of spirometry to define 
COPD has shown a twofold higher prevalence of COPD [7]. India has 20–28 mil-
lion asthmatics, with a prevalence of 10–15% among children, aged 5–11 years. 
Indian study on epidemiology of respiratory symptoms, asthma and chronic bron-
chitis in adults, a landmark epidemiological study conducted by the Indian Council 
of Medical Research, GoI, found the overall prevalence of asthma and chronic bron-
chitis to be 2.05% in adults of 15 years of age and 3.49% in adults aged more than 
35 years, respectively. The national burden of asthma and chronic bronchitis in this 
study was estimated at 17.23 and 14.84 million, respectively. Epidemiological sur-
vey in hospitals over three decades (1979–2009) in children below 18 years showed 
a steady rise in asthma prevalence from 9% to 25.5%, attributed not only to genetic 
predisposition but also, more significantly, to urbanization, air pollution, and envi-
ronmental tobacco smoke. Indeed, the rising prevalence of asthma, allergies, and 
COPD over the past few decades has been attributed to an increase in environmental 
pollution – a price being paid for rapid industrialization, socioeconomic develop-
ment, urbanization, and changing lifestyles [8].

17.2  Lung Disorders of Concern

Chronic Obstructive Pulmonary Disease (COPD) COPD is characterized by pro-
gressive and irreversible air flow obstruction. Worldwide, COPD affects an esti-
mated 380 million people [9] and is the third leading cause of death. Although often 
referred to as a “disease,” COPD encompasses a spectrum of disorders with two 
predominant phenotypes: chronic bronchitis and emphysema. Chronic bronchitis 
predominantly affects the airways and is characterized by mucus hypersecretion, 
which functionally leads to airway obstruction and a productive cough [10]. In con-
trast, emphysema is an anatomical condition characterized by the permanent 
destruction of the alveolar walls, resulting in parenchymal destruction [11]. Despite 
the fact that chronic bronchitis and emphysema can present independently of one 
another, it is now widely accepted that most individuals with COPD often exhibit 
characteristics of both chronic bronchitis and emphysema to varying extents [10].

Although COPD is predominantly caused by smoking cigarettes, other environ-
mental risk factors include inhalational exposure to ambient (e.g., air pollution) and 
occupational (e.g., coal mines, pulp, and paper manufacturing) toxicants [12–14]. 
Moreover, only 15–20% of smokers go on to develop COPD, indicating that factors 
beyond exposure to inhalational toxicants are important. These include genetic fac-
tors [15] and the only established genetic risk factor for COPD is a deficiency of 
alpha-1 antitrypsin [16], which occurs in 3–10% of individuals with COPD [17]. 
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However, COPD is a heterogeneous disease with many interrelated pathogenic 
mechanisms including inflammation, oxidative stress, and cell death; there is also 
evidence demonstrating that the aryl hydrocarbon receptors (AhR) attenuate several 
of these mechanisms that ultimately contribute to the development of this disease.

A hallmark of the emphysema component of COPD is the loss of lung structural 
cells [18]. This includes loss of alveolar epithelial cells responsible for gas exchange 
and fibroblasts that synthesize the extracellular matrix necessary for lung structure 
and elasticity. Cigarette smoking induces apoptotic cell death in all major lung cells, 
including bronchial and alveolar epithelial cells, fibroblasts, endothelial cells, and 
airway smooth muscle cells [19, 20]. Furthermore, humans with emphysema exhibit 
heightened pulmonary apoptosis [21]. Experimentally, intratracheal injection of the 
apoptotic protein cleaved caspase-3 induces epithelial cell apoptosis and airspace 
enlargement in the murine lung [22], consistent with the notion that lung parenchy-
mal destruction is linked to cell death.

Smoking additionally promotes pulmonary inflammation in that the number and 
proportion of immune cells in the lung shifts in response to cigarette smoke expo-
sure. Human cigarette smokers have heightened levels of pulmonary neutrophils, 
macrophages, and CD8+ T lymphocytes [23]. In COPD subjects, the quantity of 
these cell types is further increased compared to smokers without COPD [24]. 
Although macrophages and CD8+ T lymphocytes are the predominant inflammatory 
cell types in the lungs of humans with COPD, neutrophilia is also common [25]. 
Elevated neutrophil numbers are also seen in the bronchoalveolar lavage of mice 
exhibiting a COPD-like phenotype [26].

Oxidative Stress in Lung Disorders Oxidative stress is another mechanism linked 
to COPD pathogenesis [27]. In the healthy lung, reactive oxygen species (ROS), 
such as hydroxyl radicals, superoxide anions, and hydrogen peroxide, are counter-
balanced by the production of endogenous antioxidants, including superoxide dis-
mutase (SOD), catalase (CAT), and the glutathione (GSH)/glutathione peroxidase 
system. When ROS production exceeds the capabilities of these antioxidant 
defenses, oxidative stress ensues. Inhalational exposure to toxicants results in 
heightened ROS production in the lungs. Additionally, ROS production by recruited 
immune cells, like neutrophils and macrophages, represents another major oxidant 
source [28]. There is evidence to support that AhR attenuates cigarette smoke- 
induced oxidative stress. Additionally, AhR-deficient mouse lung fibroblasts exhibit 
an impaired induction of the antioxidants following in vitro exposure to cigarette 
smoke relative to AhR-expressing mouse lung fibroblasts. However, factors other 
than strictly cigarette smoking likely contribute to the oxidative stress observed in 
COPD, such as greater lipid peroxidation is observed in individuals with COPD that 
have never smoked relative to subjects without COPD. Moreover, COPD subjects 
also have significantly reduced antioxidant expression (e.g., SOD and GSH levels) 
relative to smokers without COPD [29].
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17.3  Lung Cancer

Tobacco smoking is the most important risk factor for lung cancer and by itself is 
responsible for over 80% of all lung cancer cases. Interestingly, for lung cancer, 
women who smoke like men die like men. Since the 1960s, convergence of smoking 
patterns among men and women have led to the convergence of relative risks for 
men and women [30]. It was estimated that the rate of death in current smokers was 
about three times that among those who had never smoked; the rise in mortality 
among smokers was mostly because of neoplastic vascular respiratory diseases 
[31]. Lung cancer is a progressive disease and advances through various stages from 
a benign to a malignant state (Fig. 17.1).

Several other factors contribute to the development of lung cancer, such as envi-
ronmental exposure to radon and asbestos; indoor emission of fuel burning; some 
metals such as chromium, cadmium, and arsenic; air pollution; and some organic 
chemicals [32]. Studies in different countries have reported that particulate matter 
air pollution contributes to the incidence of lung cancer [33]. Since these risk factors 
may be prevented by restricting smoking and adopting clear air initiatives, appropri-
ate preventive strategies will therefore reduce lung cancer incidence and mortality.

17.3.1  Types of Lung Cancer

Lung cancer is divided into two major types based on histopathological observa-
tions. The two general types of lung cancer (Fig. 17.2) include:

Small cell lung cancer: Small cell lung cancer, the less common of the two, accounts 
for almost 15% of lung cancers and occurs almost exclusively in heavy 
smokers.

Non-small-cell lung cancer (NSCLC): Non-small-cell lung cancer accounts for 
85% of lung cancers. NSCLC can be categorized into, generally, adenocarci-
noma (AC 40%), squamous cell carcinoma (SQCC 25–30%), large cell undif-
ferentiated carcinoma (10–15%), mixed subtypes (adenosquamous), and the far 
less common sarcomatoid carcinoma [14].

Fig. 17.1 Incidence of small cell and different non-small cell lung cancers

17 Lung Cancer: Old Story, New Modalities!



390

17.3.2  Lung Cancer Heterogeneity

Cancers are composed of mixed cell populations. They have diverse phenotypic, 
morphological, genotypic, and epigenetic characteristics. Tumor heterogeneity is 
observed in different patients with the same tumor subtype (interpatient heterogene-
ity), among tumor cells within one host organ (intratumor heterogeneity), between 
the primary and the metastatic tumors (intermetastatic heterogeneity), and among 
tumor cells within the metastatic site (intrametastatic heterogeneity) [34]. 
Heterogeneity is not only determined by intrinsic cell mechanisms but also by the 
dynamic tumor microenvironment (e.g., fibroblasts, angiogenesis, immune param-
eters) [35]. Heterogeneity of lung cancer is also due to altered metabolic activity at 
the macro-level as well as at the single-cell level [36, 37]. Genome sequencing in 
NSCLC has identified several mutations in subclonal fractions which increase with 
tumor grade [38] and, in primary tumors, predict early postsurgical relapse [39]. For 
example, smokers have tenfold more mutations than nonsmokers, with distinct 
driver mutations, such as EGFR versus KRAS [40]. In addition, chromosomal insta-
bility, which drives intratumor heterogeneity, is associated with anticancer drug 
resistance and poor outcome in NSCLC. Taken together, such diverse levels of het-
erogeneity in tumors are of clinical relevance in tumor progression, treatment 
response, and relapse. One of the main drivers of tumor heterogeneity and disease 
relapse is cancer stem cells, which create and maintain a tumor cell hierarchy [41].

Fig. 17.2 Incidence of small cell and different non-small cell lung cancers
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17.4  Prevention: Novel Technologies, New Promises

Till date, there are limited ways to prevent lung cancer, but risk can be reduced if 
one:

 (i) Doesn’t smoke ever or stops smoking.
 (ii) Avoids secondhand smoke.
 (iii) Tests for radon levels at home.
 (iv) Avoids carcinogens at work.
 (v) Eats a diet full of fruits and vegetables.
 (vi) Exercises regularly.

Remarkable progress has been made in evaluating the molecular abnormalities 
underlying lung cancers in the last two decades, which have led to the development 
of targeted therapies, including a new generation of immunotherapy, resulting in an 
improvement of clinical outcomes. However, major challenges still remain unre-
solved, including (a) the identification of new drugs and of combination therapies 
based on rational pharmacological associations; (b) the detection of new biomark-
ers, which would be capable of predicting the clinical responses to immunotherapy; 
(c) the recognition of new driver mutations in order to expand the population of 
patients who can benefit from targeted therapies, particularly for NSCLC; and (d) a 
better understanding of the cellular and molecular mechanisms underlying resis-
tance to targeted therapies, so as to prevent and eventually to bypass such resis-
tances with the identification of more active single or drug combinations. The 
development achieved and those that could be made will necessitate an integrated 
view of various aspects of lung cancer at cellular and molecular level, involving 
analysis of clonal evolution of tumor cells during spontaneous disease progression 
and under effect of various treatments, analysis of genetic and epigenetic abnor-
malities of tumor cells, identification of cells capable of initiating and maintaining 
the tumors, and development of suitable animal models simulating human tumors.

17.4.1  The Lung Cancer Genome: Identifying Targets in NSCLC

A complex pattern of driver mutations, including 200 non-synonymous mutations, 
have been identified from the whole genome sequencing of lung cancers, which can 
distinguish smokers from nonsmokers and predict patient outcome [40, 42, 43]. 
KRAS mutations are seen to occur in 25% of NSCLC. Despite preclinical efforts, 
till date there are no clinically approved drugs that effectively target KRAS. In lung 
adenocarcinoma, 10–15% mutations in the epidermal growth factor receptor 
(EGFR) occur which can be effectively targeted with tyrosine kinase inhibitors, 
such as erlotinib, gefitinib, and afatinib, and monoclonal antibodies, such as 
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cetuximab. In squamous cell carcinomas (SQCC NSCLC), most tumors carry muta-
tions in TP53, RB1, and CDKN2A. Interestingly, SQCC differentiation genes such 
as SOX2 and TP63 (TP53 homolog) are commonly altered, in addition to amplifica-
tion of EGFR, FGFR1, and PI3K pathways [44]. Antiangiogenic therapies aimed at 
the vascular endothelial growth factor (VEGF) or its receptor (VEGFR) may be 
developed as alternative approaches to target the tumor microenvironment.

17.4.2  Drug Resistance in Non-Small-Cell Lung Cancer: 
A Paradigm for Treatment Failure

One of the major causes for therapeutic failure in lung cancer, leading to tumor recur-
rence and disease progression, is drug resistance. Intrinsic mechanisms of resistance 
include activation of pro-survival and anti-apoptotic pathways, changes in the expres-
sion of drug transporters, as well as influences of the tumor microenvironment. It is 
evident that tumors are composed of a heterogeneous population of cells with differ-
ent genetic, epigenetic, and phenotypic characteristics resulting in diverse responses 
to therapy and trigger the appearance of resistant clones. This heterogeneity is impli-
cated to subpopulations of cells within a tumor, called cancer stem cells (CSCs), 
which are highly self-renewing, have tumor-initiating capabilities, and retain the abil-
ity for lineage-specific differentiation. CSCs have been identified in NSCLC and have 
been implicated to be the major players in conferring chemo- and radiotherapy resis-
tance. Pathways controlling stem cell are frequently deregulated in cancer and are 
associated with recurrence after treatment. Different signaling pathways, such as 
NOTCH, HEDGEHOG, WNT, and TGFβ, contribute to stem cell maintenance in 
lung cancer, and targeting these pathways to overcome resistance to chemotherapeutic 
and targeted agents is of immense importance [45]. Mechanisms of resistance include 
(i) alteration of the drug target such as alternative splicing, resistance mutations, and 
gene amplification, as well as (ii) activation of alternative oncogenic pathways. Tumor 
cells harboring such resistance-creating mutations can be present at the onset of treat-
ment (primary resistance) or emerge during treatment (secondary resistance). Other 
mechanisms of resistance, such as metabolic inactivation, drug interactions, or inef-
ficient drug delivery, also play an important role in therapeutic outcome.

17.5  Lung CSCs

Cancer stem cells (CSCs) are tumor-initiating cells responsible for cellular hierar-
chy and tumor heterogeneity. They are maintained by means of self-renewal and are 
capable of multipotent differentiation [46]. Tumor heterogeneity arises due to the 
plasticity of CSCs which allows them to differentiate reversibly into different types 
of cells under specific environmental cues [47]. Furthermore, during disease pro-
gression, differentiated cancer cells may be reprogrammed to a more stem cell-like 
phenotype under specific conditions (e.g., hypoxia induces OCT4 and NANOG) 
[48] and eventually contribute to tumor recurrence. Furthermore, chromosomal 
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instability along with external environmental factors may lead to CSC heterogeneity 
and metastasis. In contrast to adherent cancer cells, CSCs characteristically grow as 
spheres when plated in nonadherent serum-free conditions (Fig. 17.3).

Cancer stem cells have the ability to form colonies in soft agar and are highly 
tumorigenic in vivo [49]. They can be identified and isolated by virtue of Hoechst 
dye efflux (the side population, SP), immunophenotyping, or ALDEFLUOR assay, 
using specific markers and flow cytometry. CSCs express multidrug ATP-binding 
cassette (ABC) transporters and are resistant to multiple chemotherapeutic agents 
[50]. One of the best characterized CSC markers for NSCLC is the CD133, a cell 
surface protein. CD133-expressing lung cancer cells are self-renewing tumor cells 
that are present in low numbers in human NSCLC but are highly tumorigenic. 
Moreover, when CD133+ CSCs differentiate, their CD133− progeny is no longer 
tumorigenic [51]. It therefore seems plausible that combination therapy specifically 
targeting the cancer stem cells along with the non-stem cells would be required to 
successfully eradicate cancer [52]. It is therefore plausible to target normal stem cell 
pathways such as WNT, NOTCH, and HH, which are deregulated and mutated in 
cancer and CSCs [53].

17.6  Pathway-Targeting Inhibitors

Cell cycle arrest has been a major criterion for drugs developed from natural prod-
ucts. Taxanes, like docetaxel and paclitaxel, and vinca alkaloids, such as vinblas-
tine, vincristine, and vinorelbine, are known to interfere with microtubule function 
either by preventing depolymerization (taxanes) or by disrupting microtubule for-
mation (vinca alkaloids), ultimately blocking cell cycle progression through mito-
sis. However, many such drugs often prove to be ineffective due to overexpression 
of ABC drug transporters, multidrug resistance 1 (MDR-1) protein, or 
P-glycoprotein (P-gp), which confer resistance of the cells toward taxanes and 
vinca alkaloids [54]. A direct regulator of MDR-1 protein is microRNA miR-451. 

Fig. 17.3 Lung cancer cells grown as adherent cultures (a) and as tumorspheres (b) harboring the 
lung cancer stem cells
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Overexpression of miR-451 induces chemosensitivity, while loss of miR-451 results 
in taxane resistance in NSCLC. NOTCH1, through the activation of AP1, an early 
transcription factor necessary for progression through G1 phase, downregulates 
miR-451. Therefore, inhibition of NOTCH using gamma-secretase inhibitors 
increases miR- 451 and reduces MDR-1, thereby sensitizing tumors to taxane-based 
treatment [55]. MiR-451 is downregulated in docetaxel-resistant lung cancer cell 
lines, causing inactivation of glycogen synthase kinase 3 (GSK-3β), Snail activa-
tion, and epithelial- to-mesenchymal transition (EMT) [56]. Studies have shown that 
a γ-secretase inhibitor, BMS-906024, could sensitize the NSCLC cell lines to pacli-
taxel, and both drugs synergized preclinically by targeting the paclitaxel-induced 
increase in NOTCH1 in a TP53-dependent manner [57].

It is well established that factors from the stroma, the immune system, and can-
cer cells, which are secreted by drug-resistant lung adenocarcinoma cells, may 
develop acquired drug resistance by promoting cell proliferation and evading apop-
tosis. Glucose deprivation, however, reduces the secretion of some of these cell- 
growth- promoting factors. For instance, FOXO3a promotes cross-resistance to 
5-fluorouracil and cisplatin via glycolysis-mediated upregulation of ABCB1. 
Repression of cellular energy supply by targeting glycolysis may, on the other hand, 
overcome acquired drug resistance [58]. Genes that encode proteins involved in the 
uptake of glucose and in glycolysis – conversion of lactate to pyruvate – and those 
that repress the tricarboxylic acid cycle are found to be direct transcriptional targets 
of NOTCH signaling. Upregulation of NOTCH in breast cancer cells leads to 
increased glycolysis via activation of the PI3K/AKT pathway, whereas endogenous 
NOTCH signaling reduces mitochondrial activity and induces glycolysis in a TP53- 
dependent manner [59].

The hedgehog signaling components are also implicated in the etiology of lung 
cancer. Sonic hedgehog (Shh) components are known to be active during the early 
stages of embryogenesis and organogenesis [48, 60]. It is the major regulatory path-
way which designs limb formation and number of fingers and induces the dorsoven-
tral axis on the neural crest [61]. In the lung, Shh pathway is involved in bronchial 
budding. The lung epithelial cells secrete Shh which then have a paracrine effect on 
mesenchymal cells, acting as a spatial regulator of bronchial bud formation. Shh 
pathway inhibition using mice models (Shh−/−, Ptch1−/−, Gli2−/−, and Gli3−/− knock-
out) induces severe lung malformations, with hypoplasia and tracheal malforma-
tions and often nonviable phenotypes [62, 63]. Several lung diseases were thus 
found to be related to activation of Shh, such as lung fibrosis, which is characterized 
by epithelial lesions and shows an induction of epithelial-to-mesenchymal transi-
tion (EMT) [64]. In idiopathic lung fibrosis, hedgehog pathway components, such 
as Shh, Smoothened (Smo), Patched (Ptch), and Gli1, are found to be overexpressed 
in lung tissues [65, 66]. High levels of Gli1 and Shh protein expression are observed 
in SCLC cell lines and patient samples [67]. Inhibition of Smo has been shown to 
inhibit tumor growth in vivo [68]. Recent studies confirmed the importance of the 
Shh-dependent activation of the pathway in SCLC [69]. Szczepny et al. showed that 
Shh is necessary for the progression of SCLC in mice. In NSCLC, Shh pathway is 
activated, with a good correlation between each protein, suggesting a canonical 
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activation of Shh pathway [70]. Therefore, an intricate relationship exists between 
the Shh pathway and lung disorders and can eventually be a target for therapeutic 
intervention.

