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Advance in Stress for Depressive
Disorder
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Abstract Stress is an adaptive response to environment aversive stimuli and a
common life experience of one’s daily life. Chronic or excessive stress especially that
happened in early life is found to be deleterious to individual’s physical and mental
health, which is highly related to depressive disorders onset. Stressful life events are
consistently considered to be the high-risk factors of environment for predisposing
depressive disorders. In linking stressful life events with depressive disorder onset,
dysregulated HPA axis activity is supposed to play an important role in mediating
aversive impacts of life stress on brain structure and function. Increasing evidence
have indicated the strong association of stress, especially the chronic stress and early
life stress, with depressive disorders development, while the association of stresswith
depression is moderated by genetic risk factors, including polymorphism of SERT,
BDNF, GR, FKBP5,MR, and CRHR1. Meanwhile, stressful life experience particu-
larly early life stress will exert epigenetic modification in these risk genes via DNA
methylation and miRNA regulation to generate long-lasting effects on these genes
expression, which in turn cause brain structural and functional alteration, and finally
increase the vulnerability to depressive disorders. Therefore, the interaction of envi-
ronment with gene, in which stressful life exposure interplay with genetic risk factors
and epigenetic modification, is essential in predicting depressive disorders develop-
ment. As the mediator of environmental risk factors, stress will function together
with genetic and epigenetic mechanism to influence brain structure and function,
physiology and psychology, and finally the vulnerability to depressive disorders.
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8.1 Introduction

Stress, including physiological and psychological stress, is a common experience
of individual life. In general, the stress refers to the response to the stressful life
events which are challenging, taxing, harmful, and even threating to individual. Dis-
agreeable emotions like anxiety, anger, and bitterness could be evoked, leading to
psychological tension. Stressed individuals may become tense, irritable, aggressive,
disinterested, anxious, or agitated, being accompanied by disturbed sleep, decreased
or increased appetite, and declined sexual desire. In addition, physiological alter-
ations containing activation of hypothalamic–pituitary–adrenal (HPA) axis (Belda
et al. 2015; Bonfiglio et al. 2011), and changes in catecholaminergic systems and
immune system, will be induced. Does stress cause depression? This essential issue
has drawn a great deal of attention but still remained to be fully addressed. A large
body of studies from human and animal models focusing on the association between
stress and depressive disorders defined the strong impact of stress on risk of develop-
ing depressive disorders, supporting the causal association of stress with depressive
disorders onset (Hammen 2005; Kendler et al. 1999).

Depressive disorder, also simply known as depression, is a common but serious
mood disorder characterized by persistent feelings (at least 2 weeks) of sadness,
hopelessness, and worthlessness, which is usually accompanied by loss of interest in
normally pleasurable activities, irritability, impaired cognition, low energy, sleeping
or eating problem, painwithout a clear cause, and even tendency to suicide (Otte et al.
2016; Schulz and Arora 2015). Depression is a highly prevalent psychiatric disorder
in current society, and is associated with high levels of morbidity and mortality
(Chirita et al. 2015; Kessler and Bromet 2013; Laursen et al. 2016; Otte et al. 2016).
Although large attentions and research have been attracted to the exact cause of
depressive disorder, the etiology of depression is still not fully understood.

Unlike other diseases determined by specific gene malfunction, no true depres-
sion genes are identified to be directly responsible for the onset and cure of the
depression due to the heterogeneity and complexity of depressive disorders. Sev-
eral genetic factors have been recognized to be associated with increased risk for
depressive disorders like major depressive disorder based on family, twin, and epi-
demiologic studies (Clarke et al. 2010; Dunn et al. 2015; Flint and Kendler 2014;
Gao et al. 2012; Gatt et al. 2015; Kishi et al.2013; Lee et al. 2012; Lopez-Leon
et al. 2008; Shadrina et al. 2018; Smoller 2016; Wray et al. 2012; Zhao et al. 2014).
Each susceptibility gene contributes to a small fraction of the total genetic risk. It
was estimated that genetic contribution to the risk of depression is probably ~40%
and can be increased to 75% in recurrent depression (McGuffin et al. 1996; Sulli-
van et al. 2000), the remaining main risk for depression development was attributed
to environmental factors (Klengel and Binder 2013; Lopizzo et al. 2015; Richter-
Levin and Xu 2018). The role of environmental factors in predisposing depressive
disorders essentially reflects the crucial effects of stress on etiology of depressive
disorders, since environmental risking factors actually trigger stress and dysregu-
lated stress response are supposed to mediate environmental impact on depression
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onset. These environmental risk factors, which have been found to be correlated with
depressive disorders vulnerability, include prenatal infection, maternal stress, child
abuse and neglect, social stress, traumatic events, cancers, endocrine abnormalities,
and so on (Glover 2014; Heim et al. 2010; Hollis and Kabbaj 2014; Horowitz and
Zunszain 2015; Larrieu and Sandi 2018; Laugharne et al. 2010; Lin andWang 2014;
Lindert et al. 2014; Nemeroff 2016; Sotelo et al. 2014; Sperner-Unterweger 2015;
Takahashi et al. 2018; Verdolini et al. 2015;Weinstock 2017). It is noticeable that the
effect of environmental risk factors in pathology of depressive disorder can happen
as early as in embryonic stage, since prenatal maternal stress (e.g., mother’s anxiety
or depression) has been shown to be correlated with increased risk of psychological
disorders including depression in offspring (Babenko et al. 2015; Barker et al. 2011;
Braithwaite et al. 2014; Fatima et al. 2017; Weinstock 2017).

