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 Introduction

The brain is the most adaptive of all organs. It has 
a remarkable capacity to respond to a variety of 
internal and environmental stimuli and to mount 
pro-survival behavioral responses by orchestrat-
ing multiple molecular and biochemical cas-
cades. The latter changes are embraced by the 
term neural plasticity, the cornerstone of learning 
and memory [1]. Impairments in neuroplastic 
mechanisms are commonly found during aging, 
the primary risk factor for Alzheimer’s disease 
(AD), a disorder characterized by memory defi-
cits. Over their lifetime, individuals experience 
both good and adverse (stressful) events and 
notably, stressful events appear to accelerate 
brain aging [2].  Accumulating clinical and 
experimental evidence suggests a causal role of 
lifetime stress in AD.  This chapter summarizes 
current knowledge about how chronic stress and 
its accompanying high levels of glucocorticoid 

(GC) secretion, trigger the two main pathomech-
anisms of AD: (i) misprocessing of amyloid pre-
cursor protein (APP) and the generation of 
amyloid beta (Aβ) and (ii) Tau hyperphosphory-
lation and aggregation. Given that depression is a 
well-known stress-related illness, and the evidence 
that depression may precede AD, this chapter 
also explores neurobiological mechanisms that 
may be common to depressive and AD patholo-
gies. This review also discusses emerging insights 
into the role of Tau and its malfunction in disrupt-
ing neuronal cascades and neuroplasticity and, 
thus triggering brain pathology.

 Stress: A Physiological Tug-of-War – 
From Adaptive to Maladaptive 
Responses

Stress is defined as a challenge to homeostasis 
(physiological and behavioral equilibrium) by 
physical or psychological events [3]. When 
challenged by endogenous or exogenous aversive 
or threatening stimuli (stressors), a series of 
defensive systems and processes become acti-
vated; these include the release of monoamines 
and GC that initially promote a return to the 
homeostatic state [4, 5]. The “stress response” 
normally terminates once homeostasis has been 
restored, but when the organism is faced with an 
insurmountable stress (high intensity, contextu-
ally inappropriate and/or chronic), it may take 
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inappropriate – maladaptive – actions that result 
in chronically elevated GC secretion. Besides 
interfering with normal structural and plastic 
arrangements within the brain, such inadequate 
responses can have negative consequences for the 
immune and visceral systems that may ultimately 
lead to multiple disorders, including neuropsy-
chiatric and neurological diseases [6–9].

The endocrine response to stress is orches-
trated within the so-called hypothalamo–pituitary–
adrenal (HPA) axis (Fig. 20.1). Stress, perceived 
by cortical areas of the brain, triggers the release 
of corticotropin-releasing hormone (CRH) from 
the hypothalamic paraventricular nucleus (PVN) 
which, in turn, induces the secretion of adreno-
corticotropic hormone (ACTH) release from the 
pituitary and GC (cortisol in humans and corti-
costerone in rodents) from the adrenal glands. 
This sequence of events is normally curtailed by 
negative feedback of GC at central sites; how-
ever, the nature of the stressor and/or impair-
ments in negative feedback mechanisms (e.g. 
during aging) may block this crucial feedback 
loop, resulting in supraphysiological exposure to 
GC. A key area among the brain regions involved 
in the regulation of the HPA axis is the hippo-
campus; this area, which also plays a pivotal role 
in learning and memory, sends inhibitory projec-
tions to the PVN (and other hypothalamic nuclei). 
Similarly, the frontal cortex mediates GC nega-
tive feedback effects on the HPA axis, whereas 
the GC activation of the amygdala results in a 
positive drive on this axis (see Fig. 20.1).