CSCs, which are contributors to tumor initiation, proliferation, and recurrence, 
maintain a low proportion in tumors [71]. They are responsible for resistance to 
anticancer therapeutics and are responsible for spreading of tumor cells and metas-
tasis through EMT. Several signaling pathways are closely associated with CSCs; in 
particular the Hh, wingless-type (Wnt), and Notch pathways are mainly activated in 
CSCs and responsible for their maintenance. Stem cell characteristics and expres-
sion of signaling pathway components were concomitant in human lung fibroblasts 
isolated from parenchymal tissues of nonsmokers/non-chronic obstructive pulmo-
nary disease (COPD), smokers with non-COPD, and smokers with COPD, who 
were undergoing surgery for lung tumor resection [72]. Additionally, lung fibro-
blasts expressed differentiation ability, mesenchymal stem cell markers, and immu-
nosuppressive potential; these properties were however altered in lung fibroblasts 
from smokers and COPD patients. In NSCLC, Shh pathway actively contributes to 
tobacco-induced oncogenesis and inhibition of the Shh pathway can prevent the 
tobacco-induced tumor phenotype in cell lines [73]. Similarly, nicotine exposure 
can activate the Shh pathway [74], and vismodegib treatment of NSCLC cell lines 
completely inhibited tumor xenografts in nude mice [75].

17.7  Current Imaging Modalities and the Need 
for Personalized Imaging

Presently, medical imaging modalities rely on ultrasound, computed tomography 
(CT), or magnetic resonance imaging (MRI), for visibility of tumors when com-
pared to adjacent tissues. To assess tumor biology, positron emission tomography 
(PET) has typically incorporated radiolabeled fluorodeoxyglucose (FDG) due to the 
increased glycolytic rate, the Warburg effect, exhibited by the majority of malignant 
tumor cells [76]. PET imaging provides information on anatomical location of 
tumors by exploiting the increased metabolic rate of tumors and the use of radiola-
beled FDG readily explains this fundamental principle. Despite advances in PET, 
there are challenges in molecular imaging. A major factor in molecular PET imag-
ing is that it relies on the uptake of FDG to measure glucose metabolism by patho-
logical cells. While pathological cells have an increased uptake of FDG, physiological 
uptake by normal tissues or inflammatory cells such as macrophages is highly vari-
able, and in some instances, the accumulation cannot be predicted [77]. As FDG can 
accumulate in normal tissues or inflammatory cells, thus decreasing availability of 
tracer uptake by pathological tissue, this can also lead to false-positive detection and 
misdiagnosis. Furthermore, FDG uptake relies on malignant cells to be metaboli-
cally active. However, some tumor cells can enter a dormant state [78]. To improve 
the sensitivity of diagnostic imaging, agents are being developed to target malignant 
cells or their products, to enable molecular imaging of a tumor.
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17.7.1  Peptides, Peptidomimetics, and Aptamers for Effective 
Detection

Peptides are short organic polymers. Amino acids are conjugated to each other and 
form a bond between multiple amino acids called peptides. Peptides may possess 
their own biological function or be a structural and functional part of protein mole-
cule. Artificial peptides are also available with covalent bond between amino acid 
molecules [79]. Peptides are produced relatively easier than mAbs, are quicker to 
penetrate tumor sites, and are rapidly excreted from the body [80, 81]. Peptides can 
be used for the delivery of cytotoxic drugs and radioisotopes, as well as vaccines and 
hormones. Common difficulties of using peptides as a drug delivery carrier are lim-
ited stability due to proteolysis by peptidases, low oral bioavailability, meager trans-
port properties through cell membranes, rapid excretion, and reduced target specificity 
due to flexible nature of peptides. In contrast, peptidomimetics (also called peptide 
mimics) can be constructed by the modification of an existing peptides or artificial 
introduction of alpha and beta amino acids in peptide structures. Peptidomimetics 
have better transport properties through biological membranes, fewer cross-target 
interactions, resistance to immune responses, and improved resistance to degradation 
by peptidases [82, 83]. [68Ga]Ga-NODAGA-THERANOST™ is a αvβ3 integrin 
antagonist first used in humans for lung and breast cancer diagnosis.

Aptamers, also known as “chemical antibodies,” are short (20–100 bases) single- 
stranded RNA (ssRNA) or DNA (ssDNA) oligonucleotides that bind to targets with 
high affinity and selectivity [84, 85]. Aptamers have the ability to fold into three- 
dimensional structures and bind to their target in a similar manner to their antibody 
protein counterpart via shape recognition [86]. In comparison, aptamers hold many 
advantages over antibodies. Unlike antibodies which cannot regain function after 
being denatured, aptamers are more stable and resistant to changes in pH and tem-
perature, which also enables them to be easily chemically modified [87]. Antibodies 
require in vitro or in vivo production which can increase variation between batches, 
whereas this variation is reduced in aptamers as they are synthesized chemically. 
Due to their nucleic acid composition, aptamers are generally nonimmunogenic and 
nontoxic. Lastly, an important advantage of aptamers is their size (5–15 kDa) in 
comparison to large monoclonal antibodies (approximately 150  kDa) [88]. As 
aptamers are much smaller than antibodies, aptamers have superior tissue penetra-
tion (greater capabilities to be internalized by tumors) [89]. Furthermore, the smaller 
size of aptamers also enables them to bind hidden epitopes which cannot be accessed 
by the larger antibodies. Thus, given the numerous desirable properties exhibited by 
aptamers, the development of aptamers as molecular imaging probes is more prom-
ising than antibodies in diagnostic imaging.

Although cancer is a leading cause of mortality globally, early diagnosis and 
detection can improve treatment outcomes due to early surgical, curative interven-
tion. The challenges lie in present medical imaging and diagnostic techniques in 
oncology. While current medical imaging modalities can identify tumor masses, 
they are unable to specifically detect micrometastases before their angiogenesis 
stage, due to the minimum number of cells required for detection. PET molecular 
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imaging has been able to improve detection of malignant cells; however, the typical 
use of FDG for pathological cells is nonspecific for a disease, as normal tissues can 
uptake FDG which increases the background signal relative to the tumor.

The prognosis of most lung cancer patients is quite poor with limited survival. 
Mostly, symptoms of stage-specific lung cancer are not evident. CT and some serum 
tumor markers, like carcinoembryonic antigen (CEA) and squamous cell carcinoma 
antigen (SCCA), have been used for early diagnosis of NSCLC. However, cumula-
tive radiation damage and low sensitivity and specificity have limited traditional 
detection methods. Therefore, novel biomarkers with high sensitivity and specificity 
are required for precise molecular diagnosis and prognosis; this can be achieved 
through a more thorough understanding of the molecular mechanisms of NSCLC.

17.7.2  Immunotherapy: A Remarkable Boon

Superior to chemotherapy, remarkable patient survival has been observed using 
immune checkpoint inhibitors as first-line treatment in both squamous and non- 
squamous NSCLC [90]. Checkpoint inhibitors block the antitumor adaptive immune 
response by targeting the CTLA4 receptors which are expressed on immune and 
tumor cells and by suppressing the cytotoxic T-cell response, a theme which fetched 
the Nobel Prize in Medicine in 2018. Although several factors that would enable 
clinicians to resolve the response to checkpoint inhibitors remain to be discovered, 
a high mutation load creates immunogenic tumors and is strongly associated with 
response to checkpoint inhibitors [91]. Based on promising results with immuno-
therapy, treatment with either platinum-pemetrexed or anti-PD1 (nivolumab) + anti- 
CTLA4 (ipilimumab) is being offered to naïve MPM patients [92] (Fig.  17.4). 
Unfortunately, many NSCLC patients remain unresponsive to such immunothera-
pies, indicating resistance to checkpoint inhibitors [93]. Since lung cancer is highly 
heterogeneous disease at the genetic, epigenetic, and metabolic levels, it is impera-
tive that personalized medical approaches can provide a more comprehensive treat-
ment strategy for patients with lung cancer.

Fig. 17.4 Immunotherapy for lung cancer cells
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17.7.3  LncRNAs Related to NSCLC Diagnosis and Therapy

Although current markers for the diagnosis of NSCLC are primarily proteins, rela-
tively stable noncoding RNAs (ncRNAs) are prevalent in various body fluids [94], and 
their characterization is an emergent area of research for clinical diagnosis. The stabil-
ity of long noncoding RNAs (lncRNAs) is similar to mRNA, while their tissue speci-
ficity is higher than mRNA. LncRNAs are detected in various body fluids such as 
blood, urine, and saliva and may serve as appropriate clinical indicators [95]. LncRNAs 
are known to act as tumor diagnosis biomarkers since many abnormal lncRNAs have 
been identified in NSCLC. For example, MALAT1 has been evaluated as a potential 
biomarker in body fluids and is associated with lung cancer. The expression of plasma 
MALAT1 could distinguish 45 NSCLC patients from healthy controls [96] and is 
considered a promising diagnostic biomarker due to its stability, high specificity, and 
minimal invasiveness. In addition, exosomal MALAT1 expression was positively 
associated with lymphatic node metastasis and TNM staging [97].

Similarly, the lncRNAs HIF1A-AS1 and XIST, which show enhanced expres-
sion in lung cancer, play significant regulatory roles in tumor pathology in contrast 
to the diagnostic values of their proteins in NSCLC, since they show significantly 
lower expression in serum. Furthermore, the combination of HIF1A-AS1 and XIST 
had higher diagnostic value [98]. Consequently, scientists selected 21 known 
lncRNAs as potential targets in order to improve diagnostic efficiency [99], such as 
NEAT1, ANRIL, and SPRY4-IT1, since their circulating levels were significantly 
higher in plasma samples of NSCLC patients compared to control set. A combina-
tion of novel lncRNA biomarkers could therefore have great diagnostic value for 
NSCLC detection [100]. Using gene microarray, Zhao et al. identified 72 lncRNAs 
to distinguish between lung squamous cell carcinoma (lung SCC) and lung adeno-
carcinoma [101], whereas White et  al. discovered 27 lung cancer-associated 
lncRNAs as markers for the differential diagnosis of lung SCC and lung adenocar-
cinoma [102]. Since lncRNAs promote proliferation and cellular growth, have sig-
nificant functions in epigenetic regulation, and result in uncontrolled and progressive 
tumor growth and metastasis, combination of multiple lncRNAs is effective in the 
diagnosis of NSCLC because of their specificity and sensitivity.

The present treatment regimen for NSCLC includes surgical excision, chest 
radiotherapy, and chemotherapy. However, these therapies are limited in their 
approach to cure cancer due to their poor therapeutic efficacy. Novel approaches are 
therefore required to be explored and applied for improving patient survivability 
and quality of life [103]. Significantly, deregulated lncRNAs are now being associ-
ated with many treatments, including molecular-targeted therapy and chemother-
apy. For these reasons, lncRNAs are used as new therapeutic targets for NSCLC by 
sensitizing cancer cells to chemotherapeutic drugs [104].

17.7.4  RNAi-Mediated Gene Silencing Therapy

RNA interference technologies, such as siRNA, shRNA, and antisense oligonucle-
otides, are the most credible approach for selectively inhibiting target lncRNAs. 
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LncRNA-targeted RNAi has shown to be effective in cell lines; however, stable condi-
tions are imperative to carry the siRNA to their targets in vivo. Accordingly, several 
lncRNAs have been recognized as prospective therapeutic targets. For example, silenc-
ing HOTAIR through RNAi reduced invasiveness and viability of lung, as well as 
breast and pancreatic cancer cells [105]. Additionally, it rendered lung adenocarcinoma 
cells resistant to cisplatin, by downregulating expression of p21 [106]. Similarly, 
shRNA-mediated knockdown of MALAT1 significantly reduced cell invasiveness and 
migration in NSCLC. However, the problems associated with delivery of siRNA and 
its off-target effects often limit its application, and therefore, in  vivo inhibition of 
lncRNAs remains a challenge [107]. Recently, several strategies are being developed to 
overcome this shortcoming, such as conjugate- based delivery, polymer-based delivery, 
and lipid-based nanoparticle delivery [108, 109] for potential molecular treatment.

17.7.5  Antisense Oligonucleotide (ASO)-Based Treatment

ASOs are short single-stranded DNA which can be used to induce lncRNA degrada-
tion via RNaseH and are used for lncRNA regulation and silencing. In contrast to 
siRNA, ASOs show higher specificity and less off-target effects. In some instances, 
ASOs were shown to target MALAT1, inhibition of which undermined malignant 
phenotypes via cycle arrest in lung and cervical cancer cells [110]. Animals treated 
with MALAT1 ASO showed significantly reduced tumor volume and nodules in the 
lung compared to control ASO-treated animals. Thus, MALAT1 ASOs could pre-
vent metastasis of NSCLC, rendering a novel therapeutic approach for treatment of 
patients with NSCLC [111].

17.7.6  Plasmid-Mediated Targeted Therapy

Plasmid-mediated targeted therapy is another fascinating approach for the treatment 
of cancer. H19 has high expression in lung and breast cancer, among others. The 
plasmid BC-819, which harbors the gene for the A subunit of diphtheria toxin, may 
be utilized for studying the tumor-specific expression of H19 lncRNA [112]. In 
addition to NSCLC, BC-819 also plays a role in the treatment of pancreatic, ovar-
ian, and colon cancers [113]. LncRNAs are regarded as important regulators of 
diverse cellular processes, including cell growth, migration, stem cell maintenance, 
and apoptosis, and are involved in different signaling pathways [114]. Therefore, 
selectively targeting deregulated lncRNAs could provide a new therapeutic strategy 
for NSCLC treatment.

17.8  Altered Metabolism as a Hallmark of Cancer

A classical feature of cancer is the reprogramming of cellular energy metabolism, 
mainly used by cancer cells to sustain their highly proliferative status [115]. Under 
aerobic conditions, nonproliferating cells use glycolysis in the cytoplasm to form 
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pyruvate, which is eventually oxidized in mitochondrial oxidative phosphorylation 
(OXPHOS) to generate energy, in the form of adenosine triphosphate (ATP). Under 
anaerobic conditions, glycolysis-derived pyruvate is mainly directed to lactate pro-
duction. On the contrary, cancer cells rely more on glycolysis for energy production 
even in the presence of oxygen. This phenomenon, first observed by Otto Warburg, 
was termed “aerobic glycolysis” or “the Warburg effect” [116, 117]. This metabolic 
adaptation, which generates ATP more rapidly, is, however, far less efficient than 
OXPHOS, finally resulting in abnormally high glucose uptake to sustain ATP pro-
duction. The high requirement of glucose by cancer cells, mediated by the upregula-
tion of glucose transporter 1 (GLUT1), was the main criteria behind development of 
fluorodeoxyglucose positron emission tomography (FDG-PET) techniques for can-
cer detection and disease monitoring even after treatment [118].

Cancer metabolism can be reprogrammed by oncogenes, tumor suppressors, and 
the tumor niche by directly regulating specific metabolic enzymes. Mutations in 
phosphatidylinositol 3-kinases (PI3K) are known to promote metabolic reprogram-
ming by enhancing AKT (PKB) signaling, which drives glycolytic metabolism by 
increasing cellular glucose uptake and inducing activation of phosphofructokinase 
1 [119–121]. Subsequently, AKT stimulates the mammalian target of rapamycin 
(mTOR) pathway, which eventually promotes glycolysis and the pentose phosphate 
pathway by regulation of hypoxia-inducible factors (HIFs) [122]. In the same way, 
deregulation of Myc in cancer induces glycolytic gene expression, enhanced glu-
cose consumption, as well as biomolecule production, via nucleotide and lipid syn-
thesis [123–126]. The tumor suppressor p53 has been shown to inhibit glucose 
transporters and activate the upregulation of TP53-induced glycolysis, eventually 
reducing fructose 2,6-bisphosphate levels and inhibiting PFK1 [127]. In addition, 
expression of the gene encoding the synthesis of SCO2, a cytochrome c oxidase 
protein, is stimulated by p53 [128]. Therefore, loss of p53 endorses a shift in ATP 
production from OXPHOS to glycolysis but renders cancer cells more sensitive to 
metabolic stress [128]. One of the mechanisms tumor cells use to trigger the switch 
from OXPHOS to glycolysis or from glycolysis in cancer cells to OXPHOS in 
CSCs is the upregulation of HIF-1α and HIF-2α under hypoxic conditions 
(Fig. 17.5). Specifically, HIF-1α is known to induce the expression of GLUT1 and 
glycolytic enzymes such as lactate dehydrogenase A with concomitant activation of 
pyruvate dehydrogenase kinase 1, a negative regulator of pyruvate dehydrogenase 
[64, 129, 130].

Moreover, stemness can be controlled by cellular metabolism. Interestingly, when 
reprogramming somatic cells into induced pluripotent stem cells, upregulation of 
glycolytic genes preceded expression of pluripotency markers, indicating that the 
metabolic switch from OXPHOS to glycolysis is an early event during stem cell 
reprogramming [131–132], and contrary to what was hypothesized, CSCs do not 
recapitulate the metabolic pattern of adult stem cells. In fact, depending on the type 
of tumor and stimuli from the tumor niche which trigger cell plasticity and metabolic 
reprogramming, CSCs may depend either on glycolysis or on OXPHOS for their 
maintenance [133]. CSCs generally show increased glucose uptake and lactate pro-
duction, together with reduced mitochondrial respiration, compared to non-CSCs. 
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Besides, CSCs demonstrate increased activity of key glycolysis enzymes, such as 
pyruvate kinase M2, LDH, and glucose-6-phosphate dehydrogenase. Subsequently, 
treatment with 2-deoxyglucose (2-DG), a glucose analogue that inhibits hexokinase 
2, preferentially decreases the proliferation of CSCs compared with mature cancer 
cells, indicating that glycolysis is absolutely essential for CSCs [134].

17.9  Metabolism as a Therapeutic Target for CSCs

The main drivers behind drug resistance of CSCs are cancer cell plasticity and the 
acquisition of a quiescent state. It has been reported that residual dormant clones, 
which resist chemotherapy, can be activated under conducive conditions and cause 
tumor relapse [135–138]. Concomitant with characterization of the molecular mecha-
nisms that govern stemness, novel therapeutic approaches are being developed and 
tested for the elimination of the CSC population. However, till date, no anticancer 
stem cell therapy has been successful in terms of effectiveness and specificity, in order 
to be approved for clinical use. Therefore, new therapies which would target the meta-
bolic networks mediating cancer cell stemness would prove to be innovative and effi-
cient strategies to target CSCs. Mouse models of cancer have also shown that targeting 
oxidative metabolism, the main source of energy for CSCs, sensitizes this population 
to known anticancer drugs, thus obliterating them for a more comprehensive cure.

The metabolism that contributes to the maintenance of CSCs is a promising con-
cept for innovative therapeutic approaches which may provide novel, metabolism-
related targets, albeit significant questions remain to be addressed. Specifically, the 
role which the tumor microenvironment plays to control metabolic plasticity of 
CSCs and elucidate whether CSCs themselves are metabolically heterogeneous and 
modulate tumorigenesis according to specific stimuli needs to be defined. It is there-
fore essential that future studies ameliorate the experimental conditions used so far 
and preserve the in vivo structure of tumors. Figure 17.6 summarizes the change in 
treatment strategies for better patient prognosis over several decades.