Among these environmental risk factors, stressful life events (SLEs) like cancers,
losing job or beloved one, which can evoke psychic tension to trigger a series of
stress response including physiological, psychological, and behavioral changes, have
attracted much attention and been demonstrated to exert important effect on etiology
of depression (Chirita et al. 2015; Hammen 2005; Kendler et al. 1999; Kessing and
Bukh 2013; Palazidou 2012; Park et al. 2015; Richter-Levin and Xu 2018; Yang
et al. 2015). Stress induced by stressful life events, especially traumatic and chronic
life stress, is considered to be a crucial linker of stressful life events with etiology
of depressive disorder, and the increasing attention has been focused on the possible
mechanisms of life stress in depression development. Stress exposure across the life
span can cumulatively increase the risk for the development of depressive disorder
(Abravanel and Sinha 2015; Agorastos et al. 2014; Steine et al. 2017; Vinkers et al.
2014). The severity and number of stressful life events are shown to be positively
correlated with depressive disorders (Chapman et al. 2004; Kendler et al. 1998;
Lueboonthavatchai 2009; Roca et al. 2013; You and Conner 2009). Many changes
in the brain happened during depression are found to resemble the effects of severe
and prolonged stress, suggesting a strong association of stress with depression. More
appropriate animal models, which are easy and faithful methods to induce physical
and psychological stress, are developed for addressing pathological mechanism of
stress in depressive disorders.

Although stress is a major risk factor for depression, most people do not develop a
depression with stress exposure. This is supposed to be due to the moderating effect
of genetic factors on the role of stress in depression development (Kessing and Bukh
2013; Klengel and Binder 2013; Lopizzo et al. 2015). Although no true depression
genes are identified to be responsible for the onset and cure of depression, genetic
background is considered to be an important risk factor in predisposing depressive
disorder by interacting with environment factors (Kessing and Bukh 2013; Klengel
and Binder 2013; Lopizzo et al. 2015). Many studies have focused on identifying
genetic factors that are interacted with stressful life exposure in modulating vulner-
ability and severity of depressive disorders. Several genes’ polymorphisms includ-
ing serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR),
brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and SNP
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polymorphism of key factors involved in stress response [glucocorticoid receptor
(GR) gene, mineralocorticoid receptor (MR) gene, FK506 binding protein 51 gene
(FKBP5), and corticotropin-releasing hormone receptor 1 gene (CRHR1)] are shown
to contribute to the predictive role of stressful life events in depressive disorders
(Kessing and Bukh 2013; Klengel and Binder 2013; Lopizzo et al. 2015).

Now, it is believed that genetic vulnerable genes and environmental factors
(mainly stressful life events such as early life stress, traumatic events) are com-
binatorially and cumulatively involved in the onset of depressive disorder (Chirita
et al. 2015; Januar et al. 2015; Klengel and Binder 2013; Lopizzo et al. 2015;Mullins
et al. 2016; Northoff 2013; Uher 2014), in which multiple and partial overlapping
susceptible genes interact with each other and with environment to predispose indi-
viduals to depressive disorders. The gene–environment interaction is considered to
be accountable for the etiopathogenesis of depression, implying that stress and gene
function together in predicting depression development. Meanwhile, environment-
risk factor can induce epigenetic modification to cause brain structural and func-
tional alterations, finally increasing the vulnerability to mental disorders including
depressive disorders.