 Mechanisms and Consequences 
of GC Action in the Brain

Corticosteroid actions in the brain are mediated 
by glucocorticoid (GR) and mineralocorticoid 
(MR) receptors. The previously-referred feed-
back effects of GC during stressful experiences 
primarily depend on activation of GR, expressed 
throughout the brain, but at highest density in the 
hippocampus [10]. Indeed, almost all we know 
about GC actions in the brain are GR-mediated. 
Less is known about the role of MR, although, 
they have a ten-fold higher affinity for GC com-

pared to GR and are believed to play an important 
role in GC feedback under physiological (non- 
stressful) conditions [11]. In addition, MR have 
been implicated in “protecting” the brain against 
GR-mediated cytotoxicity [12, 13] and behav-
ioral maladaptation [14]. Interestingly, the cen-
tral expression of GR and MR is subject to 
regulation by stress and age [15, 16].

While GC have been shown to modulate syn-
aptic activity through non-genomic mechanisms 
[17–19], GR and MR are better known as potent 
ligand-dependent transcriptional regulators, i.e. 
control gene expression/repression [20–23]. The 
unliganded receptors are located in the cytoplasm 
in association with chaperone proteins (e.g. the 
heat shock proteins Hsp90 and 70 and the immu-
nophilins FKBP51 and 52) [24]. Ligand binding 
results in conformational change of the 
GR-chaperone complex and subsequently, recep-
tor translocation to the nucleus and binding to 
specific regions of DNA containing glucocorti-
coid response elements (GRE) within the pro-
moters of target genes [25]. Gene transcription or 
repression is then determined by the recruitment 
of co-activators and repressors [26] as well as by 
post-translational modifications of the receptor 
[27–29].

In the brain, MR and GR differentially regu-
late the expression of genes, in a site-specific 
manner; these include genes responsible for the 
regulation of the HPA axis (CRH and CRH recep-
tors and pro-opiomelanocortin [POMC], from 
whose gene product ACTH is cleaved) as well as 
pro- and anti-apoptotic genes [13] and, impor-
tantly, genes with roles in neural energy metabo-
lism, structure and synaptic transmission, the 
synthesis of rate-limiting neurotransmitter 
enzymes and receptors as well of various neuro-
peptide, growth factors and cell adhesion mole-
cule [30–34]. While all of these GC-initiated 
transcriptional events contribute to neural plastic-
ity, stress and GC result in the manifestation of 
visualizable effects, namely, alterations in neuro-
nal morphology. As reviewed by Lucassen [35], 
stress and GC lead to changes in the rate of neu-
rogenesis, cell death, and neuronal connectivity 
as well as astroglia-neuronal interactions. In par-
ticular, numerous studies have highlighted how 
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Fig. 20.1 The hypothalamo-pituitary-adrenal (HPA) 
axis and the response to stress in the healthy state. 
Stressors perceived in higher brain centers trigger the 
release of corticotropin-releasing hormone (CRH) from 
neurons in the paraventricular nucleus (PVN). Carried 
via a portal vein system, CRH reaches the anterior pitu-
itary where it stimulates the secretion of adrenocortico-
tropin hormone (ACTH) which, in turn, stimulates the 
production and release of glucocorticoids (GC) [cortisol 

in humans and corticosterone in rodents] from the adre-
nal cortex. The secreted GC access peripheral and central 
tissues via the general circulation where they serve to 
mount adaptive responses to the initiating stimulus 
(stress) after binding to glucocorticoid receptors (GR). 
Eventually, GC secretion and action is restrained by 
inhibitory feedback of GC on central (chiefly, the frontal 
cortex, hippocampus, hypothalamus and pituitary) com-
ponents of the HPA axis
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stress, acting through GC, impacts on dendritic 
arborization and synaptic number; this aspect of 
GC actions is considered in the following  section. 
First, in the context of AD as a disease that devel-
ops as age progresses, it is important to briefly 
mention the growing view that stress and GC 
leave long-lasting “memories” of past experi-
ences via epigenetic mechanisms; these are 
thought to contribute importantly to the organ-
ism’s physical and mental health trajectory [36–
39]. Notably, epigenetic mechanisms have 
recently been implicated in the lasting effects of 
lifetime adversity in humans [40, 41].