Fig. 17.5 Incidence of small cell and different non-small-cell lung cancers
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17.10  Conclusion and Perspectives

Non-squamous NSCLC is the most common form of lung cancer and a deadly dis-
ease. Regardless of thorough information on tumor driver mutations and multi-
modal treatment regimens including surgery, chemotherapy, targeted agents, 
immune therapy, and radiotherapy, resistance to treatment by a tumor, eventually 
leading to disease recurrence, is common. NSCLC is a highly heterogeneous dis-
ease and continually attempts to survive by acquiring new favorable pro-survival 
conditions. There is growing evidence implicating CSCs in the process of relapse, 
along with the dynamically changing tumor microenvironment, which in turn results 
in tumor progression, metastasis, and therapeutic resistance. CSCs thus provide an 
interesting and invaluable therapeutic target to tackle tumor resistance.

Taken together, lung cancer may be classified as a complex heterogenous disease 
with interpatient, intratumor, and inter−/intrametastatic heterogeneity. Successful 
treatment options are therefore likely to arise from personalized precision treatment. 
Biomarkers will be necessary to advance from preclinical to clinical options in order 
to design reliable therapeutic strategies. Finally, although attention is being directed 
toward the development of specific drugs to target tumor progression and treatment 
resistance, efforts should also be made to identify synergistic interactions of inhibi-
tors with clinically approved systemic treatments since such combinations will pos-
sibly lead to rapid clinical implementation and better patient prognosis in the future.
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Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and progressive 
disease associated with an overproduction of reactive oxygen species (ROS), 
circulating pro-inflammatory cytokines, and acute-phase proteins. This general-
ized oxidative/inflammatory status is accompanied by a downregulation of the 
cellular antioxidant transcription factor nuclear factor erythroid 2-related factor 
2 (Nrf2).Therapeutic agents that activate Nrf2 may have a pivotal role in the 
rebalance of the altered redox system. This chapter explores how the ozone can 
act as an endogenous redox modulator in the integrated treatment of COPD.

Keywords
Oxidative stress · Ozone therapy · Antioxidants · Reactive oxygen species · 
Chronic obstructive pulmonary disease

18.1  Introduction

There is no doubt that oxygen (O2) has unique chemical and thermodynamic proper-
ties, and the evolution of aerobic respiration enabled cells to produce more ATP than 
anaerobic respiration [1]. However, in complex multicellular organisms, oxygen 
interaction and utilization via oxidative phosphorylation resulted in the production 
of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radi-
cal (●OH), and superoxide anion radical (O2

●−). ROS are recently recognized, in 
submicromolar doses, as essential signaling molecules for the cells but, if abnor-
mally present, are able to produce oxidative stress, defined, according to Halliwell, 
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as “an imbalance between oxidants and antioxidants in favor of the oxidants, lead-
ing to a disruption of redox signaling and control and/or molecular damage” [2–4].

The lung has in the human body the physiologic role to take the oxygen from the 
environment in proper amounts and to remove the carbon dioxide from the blood. 
This process needs a breathing volume of about 10,000 – 20,000 liters of air daily. 
Thus, the tissue in the lung is continuously exposed to oxygen, and, consequently, it 
is highly susceptible to injury mediated by oxygen-derived ROS [5].

Under normal conditon ROS concentrations in pulmonary system are keeping in 
a physiologic range through the activity of the antioxidants enzymes such as 
Superoxide Dismutase (SOD) and Catalase (CAT), in association with direct anti-
oxidants such as Vitamin E, reduced Glutathione (GSH) and Ascorbate located both 
in the cell and in the epithelial lining of the lung [6–8].

In the lung, the altered redox balance may be caused by external factors such as 
environmental pollution or abnormal oxygen tension or by endogenous overproduc-
tion of oxidants, for example, during the activation of inflammatory cells after a 
tissue damage.

An increased number of evidences showed the implication of oxidant products in 
pulmonary pathologies like COPD, asthma, acute lung injury, pulmonary fibrosis, 
and lung tumor [9–11].

As regards COPD, it seems that both environmental exposures to noxious agents 
(mainly tobacco smoke and air pollutants) and the activation of the resident or 
inflammatory cells cause an increased amounts of reactive oxygen and nitrogen spe-
cies (ROS and RNS) in the lung tissue. The abnormal levels of oxidants may have 
multiple consequences such as increased production of proteases, reduced defense 
mechanisms, and induction of inflammatory and growth factors and autophagic pro-
cesses [12, 13].

More interestingly, COPD is now widely recognized as not simply an inflamma-
tory/destructive lung disease but also a chronic oxidative systemic disease with 
extrapulmonary manifestations like cardiovascular disease, skeletal muscle dys-
function, osteoporosis, and neurological degenerations [14].

At this purpose, experimental works showed that during the inflammatory 
response in lungs affected by COPD, the pivotal mechanism for the systemic pro-
gression is the translocation of pro-inflammatory mediators like IL-6 and oxidants 
into the circulation [15].

Thus, it appears clear that, in COPD, a knock-on effect of persistent inflamma-
tion and prolonged oxidative stress in the lung cells begins locally but rapidly 
becomes a chronic challenge for the organism, if the process is not properly con-
trolled or neutralized.

Several clinical and experimental studies also demonstrate the presence of an 
evident connection between the impaired antioxidant defense system controlled by 
Nrf2 and the development of oxidant-mediated lung diseases [16]. In the pulmonary 
tissue as well as in many other cells of various organs, the transcription factor called 
nuclear factor erythroid 2-related factor 2 (Nrf2) is expressed in large amounts. Nrf2 
represents an important orchestrator in the induction of several enzymes implicated 
in the antioxidant defense. This factor under basal resting condition is tied in cytosol 
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to its repressor Kelch-like ECH-associated protein 1 (Keap1) and Cullin3-dependent 
E3 ubiquitin ligase. Keap 1 is a protein containing three main domains, and two of 
this domains have been shown to contain key reactive cysteine residues. The modi-
fication of Cysteine residues causes the disruption of the Nrf2-Keap1 complex and 
the activation of Nrf2. The free Nrf2 reaches the nucleus and binds, as heterodimer 
with small Maf proteins, to the antoixidant response element (ARE) in the upstream 
promoter region of antioxidant and phase II detoxifying enzymes genes and initiates 
transcription and expressions of these proteins [17, 18].

After chronic cigarette smoke, genetically Nrf2 null mice develop increased 
alveolar destruction, apoptosis, and inflammation with respect to mice with normal 
Nrf2 genetic expression. In addition, deprivation of Nrf2-positive regulator DJ-1 
and posttranslational modifications of the Keap1-Bach 1 stability can produce the 
downregulation of Nrf2 and consequently a decrease in glutathione levels in macro-
phages and in the lung tissue of patients with COPD. DJ-1 is an Nrf2 stabilizer that 
plays a protective role against oxidative stress. The decrease of DJ-1 protein associ-
ated with a decrease in heme oxygenase 1, glutathione peroxidase, and NADPH 
quinone dehydrogenase 1 (NQO1) was found in lung tissues of patients with COPD 
and emphysema. Other findings reported a clear decline in Nrf2-associated detoxi-
fication enzymes in COPD further emphasizing the close relationship between lung 
damage and Nrf2 decrease [19–22].

Moreover, several studies reported a clear link between a dysfunction of Nrf2 
signaling and the presence of COPD [23].

All together, these findings strongly suggest that molecules interacting with Nrf2 
pathway through dissociation of the Nrf2-Keap1 complex, specifically via the oxi-
dation of cysteine residues and the subsequent changes in the Keap1 conformation, 
could exert an important therapeutical role in COPD.

18.2  The Use of NRF2 Activators in COPD

On the basis of the previously exposed knowledges on the COPD pathogenesis, it 
has been suggested that all mechanisms able to decrease in the lung the ROS over-
production or to increase the amounts of antioxidants could be used as therapeutic 
agents in order to counteract the pulmonary damage and the consequent systemic 
polymorbidity [24, 25].

As support of its important role, it has been reported that Nrf2 activators may 
restore the altered phagocytosis of bacteria in alveolar macrophages and increase 
the defense system against viral attack in cells, potentially helping to reduce the 
viral exacerbations in patients affected by COPD [26].

Several exogenous antioxidants and Nrf2 activator agents have been tried in the 
prevention and treatment of COPD, including thiol compounds (N-acetylcysteine, 
carbocysteine), vitamins (vitamins C and E), and food-/diet-derived nutraceutical 
(curcumin, sulforaphane, lycopene) [27]. Unfortunately, none of the products could 
be shown convincingly to reduce the COPD progression and symptomatology. 
Probably the presence of several subphenotypes and chronic comorbidities in COPD 
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patients may reduce the probability of efficacy of a single therapeutic agent. As a 
result, further studies were performed on the combination of oral administration of 
several antioxidants able to increase both endogenous antioxidant enzymatic and 
nonenzymatic protection and/or widely cut down the formation of ROS in cells 
[28].

However, it has been reported that antioxidants, if exogenously oversupplied, 
can cause an “antioxidant stress” and damage the cells because ROS play a pivotal 
role during the redox homeostasis processes and the full suppression of this mole-
cules in the cell would interrupt rather than prolong the normal function of the 
organism. It appears evident that ROS can become protective or harmful depending 
on the fine and complex equilibrium between ROS production and scavenging at the 
proper time and side [29, 30].

It seems that a more useful approach in the therapy of chronic oxidative diseases 
(like COPD) should be the endogenous upregulation of Nrf2 and a consequent 
increase of antioxidant and detoxifying enzymes without completely neutralizing 
the presence of oxidants as essential intracellular signal molecules.

To better achieve the therapeutical effect, the oral substances able to activate the 
Nrf2 pathway were used in experimental and clinical trials at high dose for months. 
Unfortunately Nrf2 activation, if prolonged and excessive, may have also detrimen-
tal effects. For example, overexpression of Nrf2 could promote cancer cells and also 
protect the cancer cells from potential toxic effects of chemotherapy in lung cancer. 
These negative effects of Nrf2 overexpression could be critical in patients with 
COPD and associated lung cancer [31–34].

Based on these considerations researchers are looking for a redox modulator 
substance, i.e. a molecule able to activate the Nrf2 and the intracellular antioxidants 
generations with an “on and off” mechanism that preserves the cells from the detri-
mental consequences of a prolonged Nrf2 stimulation.

Ozone has the ability to elicit and calculate a transient “oxidant shock” to restore 
a normal redox system of the body without side effects.

In the next paragraphs, we will explain how ozone can act as a redox modulator 
in an integrative approach to COPD therapy.

18.3  The Ozone as Redox Modulator and Its Use in Medicine

18.3.1  The Discovery of Ozone: The Initial Local Application 
and the Systemic Use with the Major Ozonated 
Autohemotherapy Procedure

Christian Friedrich Schonbein, a German chemist, in 1839 reported that the elec-
trolysis of water produced a characteristic odor, and he proposed for this new gas-
eous substance the name ozone (from the Greek ozein = odorant). He described the 
ozone as a strong oxidant but also as a powerful disinfectant. The ozone was first 
used in clinical practice in the past century by Dr. Wolff and other German physi-
cians for the treatment of posttraumatic gangrene and infected wounds in German 
soldiers during the First World War. Indeed, ozone has good disinfectant and 
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antibiotic properties when used directly to kill bacteria in skin or mucosa infections. 
Dr. Hans Wolff was also the first physician to expose blood directly to a gas associa-
tion of ozone and oxygen.

The first reliable ozone generator for medical use was produced in 1958 by Dr. 
Hansler; since then, Prof. Bocci’s studies better elucidated especially in the past 
20 years the biochemical reactions of ozone after its contact with human fluids, 
particularly during the therapeutic way of administration called major ozonated 
autohemotherapy (MOA) that consists of ex vivo exposure of a precise volume of 
patient’s blood to a calculated ozone dose for a few minutes followed by the reinfu-
sion of ozonated blood in the patient [35–37]. This procedure is able, in chronic 
oxidative diseases like COPD, arteriopathy, and neurodegenerative disorders, to 
induce the production of antioxidant enzymes in the cells and restore the redox bal-
ance, as reported in clinical studies [38–41].

Unfortunately ozone is also present as an air pollutant, and, when inhaled, it can 
cause harmful effects on the respiratory tract: however, ozone, like other substances, 
can be therapeutic or toxic depending upon its concentration and location [42].

The next paragraphs will explain how the ozone acts and the correct use of ozone 
in medicine for the treatment of COPD.

18.3.2  Major Ozonated Autohemotherapy: A Brief Description

The major ozonated autohemotherapy (MOA) consists of exposing “ex vivo” 100–
200 ml of blood of patient (it depends on body mass) to a precisely calibrated ozone 
dose for a few minutes followed by the reinfusion of activated blood in the donor.

More detailed, 100–200 ml of peripheral venous blood of the patient is collected 
in a sterile vacuum glass bottle containing sodium citrate for anticoagulation (ratio 
9:1 blood/sodium citrate). In the bottle added is a corresponding volume (100–
200 ml, 1:1 blood/gas ratio) of oxygen ozone gas mixture with an ozone amounting 
from 10 to 50 micrograms/ml of gas mixture depending on disease. After 3 min the 
blood is reinfused in the patient. In this way, ozone can trigger a large number of 
biochemical pathways in blood without producing acute or chronic toxicity, but it is 
important to observe that a correct ozone concentration is critical to obtain a thera-
peutical effect: too low concentration of ozone is useless and too high may be harm-
ful. We need to produce a brief and calculated increase of ROS and LOP which, in 
turn, is able to elicit a transitory oxidative stress capable of triggering an adaptive 
response in the redox cell regulation [43].

18.3.3  Major Ozonated Autohemotherapy: How Ozone Acts 
During the Contact with Human Blood – The Ozone 
as a Redox Modulator

A large series of studies showed that in the blood, the antioxidant system can coun-
teract the ozone in a range concentration from 10 micrograms ozone/milliliters of 
gas per milliliters of blood up to 50 micrograms ozone/milliliters of gas [44]. The 
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blood is composed of about 55% of plasma and 45% of cells, mainly erythrocytes. 
The plasma is mostly water (92 % of volume) and contains many substances: (a) 
dissolved ions such as HCO3 and PO4, essential for the control of the pH within the 
range of 7.3–7.4; (b) hydrophilic and lipophilic substances like glucose, ascorbic 
acid, cysteine, uric acid bilirubin, carotenoids, vitamin E, and lycopene; (c) an 
amount of about 5 g of lipids (triglycerides, cholesterol, phospholipids, and lipopro-
teins); (d) proteins, mainly albumin (4.5 g/dl), fibrinogen, and other globulins such 
as transferrin or ceruloplasmin that bind Fe++ and Cu++; and (e) coagulation factors 
and hormones.

The antioxidant activity of plasma is maintained thanks to a large variety of sub-
stances such as uric acid, ascorbic acid, GSH, and albumin.

Erythrocytes are the cells with a high level of GSH, thioredoxin, and enzymes 
like catalase, glutathione reductase, glutathione peroxidase, glutathione/thioredoxin 
system, and SOD. All these antioxidants can rapidly neutralize a high concentration 
of oxidant molecules such as OH, H2O2, OCl-, and ONOO [45, 46].

During major ozonated autohemotherapy, ozone, owing to the high solubility in 
plasma (0.02 M), immediately reacts with hydrophilic antioxidants (ascorbic acid, 
uric acid, albumin). At the same time, the small amount of molecules of ozone that 
remains in blood performs the peroxidation of albumin-bound unsaturated fatty 
acids, which is a preferential substrate. The peroxidation of PUFA causes the pro-
duction of H2O2 and lipid oxidation products such as 4-hydroxy-2E-nonenal 
(4HNE):

    R R H O O RHCO H OCH CH= + + ↔ +2 3 2 22  

These reactions are very fast, and ozone dissolves, from the gaseous phase, in the 
plasmatic water and immediately reacts. After 2–3 min, in the glass bottle contain-
ing ozone and blood, ozone is totally consumed with both a slightly reduction of 
hydrosoluble antioxidants and the contemporaneous plasmatic rise of ROS and 
LOPs (mainly 4HE and hydrogen peroxide).

Despite the fact that ROS have a life span of less than a second, they are able to 
harm essential cell constituents, and therefore it appears very important to regulate 
the ROS production in order to trigger a biological effect without cell damage. For 
this purpose the ozone therapists can manage the ozone dose (ozone concentration 
as microgram/milliliter of gas per milliliter of blood in 1:1 ratio) against the antioxi-
dant capability of blood. To better evaluate this crucial issue, experimental studies 
showed the changes of total antioxidant status (TAS) after blood ozonation under 
low, medium, or high ozone dose (10 micrograms/ml, 30 microgram/ml, 50 micro-
gram/ml). TAS levels decreased, respectively, from 10, 20, and 35 % in the first 
minute after ozonation, but then they raised and restored the original concentration 
within 20 min, confirming the large efficiency of blood to regenerate oxidized anti-
oxidants like dehydroascorbate and GSH disulfide. Similarly, after blood ozonation, 
the intraerythrocytic GSH has been found oxidized to GSSG of only about 20% 
after 1 min, but it was completely reduced to normal after 20 min. All these results 
clearly demonstrate that the ozonation in therapy modifies for a short time and 
reversibly the redox homeostasis in the cells.
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Hydrogen peroxide, as a principal ROS, enters in the blood cells and activates 
several reactions:

 1. In erythrocytes, an increase of 2,3-diphosphoglycerate (2,3-DPG) was measured 
which produces a shift to the right of the oxyhemoglobin dissociation curve. This 
process facilitates an increased release of oxygen into tissues with ischemia. 
Also a transitory increase of ATP was observed. H2O2 is therefore rapidly neu-
tralized by GSH.

 2. H2O2 mildly activates, in lymphocytes, the nuclear factor K-beta (NFk-beta), 
which in turn allows a transitory increase of synthesis of cytokines, mainly tumor 
necrosis factor alpha, interferon gamma, and interleukins 2 and 8. This change 
may improve the immune status in patients.

 3. Platelets showed an increase of platelet-derived growth factors A and B (PDGF 
A and B), transforming growth factor beta 1 (TGF beta1), and interleukin 8 (IL- 
8), with a possible positive effect in chronic limb ischemia.

As far as LOP productions following peroxidation of PUFA, in several studies an 
increase of heterogeneous compounds after blood ozonation has been observed: it 
was found in lipoperoxides, alkoxy radicals, lipohydroperoxides, isoprostanes and 
alkenals, and, among which, 4HNE and MDA. All these compounds are constitu-
tionally toxic and must be produced in very low amounts. They are in vitro far more 
stable than ROS but fortunately, upon blood reinfusion, they have a brief half-life 
owing to these mechanisms: (a) a great dilution of these components in body fluids 
and a rapid decrease of their concentration, (b) an excretion via urine and bile, and 
(c) a detoxification due the interaction with detoxifying enzymes such as aldehyde 
and alcohol dehydrogenases, aldose reductase, and GSH transferases. Only a sub-
micromolar concentration of 4HNE reaches the cells of the body of patients affected 
by chronic oxidative stress; these cells are unable to trigger their antioxidant system 
and thus are destinated to death. The cytoplasm of the stressed cells contains the 
Nrf2-Keap1 inactive complex. Luckily the 4-hydroxynonenal enters into the cell 
from the blood and binds two cysteines on Keap1 allowing the release of Nrf2 pro-
tein. The free Nrf2 is then able to move into the nucleus of the cell and, after a 
connection with a Maf protein, can stimulate the antioxidant response element 
(ARE) with the consequent induction of about 230 genes belonging to detoxifica-
tion response and phase II antioxidant response [47–50].

Table 18.1 summarizes the biochemical steps during the ozone-blood contact, 
from the O3 solution in plasma to the antioxidant enzyme production in the cells.

