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Tau Oligomers

Sumihiro Maeda and Akihiko Takashima

�Prediction of Non-fibrillar 
Aggregates of Tau Protein

Neurofibrillary tangles (NFTs), a pathological 
hallmark of Alzheimer’s disease (AD), are com-
posed of filamentous polymers of tau protein [1]. 
NFTs are insoluble and resistant to proteases. 
Thus, even after neurons are lost, NFTs remain as 
“tombstones” of the NFT-bearing neurons and 
are called ghost tangles. In AD, the number of 
neurons lost and the number of NFT/ghost tan-
gles should be the same if all of the neurons were 
lost after NFT formation. But they aren’t. More 
neurons are lost than ghost tangles remain [2, 3]. 
Although the number of NFTs, neurons lost, and 
the severity of the disease all correlate well with 
each other [3], several findings point to a missing 
element. NFT formation and neuronal loss have 
been reported to be distinct events. Suppression 
of human tau (hTau) expression in an hTau trans-
genic mouse model did not block tau filament 
formation but reduced neuronal loss [4], and 
NFT-bearing neurons were functionally intact in 
hTau transgenic mice [5]. In an hTau Drosophila 
model, hTau over-expression induced neuronal 

loss without NFT formation [6]. Therefore, over-
expression of tau, at least, induces neuronal tox-
icity in an animal model, but the toxic species of 
tau was not the tau filament itself, but something 
produced in the process of tau aggregation. In 
that sense, granular tau oligomers, the intermedi-
ate form of tau filament, meet this criterion for 
the toxic tau species.

�Tau Oligomer as an Intermediate 
Species of Tau Filament

Tau is highly hydrophilic and does not aggregate 
by itself. The core of the tau filament, the micro-
tubule binding domain (MBD), is positively 
charged, and that charge prevents intermolecular 
interactions of tau. Under physiological condi-
tions, the positively charged residues of tau inter-
act with negatively charged residues of tubulin 
[1]. Under pathological conditions, tau is highly 
phosphorylated, and the negative charge of phos-
phor residues is thought to neutralize the positive 
change of the MBD, induce detachment of tau 
from tubulin, and allow tau-tau interactions [1].

Polyanionic compounds, such as RNA or hep-
arin, induce aggregation of recombinant tau 
probably by neutralizing the positive charges of 
tau [7–9]. Lipids, such as arachidonic acid, also 
induce tau aggregation above the critical micelle 
concentration because the surfaces of lipid 
micelles are negatively charged [10]. In an 
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in  vitro tau aggregation assay, non-filamentous 
tau aggregates called granular tau oligomers were 
found [11]. The non-filamentous tau aggregates 
could be separated from tau monomers and fila-
ments by sucrose gradient centrifugation 
(Fig.  27.1). Tau filaments do not form in  vitro 
without aggregation inducers. However, simply 
concentrating tau oligomers induces tau filament 
formation without additional heparin, and under 
atomic force microscopy (AFM), filaments 
formed in vitro or purified and AD brain degraded 
to granular tau structures [11] (Fig.  27.2). This 
suggested that the tau oligomer is an intermediate 
species of the tau filament. In addition, tau oligo-
mers were found in animal models and human 
brains [12–14] (Fig.  27.3). The amino acid 
sequences critical for tau filament formation, 
PHF6 and PHF6∗ [15], are also reported to be key 
for tau oligomerization by western blots (WBs) 

and nuclear magnetic resonance analysis [16, 
17]. In human brains, the number of tau oligo-
mers was increased in the frontal cortex of Braak 
stage I patients, when NFTs have yet to form. 
Thus, tau oligomers form before NFTs [12–14].