 Stress, Glucocorticoids and Neural 
Plasticity

Functional plasticity in the brain is generally pre-
ceded by structural plasticity, typically, dendritic 
and synaptic remodeling. Basal levels of GC are 
crucial for maintaining synaptic plasticity in the 
hippocampus in the form of long-term potentia-
tion (LTP) [42], a well-documented mechanism 
involved in memory formation [43]. On the other 
hand, high levels of GC such as those experi-
enced during stress impair LTP induction and 
facilitate long-term depression (LTD) [44]. An 
important role for N-methyl-d-aspartate (NMDA) 
receptors and shifts in calcium flux has been sug-
gested in both, LTP and LTD modulation by 
stress/GC [45–48].

One of the best-described forms of stress- 
evoked structural plasticity is dendritic retrac-
tion, with a pioneering study revealing that 
chronic stress interrupts connectivity between 
hippocampal CA1 neurons and neurons in the 
medial prefrontal cortex (PFC) [49, 50]. The lat-
ter work followed previous demonstrations that 
chronic stress causes atrophy of apical (but not 
basal) dendritic complexity in CA3 pyramidal 
neurons [51]. Meanwhile, other studies have 
reported that stress can also increase dendritic 
length in certain brain regions such as the orbito-
frontal cortex, amygdala and bed nucleus of the 
stria terminalis (BNST, also known as the 
“extended amygdala”) [52, 53]. Interestingly, 
chronic stress has also been associated with a loss 

of mossy fiber synapses, increased surface area 
of the post-synaptic density, and rearrangements 
of synaptic mitochondria and vesicles at the pre-
synaptic terminals [54]. Further, dendritic spines, 
which have an important role in information stor-
age, are severely reduced by stress [55] but can 
mostly be rapidly reversed after a recovery period 
or subsequent training ([56, 57]; but see [58] for 
exceptions).

New work from our labs indicates that Tau, a 
key factor in AD pathology, is essential for 
chronic stress to disrupt neuroplasticity. Briefly, 
we showed that mice in which Tau has been 
deleted are spared from the deleterious behav-
ioral (e.g. deficits in learning and memory, 
depressive-like behavior and anxiety) and neuro-
structural (namely, dendritic atrophy disconnec-
tion of the hippocampal-prefrontocortical 
pathway) of chronic stress and GC [59, 60].

As already alluded to, stress and GC also 
influence neuroplasticity by modulating the pro-
duction of new neurons in adult brain [61]. 
Several studies indicate that stress/GC related 
effects on neurogenesis have the potential to 
affect mental health, including susceptibility to 
depression [62, 63] and AD [64, 65].

 Chronic Stress: Etiopathogenic Role 
and Mechanisms in AD

A sizeable literature suggests that elevated GC 
and chronic stress – a state that an increasing pro-
portion of the population finds itself in today – 
may increase the risk for developing AD 
pathology and related dementias [66, 67] and 
may even advance the age of onset of the familial 
form of AD [68–70]. Indirect support for the link 
between high GC exposure and AD includes 
reports that AD patients produce and secrete 
higher-than-normal levels of cortisol [67, 71–74]. 
Interestingly, transgenic mouse models of AD 
also display high levels of GC [75, 76]. 
Nevertheless, while the direction of the cause- 
effect relationship between AD-like pathology 
and hypercorticalism remains unclear, it is worth 
recalling (see previous section) that the hippo-
campus is responsible for mediating the negative 
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feedback effects of GC on the HPA axis; thus, 
any damage to this brain region is likely to 
uncouple this control mechanism and unleash 
unrestrained GC secretion.

To put these findings into context, it is worth 
noting that there is evidence that GC levels cor-
relate with the rate of cognitive decline [35, 77] 
and the extent of neuronal remodeling in AD sub-
jects [78]. Such remodeling is especially marked 
in the hippocampus, the area in which most stud-
ies on stress/GC effects on neuroplasticity have 
been conducted in rodents, and the brain area 
which clearly displays the first signs of AD neu-
ropathology  – deposits of amyloid β (Aβ) and 
accumulation and aggregation of hyperphosphor-
ylated Tau [79–81]. The hippocampal lesions 
induced by these deposits correlate with the 
extent of deficits in declarative, spatial and con-
textual memory [82].