Several studies reported the possible antioxidant action of other Nrf2 activators 
like triterpenoids, dimethyl fumarate, and curcumin, but ozone alone has the unique 
property of generating a transitory and calculating stimulation of Nrf2. In fact, as 
reported by Pecorelli et al. [51], endothelial cells incubated in the presence of ozone 
and 4HNE showed a rapid and transient Nrf2 activation. This observation supports 
the hypothesis that ozone therapy is able to activate Nrf2 for the production of 
defense enzymes, and at the same time, it is unable to prolong this activity after 
about 40–60 min. Thus, the mechanism of transient activation is very useful for the 
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cells undergoing oxidative stress in COPD for restoring a normal redox system 
without the risk of cellular proliferation subsequent to a continuous prolonged Nrf2 
stimulation [52].

18.4  Clinical Application of Ozone Therapy in COPD

The first application in Siena of ozone therapy on COPD patients was 10 years ago. 
Two patients affected both by age-related macular degeneration and COPD under-
went major ozonated autohemotherapy and improved their quality of life and exer-
cise’s resistance. They continued the treatments for years with satisfaction.

It is important to remark that ozone therapy, in the COPD treatment, is used as 
integrated therapy, and it cannot substitute the standard orthodox therapy. However, 
the added ozone action as redox modulator plays a pivotal role in restoring a large 
amount of biochemical functions in all organs during chronic pulmonary diseases.

On the basis of the preliminary observations, 50 patients affected by moderate/
severe COPD were enrolled in a case-control clinical trial (standard therapy + ozone 
therapy vs standard therapy alone) at the University of Siena. All patients were all 
ex-smokers, and they were admitted in the study during a stable phase of the dis-
ease, without signs of exacerbations in the 4 weeks before starting the protocol and 
under regular pharmacologic therapy (inhaled long-acting beta2-agonists/cortico-
steroids LABA/ICS and/or tiotropium in all patients).

The following measures were performed in all patients prior to the start and after 
the conclusion of the study: (a) pulmonary function test, (b) resting arterial blood 
gas analysis, (c) 6-min walking test (6MWT), (d) dyspnea index by the Borg scale, 
and (d) St. George’s Respiratory Questionnaire (SGRQ).

The design of the study and the results were reported in [39].
Patients were randomized in two groups: group 1 (25 patients) received a cycle 

of MOA twice a week for the first 5 weeks and thereafter a single treatment every 
week for another 10 weeks. Group 2 (25 patients) served as the control and didn’t 
undergo ozone therapy. All patients of both groups 1 and 2 received standard ther-
apy with inhaled beta2 long-acting bronchodilators and/or corticosteroids.

Table 18.1 The biochemical steps during ozone-blood interaction

The main steps of the ozone-blood interaction

(1) Oxygen-ozone gas mixture dissolves into plasmatic water
(2) Ozone reacts with several substances in plasma, mainly antioxidants and PUFA
(3) The result of this interaction is the generation of a little concentration of ROS and LOPs
(4) ROS are responsible for the rapid response (ex vivo), whereas LOPs are important for the 
late response (in the patient’s body)
(5) LOPs (and in minimal amount ROS) are the principal molecular signals of the Nrf2 
activation and gene induction of antioxidants when the ozonated blood returns into circulation 
upon reinfusion. The Nrf2 stimulation is rapid and transient
(6) Nuclear induction of 230 genes (detoxification response and phase II antioxidant response) 
in body cells
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After the cycle of ozone therapy, patients of group 1 significantly increase the 
walking distance, and the degree of dyspnea during physical effort was reduced 
according to the Borg dyspnea scale. The SGRQ showed an improvement of the 
daily activity and on overall quality of life.

The control group patients didn’t show any difference in walking distance and 
SGRQ score at the end of the study (Figs. 18.1 and 18.2).

Six-minute walking test is an important measure of functional capacity during 
exercise in COPD patients. An association between distance walked and clinical 
outcomes has been reported such as hospitalization and mortality. The changes in 
6MWT are used to evaluate the efficacy of various therapeutic interventions such as 
pharmacological therapy or rehabilitation [53]. After ozone therapy, the patients 
showed an increase in walking meters greater than 25 m that is considered the mini-
mal clinically important difference for COPD patients [54].

St. George’s Respiratory Questionnaire is a specific instrument to measure the 
quality of life for COPD. In this study there was a significant improvement in total 
scores, in activity domain scores, and in impact domain scores in patients that 
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Fig. 18.1 St. George’s Respiratory Questionnaire score before and at the end of the study in 
ozone-treated patients (group 1) and in control patients (group 2). ∗p < 0.01
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underwent ozone therapy (Table 18.1). These results suggested an objectified posi-
tive effect of ozone therapy on different aspects of health status in COPD patients 
and in the overall quality of life [55].

The adverse effects observed in ozone treated patients are a temporary face red-
ness during the MOA treatment (3%). On the contrary, upon  ozone therapy 
some of the patients reported an enhancement of the general efficiency, concentra-
tion and cognitive functions as demonstrated by the improvement of the Saint 
George Respiratory Questionnaire score (Table 18.2).

To better evaluate the action of ozone therapy on oxidative stress, in the next 
investigation, the values of plasmatic reactive oxygen metabolites (dROM test, 
Diacron International, Grosseto, Italy) in two groups of COPD patients have been 
analyzed. Again, 20 patients received standard and MOA therapy, and 20 patients 
received the standard therapy alone.

Results showed a significant decrease of dROM plasma values in COPD patients 
after a cycle of ozone therapy (dROM baseline value, 375  ±  30 UCARR; after 
MOA, 281  ±  24 UCARR, p  <  0.05). In control patients, dROM values remain 
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unchanged at the end of the study (baseline values, 371 ± 28 UCARR; at the end of 
the study, 374 ± 32 UCARR, ns difference, unpublished data).

All patients in group 1 asked to continue the therapy after the end of the study; 
no adverse effects were noted after 6 years of therapy.

18.5  Conclusion

The updated report of the Global Initiative for COPD (GOLD) describes COPD as 
a “preventable and treatable disease” but also underlines the importance, in the 
overall clinical scenario, of the concepts of “exacerbation” and “comorbidity” [56]. 
In fact, the repeated episodes of exacerbations associated with comorbidities in 
COPD patients cause frequent hospitalization, an increase of drug prescriptions, 
and an impairment of the patient’s quality of life. However, COPD progression, 
exacerbation, and comorbidity seem to be all together caused by a cross talk between 
oxidative and inflammatory stress mediators, leading to a pulmonary/systemic dam-
age [57, 58].

For these reasons, along with the current pharmacological (inhaled beta2- 
agonists, antimuscarinic, corticosteroid) and nonpharmacological interventions 
(such as rehabilitation, noninvasive mechanical ventilation, and psychological 
counseling), growing evidence supports, in the management of COPD, the inte-
grated use of Nrf2 activators to better counteract the above reported pathogenetic 
mechanisms by inducing cytoprotective genes, decreasing oxidative stress, and 
reversing corticosteroid resistance [59].

Ozone, when used as molecular redox signal, has many advantages: it activates 
Nrf2 with a transient and calculates stress; it is relatively inexpensive and atoxic 
when used properly; after ozone therapy, patients reacquire a well-feeling and an 

Table 18.2 Tabular results of 6MWT, SGRQ, and Modified Dyspnea Borg scale in groups 1 and 2

Group 1 Group 2 p

6MWT initial (m) 417.5 ± 107.3 411.4 ± 109.2 ns
6MWT end (m) 493.8 ± 105.4 407.3 ± 104.4 P < 0.01 a, b
DYSPNEA BORG SCALE initial  4.1 ±   2.4 4.3 ± 2.1 ns
DYSPNEA BORG SCALE end 3.0 ±   1.2 4.3 ± 2.1 P < 0.01 a
SGRQ
Activity initial (%) 65.4 ± 16.3 66.1 ± 17.4 ns
Activity end (%) 54.2 ± 15 62.4 ± 16.6 P < 0.01 a
Impact initial (%) 38.4 ± 18.2 37.6 ± 17.1 ns
Impact end (%) 30.1 ± 16.4 34.5 ± 17.9 P < 0.01 a
Total score initial (%) 48.9 ± 16 47.3 ± 16.4 ns
Total score end (%) 32.2 ± 12.1 49.9 ± 14.3 P < 0.01 a, b

a = intragroup comparison before vs end study, b = intergroup comparison Group 1 vs Group 2, 
end of study
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objective improvement of the quality of life [60]. Obviously the above reported data 
needs to be repeated in a large trial, but an increasing number of studies confirm the 
efficacy of ozone therapy in chronic oxidative and degenerative diseases, and it is 
hoped that the world health authorities could promote the clinical research and 
application of ozone in medicine.
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Abstract
Oxidative stress is associated with the pathogenesis of many lung diseases 
including lung cancer. The main goal of this chapter is to provide an overview of 
how reactive oxygen species (ROS) and antioxidants are related to normal physi-
ological function and the pathophysiology of lung cancer and its therapeutic 
strategies. In this chapter, ROS are first characterized, followed by the role of 
oxidative stress in progression of different lung cancers, and a brief overview of 
therapeutic strategies developed gradually over the decades for better therapy of 
lung cancer is described. Limitations of current strategies and failures of clinical 
trials have also been discussed, and finally development of new therapy which 
may be helpful in the treatment of patients with lung cancer has also been 
addressed as future direction.
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19.1  Introduction

Oxidative stress is characterized by an overproduction of reactive compounds that 
are not compensated by the exploitation of antioxidants and also as a consequence 
of perturbation of cell redox balance [1]. Usually, low levels of these reactive com-
pounds are essential to activate many cell-signalling molecules as well as signal 
transduction pathways before their elimination in normal cells. Conversely, high 
level of these compounds is associated with different disease states. Based on the 
main atom involved, these reactive compound/species can be divided into four 
groups: reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive 
sulphur species (RSS) and reactive chloride species (RCS). Among these reactive 
compounds, ROS are the most abundant and they could have short to long half-life 
depending on their molecular stability. ROS includes singlet oxygen (1O2), superox-
ide anion (O2

•−), ozone (O3), hydrogen peroxide (H2O2) and hydroxyl radical (•OH−) 
[2]. On the other side, the most abundant RNS is nitric oxide (NO−), which has the 
ability to react with certain ROS producing peroxynitrite anion (ONOO−), which is 
also a reactive compound and lethal for cells and tissues. The biomedical study with 
oxidative stress is popular in current research because of its association with a wide 
variety of human diseases, such as cardiovascular disease, for example, muscular 
dystrophy; neurodegenerative disease such as Parkinson’s disease and Alzheimer’s 
disease; lung diseases such as pulmonary fibrosis and pulmonary hypertension; 
inflammatory diseases, for example, rheumatoid arthritis; and along with allergies, 
diabetes, immune system dysfunctions, aging and cancer. In this chapter, we will 
bring to the reader an apparent view of how oxidative stress is connected with lung 
cancer in both molecular and clinical level.

19.2  Oxidative Stress and Lung Cancer

Nowadays, one of the most deadly diseases is lung cancer, and it is the primary 
cause of morbidity and mortality worldwide. Histologically, lung cancer is divided 
into four subtypes; however, depending on the responses to chemotherapy and radi-
ation therapy, it is mainly divided into two major subgroups – small-cell lung cancer 
(SCLC) and non-small-cell lung cancer (NSCLC). SCLC accounts for about 15% 
of all new cases of lung cancer. On the other hand, NSCLC is predominant and 
accounts for about 85% of all lung cancer. NSCLC is subdivided into three groups, 
and they are adenocarcinoma, squamous cell carcinoma and large-cell carcinoma. 
The main strategy for the betterment and increase of the survival time of SCLC 
patients mainly depends on how they individually response to chemotherapy or 
radiation therapy or in combination of both therapies. In contrast, the main strategy 
for the betterment and increase of the survival time of NSCLC patients mainly 
depends on the resectability of the tumour at the time of presentation. Up to date, 
several prognostic factors have been identified based on different tumour grades and 
stages in both SCLC and NSCLC patients. These factors mainly include the overex-
pressed oncogenes that show more malignant behaviour and metastatic property or 
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lowly expressed tumour suppressor genes which show anti-proliferative properties. 
Beside this, various genes are also overexpressed and many signalling molecules 
are activated as a consequence of resistant behaviour of cells during drug therapy. 
Both ROS and RNS have a strong connection with the onset of lung cancer because 
they were found to be associated with the regulation of the activation of the signal-
ling molecules and expression of those oncogenes. Figure 19.1 depicts how deregu-
lation of antioxidant-oxidant balance induces oncogene expression or chemotherapy 
resistance in lung cancer cell model.

19.3  Oxidative Stress and SCLC

Application of surgical removal of tumours is sporadic in SCLC patients, since 
SCLC has a tendency to metastasize early, and thus combination chemotherapy 
(CT) is the pragmatic choice for the treatment of SCLC [3, 4]. SCLC is chemosensi-
tive and combinations of different chemotherapeutic drugs, such as Adriamycin 
with vincristine and cyclophosphamide (CAV) or etoposide with cisplatin, have 
been considered as standard treatment for SCLC since long back [5, 6]. However, 
various new therapeutic treatment approaches have been continuously investigated 

Fig. 19.1 Schematic presentation of oxygen- and free-radical-mediated chemoresistance and 
oncogene activation in lung cell
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to improve treatment outcome. One of the important molecules or pathways through 
which these chemotherapeutic regimens act and exert their effects is reactive spe-
cies or oxidative stress. These drugs are mainly anthracyclines, such as epiadriamy-
cin, Adriamycin and daunorubicin [7]. One of the well-known chemotherapeutic 
drugs, Adriamycin, mainly shows its anticancer activity with the interaction with 
topoisomerase II, leading to DNA fragmentation and cell death [8]. It also exerts its 
effect by enhancing protein oxidation [7]. Erhola et al. previously suggested that 
anthracycline-based chemotherapy shows their effects by producing oxidative stress 
[9]. They proved it on the basis of the evidence that after combination chemotherapy 
in SCLC patient, a decrease in total antioxidant capacity (TRAP) occurred in the 
plasma [10]. Other than SCLC, there are also many reports documented that shows 
reduced levels of different antioxidants have been observed during combination 
therapy using chemotherapeutic drugs in patients with different carcinoma [11, 12].

One of the known lipid peroxidation products that results from oxidative stress is 
malondialdehyde (MDA) mainly found in body fluid, and it has been found to 
induce growth arrest in a human large-cell lung carcinoma cell-line model [13]. 
There are also other lipid peroxidation products which are produced during oxida-
tive stress from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and 
have the ability to inhibit growth of different lung cancer cells lines [14]. Additionally, 
superoxide dismutase and glutathione peroxidase that are known to suppress lipid 
peroxidation have been shown to be associated with lower survival of lung adeno-
carcinoma patients [15]. Therefore, it is obvious that chemotherapeutic drugs could 
show their anticancer activity by inducing the peroxidative damage of different bio-
molecules including lipids [16–18]. There are many reports showing an increased 
level of lipid peroxidation end products have been observed after using of various 
chemotherapeutic drugs in different cancer patients [19]. Nowak et al. in their study 
investigated the level of the lipid peroxidation products in serum after a combina-
tion chemotherapy using vincristine, carboplatin and etoposide in SCLC patients. 
They found increase of lipid peroxidation products in serum after chemotherapy 
which was strongly associated with the survival of SCLC patients [20], and as a 
conclusion it can be suggested that oxidative stress is strongly connected with SCLC 
involving lipid peroxidation.

19.4  Oxidative Stress and NSCLC

ROS are one of the major causes of NSCLC development and cigarette smoking 
(CS) is prevalent to this because it is the main source of ROS [21–23]. The tissue 
oxidant and antioxidant balance is altered and chronic inflammation is found to be 
persistent due to production of these oxidant compounds by inflammatory cells 
such as polymorphonuclear neutrophilic leucocytes (PMNs) and non-phagocytic 
cells [24–26]. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is 
essential in this scenario because CS induces the activation of NOX which then 
initiates ROS production. NOX family enzymes are inflammatory components of 
host defence and several NOX isoforms are found to be expressed in lung tissue 
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including NOX2, DUOX1 and NOX4 [27, 28]; however, the classical NOX are 
found to be present in structural non-phagocytic mammalian cells [29, 30]. In 
NSCLC patients, NOX activity was found remarkably higher in malignant patients 
compared to non- malignant patients [31, 32]. Moreover, elevation and depreciation 
of NOX and myeloperoxidase (MPO) activities are interrelated and tightly regu-
lated in NSCLC [33, 34]. Interestingly, one of the major as well as strongest car-
cinogen, benzo[a]pyrene (B[a]P), has been found in CS that produces oxidative 
stress. B[a]P induces ROS-mediated activation of epidermal growth factor receptor 
(EGFR) signalling pathway which has shown to increase the proliferative potential 
of lung adenocarcinoma cells by upregulating phosphorylated EGFR and inducing 
EGFR ligand expression such as amphiregulin and epiregulin [35]. Khan et al. also 
showed that the exposure of CS to human lung epithelial cells activates EGFR 
which may prolong the signalling to contribute the uncontrolled lung cell prolifera-
tion and growth [36].

Both predictive and prognostic significance for aberrant histone post- translational 
modifications is found in case of NSCLC [37, 38]. Chronic obstructive pulmonary 
disease (COPD) and NSCLC are both tightly connected with oxidative stress 
through various genes and their downstream cellular response pathways [39] like 
glutathione peroxidases (GPXs), superoxide dismutases (SODs), glucocorticoid 
receptors (GRs), hypoxia-inducible factor-1 (HIF-1) and heme oxygenases (HOs). 
Importantly, epigenetics play a vital role in the regulation of such genes and their 
downstream signalling pathways in COPD and NSCLC.  Since dysregulation of 
such genes manifests the diseases, therefore, epigenetics are selected as the poten-
tial targets for therapeutic strategies for the treatment of both diseases. It is well 
known that histone deacetylases (HDACs) form a protein complex, remove acetyl 
groups (O=C–CH3) from a ε-N-acetyl lysine amino acid on histone, and inhibit 
transcription, thereby regulating several gene expressions [40]. An increase in level 
of many HDAC isoenzymes has been found in different types of malignancies [41]. 
Particularly, HDAC1 mRNA levels have been found to be increased in NSCLC at 
stage III or IV [42]. Altered form of this HDAC multi-protein complex has also been 
observed in NSCLC such as mSin3A, a corepressor of this complex, and has been 
downregulated in NSCLC [43]. Therefore, HDAC inhibitors are part of a new thera-
peutic strategy in NSCLC which acts by blocking the suppression of tumour sup-
pressor genes as well as antioxidant genes induced by HDACs [44].

Chronic inflammation is very actively associated with diverse type of cancer 
[45]. Pro-inflammatory signalling pathways have robust impact in NSCLC via oxi-
dative stress responses [46] and NFκB has been found as a critical mediator of pro- 
inflammatory cascade in this scenario [47]. It has been found that oxidative stress 
and TNF-α both stimulate histone acetyltransferase (HAT) activity resulting in an 
increase in histone acetylation in a lung cancer cell line model. The increased his-
tone acetylation further induces DNA binding of NF-κB leading to elevation of 
pro-inflammatory IL-8 levels [48]. Therefore, the activation of lysine acetyltransfer-
ases triggers NF-κB DNA binding where lysine acetyltransferases, the coactivators, 
act as key regulators in NF-κB-driven gene expression [49–51], and thus, oxidative 
stress induces an increase in the expression of pro-inflammatory genes such as IL-8 
and IL-6 via associations of RelA/p65 and KAT3A, KAT3B subunit or p50 and 
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KAT13A leading to inflammation which may induce development of lung cancer 
[52–55]. As a consequence, two main epigenetic therapeutic strategies are available 
for the treatment of NSCLC – one is via targeting DNA methylation through DNA 
methyltransferase inhibitors (DNMTi) and the other by histone acetylation via 
HDAC inhibitors. In line with this, the expressions of critical genes in NSCLC have 
been found downregulated after the use of DNMTi [56–60]. Figure 19.2 depicts a 
schematic representation of how CS initiates production of ROS that induces an 
increase in the level of pro-inflammatory molecules stimulating lung cancer cell 
growth and finally leading to progression of lung cancer.