In this chapter, based on human and animal model studies, we will summarize and
discuss the effects of stress caused by stressful life events in the onset of depressive
disorders, the genetic contributions to the vulnerability of depression by stressful life
events, and epigenetic modification in linking stress with depression, to elucidate the
correlation of stress with depressive disorders. More recent findings and proposals
dedicated to uncovering the interconnections between life stress and depression will
be included.

8.2 Biology of Stress

Human being and other living organisms need to keep homeostasis, which can be
threatened by external and internal, or physiological (e.g., injury, pain, infection)
and psychological (can be real or perceived) stimuli, namely, stressors. In response
to stressors, the organism will generate a series of physiological, psychological, and
behavioral changes to maintain or re-establish its homeostasis. All of these adaptive
responses are collectively called stress response, in short, namely, stress. Thus, stress
is the physical, psychological, andbehavioral responses evokedby the stressor to cope
with it, which is a fundamental requirement for survival and well-being. Stress is an
adaptive process in coping with stressors during evolution and a common experience
of daily life.

During the process of stress response, autonomic nervous system and HPA
axis are two primary systems being activated and functioning (Belda et al. 2015;
Ulrich-Lai and Herman 2009). The activation of autonomic nervous system evokes
the most immediate physiological response to stressor via its sympathetic (sympa-
thoadrenal medullary axis) and parasympathetic branches with opposing activity,
which play an important role in translating stress into a response. Excitation of
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sympathoadrenal medullary axis increases adrenaline and noradrenaline level in
blood, heart rate, vasoconstriction, and energy dedication, representing classi-
cal fight-or-flight response, while the parasympathetic arm activation attenuates
sympathetic excitation and returns the body to homeostasis. The second major
physiological response under stress, HPA axis activation, causes the release of
corticotropin-releasing factor (CRF) from the parvocellular part of paraventricu-
lar neurons (PVN) of hypothalamus to trigger the secretion of adrenocorticotrophic
hormone (ACTH) from the pituitary, and finally lead to the liberation of glucocor-
ticoids (GCs; named cortisol in human and corticosterone in rodent, respectively)
into blood, which influence many bodily functions such as metabolic, psychological,
and immunological functions. The GCs can also exert self-limiting effect through
negative feedback on HPA axis to prevent the rise of GCs level, which otherwise
fail in some cases like chronic stress. Normally, the activation of HPA axis and
autonomic nervous system is tightly regulated, ensuring the body quickly respond
to stressful events and return to homeostasis rapidly. There are much complemen-
tary actions between HPA axis and sympathetic system in bodily responses such as
energy mobilization and blood pressure maintenance, as circulating GCs can poten-
tiate sympathetically mediated effects; conversely, sympathetic nervous system can
facilitate GCs release via its innervation of adrenal cortex.

Besides the activation of physiological function for survival under stress (e.g.,
increasing energy availability and accelerating oxygen supply), other physical func-
tions which are not for immediate survival, including appetite, digestion, and
immune, will be downregulated. Meanwhile, stressed subjects will also exhibit
increased alertness, vigilance, and attention, which are thought to be good for
responding to threatening situation.Moreover, stressmay also affectmemory, reward,
and susceptibility to diseases (Aich et al. 2009; Ragen et al. 2016; Gilpin 2014;
Becker 2010; Laudenslager 1987; Musić and Rossell 2016; Myruski et al. 2018;
Wolf 2017). In emotion, based on the appraisal of stressor by exposed individuals as
routine or challenging, gratifying or taxing, benign or harmful if taxing, manageable
or overpowering in the case of negative appraisal, a diversity of emotions will be
generated, ranging from joy to despondency, from tranquility to anxiety, and from
self-confidence to sham. Under psychic tension evoked by aggravating and disagree-
able emotions, stressed subjects may become irritable, aggressive, anxious, agitated,
and distracted. Meanwhile, behavior changes including disturbed sleep, decreased
sex, declined, or ravenous appetite will be caused.