 Consideration Regarding How 
Chronic Stress and High GC Levels 
May Contribute to AD Pathology

In this section, we will review some of the evi-
dence for a link between GC/stress and AD and 
consider some of the possible underlying mecha-
nisms. After briefly considering stress/GC effects 
on amyloidogenesis, our attention will focus on 
how chronic exposure to stress or high levels of 
GC influence Tau biology, culminating in its mal-
function and dendro-synaptic toxicity.

As noted earlier, AD neuropathology is char-
acterized by overproduction of Aβ that forms 
deposits into senile (amyloid) plaques, and by 
accumulation of hyperphosphorylated forms of 
Tau protein that becomes insoluble, aggregates 
and forms neurofibrillary tangles (NFT) [79–81]. 
Aβ is the proteolytic product of amyloid precur-
sor protein (APP), a large transmembrane protein 
called, that is sequentially cleaved by β-secretase 
(BACE-1) and γ-secretase (a complex of 
enzymes, including presenilin) to yield Aβ; this 
post-translational pathway is often called APP 
misprocessing. Studies have shown that extended 
exposure to immobilization stress increases the 
load of extracellular Aβ deposits and exacerbates 

memory deficits in mice expressing an aggressive 
(human) mutant form of APP V717ICT-100 [76, 
83]. Similar observations were made when young 
3xTg-AD mice (expressing APP Swedish, 
P301L-Tau, and PSEN1 M146V mutations) were 
treated with the synthetic GC, dexamethasone 
[76]. That the effects of stress are most likely 
transduced by GC was demonstrated by experi-
ments on dexamethasone-treated neural cell lines 
(N2A [76] and differentiated PC12 cells [84]). 
Consistent with these reports, our own studies in 
wildtype rats demonstrated that chronic stress 
and/or treated with GC increases APP mispro-
cessing along the amyloidogenic pathway by 
upregulating BACE-1 and Nicastrin (a compo-
nent of the γ-secretase complex) to produce neu-
rotoxic and cognition-impairing effects [85]; in 
this regard, it is worth noting that high exogenous 
levels of GC upregulate the transcription of APP 
and βACE-1, the promoters of which contain a 
glucocorticoid response element (GRE) [76]. 
Lastly, experiments that attempted to mimic 
intermittent stressful events (the effects of which 
may be cumulative over the lifetime) showed that 
GC potentiate the APP misprocessing pathway 
[85].

In recent years, an increasing amount of atten-
tion has turned to Tau pathology, especially its 
hyperphosphorylated forms, in a range of neuro-
degenerative diseases. Among the first reports to 
indicate a relationship between stress/GC and 
Tau was a study by Stein-Behrens et al. [86] who 
found that GC exacerbate kainic acid-induced 
hippocampal neuronal loss with a contemporane-
ous increase in Tau immunoreactivity. A later 
study showed that chronic treatment of 3xTg AD 
mice with dexamethasone leads to the somato-
dendritic accumulation of Tau in the hippocam-
pus, amygdala and cortex [76]. Our own in vivo 
studies demonstrated that chronic stress or GC 
increase the levels of aberrantly hyperphosphory-
lated Tau in the rat hippocampus and PFC, both 
in the presence and absence of exogenous Aβ 
[87]. Importantly, the hyperphosphorylation 
occurred at certain Tau epitopes that are strongly 
implicated in cytoskeletal dysfunction and syn-
aptic loss (e.g., pSer262) [88, 89] and hippocam-
pal atrophy (e.g., pThr231) [90] in AD patients. 
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Here, it is pertinent to note that the extent of 
phosphorylation at Thr231- and Ser262-Tau 
 correlates strongly with severity of memory 
impairment, speed of mental processing, and 
executive functioning in AD patients [91–93]. 
Although chronic stress and GC treatment exert 
similar, but not identical, effects on individual 
Tau phosphoepitopes in vivo and in vitro [84], the 
overall evidence points to GC as the key mediator 
of the AD-like pathology induced by stress. On 
the other hand, some studies have suggested a 
role for at least one other stress-related molecule, 
namely, corticotrophin-releasing hormone (CRH) 
as deletion of the CRH receptor 1 gene in mice 
prevents the detrimental effects of stress on Tau 
phosphorylation [94, 95]. Supporting these links, 
are the results from in vitro experiments which 
indicate that the GC effects on Tau involve acti-
vation of glycogen synthase kinase 3 (GSK3) and 
cyclin-dependent kinase 5 (CDK5), two principal 
Tau kinases [84].