19.5  Current Therapeutic Option for Lung Cancer

Recently, very specific targeted therapies are developed for the betterment of lung 
cancer. With the breakthrough in molecular biology and immunotherapy, these cur-
rent developments have got attention because of their more efficient and specific 
treatment in lung cancer patients. But, the leading challenge to be considered as a 
goal is to investigate the therapeutic resistance mechanisms which develop within a 
year after the onset of therapy and need urgent attention and further elucidation. 

Fig. 19.2 Diagrammatic presentation of lung carcinogenesis mediated by reactive species that are 
induced by cigarette smoking and of chemotherapy mediated by biologically active small 
molecule
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Surgery, chemotherapy, radiotherapy, immunotherapy and targeted therapy are the 
major therapeutic strategy for the treatment of lung cancer currently. In this follow-
ing section, we will provide a brief discussion about the therapies in lung cancer and 
how oxidative stress is related to these treatment therapies are described.

19.6  Chemotherapies

Chemotherapy is one of the cancer treatments that use drugs to abolish cancer cells 
and it is well known as ‘chemo’ also. These chemotherapeutic drugs target cells that 
grow and divide faster, like cancer cells. Unlike radiation or surgery, which is spe-
cific to target areas, chemo can work throughout the body; however the most disad-
vantageous part of chemotherapy is its nonspecific nature because it can also affect 
some fast-growing healthy cells, like skin, hair and bone marrow, and mostly shows 
side effects due to the treatment. The main functions of chemotherapeutic drugs are 
(1) to destroy cancer cells, (2) to stop spreading of cancer cells and (3) to slow the 
growth of cancer cells. Chemotherapy can be given alone, or to improve the out-
come of the treatment, it is given in a combination with other treatments.

Chemotherapies function in patients during their treatment cycle by producing 
oxidative stress. Oxidative stress production was found noticeably during chemo-
therapy application and it was evident by the increase of the level of lipid peroxida-
tion; the significant reduction of tissue glutathione (GSH) levels; decrease of 
antioxidants level such as β-carotene, vitamin C and vitamin E in plasma; and the 
decrease of the level of total radical-trapping capacity of blood plasma that occurs 
during chemotherapy [61–63]. Finally, chemotherapy treatment generates nuclear 
DNA adducts, which leads to cell death because of the blockage of DNA replication 
and transcription [64]. Agents that are well known to produce high levels of ROS 
include platin-based drugs (e.g. carboplatin, cisplatin), anthracycline drugs (e.g. 
epirubicin, doxorubicin and daunorubicin), alkylating agents, camptothecin drugs 
(e.g. irinotecan and topotecan) and epipodophyllotoxins (e.g. etoposide and tenipo-
side), which are mentioned in Table 19.1. Till date the anthracyclines and taxanes, 

Generic name Brand
Carboplatin –
Cisplatin Platinol
Docetaxel Taxotere
Etoposide; etoposide 
phosphate

Etopophos

Gemcitabine hydrochloride Gemzar
Paclitaxel Taxol
Paclitaxel, albumin bound Abraxane
Pemetrexed Almita
Vinablastine sulphate –
Vinorelbine tartrate Navelbine

Table 19.1 Chemotherapeutic 
drugs used in NSCLC patients
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for example, docetaxel, or vinca alkaloids, for example, vincristine, are known to 
generate the highest and lowest levels of oxidative stress, respectively. However, the 
mode of action of all of these drugs acts in the same manner by producing ROS 
leading to apoptosis of the cancer cells. The potential mechanism for these chemo-
therapeutic drug-induced apoptosis involves the release of cytochrome-c from mito-
chondria and simultaneously electrons are moved from the electron transport chain 
(ETS) to oxygen by NADH dehydrogenase and reduced coenzyme Q10 and subse-
quently formation of superoxide radicals [65].

Since most of the chemotherapeutic drugs used in cancer therapy cause oxidative 
stress, it is good to reduce the level of oxidative stress by applying antioxidants 
which may improve the efficacy of the treatment because the anticancer drugs 
would kill normal cells along with cancer cells. Thus, many antioxidants are used 
with the chemotherapeutic drugs to prevent chemotherapy-induced side effects (e.g. 
glutathione is used for cisplatin-induced nephrotoxicity and coenzyme Q10 is used 
for anthracycline-induced cardiotoxicity).

Therefore, even though these chemotherapeutic drugs are effective, however new 
approaches are obligatory to minimize the side effects and enhance their efficacy. 
Also, new combination approaches should be explored with targeted therapies to 
attain maximum clinical benefit.

19.7  Targeted Therapy

Targeted therapy, as the name suggests, works on specific targets that play a major 
role in tumour cell proliferation. Potential targets of such therapies are mostly onco-
genes which have undergone genetic alteration mostly with potential driver muta-
tion leading to tumour growth. In NSCLC the most common oncogenic driver gene 
alterations include EGFR, ALK, ROS1 and BRAF and RET rearrangement. Targeted 
therapy is often different from chemotherapy because in chemotherapy, the effect is 
more global on the cells due to which the normal cells are also affected, whereas in 
targeted therapy the off-target effect is less and the tumour cell killing is more with 
fewer side effects on healthy cells. Monoclonal antibodies, tyrosine kinase inhibi-
tors (TKIs) and immunotherapies, which are more common, are extensively used as 
a targeted cancer therapy in the past recent years. However, these targeted therapeu-
tic compounds are shown often less specific and show deadly antagonistic effects. 
Thus, combination of these therapies is more common in a clinical trial experiment 
nowadays [66]. During the initial period when the idea of targeted therapies was 
first developed, these were accepted as promising magic bullets with single targets 
[67, 68]; later on their off-target effects and development of drug resistance muta-
tion on the gene led us to focus on the different mechanisms of action of these tar-
geted therapies. ROS has been found to play a substantial role in producing such 
off-target effects during targeted therapies. Currently, there are nearly 15 approved 
TKIs for the treatment of NSCLC and the list is expanding rapidly (Table 19.2).
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19.8  Tyrosine Kinase Inhibitors (TKIs) as Targeted Therapy

Gefitinib was approved as the first TKI selectively for EGFR to treat NSCLC. EGFR 
mutations, the major mutation in lung adenocarcinoma, have been in Asia (approx. 
40–50%) and in Western countries (approx. 10–15%). The most common mutations 
are exon 19 deletions (account for approx. 45% mutation) and L858R point muta-
tion in exon 21 (account for approx. 40–50%) in EGFR-mutated lung cancer, while 
G719X and S768I are found in exon 18 and exon 20, respectively, and only <10% 
of cases of mutation is shown in exon 20 insertion. All of these mutations in EGFR 
make EGFR overexpress and this constitutively active EGFR leads to overactivation 
of the anti-apoptotic Ras signalling cascade, finally leading to uncontrolled cell 
growth. The mechanism of action of TKIs is to bind to the mutated active ATP-
binding site of EGFR leading to the inhibition of RAS signalling cascade and thus 
activates many pro-apoptotic pathways and consequently causes tumour cell death 
[69]. However, regardless the vivid response to these EGFR-targeted TKIs, most of 
the patients have been shown to develop acquired resistance to these drugs. In a 
recent publication, gefitinib has been found to produce oxidative stress in a dose-
dependent manner. It has also been found that this increased oxidative stress induces 
epithelial-to-mesenchymal transition (EMT) and cardiotoxicity [70, 71]. However, 
another study suggested that Prx II mRNA as well as protein level has been increased 
via demethylation of the Prx II gene in a gefitinib-resistant A549 cells in compari-
son to gefitinib-sensitive A549 cell line, and as a result, ROS level went down lead-
ing to inhibition of apoptosis and induction of cell progression and subsequently 
increase colony formation [72]. Thus, Prx II appeared as a potential target for over-
coming gefitinib resistance and theoretically this could also be applied to other 
EGFR-targeted TKIs. Erlotinib was also added to the list of TKIs as EGFR- targeted 

Table 19.2 Small molecule 
inhibitors and mAb used in 
NSCLC patients

Target name Generic name Brand name
EGFR Erlotinib hydrochloride Tarceva
EGFR Gefitinib Iressa
EGFR Osimertinib Tagrisso
EGFR and HER2 Afatinib Gilotrif
ALK Brigatinib Alunbrig
ALK Ceritinib Zykadia
ALK Alectinib Alecensa
BRAF V600E Dabrafenib Tafinlar
BRAF V600E Vemurafenib Zelboraf
MEK1 and 
MEK2

Trametinib Mekinist

RET Vandetanib Caprelsa
EGFR Cetuximab Erbitux
HER2 Ado-trastuzumab Kadcyla
VEGF Bevacizumab Avastin
VEGF Ramucirumab Cyramza
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therapy later after approval of gefitinib. In line with the cytotoxic effects of other 
EGFR-targeted TKIs, erlotinib also shows cytotoxicity through the generation of 
oxidative stress while using it to treat many types of cancer, and after a certain time 
period, the patients become resistant to that drug [73]. Afatinib is another TKI tar-
geted to EGFR and used in less, but chronic oxidative stress has also been found to 
be associated with the development of afatinib resistance as well [74]. The mecha-
nisms of resistance to TKIs can be broadly divided into two categories: first, intrin-
sic resistance, and second, secondary EGFR mutations (e.g. T790M mutation). 
Osimertinib (OSI), also known as AZD9291, is a third-generation TKI targeted to 
EGFR that has been approved for the treatment for the patients harbouring T790M 
mutation. Lu et al. [75] have shown that treatment of OSI induces accumulations of 
cytoplasmic vacuoles and increase the expression of phosphatidylethanolamine- 
modified microtubule-associated protein light-chain 3 (LC3-II) and the formation of 
GFP-LC3 puncta in various cancer cells. It has been clearly shown in their study 
that OSI increased ROS generation accompanied by autophagy which causes 
decrease in cell viability and induced apoptosis in NSCLC cells. Currently, there are 
nearly 15 approved TKIs for the treatment of NSCLC and the list is expanding rap-
idly (Table 19.2).

19.9  Monoclonal Antibodies as Targeted Therapy

Monoclonal antibody-based therapy of cancer has been established as one of the 
most effective targeted therapeutic strategies in the last two decades. Initially, com-
bination of serological techniques for the discovery of receptor proteins on cancer 
cell surface and hybridoma technology for the generation of antibodies led to a 
series of landmark clinical trials and subsequent clinical successes. Optimization of 
antitumour immune responses through Fc modifications also put a major contribu-
tion to clinical efficacy. The modification of the complex interplay between immune 
system and tumour cell environment through targeting of T-cell receptors has been 
developed as a powerful new therapeutic approach for cancer therapy.

Bevacizumab is a recombinant, humanized monoclonal antibody (mAb) that targets 
vascular endothelial growth factor (VEGF), leading to inhibition of ligand binding to 
VEGF receptor (VEGFR), and finally blocks neoangiogenesis and vascular leakiness.

This mAb is used mainly for the treatment of colorectal cancer (CRC) and 
NSCLC. The mode of action of this antibody is to produce hypoxia condition in 
tumour cell. Many antioxidants such as L-cysteine, l-cystathionine and GSH levels 
were decreased during the treatment of this mAb indicating an increase of oxidative 
stress levels. In a report with retinal cells, it was implicated that exposure of H2O2 
and bevacizumab to the cells decreased bcl-2 mRNA and protein level and subse-
quently caused apoptosis with dose-dependent increase of bevacizumab, suggesting 
that oxidative stress enhances the effect of bevacizumab on apoptosis [76].

Cetuximab is a recombinant monoclonal antibody designed to target specifi-
cally EGFR. US FDA approved cetuximab for the treatment of HNSCC, CRC and 
NSCLC. In NSCLC, EGFR mutation is second most abundant with ~25% among 
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the total NSCLC patient pool. In addition to MAPK signalling pathway blocking, 
EGFR inhibition opened up additional mechanisms that affect cell survival and 
reveal a new way of NSCLC treatment. Lu et al. recently published a paper describ-
ing how cetuximab has an effect on the downregulation of glutamine transport 
protein- mediated complex in the cell cytoplasmic membrane [77]. It has also been 
reported that oridonin and cetuximab combination therapy suppressed phosphory-
lation of EGFR leading to an increase of ROS and apoptosis in laryngeal carci-
noma cells [78].

19.10  Other Small Molecules as a Targeted Therapy

Vemurafenib was discovered as the first BRAF inhibitor that is used for the treat-
ment metastatic melanoma. The mode of action of vemurafenib is to target the most 
common genetic alteration in melanomas, BRAF V600E.  By binding to BRAF, 
vemurafenib inhibits the signalling cascade RAS/MEK/ERK and subsequently 
reduces cell proliferation leading to inhibition of tumour growth. Additionally, 
vemurafenib induces NO• and O2

•− production and depolarization of mitochondrial 
membranes in BRAF V600E-mutated melanoma cells leading to apoptosis and 
growth inhibition [79]. Although most of the studies are published in melanoma, 
vemurafenib has also shown a good survival in some NSCLC patient pool.

19.11  Immunotherapies

Immunotherapy is also referred to as biologic therapy or biotherapy. It is an area of 
cancer treatment that stimulates the inherent ability of our immune system to attack 
tumour cells. Scientists in the field of cancer research believe that immunotherapy 
can enhance the efficacy of drug treatments and reduce or eliminate the devastating 
adverse drug side effects that often come with traditional chemotherapy. A variety 
of strategies are continuing to evolve in the laboratory and in the clinic and include 
cytokines, cancer vaccines and, most notably, certain monoclonal antibodies identi-
fied as checkpoint inhibitors. Immunotherapy is the most successful and challeng-
ing cancer therapy used nowadays to combat with cancer, and US researcher James 
Allison and Japanese researcher Tasuku Honjo have won the 2018 Nobel Prize for 
Physiology or Medicine for their breakthrough work on modulating the immune 
system for the battle against cancer. In connection with oxidative stress to immuno-
therapy, one of the recent studies observed using uncouplers as ROS generators with 
immunotherapy have synergistic effects with inhibition of PD-1 and subsequently 
blocking of tumour growth. The mechanism was assumed to be the generation of 
hypoxia by the synergistic effect of the uncoupler with chemotherapy [80, 81] 
because using of uncoupler alone did not show any significant effect on the growth 
or gene expression of tumour cells. The drugs used as immunotherapy in NSCLC 
are described in Table 19.3.
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19.12  Conclusion and Future Direction

Inflammation is accepted increasingly as an important factor involved in the devel-
opment of various types of cancer including lung and also a vital mediator in 
response to therapy. A critical interaction between immune cells and tumour cells as 
well as other stromal cell types and tissue components is shown in the NSCLC 
microenvironment. ROS or RNS generation is crucial for the regulation of normal 
cell metabolism and is essential for many important events for the development of 
the organism. In contrary, overproduction of ROS and RNS is toxic for cells and 
presumably stimulates chronic inflammatory conditions and thus contributes to the 
progression of lung cancer. Therefore, a well and apparent discussion how ROS or 
RNS play role in the development of lung cancer may reveal new mechanisms asso-
ciated with lung cancer and open possibilities to design new therapeutic strategies 
for the prevention of lung cancer.

Leading a healthy and proper lifestyle is considered to be an indispensable factor 
to overcome the difficulties of treatment for many diseases and may extend the 
lifespan of patients diagnosed with several life-threatening diseases such as cardio-
vascular disorder and cancer. Nowadays a regular physical exercise routine is 
advised as a crucial factor for good and healthy act of living. A well-planned and 
moderate physical exercise has often been prescribed in addition to medicine for 
adult as well as elderly people. Regular exercise compensates the adverse effects 
resulted by free radicals and brings many health benefits, including reduced risk of 
all-cause mortality and death in elderly people. Although, there is a debate that 
physical exercise also induces oxidative stress and inflammation. Moreover, signifi-
cant increase of ROS level has been found during physical exercise that cause dam-
age to the cell membranes and show harmful effects on skeletal muscle performance. 
A progressive and persistent physical activity enhances detoxification of a large 
amount of ROS of body cells, and this has been recommended for both in adult and 
elderly people to keep them safe from oxidative damage and prevent from age- 
related disorders. Several studies have been performed to identify natural com-
pounds and micronutrients that are capable of preventing or attenuating the 
exercise-induced oxidative stress and inflammation. Many types of natural com-
pounds individually or in a mixture, which act as exogenous antioxidants, are usu-
ally provided within the diet to boost our endogenous antioxidant systems, and they 

Table 19.3 Drugs used as 
immunotherapy in NSCLC

Type Generic name Brand
PD-L1 
inhibitor

Atezolizumab Tecentriq

PD-L1 
inhibitor

Durvalumab Imfinzi

PD-1 inhibitor Nivolumab Opdivo
PD-1 inhibitor Pembrolizumab Keytruda
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are used as important ergogenic factors to increase the strength in physical exercise, 
both in young and elder population.

There is enormous number of evidences suggesting exercise can help in a differ-
ent way for improvement of lung cancer patients. Exercise can be effective for 
patients at any stage of lung cancer as it increases strength and endurance and 
decreases emotional issues. A recovery fitness program is prescribed for lung cancer 
patients, which provides guidance on breathing, stretching, aerobic exercise and 
strength training. Therefore, a regular progressive physical exercise with healthy 
lifestyle can be a good option to keep ourselves safer from lung cancer.
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Abstract
Development and maturation of the lung airways primarily take place in two dif-
ferent phases: first during embryonic days and second during postnatal days. 
During postnatal development, rapid angiogenesis and alveolarization are neces-
sary to attain the capacity of the lung to support the need of the baby. During lung 
development, alteration in ROS level may significantly compromise maturation 
of the alveolar structure. We have employed a unique approach to achieve altera-
tion in ROS level in the chick embryos to ascertain ROS function in early lung 
development. We have used a known ROS quenching nitric oxide (NO) donor 
and a ROS inducer called thalidomide, a known teratogen. Using next-generation 
high-throughput sequencing (NGS) analysis, we have performed the transcrip-
tomic analysis of the NO- and thalidomide-treated chick embryos. Using 
STRING database, we have identified a set of lung-associated developmental 
genes that were significantly altered upon NO and/or thalidomide treatment and 
thus providing evidence that interplaying with cellular ROS level could possible 
alter the set of genes involved in early lung development. In conclusion, the cur-
rent study shed light that alteration of ROS level could modulate the expression 
of early genes which are required for normal lung development and maturation.
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20.1  Introduction

Lung structure and functions are incredibly interesting given the marathon task it 
performs through the years of one’s life. Alveolar airways of the lung known as 
alveoli sacs are designed to have enlarged surface area to promote gas exchange 
between blood and inhaled air [1]. Each lung contains around 300 million alveoli, 
the main gas-filled air sacs, where the major gas exchange takes place. Developments 
of these alveoli take place in two major steps: foetal stage and postnatal stage after 
birth. Foetal lung development consists of three main stages: pseudoglandular, can-
alicular, and saccular. Bronchial tree formation along with epithelial differentiation 
follows the next. In contrast, postnatal lung development follows classical and con-
tinued alveolarization. The hallmark of this phase is the microvascular maturation 
and vascular integration with airway machinery for forming an efficient gas 
exchange module. Interfering with this process of lung development could severely 
compromise lung function that have a long-term consequence on one’s life.