These physiological, psychological, and behavioral responses under stress are
mediated and regulated by multiple brain regions including brain stem, hypothala-
mus, amygdala, prefrontal cortex, as well as hippocampus (Ulrich-Lai and Herman
2009). It is noteworthy that the effect of stress on an individual is not a uniform syn-
drome, but is strongly dependent on not only the stressor characteristics including
nature, number, or persistence (acute or chronic) but also individual factors such
as age, physical and psychological well-being, genetic vulnerability, past stressful
experiences, especially coping ability and personality characteristics (Schneiderman
et al. 2005).
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As mentioned that these stress responses are indispensable for individual home-
ostasis, the stress should be properly initiated when needed and terminated when
homeostasis is re-established. In general, short-term, slight, and mild stress can be
beneficial and healthy, which can improve individual motivation, adaptation, and
reaction to the environment. However, in some circumstances like intense stres-
sor, chronic stressor, or acute stressor with long-lasting effect, stress response may
be improper, excessive, even prolonged, which is thought to be harmful, and also
increase the risk of illness includingpsychological disease such as anxiety anddepres-
sion (Jeon and Kim 2018; Lucassen et al. 2014). Chronic stressors (e.g., divorce,
unemployment, living in a dangerous neighborhood) may be not intense like a nat-
ural disaster or a severe accident, but they last for longer periods of time and may
be hard to be avoided or coped with, which tend to have more negative effects on
individual health and provoke more frequent and excessive stress response (Jeon and
Kim 2018). Too much or chronic stress will over-activate HPA axis to cause pro-
longed increase of stress hormone glucocorticoid levels, which may induce inertia,
fatigue, amotivational syndrome, loss of bonemass, hippocampal atrophy, and accel-
eration of aging (Myers et al. 2014; van Praag et al. 2004). Many studies showed that
human exposed to chronic stressor (e.g., caregivers of patients, job stress, chronic
illness) and animal model with persistent stress (e.g., unpredictable chronic mild
stress, long-term corticosterone exposure) represent slightly worse physical health,
higher levels of depression, and defective cognition (Benson 2018; Jeon and Kim
2018; Ngoupaye et al. 2018; Pinquart and Sorensen 2003; van Donkelaar et al. 2014;
Yin et al. 2018; Zhu et al. 2014). In addition, chronic stresses are found to be corre-
lated with high rates of several diseases (e.g., cardiovascular disease, diabetes) and
mortality, precipitate a serious or relapse into alcohol abuse (Eisenmann et al. 2016;
Golbidi et al. 2015; Kivimaki and Steptoe 2018; Ohlin et al. 2004; Pashkow 1999;
Rutters et al. 2014; Schneiderman et al. 2005; Sinha 2012; Spanagel et al. 2014;
Steptoe and Kivimaki 2012). Thus, excessive or chronic stresses are harmful to not
only physical health but also psychological health.

8.3 Association of Stress with Depressive Disorders

The etiology of depressive disorders is heterogeneous and multifactorial, which is
considered to depend on the interaction of environmental and multi-genetic risking
factors. Environment-risk factors have been shown to exert strong impact on the
vulnerability to depressive disorders, of which stressful life events (maternal stress,
social defeat and maltreatment, traumatic events, childhood abuse and neglect, can-
cers, and so on) are widely studied in predisposing depression (Braithwaite et al.
2014; Hollis and Kabbaj 2014; Lindert et al. 2014; Nemeroff 2016; Park et al. 2015;
Sperner-Unterweger 2015; Takahashi et al. 2018; Verdolini et al. 2015). Exposure to
stressful live events (SLEs) has been consistently implicated in the pathophysiology
of depression disorders like major depressive disorder, especially those life stress
exposure in early life (childhood and adolescence). Although depressive disorders
can arise without any stressful life events exposure and most people do not develop
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depression even if they experience life stress, most depressive episodes often develop
after stressful life events. SoSLEs are considered to be high-risk factors for predicting
depressive disorder. Stressful life events such as divorce, losing job, or beloved one,
which exceed one’s ability to effectively cope with, could evoke a series of psycho-
logical and physiological changes including activation of HPA axis and autonomous
system, which can be referred to as psychological stress. The psychological stress
is a perspective of stress from psychology, which is a feeling of strain and pressure,
and a kind of psychological pain. The effects of SLEs in depression development
actually reflect a crucial role of stress in etiology of depression. A vast majority of
research supports the causal association of stressful life events, essentially stress,
with depressive disorder onset (Cohen et al. 2007; Colman and Ataullahjan 2010;
Hammen 2005; Kendler et al. 1999; Mothersill and Donohoe 2016; Paykel 2003;
Richter-Levin and Xu 2018; Tafet and Nemeroff 2016; Tennant 2002). Besides, most
animal models of depressive behaviors are established on chronic and inescapable
stress paradigms such as social defeat stress and early life stress, further supporting
the causal association of stress with depressive disorder development.