�Various Types of Non-filamentous 
Tau Aggregates

Definition and preparation of tau oligomers vary 
among researchers. For example, Maeda et  al. 
induced tau aggregation by mixing recombinant 
tau with heparin and defined tau oligomers as 
granular structures under AFM [11]. The Davies 
group reported non-filamentous tau species that 
were extracted by a conformation-dependent 
antibody, MC1 [18]. The non-filamentous tau 
species formed filaments after concentration, 

Fig. 27.1  The purification of granular tau oligomers 
using sucrose step gradient centrifugation. (a) Tau pro-
teins were aggregated in vitro and layered onto 20–50% 
sucrose step gradients and centrifuged at 200,000 × G for 
2  h to separate non-aggregated tau, granular tau oligo-
mers, and tau filaments. (b, c) Staining with Coomassie 
brilliant blue (CBB) (b) and AFM images of all fractions 

(c) are shown. Granular tau oligomers could be recovered 
in fraction 3 as indicated (b, c). In fraction 1, tau mono-
mers and multimers were collected (b), but no aggregated 
structure were observed under AFM (c). The amount of 
tau in fraction 3 was less than that in fraction 1 (b), but 
granular structures were detected under AFM (c). Longer 
filaments were collected in fractions 4–6 (c) [11]
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indicating that the oligomers extracted here are 
identical with the oligomers described above. 
Berger et al. reported a correlation of tau multim-
ers and behavioral scores in an hTau transgenic 
mouse model [19]. Multimers were defined by 
the molecular mass by WB (140- and 170-kDa 
bands). The multimer can be a component of 
higher order aggregates, such as globular oligo-
mers or tau filaments, but it degrades to a multi-
meric form under WB denaturing conditions. 
Thus, one component of tau oligomers may be 
the 140-/170-kDa multimers. Multimers might 
also be complexes of tau and other molecules, but 
another group reported that similar multimers 
may form only from recombinant tau [16]. 
Mandelkow’s group induced tau oligomers using 
recombinant protein produced in insect cells (i.e., 

Sf9 cells) because highly phosphorylated tau pro-
teins can be extracted, whereas recombinant tau 
protein produced in E. coli had no post-
translational modifications [20]. They confirmed 
that phosphorylation enhanced tau aggregation 
[20, 21]. The Kayed group generated tau oligo-
mers by cross-seeding with amyloid beta (Aβ) 
oligomers [22]. Those oligomers induced cell 
death when added exogenously to cells [22, 23]. 
Anti-tau oligomer antibodies were generated 
using the cross-seeded tau oligomers, and the 
antibodies blocked tau-induced neurodegenera-
tion in hTau transgenic mouse models that lack 
Aβ aggregates and could not form Aβ seeds [24, 
25]. Thus, tau aggregates, like tau oligomers 
seeded by Aβ aggregates, can be induced in the 
absence of Aβ aggregates. Binder’s group [26] 

Fig. 27.2  The formation and degradation of tau fila-
ments. (a) Granular tau oligomers in fraction 3 and non-
aggregated tau in fraction 1 were concentrated without 
adding heparin. Filaments were observed by AFM in con-
centrated fraction 3 (C3) but not in the concentrated frac-
tion 1 (C1). Blue arrows indicate the generated filaments 
in C3. (b, c) Structures were exposed to mechanical dam-

age by AFM tips. Continuous AFM observation revealed 
that mechanical damage degraded tau filaments formed 
in vitro (b) or purified from an AD brain (c) to granular tau 
structures. The numbers at the top right indicate the order 
of the images. It took about 9 min to take an image [11]. 
Blue arrows indicate the breaking points of the tau 
filament
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stabilized tau aggregates with a chemical cross 
linker and found that, by WB, the tau dimer is a 
component of tau aggregates and that cross-
linked tau dimers form short filaments and oligo-
meric globular structures but not long filaments.

�Tau Oligomer Detection Methods 
EM and Oligomer Antibodies

Granular tau oligomers can be detected by AFM 
and electron microscopy (EM) [11, 22, 26], but 
not by other methods. To expand their ability to 
study tau, researchers generated antibodies spe-
cific for tau oligomers.