Several lung-associated complications like pulmonary hypertension, broncho-
pulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and 
asthma are driven by reactive oxygen species (ROS) level. For instance, in response 
to vasodilators, ROS impairs the normal relaxation of pulmonary artery [2]. ROS 
level is also shown to play role in the remodelling of pulmonary arteries that 
increases the severity of pulmonary hypertension [3]. High oxidative stress resulting 
from environmental exposure, primarily cigarette smoking, facilitates the onset and 
progression of COPD [4]. The exogenous ROS generated from cigarette smoking 
causes oxidant/antioxidant imbalance, whereas the ROS released in the course of 
mitochondrial stress and inflammation may contribute to the disease progression. 
ROS may affect discreet biomolecules, viz., DNA and proteins of alveolar epithelial 
cells (AEC), thereby causing epithelial cell apoptosis [5]. In pathologies associated 
with early lung development as in case of BPD, generation of free radical is largely 
recognized as one of the major factors of damage to the airways. The link between 
inflammation and ROS involves the direct activation of inflammatory cells, espe-
cially granulocytes, which potentiates the inflammatory reaction during progression 
of BPD.  Supplementation with antioxidants in preterm newborns particularly 
exposed to ROS who are at risk for BPD showed improved airway function and bet-
ter lung health in long term [6].

In the present study, we have specially investigated into the early lung develop-
ment that primarily takes place during embryonic stages. We have used thalidomide, 
the notorious teratogen, which causes a wide range of morphological and develop-
mental errors in foetus including lung development. Thalidomide interferes with 
different signalling pathways related to embryonic development. However, it glob-
ally exerts oxidative stress in the embryo [7]. We have used thalidomide to exert 
oxidative stress in the chicken embryo and used nitric oxide (NO), which is known 
for its superoxide quenching property, to reduce the propensity of oxidative stress in 
the developing lung. We investigated the modulation of genes, which are closely 
linked to lung development in the early phase of life. We demonstrated that 
thalidomide-mediated ROS modulation leads to drastic changes in the expression of 
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lung-associated developmental genes that could likely abrogate normal lung 
maturation.

20.2  Background

20.2.1  Stages in Lung Development

In broader context, the lung development can be divided into two major stages: 
organogenesis that takes place during the stages of foetal lung development fol-
lowed by differentiation that takes place during rest of the stages of the foetus as 
well as during postnatal lung development. During organogenesis formation of 
major airways and bronchial tree along with the birth of acinus occurs, while in next 
stage differentiation and formation of mature lung epithelial cells (both type I and 
type II) along with formation of air-blood barrier and expansion of the airspaces 
take place. Cellular differentiation to organize more alveolar and microvascular 
structures continue through the postnatal stages of lung development. The develop-
ments complete by three months after birth however possible continue up to two 
years to adulthood. The phases of lung development are primarily based on the 
morphological criteria as depicted (Fig. 20.1 [1, 8]).

Fig. 20.1 Stages of lung airways and arteries development
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20.2.2  Late Development of Lung

Increased luminal pressure and attraction of septa towards chemoattractant signals 
are critical to regulate late lung development. At birth, it can be attributed to the 
large increase in pulmonary recoil pressure resulting from the creation of an air- 
liquid interface and associated intrapulmonary surface forces [9]. The ability of the 
lung to increase its intra-alveolar area after partial pneumonectomy showed that this 
requires the presence of a mechanical force as it was increased after higher inspira-
tory efforts seen by an increase in the intraplueral pressure of the healthy lung [10]. 
Earlier studies in foetal sheep and postnatal lambs show that relative to the lungs of 
postnatal lambs, those of the late-gestation foetus are highly distended [11]. At 
birth, when an air-liquid interface is created within the lung, the lung partially 
recoils because of increased intrapulmonary surface forces, lowering lung capacity 
and creating a more subambient intrapleural pressure [12]. During the latter one half 
of gestation in foetal sheep, the lung luminal volume increased progressively which 
can be attributed to a large increase in pulmonary recoil pressure due to an increase 
in the expiratory pressure after birth so as to increase the surface area and help in the 
formation of an air-liquid interface. Rhythmic stretch of 10%, 0.8 Hz given to foetal 
sheep lungs for a period of 24–48 h increased the proliferation of type II AEC and 
also stimulated the incorporation of choline into intracellular phospholipids and 
increased adenosine 3′,5′-cyclic monophosphate levels [13].

20.2.3  Contribution of Reactive Oxygen Species in Lung 
Development

ROS is generated in the developing lung from sources which act as the first line of 
defence to counter infection, viz. alveolar macrophages and phagocyting cells. 
Alike neutrophils, superoxide generated by the membrane NADPH oxidase forms 
the prime source of ROS [14]. Alveolar macrophages are the major source of ROS 
under physiologic conditions. Inflammatory cytokines enticed peripheral 
monocytes- macrophages that cause a substantial damage to alveolar sacs leading to 
pulmonary diseases. Recently, it has been shown that after invigorating and differ-
entiating these cells into macrophages, they become capable of producing superox-
ide by xanthine oxide reductase (XOR) that plays a significant role in acute lung 
injury (as opposed to invading neutrophils, where XOR is silent) [15]. The presence 
of mast cells in the lungs is rather conjectural. However, there are irrefutable find-
ings which prove their ability to generate ROS.  Type II pneumocytes with their 
dynamic metabolism yield surfactants and form a part of alveolar epithelium. These 
cuboidal cells are shown to function as precursor cells for type I pneumocytes in the 
case of increased destruction of alveolar epithelial cells [16]. Recent studies show 
that even type II epithelial cells possess enzymatic properties for production of ROS 
and modulation of these properties may lead to pathologies such as associated with 
asthma or COPD.  Superoxide reacts rapidly with NO and forms peroxynitrite 
(ONOO), thus attenuating NO-mediated vasodilation and inactivating other 
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enzymatic pathways by the generation of nitrotyrosine [4]. Exposure to hyperoxia 
was also found to result in decreased angiogenesis, affecting VEGF transduction 
through ROS, suggesting that ROS generation affected preterm individuals. ROS 
was further found to induce vasoconstriction in pulmonary hypertensive foetal lamb 
lungs via signalling of NF-kB and activation of Nox 4 suggesting a role in early 
lung pathogenesis [17]. eNOS protein levels were also found to be decreased at such 
circumstances. Long-term oxygen therapy is given to premature infants with BPD, 
but exposure of the immature lung to elevated levels of oxygen may have adverse 
effects on lung development due to abnormal VEGF signalling and low eNOS levels 
and PH [18, 19]. Regarding ROS generation itself in the foetal lung during alveori-
zation will help one to understand the signalling mechanisms behind it.

20.2.4  Sources Aiding in ROS Generation

NADPH oxidases, a class of membrane proteins, transfer electrons from NADPH to 
molecular oxygen, thereby producing superoxide intracellularly or extracellularly. 
Seven of them have been identified, with Nox1, Nox2, and Nox4 being important 
for mediating gene expression in vascular cells. Nox1 is expressed in vascular 
smooth muscle, endothelium, and adventitia and is circumscribed to plasma mem-
brane, caveolae, and endosomes. Overexpression of Nox1 in vascular smooth mus-
cle was found to increase ROS levels, causing eNOS uncoupling due to formation 
of BH2 and decreasing NO bioavailability and injuring the lung [20]. Mouse lung 
cell lines showed an increase in Nox1 expression on a 72-h exposure to hyperoxia. 
Similar effects being seen in mice affected with pulmonary hypertension suggest 
that Nox1 may pathologically engage in degeneration of alveolar foetal lung [21, 
22]. In contrast, Nox2 is expressed in cells constituting the vasculature and also in 
the phagocytic cells. However, the isoform is activated by pathways very similar to 
Nox1. This requires the congregation of various protein subunits, including 
p22phox, p47phox, p67phox, and Rac. Nox2 when present on plasma membrane 
inhibits NO signalling by secreting superoxide into the extracellular space. In lamb 
lungs, increased ROS produced by Nox2 expression was found to alter vascular 
responses leading to vasoconstriction during neonatal pulmonary hypertension. 
Nox4 is expressed more copiously in vascular cells than Nox1 and Nox2 and local-
izes to the mitochondria, endoplasmic reticulum, and nucleus. Nox4-derived H2O2 
may contribute to impaired vasodilation in persistent pulmonary hypertension in the 
neonate (PPHN) lambs via decreased eNOS and sGC expression and increased 
PDE5 activity [3]. Cyclin D1 expression was found to be higher in PPHN lungs and 
in pulmonary arteriole smooth muscle cells (PASMC) isolated from rats treated 
with monocrotaline. However, Nox4 small interfering RNA decreased the expres-
sion of cyclin D1 in PPHN and PASMC, and intra-tracheal catalase also decreased 
the expression of cyclin D1 in the lungs of ventilated PPHN lambs indicating a link 
between increase in ROS generation and activation of cell-cycle promoters leading 
to remodelling of pulmonary vasculature during pulmonary hypertension [18]. 
NF-kB activation causes increase in Nox4 expression leading to ROS generation 
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upon pulmonary hyperoxia. It was found downstream of ROS activated via the 
phosphorylation of IkB and enabled NF-kB translocation into the nucleus, thus 
regulating the transcription of target genes. This may propose a feed-forward mech-
anism in PPHN by which Nox isoforms assist ROS generation, and thereby, raises 
the activities of key transcription factors such as NF-Kβ resulting in sustained 
expression of Nox itself [23].

20.2.5  Nitric Oxide Implications in Alveorization 
and Angiogenesis

NO as first discovered as endothelial-derived relaxing factor was later extensively 
studied in many cellular processes including cell migration, proliferation, survival, 
and cell death. Majority of the research studies support that eNOS-derived NO plays 
many roles than just as a vasodilator. NO was found to enhance proliferation of 
endothelial cells (EC) by inducing expression of VEGF and fibroblast growth factor. 
In rat aortic EC, L-NAME or DAHP inhibited NO production from NOS, and VEGF 
fabrication was concomitantly reduced. Finally, when NO production was even 
marginally increased by L-arginine or BH4 supplementation, VEGF synthesis was 
also restored [24]. NO was also found to stimulate angiogenesis by downregulating 
angiostatin which helped to promote proliferation by decreasing activity of MMP-9 
and MMP-4. In addition, NO through its canonical cGMP-PKG pathway promotes 
cell migration which is pivotal for endothelial cell migration to support sprouting 
angiogenesis [25]. Alveolarization, formation of new airway sacks that is essential 
for gas exchange between air-blood barrier, starts at week 36 of the human foetus 
and continues till adulthood. It consists of two major stages: (1) classical alveoriza-
tion as evident by more branching by the AEC to form alveoli, the principal gas 
exchange units of the lung and (2) microvascular maturation that is associated with 
formation of more network of vascular structures having close connection with the 
alveoli structures to cause efficient gas exchange. Endothelium-derived NO plays a 
crucial role in postnatal microvascular maturation in the lung, mediating down-
stream signalling in response to classic angiogenic factors. Recent findings in 
eNOS-deficient mice point to a novel and previously unrecognized role of eNOS–
NO pathway in foetal lung vascular development and lung morphogenesis [26].

20.2.6  Angiogenic Growth-Factor-Driven Angiogenesis 
during Alveolar Development, Injury and Repair

 1. Vascular endothelial growth factor: VEGF binding to VEGFR-1 (Flt-1) and 
VEGFR-2 (Flk-1/KDR) on vascular endothelium activates receptor tyrosine 
kinases, leading to endothelial survival signalling. Localization of VEGF to distal 
airways was observed when rat lungs were injected with VEGF beads during late 
lung development and also showed an increase in vasculature development. During 
the development of a regular mouse lung, the mRNA expression of VEGFR-2 also 
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increases. It is closely confined to the pulmonary EC as opposed to the flourishing 
epithelium. The expression of VEGF 120, VEGF 164 and VEGF 188 rises during 
the canalicular stage (when most parts of the lung are vascularized) in alveolar type 
II cells. These levels then decrease gradually until postnatal day 10 (P10), and the 
expressions further increase to the levels that are maintained through adulthood 
[27]. Treatment with VEGFR-1 and VEGFR-2 blocker SU5416 to adult rats spon-
taneously causes enlargement of the airspaces, indicative of emphysema [28], sug-
gesting that VEGF is essential to the maintenance of the pulmonary vessels and 
alveolar structures throughout adulthood. Conversely, lung overexpression of VEGF 
during normal lung development disrupts the lung architecture [19].

 2. Nitric oxide: VEGF-induced lung angiogenesis is partially moderated by 
NO. Delivering SU5416, a VEGF inhibitor, downregulates neonatal eNOS pro-
tein and NO production, while subsequent treatment with NO (inhaled) revamps 
vascular and alveolar growth at neonatal stage in the BPD model [29]. (iii) 
PECAM-1: Administration of an anti-CD31 antibody that inhibits EC migration 
without affecting proliferation or survival in vitro also impairs septation in neo-
natal rats. Loss of CD31 function compromises postnatal lung development and 
provides evidence that inhibition of EC function, in contrast to loss of viable EC, 
inhibits alveolarization [30]. (iv) Angiopoietin: Ang-1 and VEGF expression in 
the lung was found to increase during gestation. In baboons conditioned for 
appropriate oxygenation and ventilation so as to maintain the standard arterial 
blood gases, VEGF was reported to be concentrated over the distal airspace 
 epithelium through 140 days of gestation, thereby supporting the hypothesis that 
these angiogenic factors contribute to pulmonary microvascular development. 
Comparably, 125-day baboons showed a higher capillary density and decreased 
pulmonary microvasculature, showing premature lung development injury leads 
to disruption of angiogenesis [31, 32].

20.2.7  Disruption of Alveorization and Angiogenesis

A study performed on eight patients suffering from BPD showed a disruption of 
arterial vasculature and a decrease in percent medial thickness of pulmonary arteries 
indicating that pathological remodelling would follow abnormal vascular develop-
ment, giving rise to lung disorders. The marked expansion of the pulmonary micro-
vasculature in ventilated lungs was, at least partially, responsible for brisk EC 
proliferation. There was improved angiogenesis in ventilated long-term infants 
compared with age-matched post-term infants and also found to be nearly propor-
tionate to the growth of the air-exchanging lung parenchyma, indicating that micro-
vascular development when disrupted could lead to BPD [33]. PECAM1 protein 
levels decreased in BPD than control individuals indicating an inability to form 
arterial system, thereby decreasing the ability to form a gas-filled distal lung paren-
chyma that could lead to BPD in affected preterm infants [34]. In general, infants in 
brief ventilator phase were more affected than the infants in long-term ventilator 
phase. This could be associated with pronounced EC proliferation to support 
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angiogenesis. Many animal models were also found to exhibit effects similar to 
BPD and chronic pulmonary dysplasia when alveorization was disrupted by expo-
sure to different oxygen levels. This observation indicates that angiogenesis and 
alveorization are dependent on each other.

By now, the link between NO to postnatal lung development in context to their 
role in lung microvasculature formation and alveolarization is strongly established. 
It is evident from many findings that NO is a modulator of cellular ROS, and such 
function of NO could possibly contribute to many physiological functions including 
those functions essential for organ or tissue development. In addition to its ROS 
modulation property, NO can also act through canonical sGC-cGMP-PKG signal-
ling pathway which is well established as a driver of postnatal lung angiogenesis 
prerequisite for alveolarization during early lung development. Although such 
report of describing its role as a ROS modulator is well established, the molecular 
mechanism of NO-ROS axis during lung development is underexplored.

20.3  Methodology

20.3.1  Mice Tissue and IHC

The mice tissue sections were a part of the study from the University Rochester 
Medical Centre, Rochester, NY, USA. The mice lung tissues were processed for immu-
nohistochemistry (IHC) using von Willebrand factor (vWF) antibody (1:1000; Dako) 
to stain the microvasculature in the tissue. IHC was executed on formalin- fixed and 
paraffin-embedded 4-μm-thick sections of the lung. After processing for IHC, tissues 
were counterstained with H&E and mounted with IHC mounting media (Vector Labs).

20.3.2  Chick Embryo Model, Treatment Conditions, and Next- 
Generation Sequencing and Analysis

Transcriptome data were acquired from the online gene expression database under 
the accession number GSE69159. Methods were adopted from Kumar et al. (2016) 
[35]. In brief, fertilized brown leghorn (Gallus gallus) eggs were commercially 
obtained from nearby poultry research centre, Potheri, Chennai. Cleaned eggs were 
incubated at 37 °C in 60% humidity chamber. At HH8 stage, a small window was 
made in the eggshell, and eggs were treated with 10  μM NO donor 
(SpermineNONOate) or 60 μg of thalidomide dissolved in 5% DMSO (1 mg/ml) or 
vehicle. At HH29 stage, total RNA was isolated using TRIzol® method. Illumina 
HiSeq 2500 platform was used for entire transcriptome sequencing and aligned 
against genome of chicken (Galgal4). Cuffdiff (v2.2.0) and TopHat (v2.0.8) pro-
grams were used to spot the genes that expressed differentially. STRING v10.5 was 
used to generate protein–protein interaction (PPI) network and to identify lung–
associated gene sets.
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20.4  Results and Discussion

20.4.1  Deformed Vascular and Alveolar Structures in Mice Lung

Crosssection of the lung tissues obtained from mice having premature lung develop-
ment during early embryo days. Tissues were stained for vWF to visualize lung 
microvasculature and further counterstained with H&E to visualize the alveolar 
structure. These mice are known have defective lung vasculature and an increased 
ROS level. The representative images showed to have an increased alveolar space 
and less number of alveolar sacs per unit area in the diseased mice lung which is 
co-related with the reduced microvasculature structure (Fig. 20.2) which appears as 
brown (shown by red arrows).

20.4.2  Modulation in ROS Level through either NO or 
Thalidomide Treatment Leads to Alteration 
in the Expression of Lung-Associated Genes

Upon analysing the NGS data obtained from early chick embryos treated with either 
a quencher of ROS such as NO or a ROS inducer thalidomide lead to alteration in 
the transcript level expression of many lung-associated genes. We have selected 
these genes based on STRING network of genes that are suggested to be lung- 
associated gene sets. Using the analysis, we have identified the following genes 
(Fig.  20.3; Table 20.1) which are further elaborated on their role in lung 
development:

Fig. 20.2 Deformed alveolar structure in postnatal mice lung which is associated with less 
vascularization
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Fig. 20.3 The heatmap constructed from important genes selected from 1146 lung specific genes 
(Xiong et al. 2016)
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 1. LDLRAD1: NO treatment downregulated the expression of this gene by 21%, 
while thalidomide alone treatment induced the expression of these genes by 
100%. LDLRAD1 is crucial in lung development as it takes part in lung organ-
ogenesis [36]. It has been also reported that the gene is associated with disease 
like childhood asthma [37] and chronic obstructive pulmonary disease [38].

 2. TBX4: Thalidomide treatment inhibited the expression of TBX4 gene by 40%, 
while NO treatment as well reduced the expression of this gene by 45%. T-box 
transcription factor Tbx4 is shown to be associated with pulmonary arterial 
hypertension [39].

 3. LRRN4: NO downregulated LRRN4 by 56%, while 43% elevation was observed 
under thalidomide treatment. The leucine-rich repeat neuronal 4 (LRRN4) is 
expressed in the lung and kidney [40]. It is reported to be associated with 
chronic obstructive pulmonary disease [41].

 4. AKAP5: NO induced the expression of AKAP5 by 24%; contrarily thalidomide 
did not alter its expression in whole chick embryo. AKAP5 expression is sig-
nificantly reduced in COPD [42].

 5. SLC34A2: Transcriptomic data obtained through NGS revealed that thalido-
mide treatment induced the expression of this gene by 169%, while NO did not 
alter the expression. The sodium-dependent phosphate transport protein 2B 
responsible for the phosphate transport via Na + cotransport in pH-dependent 
manner expressed in the small intestine and lung [43]. Mutations in the gene 
can cause pulmonary alveolar microlithiasis (PAM) [44].