Transgenic mice expressing human P301L- 
Tau (the most common Tau mutation), also 
helped strengthen the evidence that chronic stress 
can exacerbate Tau pathology. Briefly, we found 
that stress stimulates the aberrant hyperphos-
phorylation and aggregation of insoluble Tau 
[96]. Further, we demonstrated in the latter work 
that chronic stress enhances caspase 3-mediated 
truncation of Tau at its C-terminal in the hippo-
campus, with the protein misfolding and adopt-
ing a conformation [96] that facilitates its 
nucleation and recruitment of other Tau mole-
cules into neurotoxic, pre-tangle aggregates of 
Tau (see [97–100]. Importantly, experiments also 
showed that GC contribute to AD pathology by 
reducing the degradation of Tau, thereby increas-
ing its accumulation [84]. The latter is likely to 
result from dysregulation of molecular chaper-
ones (e.g. Hsp90 and Hsp70) that are responsible 
for Tau proteostasis [96]. As noted previously, 
these same heat shock proteins serve to maintain 
GR in a high affinity state; thus, they may repre-
sent a point at which GC signaling intersects with 
the cellular machinery that regulates Tau 
degradation.

While Kobayashi et al. [101] showed Tau may 
be synthesized de novo in the somato-dendritic 
compartment, earlier work by Ittner and col-
leagues [102] demonstrated that hyperphosphor-
ylated Tau is missorted to synapses which 
subsequently become dysfunctional. The mis-
sorting of Tau to synapses is now acknowledged 
as an early event in AD, preceding the manifesta-
tion of detectable neurodegenerative processes 
[102–104]. It is important to note that this series 
of events depend on Tau hyperphosphorylation 
[103, 105, 106] and results in the targeting of Fyn 
(a member of the Src kinase family) to postsyn-
aptic sites [102] where it selectively modulates 
the function of GluN2B-containing NMDAR 
(GluN2BR), by phosphorylation of the GluN2B 
at the Y1472 epitope [102, 107]. The latter stabi-
lizes GluN2B at postsynaptic sites, thus increas-
ing the risk for excitotoxicity [102, 107].

Since NMDAR are known to mediate stress- 
and GC-driven neurotoxicity [108] and neuronal 
remodeling [109], we were prompted to examine 
whether the mechanistic scenario just described 
also applies to the actions of stress and 
GC. Indeed, we found that chronic stress and GC 
also trigger Tau accumulation at synapses with 
subsequent increases of Fyn at postsynaptic sites 
[59, 110] (see also Fig. 20.2).