The Davies group generated two conformation-
dependent antibodies, Alz50 and MC1 [27], that 
react with tau filaments purified from AD brains. 
Alz50 recognizes discontinuous sequences at the 
N-terminus and MBD. During abnormal confor-
mation changes, inter- or intramolecular attach-
ment of the N-terminus to the MBD may generate 
the Alz50 epitope [28]. MC1 is a second-

generation conformation-dependent antibody 
that was raised against tau aggregates purified 
with an Alz50 immunoaffinity column. MC1 
reacts with aggregated tau species more specifi-
cally than Alz50 [27, 29] and detects both tau 
filaments and oligomers [2]. With a combination 
of sucrose step gradients and the MC1 antibody, 
oligomeric species can be detected even in mouse 
tissue lysates [14]. However, the requirement for 
sucrose step gradient centrifugation limits the 
ability to do mechanistic studies of tau oligomer-
dependent pathogenesis.

Researchers next sought to distinguish tau 
oligomers from tau filaments without gradient 
centrifugation. They generated more specific 
antibodies against tau oligomers than Alz50 and 
MC1 antibodies. Binder’s group found the 180-
kDa tau species in AD brain lysates [26]. To 
examine the pathogenesis of this tau species, they 
cross-linked tau dimers to obtain stable lower-
order tau aggregates. When incubated with ara-
chidonic acid, cross-linked tau dimers formed 
granular tau oligomer but not long fibrils. The 

Fig. 27.3  Purification 
of granular tau 
oligomers from human 
brains. (a) Granular tau 
oligomers in human 
brains were purified in a 
combination of 
immune-affinity column 
chromatography with a 
pan-tau antibody and 
sucrose step gradient 
centrifugation [12]. (b) 
AD brains (Braak stage 
V) contained more 
granular tau oligomers 
than control brains 
(Braak stage 0) [12]. 
Inserts show the 
magnified images of 
granular tau oligomers 
purified from AD or 
control brains
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researchers immunized tau-knockout mice with 
the cross-linked tau dimers and obtained the Tau 
Oligomeric Component-1 (TOC1) antibody [26]. 
TOC1 preferentially labels granular tau oligo-
mers and the end of tau filaments, supporting the 
idea that tau oligomers are an intermediate spe-
cies of tau filament and the attachment of tau 
oligomer to tau filament will elongate the fila-
ment [11]. Unlike another tau-conformation 
dependent antibody, Alz50 that recognizes dis-
continuous tau sequences, amino acids 2–10 and 
312–342, TOC1 recognizes amino acids 209–224 
of tau.

TNT1 is another conformation-dependent 
antibody generated by the Binder group [30]. Its 
epitope is the tau phosphatase-activating domain 
(PAD) in the N-terminal domain. The N-terminus 
attaches to the MBD under physiological condi-
tions. It is detached by aggregation or phosphor-
ylation and impairs axonal transport via 
phosphatase activation, GSK-3β activation, and 
kinesin light chain phosphorylation [30, 31]. As 
with all other tau oligomer antibodies, reactivity 
depends on conformation. Notably, the PAD 
sequence lacks the endogenous mouse tau 
sequence, and thus, TNT1 cannot detect mouse 
tau even though mouse tau aggregates like 
human tau [32]. Both TOC1 and TNT1 are pan-
tau antibodies in WB because their epitopes are 
freely accessible even under denatured condi-
tions [33].

The Kayed group raised antibodies against the 
cross-seeding oligomeric species of tau and 
obtained the T22 (rabbit polyclonal) and TOMA 
(mouse monoclonal) antibodies [25, 34]. For 
unknown reasons, the epitopes of these antibod-
ies are preserved even in WB, whereas other 
conformation-dependent antibodies function as 
pan-tau antibodies in WB because all sequences 
of tau protein are accessible to the antibodies. 
Normal tau immunization induced neurologic 
deficits in normal mice [35]. However, immuni-
zation with these antibodies blocked tau-induced 
neuronal dysfunction in hTau transgenic mice as 
mentioned above, suggesting that granular tau 
oligomers, not tau monomers, should be explored 
as therapeutic targets for tauopathies [24, 25].