 6. CLDN18: Both NO and thalidomide treatment elevated the expression of 
CLDN18 transcript level in chick embryos. Claudin 18 (CLDN18) protein con-
tributes to tight junction. It gets mostly expressed in the stomach and lung alve-

Table 20.1 Selected from 83 lung specific genes, which are significantly altered upon either NO 
or thalidomide treatments

No Gene name Control Vs. NO (Fold change) Control Vs. Thalidomide (Fold change)
1 LDLRAD1 0.787110391 2.056001295
2 TBX4 0.554617488 0.604089836
3 LRRN4 0.438591389 1.43430168
4 AKAP5 1.246258119 1.036239869

5 SLC34A2 0.872380683 2.690502357
6 CLDN18 3.031438668 1.957745998
7 WIF1 0.801372647 0.499163531
8 NKX2-5 0.829406266 0.781458907
9 MS4A15 1.128130407 0.482386605
10 SNTN 0.900075308 2.357064031
11 LAMP3 0.894054738 1.934642163
12 WNT3A 0.786988923 1.015645477
13 MUC5B 1.899059991 1.441340548
14 CDHR3 1.000645205 1.306729107
15 SLC6A14 1.264585444 2.632674818
16 RTKN2 0.60777849 1.361021748
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olar epithelium [40]. Reduction in the level of CLDN18 can cause impaired 
alveolarization [45].

 7. WIF1: Thalidomide treatment abrogated the expression of WIF1 by 50%. In 
contrary, NO treatment did not alter the expression of these genes. The gene 
regulates the Wnt signaling by WNT inhibitory factor 1, associated with 
reduced lung function in asthma [46]. It is also related to lung development in 
embryo [47].

 8. NKX2-5: Thalidomide treatment downregulates the expression of NKX2–5 by 
22%, without having any effect by NO treatment. This gene is responsible for 
the production of a homeobox-containing transcription factor that mostly 
related to heart development in foetus [48]. It has been also reported that it 
plays a major role in pulmonary myocardium formation [49]. Haploinsufficiency 
in the gene leads to several abnormalities like Choreoathetosis and pulmonary 
alterations [50].

 9. MS4A15: According to our result, the expression of this gene increased by 
12.8% in NO-treated embryos, while it decreases by 52% under thalidomide 
treatment compared to control. The product of the gene is Membrane-spanning 
4-domains subfamily A member 15 (MS4A15) which is associated with lung 
adenocarcinoma [51].

 10. SNTN: NO treatment did not alter the expression of this gene, while thalido-
mide treatment cause at least 2.3-fold increase in the expression of this gene. 
The protein sentan, cilia apical structure protein encoded by SNTN gene, is a 
major component of vertebrate motile cilia [52]. Directional induction of multi- 
ciliated airway cells from pluripotent stem cells is associated with increase in 
this protein level in human [53].

 11. LAMP3: NO has no significant effect in this gene expression, but thalidomide 
induced its expression by almost 93%. It has been reported previously that 
Lysosome-associated membrane glycoprotein 3 (LAMP3) is associated with 
adaptive immunity [54]. The gene has been predicted to play crucial role in 
asthma [55].

 12. WNT3A: The expression of WNT3A significantly reduced upon NO treatment, 
while thalidomide did not alter the expression of this gene in developing chick 
embryo. This is one of the major components of WNT signalling associated 
with differentiation and proliferation of mesenchymal cells in embryonic lung 
[56]. It has an important role in metastasis of lung adenocarcinoma [57].

 13. MUC5B: NO treatment caused almost 90% upregulation in its expression, but 
44% increase in the same has been observed under thalidomide treatment. The 
gene encodes one of mucin family of protein that functions for mucus secretion 
and airway defence [58]. The upregulation of the gene is linked with COPD 
[59] and idiopathic pulmonary fibrosis [60].

 14. CDHR3: No change was observed in NO-treated tissue samples, while thalido-
mide treatment significantly increased the expression by 30%. Cadherin-related 
family member 3, expressed mostly in airway epithelium, is related to the cal-
cium ion binding activity and associated to asthma [61].

S. Giri et al.



457

 15. SLC6A14: NO treatment caused almost 23% increase, but thalidomide treat-
ment results in massive increase (about 163%) in the gene expression, observed 
in our study. The gene encodes the protein solute carrier family 6 member 14 
(SLC6A14) which is responsible for the transport of neurotransmitter depend-
ing on sodium and chloride ion [62]. Previous study supports the fact that the 
gene is related to embryonic lung development [56]. It also been found that the 
gene gets highly expressed in chronic obstructive pulmonary disease patients 
compared to healthy subjects [63].

 16. RTKN2: Under NO treatment, the gene expression decreased by about 
40%, whereas thalidomide treatment elevated its expression by 36%.The 
protein rhotekin- 2, described as lymphocytic Rho-GTPase effector, has 
been related to the lung function of patients suffering with idiopathic inter-
stitial pneumonias [64].

20.4.3  Transcriptomic Analysis of the Lung-Development- 
Associated Genes in Chick Embryos Treated with ROS 
Modulators NO and/or Thalidomide

We further analysed our NGS data to identify the differential expression of the genes 
that are extracted from STRING database which is shown to be associated with lung 
development. STRING database identify 1146 genes under this category which 
either directly or through secondary messenger can control lung development. 
Through this analysis we have identified a set of genes that are significantly altered 
upon NO and/or thalidomide treatment suggesting that alteration in ROS pathways 
as achieved in our case either through NO or thalidomide treatment leads to changes 
in transcriptomic level of these lung-development-associated genes (Fig.  20.4; 
Table 20.2):

 1. CCDC40: NO treatment did not alter the expression of CCDC40, while thalido-
mide elevated the expression by 32%. The CCDC40 gene is required for encod-
ing coiled-coil domain-containing protein 40 that is very important for the 
migratory movement of cilia and left-right axis formation [65]. Mutations in this 
genes lead to the disease ciliary dyskinesia type 15 [66].

 2. HOPX: Thalidomide alone inhibited the expression by 67%, while NO did not 
alter the expression. Homeobox only protein x (HOPX) is necessary for pulmo-
nary maturation as well as regeneration of alveolar cells [67]. Its expression level 
is elevated during alveolar injury and during the repair process. It is believed that 
decrease in expression of HOPX may lead to end-stage idiopathic pulmonary 
fibrosis due to failed regenerative processes [68].

 3. ADA: Again thalidomide treatment significantly abrogated the expression of 
ADA by 55% without having any effect by NO alone treatment. Adenosine 
deaminase (ADA) that catalyses the deamination reaction of 2-deoxyadenosine 
and adenosine is essential for cellular signalling in postnatal development [69]. 
Recent studies claim that regulation of the gene could be the important key for 
prevention of lung injury and progression of COPD [70].
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 4. FOXF1: FOXF1 expression is not altered with NO treatment, while thalidomide 
elevated the expression by 70%. FOXF1 gene is responsible for the formation of 
transcription factor, forkhead box F1 (FOXF1) protein, that regulates many other 
genes activity related to lung lobe morphogenesis, alveolus development, vascu-
logenesis and trachea development in early development stage of embryo [71]. 
Commonly, it takes part in regeneration of lung after injury [72].
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Fig. 20.4 The heatmap constructed from important genes selected from 83 lung specific genes 
(Xiong et al. 2016)
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 5. EPAS1: NO did not alter the expression of EPAS1, whereas thalidomide elevated 
the expression by 29%. This gene encodes the endothelial PAS domain- 
containing protein 1 or hypoxia-inducible factor-2alpha (HIF-2alpha) which is 
essential in adaptation to high altitude at low oxygen pressure by regulation of 
erythropoietin level and angiogenesis [73].

 6. GPC3: Under thalidomide treatment, there was no significant changes in the 
expression of this gene, while NO treatment augmented the expression by 14.8%. 
Glypican-3 is a heparan sulfate proteoglycan which is associated with various 
physiological signalling like Wnt, fibroblast growth factors and hedgehogs [74]. 
It is also associated with lung squamous cell carcinoma, and prediction has been 
made that it could be well used as a marker for the disease [75].

 7. PTK7: Both NO and thalidomide treatments significantly increased the expres-
sion of PTK7 in early chick embryo. PTK7 is a coding gene for protein tyrosine 
kinase which is associated with mesenchyme development in the lung [76]. It 
involves many signalling pathways like ERK, Akt and Wnt signalling pathways 
[77].

 8. AGR2: Thalidomide inhibited the expression of AGR2 by 32%, whereas NO 
treatment downregulated its expression by almost 21%. This gene encodes the 
anterior gradient protein 2 (AGR2) which is associated with mucus secretion and 
goblet cell differentiation in the lung along with other cellular transition and 
migration [78].

20.5  Conclusion

The current study demonstrated that alteration of ROS level in developing lung 
predisposes alveolar epithelial cells and new developing microvasculature to inju-
ries leading to deformities in lung development. By combining the study with next- 
generation sequencing study, we are able to identify a set of lung-associated 
developmental genes which are significantly altered upon modulation of ROS either 
through reducing its level using a quencher (NO donor) or by elevating its level by 
treating the embryos with ROS inducer thalidomide.

Table 20.2 Genes selected from 1146 lung specific genes, which are significantly altered upon 
either NO or thalidomide treatments

No Gene name Control Vs. NO (Fold change) Control Vs. Thalidomide (Fold change)
1 CCDC40 1.0673 1.323051
2 HOPX 0.7478 0.330521
3 ADA 1.116421164 0.458733
4 FOXF1 0.8231 1.698857
5 EPAS1 0.9212 1.290014
6 TBX4 0.554617488 0.604089836
7 GPC3 1.1481 1.023282
8 PTK7 1.2961 1.728926
9 AGR2 0.7943 0.68004
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20.6  Future Direction

Further research in evaluating the role of these genes identified through the sequenc-
ing study will help in better understanding of these ROS-associated lung diseases 
besides identifying new treatment strategies for ROS-driven lung diseases espe-
cially those that are associated with compromised lung development such as BPD.
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Abstract
Cancer-related mortality is a worldwide health issue; among those, lung cancer 
is devastatingly caused by regular smoking. It is quite surprising that a consider-
able category of patients with non-small-cell lung cancer (NSCLC) has never 
had a habit of smoking. In these patients, an elevated level of small drifts or 
mutations in the epidermal growth factor receptor (EGFR) is observed. The 
genetic makeup and development of EGFR tyrosine kinase inhibitors (TKIs) are 
considered as promising drug candidates for the treatment of wild-type 
NSCLC. The aim of this chapter is to summarize EGFR and its physiological and 
pathological roles, including the acquired resistance of various generations of 
TKIs with future perspectives of EGFR-targeted therapeutic approaches.
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21.1  Introduction

Oxidative stress is the major mechanism and secondary messenger behind the 
pathogenesis of various diseases including the neurodegenerative disorders, ageing 
and cancers and by regulating apoptosis, survival and their proliferation [1]. Among 
lung diseases, lung cancer (LC) is identified as the major cause of cancer mortality 
worldwide due to its poor prognosis result in high death rates [2]. Aberrance on cell 
apoptosis – a programmed cell death mechanism – leads to pathogenesis including 
cancer. Cancer research mainly focuses on a new discovery which improves uncon-
trolled cell apoptosis of cancer [3, 4]. According to the World Health Organization 
survey, lung cancer will be attributed as the seventh cause of death and will contrib-
ute to 3% of the total death by 2030 [5].

Clinical evidence document that among the small cell lung cancer (SCLC) and 
non-small-cell lung cancer [NSCLC], the latter is referred to be the primeval, i.e. 
lung malignancy (85%) which can form both central and peripheral tumours and 
which has a poor survival rate, with only less than 15% of patients surviving more 
than 5 years [6]. Different types of NSCLC develop in different locations of the 
lungs: squamous cell carcinoma (25–30%), adenocarcinoma (45–50%) and cell car-
cinoma (5–10%). Adenocarcinoma develops in the peripheral part of the lungs, e.g. 
alveolar type II cells, squamous cell carcinoma in the central lung areas and large 
cell carcinoma in the central and peripheral regions [7].

Recently, researchers extensively have identified a large number of structural- 
based changes such as mutations and amplifications that could affect tumour sur-
vival [8]. Cancer treatment protocol mainly focuses on molecular changes and on 
how to effectively increase the survival rate of patients in non-surgical stages [9, 
10]. During cancer therapy, it is important to identify the genomic profile of the 
patient and appropriate drug dosage [11]. Among the various types of signalling 
pathways, epidermal growth factor receptor (EGFR) target-based mechanism plays 
a significant role in the treatment of NSCLC [12]. The EGFR tyrosine kinase inhibi-
tors gained wide recognition as an adjuvant therapy because of its high efficiency 
that could potentially cure LC patients [13, 14]. This chapter represents the EGFR 
and its physiological and pathological roles, as well as future perspectives of EGFR- 
targeted therapeutic strategies.

21.2  Role of EGFR in the Treatment of Lung Cancer

EGFR is a member of the erbB family, intimately related to receptor tyrosine 
kinases, which embrace erbB1 (synonym of EGFR) and other three known homolo-
gous proteins like erbB2 (HER2), erbB3 and erbB4 (Fig. 21.1; reproduced by Elena 
et  al. 2013, with permission) [15]. All the EGFR analogous have almost similar 
structures but have a difference in their tyrosine kinase activity. Its extracellular 
region comprises a ligand-binding domain, whereas intracellular region and trans-
membrane portion consist of tyrosine kinase and regulatory domains. The naturally 
functioning EGFR undergoes conformational changes upon binding with specific 
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ligand (epidermal growth factor), followed by a series of events occurring in signal 
transduction pathways such as phosphatidyl inositol 3-kinase (PI3K/Akt) and 
mitogen- activated protein kinase (MAPK) with the help of factors like activator of 
transcription proteins (STATs) and Raf1-extracellular signal-regulated kinase. The 
outcome of cell proliferation and cell maintenance mainly depends on the above- 
mentioned signalling pathways [16]. In NSCLC, DNA mutations (often referred to 
as ‘oncogene addiction’) in EGFR expressed by polymerase chain reaction can take 
place both in extracellular and intracellular domains of the protein [17–20].

21.3  Architecture of EGFR

The architecture and physiology of EGFR show that among the 1186 amino acids, 
621 residues belong to ectodomain and 4 to subdomains [21]. An earlier binding 
study revealed that inhibitor binding cavity (IBC) of EGFR is mainly positioned 
between amino acids of 294 and 543 which are stationed at domain III region. It 
further revealed that domain I also played a minor role in the efficiency of EGFR 
[22]. Three-dimensional X-ray crystallographic studies also assert that the three 
ligand sites are configured in domain I and III and small molecules situated in II and 
IV are linked together by one or two disulphide linkages.

NMR studies published that residues 626–647 are α-helical in structure and they 
continue into the juxtamembrane domain which has a number of regulatory func-
tions including ligand-dependent internalization and receptor dimerization. It also 
clarifies that amino acid, tyrosine present in carboxy-terminal domain whose, 

Fig. 21.1 EGFR signalling pathways

21 Epidermal Growth Factor Receptor: Promising Targets for Non-Small-Cell Lung…



468

phosphorylation process and post-translational modifications is important to medi-
ate the signal transduction.

21.4  EGFR Receptor Tyrosine Kinase (TK)-Targeted FDA-
Approved Drugs for Treating NSCLC

The establishment of structure, biology, physiological functions, regulation and it’s 
family members generated the development of new inhibitors of EGFR based can-
cer treatment. Rapid research in treatments targeting EGFR intensively progressed 
and resulted in the discovery of gefitinib, a first-generation TKI, in 2009, and erlo-
tinib in the year 2013, which resulted in massive and rapid tumour volume shrink-
age. On the other hand, patients developed secondary T790M gatekeeper resistance 
which introduced highly resembled second-generation irreversible inhibitors (TKIs) 
like afatinib, neratinib and dacomitinib. But their clinical efficacy is restrained due 
to narrow therapeutic window, which focused the research into third-generation 
EGFR TKIs. Their design explored the way for the introduction of a covalent bond 
with amino acid residue, Cys 797, for the effective management of T790M- 
associated resistance. Rociletinib, the first reported among third-generation com-
pounds (WZ40028, also known as CO-1686), showed 30–100 times more potency 
against EGFR T790M than wild-type EGFR. But its further development halted due 
to FDA recall request for more randomized data in trials and accelerated approval. 
Clinical trial data also showed that rociletinib causes hyperglycaemia by inhibiting 
insulin growth factor receptor (IGFR) and insulin receptor kinases. In 2015, osimer-
tinib, also known as AZD9291, became the first accorded TKI for T790 M EGFR- 
positive NSCLC patients. The Korea Ministry of Food and Drug Safety (MFDS) in 
2016 approved olmutinib (HM61713) for the treatment of NSCLC with a mutation 
in T790  M.  Currently, drugs in early-phase trials are nazartinib (EGF816, 
NCT02108964), avitinib (AC0010, NCT022743337) and naquotinib (ASP8273, 
NCT02500927) (Fig. 21.2) [22, 23].

21.5  Future Direction and Perspectives

Though targeted therapy has markedly improved the after effects of patients with 
non-small-cell lung cancer (NSCLC) who are prone to driver mutations, neoteric 
tactics are needed in the future to address invariable resistance. The current standard 
of care for patients with NSCLC which conceals genetic driver mutations is treat-
ment with corresponding tyrosine kinase inhibitors (TKIs). The emergence of TKIs 
considerably improved outcomes for patients with NSCLC. EGFR inhibitors, for 
example, improved the median survival from about 1 year to 3–4 years. Conversely, 
acquired resistance occurs in more or less every patient and emphasizes the neces-
sity for new approaches in the future to improve patient outcomes.

Current clinically actionable deviance includes EGFR, ALK, ROS1 and 
BRAF. But then again, newer targets need to be recognized to comprehend tumours 

D. G. T. Parambi et al.

https://www.cancertherapyadvisor.com/lung-cancer/section/2407/


469

driven by other mechanisms. Inhibitors targeting the proteins of genetic deviance in 
RET, MET, HER2, NTRK1 and KEAP1/Nrf1 are in development and may become 
added options in the near future. KRAS is also frequently mutated in NSCLC; how-
ever, attempts to target this pathway have not yet been successful to date. In addi-
tion, more mutation-specific and wild-type-sparring TKIs are needed, as more 
specific TKIs have proven to be more successful than their less-specific equivalents. 
Osimertinib, an EGFR inhibitor that targets T790  M-resistant mutants, is more 
effective than former-generation EGFR inhibitors and is usually better tolerated. 
The ALK inhibitor alectinib is also more effective and well tolerated than others in 
this category. The heterogeneity of NSCLC signifies that combination regimens that 
comprise targeted therapy are a promising strategy to overcome resistance. 
Combination approach can target multiple pathways that may be involved in the 
disease.

21.6  Conclusion

The development of molecular-targeted anticancer drug moieties is considered 
remarkable due to their high exactitude in treating cancer malady. The pathways 
that target cellular signalling play a crucial role in cancer proliferation, survival and 
their development, which are genetically altered in cancer cells. Targeted-based 
therapy is a possible therapeutic strategy for patients with different malignancies. 
Chemotherapeutic drug resistance is a complex issue encountered in various kinds 
of cancer treatment, which is difficult to overcome. For example, even though 

Fig. 21.2 Structures of the EGFR-targeted FDA-approved drugs
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various research have been extended to study the feasibility of resistance mecha-
nisms to EGFR blockade, it appears that numerous biomarkers and pathways were 
responsible for developing resistance to anti-EGFR therapy. New moieties that 
focused on single target were also found to have pronounced limitations like drug 
resistance in the treatment of cancer. As the prediction of resistance mechanisms is 
difficult, more complex prognostic methods are essential to improve the response 
rates to targeted therapy. It is concluded that robust knowledge and perceptions of 
cellular mechanisms underlying death and survival will lead to sensible approaches 
to overcome drug resistance. It is no doubt that, in the near future, there may be 
discovery of various aspects in governing the expression of the targeted drug resis-
tance genes.
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Abstract
Lipids and lipid metabolism are essential for carrying out a wide range of physi-
ological processes ranging from cellular integrity to storage and energy to signal 
transduction. It is increasingly being appreciated that lipid metabolism com-
prises of an interrelated set of pathways that orchestrate multiple cellular signal-
ing processes, both in normal physiology and in aberrant pathological conditions 
such as inflammation. Oxygenated lipid products (oxylipins) are particularly 
suited to maintain the fine balance between a pro-inflammatory and an anti- 
inflammatory status inside the cell. Because lung diseases including COPD and 
asthma exhibit chronic grade inflammation, studying oxylipins in the context of 
such diseases is critical for the etiology and management of these diseases. 
Additionally, oxylipin profiles can be utilized as biomarkers to distinguish and 
diagnose different types of inflammatory respiratory diseases such as COPD and 
asthma.