Stress could be evoked when an individual perceives that a situation (e.g., stress-
ful life event) exceed his or her adaptive capacity to handle, including a feature of
uncontrollability and (or) inescapability (Richter-Levin and Xu 2018). According to
the duration, stress can be acute (e.g., under traumatic events, surgical operation)
or chronic (e.g., under chronic illness, marital conflicts), of which chronic stress
could be disconnected or persistent. The level of stress is not only affected by the
intensity, duration, and frequency of triggering events but also by individual genetic
predisposition, personality characteristics, coping abilities, as well as subjective per-
ception on how a traumatic event is. Chronic stresses are more strongly related to
depressive symptom than acute stresses (Avison and Turner 1988; Eckenrode 1984).
Under chronic or traumatic stress, more or sustained glucocorticoids (GCs) will be
released due to dysregulation of HPA axis activation, exerting deleterious impacts
on multiple brain functions including neurogenesis, synaptic plasticity, learning and
memory, hippocampal size, emotional appraisal of events, as well as periphery func-
tions such asmetabolism and immunity (Murray et al. 2008; Palazidou 2012; Pariante
and Lightman 2008; Teicher et al. 2012). Hyperactivity of HPA axis is one of the
commonest neurobiological changes in depressive patients (Pariante and Lightman
2008). And reduced hippocampal size, decreased neurotrophic factors, and neuroge-
nesis is also characteristic feature of depressed patients and depressive-like animal
models (Luo et al. 2014; Sheline et al. 1996; Treadway et al. 2015). Meanwhile,
sustained overproduction of cortisol induced by chronic stress leads to reduced
activity of dopaminergic (DAergic) system, noradrenergic (NAergic) system, and
serotonergic (5-HTergic) system, of which changes are shared by some depressed
patients presenting indiscriminate NAergic activity, and diminished DAergic and
5-HTergic activity (van Praag et al. 2004; Yang et al. 2015). Thus, stress response
and depressive disorder shared many mediators, circuitries, and phenomenology,
in which depression represents a dysregulation of stress response, indicating a
strong association between stress and depressive disorder onset. Besides, the severity
and number of SLEs are positively correlated with probability of depression onset
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(Chapman et al. 2004;Kendler et al. 1998; Lueboonthavatchai 2009; Roca et al. 2013;
You and Conner 2009), in which moderate to severe stress predisposes higher risk of
depressive disorder than mild stress in subjected people, meanwhile the depressed
subjects also experienced more stressful life events than the nondepressed subjects.
More importantly, cumulative stress exposures across the life span are related with
increased risk for the development of depressive disorder (Abravanel and Sinha 2015;
Agorastos et al. 2014; Steine et al. 2017; Vinkers et al. 2014).

The effect of stress on the vulnerability of depressive disorder can happen as
early as in utero. Epidemiological studies of human populations and studies on
animal models indicate that prenatal maternal stress is linked with adverse health
outcomes in the offspring (Beydoun and Saftlas 2008). More and more studies show
that prenatal maternal psychological stress (e.g., mother’s anxiety and depression) is
correlated with increased risk of psychological disorders including depression onset
in offspring (Babenko et al. 2015; Barker et al. 2011; Braithwaite et al. 2014; Fatima
et al. 2017; Monti and Rudolph 2017; Slykerman et al. 2015; Weinstock 2017),
reflecting an intergenerational effect of stress. During pregnancy, maternal stress can
exert a major impact on brain development and thereby contribute to the pathogen-
esis of neuropsychiatric illnesses including depression in offspring. In this process,
cortisol which is highly lipophilic to pass placenta has generally been identified as
the major mediator in transferring maternal stress to the fetus (Osborne et al. 2018;
Rakers et al. 2017; Van den Bergh et al. 2005). Excessive maternal cortisol could
persistently impair the development of the fetal HPA axis and crucial brain areas
including amygdala, hippocampus, and frontal cortex (Nemoda and Szyf 2017; Van
den Bergh 2011; Van den Bergh et al. 2005). Importantly, exogenous glucocorticoids
treatment of pregnantwomen can result in similar deficits in offspring development to
those related to postpartum depression, supporting the view that the stress response
may mediate the adverse effects of maternal depression on offspring (Conti et al.
2017; Owen et al. 2005). Depressive symptoms during pregnancy are very common,
and about 10% of pregnant women have major depressive disorder, which can be
increased to higher frequency (about 17%) in low- and middle-income countries
(Bennett et al. 2004; Fellmeth et al. 2017; Gelaye et al. 2016). So the impact of
maternal depression on vulnerability of depressive disorders in offspring has drawn
a lot of attention. It is considered that the prenatal maternal depression could also
have a long-term indirect effect on offspring depression via poor physical health in
early childhood and its psychosocial consequences, in which the prenatal maternal
depressive symptoms predict worse physical health of offspring during early child-
hood to further predict increased health-related stress and poor social functioning,
finally predicting increased risk of depressive symptoms later in young adulthood
(Raposa et al. 2014).