�Tau Oligomerization Enhancers, 
Blockers, and the Toxic Mechanism

Not all FTDP-17 mutations increase tau filament 
formation [36, 37]. However, all FTDP-17 tau 
mutations examined so far for tau oligomeriza-
tion enhanced tau oligomerization. Notably, the 
P301L mutation decreases the size and increases 
the number of tau oligomers [14].

Tau aggregates (mainly filaments) have been 
suggested to spread from one brain region to 
another trans-synaptically [38]. The spreading 
may be mediated by the tau aggregates them-
selves, which are called prion-like tau species, 
but not by the dysfunction of projecting neurons 
[38]. Although it is not clear that the soluble frac-
tion has prion-like activity [39, 40], tau oligo-
mers may mediate the propagation [41]. They 
may function as a template for newly formed tau 
oligomers that can be amplified by adding non-
aggregated tau [22]. Thus, the tau oligomer itself 
may increase tau oligomer numbers.

Heat shock proteins (HSPs) are involved in 
tau oligomerization [42]. HSPs, including Hsp90 
and 27 that block tau aggregation, are inversely 
correlated with tau oligomer levels in human 
brains [16]. Thus, HSPs are an intriguing target 
for therapies to prevent tau pathogenesis [43, 44]. 
Other small molecules also block tau oligomer-
ization. A screen of a library of natural compound 
derivatives for tau-binding compounds revealed 
several positives. For example, 
1,2-dihydroxybenzene blocked tau oligomeriza-
tion, and DL-isoproterenol reduced tau aggrega-
tion and neuronal cell loss in human tau transgenic 
mice [45]. These findings also support the idea 
that tau oligomer is a culprit of tau-mediated 
pathogenesis.

Tau aggregates accumulate inside of neurons. 
Thus, to assess their toxicity, tau oligomers must 
be introduced into neurons. However, tau oligo-
mers are thought to be incorporated into cells [46] 
and to induce synaptotoxicity and Ca dysregula-
tion [20, 47]. Surprisingly, the synaptotoxicity 
may be separate from cell viability, even though 
neuronal cell loss correlates well with the NFT 
formation as mentioned above. Ca dysregulation 
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by tau oligomers may be mediated by M1 and M3 
muscarinic receptors [48], even though aggre-
gated tau species showed less toxicity than mono-
meric non-aggregated tau in that system.

The mechanism of tau toxicity is unknown, 
but a hint might be provided by its conformation. 
Tau is reported to have a paper-clip conforma-
tion: the N-terminus is bent over to MBD in 
native state [49]. Tau aggregation disrupt that 
conformation and exposes the N-terminus. The 
exposure allows the PAD domain to induce the 
impairment of axonal trafficking [30].

�Conclusion

Tau aggregation is toxic to cells. Thus, many 
researchers have visualized tau aggregation in 
their experimental models to search for a com-
mon feature between AD patients and the mod-
els. The exact mechanism of tau aggregation and 
toxicity and the targets of tau aggregates are still 
open issues. The discrepancy of tau filaments 
from neuronal cell loss implicates tau oligomers 
as the culprit of tau-mediated pathogenesis. 
Researchers have characterized tau oligomers by 
various methods. However, to directly examine 
their toxicity mechanisms, we will need methods 
to enhance or block tau oligomerization inside 
neurons. Also, to develop drugs that target tau 
oligomers, we will need tau oligomer probes that 
can be used for the target engagement in human 
live imaging. Antibodies specific for tau oligo-
mers were used to show that tau oligomers have a 
structure distinct from other tau species. Thus, it 
might be possible to develop tau oligomer–spe-
cific probes for positron emission tomography. 
Those probes would be a powerful tool in combi-
nation with similar probes for tau filaments [50].
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