Other mechanisms that may underlie the abil-
ity of stress/GC to contribute to AD pathology 
have been coming to light in the last few years. 
One of these is autophagy. As the guardian of 
cellular homeostasis, autophagy is now seen to 
play a pivotal role in the pathology of a number 
of neurodegenerative disorders [111, 112]. 
Briefly, autophagic mechanisms are responsible 
for the degradation of misfolded proteins and 
aggregates such as Tau aggregates; interruption 
of autophagy leads to the accumulation of pro-
tein aggregates, a pathological features shared 
by a range of neurodegenerative disorders [113, 
114]. Our investigations demonstrated (summa-
rized in Fig. 20.3), for the first time, that both, 
chronic stress and high GC levels inhibit autoph-
agic process, thus explaining how these condi-
tions contribute to the accumulation and 
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aggregation of Tau [115]. In fact, defective 
autophagy is suggested to be major player in AD 
pathology [116–118]; although Tau itself is a 
proteosomal substrate [119, 120], it is thought 
that Tau inclusions and aggregates may be inac-
cessible to the ubiquitin-proteasome system 
[121, 122]. Our results showing that chronic 
stress and GC increase mTOR signaling and 
reduces the ratio of the autophagic markers 
LC3II:LC3I and accumulation of p62 [115], 
indicate that chronic stress inhibits the autopha-
gic process by activating the mTOR pathway; 
these findings are in line with previous reports 
that chronic stress stimulates mTOR activity in 
the hippocampus [123], an event associated with 
increased total Tau levels in the brains of AD 
subjects [124, 125]. In addition, support for our 
interpretation comes from the finding that inhibi-
tion of mTOR signaling ameliorates Tau pathol-
ogy [126, 127] while we demonstrated that 

inhibition of mTOR blocked the GC-triggered 
Tau accumulation and aggregation [115].

New research has implicated the endolyso-
somal pathway in neurodegenerative diseases 
such as AD and Parkinson’s disease in which Tau 
accumulation is a pathological feature [128–130]. 
As shown in Fig. 20.2, Tau has been identified as 
a substrate of the endolysosomal degradation 
pathway [131]. We demonstrated that in vitro or 
in vivo exposure to elevated GC levels block this 
pathway, accompanied by increases in the build-
 up of Tau, including that of specific phospho-Tau 
species. Further, we showed that the involvement 
of the small GTPase Rab35 and the endosomal 
sorting complexes required for transport 
(ESCRT) machinery that delivers Tau to lyso-
somes via early endosomes and multivesicular 
bodies (MVBs). The ESCRT system mediates the 
degradation of membrane-associated proteins 
such as epidermal growth factor receptor [132], 

Fig. 20.2 Multiple mechanisms contribute to the 
induction of Tau pathology and AD by chronic stress. 
The scheme summarizes the potential mechanisms 
through which chronic stress and GC activate processes 
that result Tau accumulation, aggregation and neurotoxic-
ity. Stress leads to increased activation of glucocorticoid 
receptors (GR) by GC; GR transcriptional activity 
depends on an interplay of a variety of molecular chaper-
ones (e.g. Hsp90, Hsp70, FKBP51) and HDAC6, a protein 
that may lead to cytoskeletal instability by reducing the 

acetylation of tubulin and cortactin. As described in the 
text, GC induce hyperphosphorylation of Tau and its con-
sequent detachment from microtubules, leading to micro-
tubule destabilization and cytoskeletal disturbances that, 
together with HDAC6, may contribute to: (i) the forma-
tion of stress granules (SG) that promote Tau aggregation 
and (ii) the inhibition of autophagic process that also con-
tribute to Tau accumulation and aggregation. Interestingly, 
stress/GC inhibit mTOR, a crucial signaling molecule in 
the initial phases of autophagy

20 Stress and the Etiopathogenesis of Alzheimer’s Disease and Depression
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but is also implicated in the degradation of cyto-
solic proteins GAPDH and aldolase [133]; these 
findings are of particular relevance for Tau, which 
has both cytosolic and membrane-associated 
pools [134, 135], and has been shown to localize 
to different neuronal sub-compartments, depend-
ing on its phosphorylation state [103, 110]. 
Interestingly, not all phosphorylated Tau species 
are equally susceptible to degradation in the 
Rab35/ESCRT pathway. In particular, we found 
that pSer396/404 and pSer262, but not pSer202, 
phospho-Tau species undergo Rab35-mediated 
degradation, indicative of preferential sorting of 
specific phospho-Tau proteins into the Rab35/
ESCRT pathway [131]. Importantly, we demon-
strated that high GC levels suppress Rab35 tran-
scription, and thus, result in an accumulation of 
Tau due impaired degradation of the protein 

(Fig.  20.2). Further, overexpression of Rab35 
reverses GC-induced Tau accumulation and res-
cues hippocampal neurons from the dystrophic 
actions of chronic stress [131].