Keywords
Lung · COPD and asthma · Inflammation · Lipid inflammatory mediators · Lipid 
oxidation · Oxylipin

22.1  Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are two of the most 
prevalent respiratory disorders. Both are responsible for increased morbidity and 
mortality and results in major economic burden globally [1–4]. Asthma is typically 
characterized by chronic airway inflammation [5–8]. COPD, on the other hand, is a 
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progressively worsening condition characterized by fixed airway obstruction, and it 
terminally results in chronic bronchitis and emphysema [8–10]. Chronic bronchitis 
is mainly airway response to irritants characterized by mucus hypersecretion and 
bronchial wall thickening. Emphysema is characterized by damage to alveolar 
walls, resulting in loss of support and collapse of airways. The pathogenesis of both 
diseases has been documented extensively; the intensity of pathological changes 
increases as the disease progresses [11, 12].

In terms of statistics, COPD is the fourth-ranked cause of mortality globally and 
predicted to become the fifth-ranked cause of disability [13]. It affects about 10% of 
persons who are mid-aged or older [14]. Asthma is a chronic disease considered to 
affect approx. 339 million people worldwide and is 16th among the leading causes 
of years lived with disability [15]. A common mechanism of many respiratory dis-
orders is chronic inflammation [16–19]. Inflammation is aided by a suite of inflam-
matory cells, cytokines, and other inflammatory mediators. These constituents are 
extensively studied as biomarkers both to predict and monitor disease outcome and 
to guide therapy [20].

22.2  Oxygenated Lipid Products

The inflammatory mediators in asthma and COPD include free radicals, cytokines 
and chemokines, and lipid mediators [19, 20]. Lipids have always been thought of 
as structural blocks conferring cellular integrity and as metabolic stores imparting 
energy in times of starvation. Apart from the usual role, lipids are now considered 
participants in cell signaling and cellular homeostasis [21]. Specifically, lipids are 
extensively required in inflammatory processes and innate immunity to survive in 
response to external insults and internal aberrations. However, chronic dysregulated 
inflammation leads to further cellular damage that leads to multiple diseases like 
asthma, COPD, cancer [22], Alzheimer’s disease [23], and obesity [24].

One such class of lipids that are participants in inflammation are termed oxy-
lipin. Oxylipins are oxygenated compounds synthesized from fatty acids: it includes 
eicosanoids synthesized from arachidonic acid as well as related compounds syn-
thesized from other polyunsaturated fatty acids (PUFA – both long and short chain 
length) [25]. Such reactions involve at least one step of mono- or dioxygenase- 
catalyzed oxygenation. Cyclooxygenase (COX-1 and COX-2), lipoxygenase 
(5-LOX, 12-LOX, 15-LOX), and cytochrome P450 (CYP enzymes an CYPP450 
microsome ω-hydroxylases) are three major enzymatic pathways for oxylipin bio-
synthesis [26, 27]. In contrast to pro-inflammatory oxylipins, a few oxylipins exert 
anti-inflammatory effects too [28–34].
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22.2.1  Pro-inflammatory Oxylipins

22.2.1.1  Arachidonates
Arachidonic acid (20,4 n-6, 20, ω-6) is 20-carbon chain PUFA with four double 
bonds with the final double bond located 6 carbons from the terminal end of the 
aliphatic chain opposite the carboxyl group (ω-6-or n-6) [28, 30].

Prostaglandins (PGs)
PGs are eicosanoids with a 5-carbon ring. PGs are local autocrine and paracrine 
signaling molecules [31, 32] and are produced in most of the tissues. They attach to 
G-protein-coupled receptors like FP, DP1-2, IP1-2, TP, EP1-4, and CRTH2 [33, 34], 
and thus PGs act on a wide range of cells to produce a variety of effects. PGs are 
formed by sequential oxidation of arachidonic acid by cyclooxygenases and prosta-
glandin synthases [35, 36].

The most abundant PG is PGE2 which has a complex role in lung homeostasis. 
It has multiple functions that are regulated by a concerted action of different recep-
tors and signaling pathways [35, 36]. PGE2 interacts with EP1 and EP3 to affect 
pain in inflammatory hyperalgesia while it interacts with EP4 to confer anti- 
inflammatory effects in allergic airways [37]. PGE2 has been shown to confer a 
bronchodilatory effect in allergic airways: it prevents allergen-induced bronchocon-
striction [37, 38]. PGD2, on the other hand, interacts with DP and CRTH2 receptors 
and has been shown to be pro-inflammatory producing airway bronchoconstriction 
[38–40]. Studies in mouse indicated that COX-1 activity is bronchoprotective, while 
COX-2 promotes infiltration of inflammatory cells in the lung [41–43]. Interestingly, 
patients with asthma have lower levels of PGE2 [44], while COPD patients have 
increased PGE2 in respiratory secretions [29, 45]. Additionally, increased signaling 
in PGE2-EP2/4 axis has also been observed in fibroblasts isolated from the lung 
parenchyma of COPD patients [29].

Thromboxanes
Thromboxane A2 (TXA2), generated from PGH2, interacts with TP receptor [46] 
and is a potent bronchoconstrictor [47]. TXA2 is mainly formed from platelets 
wherein it promotes aggregation and vasoconstriction [48]. Additionally, it acts on 
bronchial and vascular smooth muscle cells. Because TXA2 affects bronchial 
hyperresponsiveness [49], inhibitors of TXA2 are considered as a therapy for 
asthma.

TXA2 is nonenzymatically degraded to TXB2  in the lungs for exhalation. 
Interestingly, TXB2 level was below detection levels in exhaled breath condensates 
(EBC) from COPD patients. However, the levels were found to be elevated in EBC 
from asthma patients [50, 51]. In addition to baseline levels, TXB2 levels were 
detected in airways of asthma patients when they are subjected to allergen stressors 
[52]. TXB2 was also found in other samples such as bronchoalveolar lavage (BAL), 
urine, and plasma from asthma patients [53–55]. A particular metabolite of TXB2, 
11-dehydro-TXB2, has been found in urine samples from COPD patients [56].
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Leukotrienes
Leukotrienes (LT) were first discovered in leukocytes [57]. LTs contain 20 carbons 
with 3 conjugated double bonds but lack the 5-carbon ring structure. LTs act through 
G-protein-coupled receptors [58] and peroxisome proliferator-activated receptors 
(PPARs) [59]. They can be both autocrine and paracrine signaling molecules.

There are two distinct types of LTs. The LTs conjugated to glutathione are termed 
cysteinyl-LTs (cys-LTs) and include LTC4, LTD4, and LTE4 [60–66]. Cys-LTs are 
both bronchoconstrictors affecting peripheral airways [67] and vasoconstrictors 
[68] affecting the contraction of smooth muscle cells [69–72]. LTC4 is converted to 
LTD4 by cleavage of a glutamic acid residue from the glutathione moiety [73, 74]. 
LTD4 is short-lived and converted by a dipeptidase to LTE4, which is then excreted 
in the urine [75]. Thus, urinary LTE4 levels can be utilized as a biomarker of asthma 
[76] as it reflects total cyst-LT levels in vivo [77, 78]. Interestingly, LTE4 levels are 
not elevated in COPD patients [50].

The other types of LTs are formed by a different pathway and is regulated by 
LTA4 hydrolase, which catalyzes the hydrolysis of LTA4 to LTB4 [79]. COPD 
patients have higher LTB4 levels in EBC compared to control subjects [79, 80]. 
Patients with mild asthma present elevated levels for both LTB4 and LTE4 in EBC 
[51].

In summary, oxylipin profiling from EBC and sputum can distinguish between 
subsets of COPD and asthma patients. COPD patients display higher levels of PG 
(specifically PGE2 and PGF2a) and LT (LTB4 but not cysteinyl leukotrienes) in 
EBC [55]. Asthma patients, on the other hand, display higher levels of thromboxane 
and cysteinyl leukotriene levels in EBC. However, non-cysteinyl leukotrienes such 
as LTB4 are found in sputum in asthma patients. Incidentally, LTB4 levels are ele-
vated in both sputum and EBC during acute stress [81].

Hydroxyeicosatetraenoic Acids (HETEs) and Oxoeicosatetraenoic Acids 
(KETEs)
HETEs are monohydroxy fatty acids formed by two pathways: one via enzymatic 
LOX metabolism and second via nonenzymatic autoxidation. Reports indicate that 
asthma is accompanied by high activity of pro-inflammatory enzymes 12/15-LOX 
and corresponding 15- HETE levels [88–90]. 15-HETE also modulates the activity 
of anti-inflammatory peroxisome proliferator-activated receptor PPAR-ɣ [91–94]. 
Macrophages found in BAL showed a decrease in 15-HETE levels in asthma 
patients [95]. However, eosinophils isolated from BAL display significantly higher 
levels of 15-(S)-HETE in cases of severe asthma [96]. Likewise, chronic bronchitis 
patients also display 15-(S)-HETE levels in induced sputum [97].

HETEs are converted to 5-oxoeicosatetraenoic acid (5-KETE) via enzymatic 
oxidation [82]. 5-KETE has also been shown to be formed by airway epithelial cells 
during oxidative stress [83]. 5-KETE is a bronchodilator [84]. It has been shown 
in vitro that 5-KETE is effective in attracting eosinophils and neutrophils [85, 86]. 
It has also been reported that this response is greater in atopic asthma patients [87].
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Cis-Epoxyeicosatrienoic Acids (EETs) and Dihydroxyeicosatrienoic Acids 
(DHETs)
The third enzymatic pathway for oxylipin biosynthesis is CYP monooxygenase 
pathway which results in cis-epoxyeicosatrienoic acids. EETs are formed from 
CYP metabolism of arachidonic acid. EETs are a series of regiospecific and stereo-
specific fatty acid epoxides [98–100]. EETs, in turn, can be transformed to their 
corresponding diols, dihydroxyeicosatrienoic acids (DHETs) [101, 102]. Nothing 
much is known about the contribution of CYP-derived eicosanoids in lung homeo-
stasis. However, CYP2J2 is found to be expressed in airway epithelial cells, bron-
chial and vascular smooth muscle cells, and alveolar macrophages [103, 104]. 
Additionally, transcripts of CYP enzymes have been found in human lung RNA 
[105]. Thus, EETs might have a significant contribution to lung physiology and 
pathology. It has been indicated that 11,12-EET and 5,6-EET regulate bronchomo-
tor tone [106–108] and pulmonary vasoconstriction [109]. They are also involved in 
the composition of airway lining fluid and diminish pulmonary inflammation [98].

Eoxins (EX)
Eoxins were discovered in eosinophils. Eoxins are produced by metabolizing ara-
chidonic acid via 15-lipoxygenase to 15(S)-hydroperoxyeicosatetraenoic acid (15- 
HPETE). 15-HPETE can be dehydrated to 14,15- epoxy-eicosatetraenoic acid 
(14,15-LTA4) [110–112]. Similar to the cys-LTs, 14,15-LTA4 can be transformed 
further to 14,15-LTC4, 14,15-LTD4, and 14,15-LTE4. Thus, eoxins are 14,15- analogs 
of the 5,6-leukotrienes. It has been reported that eoxin 4 (14,15-LTC4) is found in 
BAL fluid isolated from the lungs of patients suffering from asthma as well as other 
respiratory syndromes such as Churg-Strauss syndrome, eosinophilic pneumonia, 
and sarcoidosis [113]. Interestingly, eoxins are significantly elevated in EBC of 
pediatric patients who are suffering from asthma and bronchial hyperresponsive-
ness [114]. Further studies are warranted to elucidate the contribution of eoxins to 
respiratory pathology.

22.2.1.2  Linoleates
Linoleic acid (18:2 n6, 18:2 ω-6) is an essential fatty acid that has to be ingested 
through diet as it cannot be biosynthesized [115]. Linoleic acid itself can be metab-
olized by ʌ6 and ʌ5 desaturases and elongases [115–117] thus acting as precursors 
to other ω-6 fatty acids. It can also be metabolized by the same enzymatic pathways 
as those used in case of arachidonic acid [117, 118]. The enzymatic pathways in the 
linoleic acid metabolism are (1) lipoxygenation by LOX enzymatic pathway spe-
cifically 12/15-LOX, forming 13-(S) and 9-(S)-hydroperoxyoctadecadienoic acid 
(HPODE), and (2) CYP enzymatic pathway forming leukotoxins, i.e., 9(10)- and 
12(13)-epoxyoctadecenoic acids (EpOME). However, both the enzymatic pathways 
can be bypassed, and the same products can be formed via autooxidation.

Linoleic acid metabolites via LOX pathway such as 9-HODE, 13-HODE, 
9-KODE, and 13- KODE have been reported to have binding affinity to PPAR-ɣ 
[119–121]. Thus, it could be that these molecules and their levels might affect respi-
ratory physiology through inflammatory process-sensitive subgroups (e.g., 
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smokers). Elevated levels of such leukotoxins are found in BAL fluid isolated from 
patients suffering from acute respiratory distress syndrome (ARDS) [122]. NO2 and 
other oxidants can also metabolize leukotoxins by autooxidation in the lungs [123]. 
Thus, this class of oxylipins needs to be investigated in the context of respiratory 
pathology.

22.2.2  Anti-inflammatory Oxylipins

22.2.2.1  Arachidonate-Derived Oxylipins

Lipoxins
Lipoxins are short-lived eicosanoids that aid the resolution of inflammation [124–
128]. Lipoxins are enzymatically formed from arachidonic acid, an ω-6 fatty acid, 
and contain three hydroxyl residues and four double bonds. Lipoxin LXA4 interacts 
with alpha lipoxin receptor [126], a G-protein-coupled receptor. There are three 
reported mechanisms by which LXA4 potentially aids in resolution of inflamma-
tion: (1) LXA4 inhibits synthesis of the cys-LTs [129], (2) LXA4 inhibits neutrophil 
aggregation, chemotaxis, and activation, and (3) LXA4 inhibits NF-қb signaling 
pathway thus dampening production and activity of pro-inflammatory cytokines 
such as TNF-α, IL-1, and IL-6 [130]. Both LXA4 and 15-epi-LXA4 have been 
found to be beneficial to asthma patients [131, 132]. Airway hyperresponsiveness 
and inflammation is blocked upon administering a stable analog of LXA4 in the 
mouse model of asthma [131]. Additionally, LXA4 levels in whole blood are found 
to be significantly lower in severe cases of asthma [133]. Airflow blockage is nega-
tively regulated by LXA4 levels. Also, LXA4 is found to be deficient in induced 
sputum isolated from patients suffering from severe asthma [134].

22.2.2.2  ω-3 Fatty Acid–Derived Oxylipins

Resolvins, Protectins, and Maresins
ω-3 fatty acids are fatty acids that contain a double bond three carbons from the 
terminal methyl group of the fatty acid chain. Oxylipins derived from ω-3 fatty 
acids, as opposed to ω-6 fatty acids, are known to be anti-inflammatory and thus aid 
resolution of inflammatory processes. As such they are increasingly being consid-
ered nutritionally beneficial [135–139]. These fatty acids have been documented as 
beneficial not just for inflammatory disorders [140] but also for cardiovascular dis-
ease [141].

Resolvins (Rvs) [136] are metabolic byproducts of eicosapentaenoicacid (EPA) 
and docosahexaenoic acid (DHA), as well as docosapentaenoic acid (DPA) and 
clupanodonic acid. Rvs are categorized into several classes based on their origin 
parent PUFA chain and/or their structural distinctiveness. Research is being done to 
elucidate the role of Rvs in restoring normal cellular function after tissue injury and 
inflammation.
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Protectins [136, 142, 143] and maresins [144] are formed from omega-3 fatty 
acids, EPA and DHA. Protectins are similar to lipoxins in many ways. Both are 
protective by inhibiting production of the pro-inflammatory IL-13 and cys-LTs, 
although protectins are found to display protective properties at lower amounts than 
LXA4 [145, 146]. Maresins are so named because they are derived from macro-
phage mediator in resolving inflammation [144]. Maresin-1 is a potent pro- resolving 
mediator activating macrophage efferocytosis. COPD patients having defective 
macrophage efferocytosis might affect the resolution of inflammation and, there-
fore, it is conjectured that a stable therapeutic analog of maresin-1 might be benefi-
cial to COPD patients [144].

22.3  Lipid Peroxidation Product

Oxidative stress is characterized by an excess of reactive oxygen species (ROS) than 
the antioxidant defenses can handle. This leads to extensive damage to lipids, pro-
teins, and DNA. Oxidative stress is a critical feature in patients with COPD [147] 
activating inflammatory and immunity cells, including neutrophils, macrophages, 
and epithelial cells in the airways of patients with COPD. Oxidative stress leads to 
the production of a new class of prostanoid mediators formed via nonenzymatic 
oxidation of arachidonic acid. This new class is termed isoprostanes that can affect 
respiratory pathological functions including bronchoconstriction and plasma exuda-
tion [148].

22.3.1  Isoprostanes

Isoprostanes are lipid peroxidation products specifically of arachidonic acid. Due to 
their ROS-mediated origin, isoprostanes are assayed as oxidative stress markers in 
respiratory diseases [149–153]. Isoprostanes are both cytotoxic and pro- 
inflammatory. The levels of 8-iso-prostaglandin F2α  – otherwise known as 
8- isoprostane – are found to be increased in EBC isolated from smokers and from 
patients with COPD. This indirectly assays the degree of oxidative stress in such 
subjects [154, 155]. Measurements of 8-isoprostanes in the plasma and BALF are 
also increased in such subjects. Additionally, it was found that plasma F2-isoprostanes 
increased to a much higher degree in patients with acute COPD [155]. 8-iso-PGF2 
displays potent smooth muscle constriction properties in vitro via several prostanoid 
receptors. 8-iso-PGF2α has been appreciated as the “gold standard” to study the 
oxidative stress in respiratory pathology [156]. Since smoking leads to oxidative 
stress thereby increasing risk factor for COPD, 8-iso-PGF2α levels have been 
assayed in the EBC of smoker and nonsmoker COPD patients [157] (Fig. 22.1).
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22.4  Conclusion

Lipid mediators are being increasingly appreciated as playing a significant role in 
physiological and pathophysiological inflammation. This is particularly prevalent in 
respiratory pathology. Identifying and quantifying the lipid pathways in lung dis-
ease such as asthma and COPD will greatly aid in the diagnosis, management, and 
therapy of the disease. In this context, high-throughput lipidomics along with 
sophistication in technology such as spectroscopic methods (ESI-MS and 
MALDI-MS) and refined data analysis is of paramount importance. Another impor-
tant insight gleaned from lipid biology is related to nutrition. Recently it is consid-
ered beneficial to ingest a diet rich in particular type and quantity of lipid as well as 
balance the intake of ω −3 and ω-6 fatty acids. More research is needed to investi-
gate the effects of such nutritional changes in mediating shifts in lipid balance, 
homeostasis, and metabolism.
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