 RNA-Binding Proteins and Stress 
Granules Facilitate Stress-Induced 
Tau Pathology

Stress granules (SG) have been recently impli-
cated in the Tau pathology that accompanies AD 
and fronto-temporal dementia with parkinson-
ism- 17 (FTDP-17) in humans as well as in vari-
ous transgenic mouse models of Tau-related 
disorders [136]. The eukaryotic stress response 
involves translational suppression of non- 
housekeeping proteins and the sequestration of 

Fig. 20.3 Cumulative effects of stress and glucocorti-
coids on normal and pathological aging. In this hypotheti-
cal representation of brain aging, cognitive and mood 
status may decline over time. Chronic exposure to stress-
ful conditions, associated with higher exposure to GC, 
lead to cumulative effects that accelerate brain aging by 
imposing an increasing allostatic load on brain function 
by causing neuronal atrophy and synaptic loss, modified 
by other factors such as genetics and sex – the latter also 
influence the magnitude of the stress load by modulating 
the activity of the hypothalamo-pituitary-adrenal (HPA) 

axis. The model assumes that elements of the HPA axis 
serve as part of a threshold-regulator mechanism (repre-
sented by thick line). Note that brain areas important for 
regulation of HPA axis (e.g. hippocampus, prefrontal cor-
tex) also appear to be subject to impairments triggered by 
presymptomatic AD pathology (e.g. mild cognitive 
impairment, depression), thus feeding into a vicious cycle 
that further drives GC secretion and neuronal damage. 
The shaded grey area represents the threshold-transition 
area where a subject may progress from depression (with 
or without MCI symptoms) to Alzheimer’s disease (AD)
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unnecessary mRNA transcripts by RNA-binding 
proteins (RBP) into SG. These macromolecular 
complexes constitute a protective mechanism 
against cellular stress (e.g. oxidative stress) that 
help protect mRNA species and enable the fast 
production of cytoprotective proteins [136–138]. 
However, prolonged SG induction can become 
pathological and neurotoxic; in  neurodegenerative 
diseases such as AD, SG promote the accumula-
tion of Tau aggregates [139–142]. In fact, SG are 
suggested to accelerate Tau aggregation in a 
vicious cycle wherein Tau stimulates SG for-
mation, with the RNA binding protein TIA1 
playing a lead role in Tau misfolding and aggre-
gation [143]. Notably, while hyperphosphoryla-
tion and aggregation-prone mutations of Tau can 
enhance SG formation, they are not essential for 
this event [143].

We recently showed that chronic stress and 
high GC upregulate various RBP and SG markers 
in soluble and insoluble fractions in the hippo-
campus of P301L-Tau Tg animals and primary 
neuron cultures. Specifically, tissues from ani-
mals exposed to chronic stress displayed 
increased cytoplasmic (soluble and insoluble) 
levels of several RBPs and SG-associated mark-
ers (e.g. TIA-1, PABP, G3BP, FUS, DDX5) that 
contributed to the formation of insoluble Tau 
inclusions and Tau accumulation. As noted 
above, TIA-1 plays a prominent role in Tau 
aggregation: under stressful conditions, TIA-1 is 
trafficked the nucleus to the cytospasm where it 
interacts directly with Tau (and other RBP such 
as PABP and EWSR1) to stimulate its aggrega-
tion and accumulation [143–145].

In other recent work, we showed that Tau mis-
sorting and accumulation in the dendritic com-
partment, such as is found in AD pathology 
[102], is also triggered by chronic stress/GC 
exposure [59, 110]. This is interesting because 
Tau missorting is hypothesized to facilitate for-
mation of SG as part of the translational stress 
response [143]. While the temporal profile and 
precise mechanisms underlying stress/GC-evoked 
dysregulation of RBPs and the associated SG 
cascade remain to be elucidated, Fig. 20.2 illus-

trates our current working model, designed to 
explore more about the biology of RNA-protein 
interactions in stress-related pathologies.

 Tau and Its Malfunction in Stress- 
Related Brain Pathology: 
Beyond Alzheimer’s Disease

Stress pervades all our lives and most of us will 
respond to daily life stressors in an adaptive man-
ner. However, as noted by Selye as early as 1936, 
mounting a transient and adaptive response may 
not be possible in all circumstances and the 
stressful experience may become chronic and 
maladaptive. The negative impact of chronic 
stress (and the associated rise in circulating GC 
levels) on brain structure and function (e.g. cog-
nition, mood, emotion) is now well recognized. 
In addition to the role of chronic stress/GC in the 
development of AD pathology, chronic stress is 
causally related to major depression which, as in 
AD, may reflect defects in neuroplastic mecha-
nisms [1, 5, 146]. As briefly mentioned above, 
major depressive disorder appears to predispose 
to AD [147]. The body of evidence supporting 
the latter clinical observation includes findings of 
potentially common neurobiological mecha-
nisms in the two disorders [84, 85, 148, 149]. 
Given this, it is interesting that epidemiological 
studies implicate depression as a risk factor for 
the development of AD [5], with support for this 
coming from the observation that previously 
depressed subjects have increased amyloid 
plaque and neurofibrillary tangles (NFT) loads 
[150]. Indeed, since clinicians are sometimes 
faced with the challenge of distinguishing 
between patients suffering from depression and 
AD, several authors have attempted to develop 
assays based on the detection of various APP 
cleavage products that might help such distinc-
tion [151–154], albeit with little success.

We previously referred to neurogenesis as a 
phenomenon that contributes neuroplasticity, 
with impaired neurogenesis being implicated in 
the pathogenesis of depression [155] as well as 

20 Stress and the Etiopathogenesis of Alzheimer’s Disease and Depression



250

AD [156]. Neurogenesis declines with age (also 
in humans [156]) and is disrupted by stress and 
high GC levels [62]. In light of the previously- 
referred interactions between stress/GC and Tau, 
it is therefore interesting that our recent research 
suggests that Tau plays an essential role in stress- 
driven suppression of birth of neurons (but not 
astrocytes) in the adult dentate gyrus (DG, a hip-
pocampal subfield) [62]; specifically, chronic 
stress is unable to impair the propliferation of 
neuroblasts and newborn neurons in the DG of 
mice in which the tau gene is deleted. 
Interestingly, tau ablation does not interfere with 
stress-induced suppression of astrocyte prolifera-
tion. This finding is likely related to the differen-
tial expression of Tau in neuronal vs. astrocytic 
precursor cells – Tau is expressed in neurons at 
much higher levels than in astrocytes [157]. 
These observations suggest a novel mechanism 
through which stress can remodel the adult brain. 
Interestingly, our investigations also showed that 
chronic stress increases the 4R-Tau:3R-Tau iso-
form ratio in the DG.  Given that 3R-Tau has a 
lower affinity for MT than 4R-tau, neuroblasts 
may be endowed with greater cytoskeletal plas-
ticity than mature neurons since 3R-Tau is more 
abundant in the former. Here, it is also relevant to 
note that it was recently shown that higher levels 
of 4R-Tau are associated with increased Tau 
phosphorylation and brain pathology [158]. 
Moreover, an increased 4R/3R-Tau ratio is asso-
ciated with cytoskeletal disturbances and tauopa-
thies such as AD [64].

 Summary/Conclusions

The evidence reviewed in this chapter suggest 
that deficits in Tau function and Tau proteostasis 
may be critical and cooperative mechanisms 
through which stress (whose actions are executed 
by GC) remodels neural circuits (cell birth and 
death, dendritic and synaptic atrophy/connectiv-
ity), thus inducing impairments mood and cogni-
tion. Importantly, we suggest that Tau lies at the 
core of a set of common neurobiological mecha-
nisms that link stress with AD and other brain 
pathologies such as depression.
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