Childhood and adolescence period are particularly sensitive to stressful life events,
which increase the vulnerability to depressive disorder (Andersen and Teicher 2008;
Fuhrmann et al. 2015; Laceulle et al. 2014). During these periods, neural plasticity,
brain regions involved in regulating emotion andmediating the stress response appear
to be particularly sensitive to the effects of stressful events. Excessive or chronic
stress evoked by intense or chronic stressful life events (such as child abuse and
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neglect, parental loss, marital conflict of parents) during childhood and adolescence
can have long-lasting neurobiological effects and increase the risk for psychological
disorders including depression (Heim and Binder 2012; Infurna et al. 2016; Lopizzo
et al. 2015; Mandelli et al. 2015; Oldehinkel et al. 2014). It is suggested that early
programming of neurobiological systems in regulating emotion and stress responses
can mediate the increased stress vulnerability and depression risk in later life (Chen
and Baram 2016; Heim and Binder 2012; Lopizzo et al. 2015; van Bodegom et al.
2017).

During early childhood, postpartummaternal depression, which is more common
than prenatal depression, can also negatively impact offspring mental health. So the
intergenerational effects of maternal stress also happen at early childhood. Research
focused on the impact of maternal postnatal depression on offspring depressive psy-
chopathology has documented a link between them, in which offspring of postnatally
depressedmothers are at increased vulnerability for depression (Halligan et al. 2007b;
Hammen and Brennan 2003; Murray et al. 2011; Pearson et al. 2013; Sanger et al.
2015). Elevated basal levels of the cortisol have been found in offspring of mothers
with postnatal depression and been associated with the presence of maternal postna-
tal depression (Brennan et al. 2008; Essex et al. 2002; Halligan et al. 2004; Murray
et al. 2010). And biological sensitivity to social stress in adulthood is also increased
in the offspring of mothers with postnatal depression, as indicated by greater cor-
tisol reactivity to the stress test (Barry et al. 2015). The over-activated HPA axis is
supposed to mediate the deleterious impact of maternal depression on offspring in
early childhood (Halligan et al. 2007a; Murray et al. 2010). Studies in animal models
also suggest that hyperactivity of the HPA axis may mediate the adverse effects of
maternal depression on offspring behavior (Maguire and Mody 2016).

As humans are social beings, keeping good social relationship is fundamentally
important and beneficial for one’s life. Thus, any stimulant disrupting or threatening
one’s social relationship, esteem, or sense of belonging in a social group can lead to
stress. Social stress is the most frequent and intense stress experienced by us in daily
lives, including life events characterized by abrupt and severe incidents (e.g., death
of loved one, sexual assault), chronic strains (e.g., marital conflict, unemployment,
bullying), and daily hassles (e.g., traffic jams, argument). Persistent social stress such
as workplace bullying and adolescent bullying has been shown to increase the risk
of developing mental disorders such as anxiety and depression in stressed subjects
(Pitney et al. 2016; Ttofi 2015; Williams et al. 2017). A lot of supportive views
on the association of social stress with depressive disorders are from animal model
studies. Two common social stress paradigms, social defeat, and social isolation
are introduced in rodent models to explore the neurological mechanism of social
stress and the correlation with mental disorders (Chaouloff 2013; Hollis and Kab-
baj 2014; Zanier-Gomes et al. 2015). In social defeat paradigm, social stress can
be induced in the nonaggressive male rodent when being attacked by the aggres-
sive intruder. Singly housed animals for 21 days are usually introduced to establish
social isolation paradigm. All these social-stressed models can induce an array of
behavioral and physiological changes in susceptible rodents, which are reminiscent
of depression- and anxiety-related symptoms in human (Chaouloff 2013; Liu et al.
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2017b; Zanier-Gomes et al. 2015), suggesting social stress is an important risk factor
in pathogenesis of psychiatric disorders including depressive disorders.

As mentioned above, more vulnerability of depressive disorders is observed dur-
ing childhood and adolescent stages under stressful life events, implicating the age of
subjected individual will influence the final aversive outcome of life stress. Besides
age sensitivity, as well as event severity and number, the impact of stress on the onset
of depressive disorders is also influenced by gender, history of depression (family
and individual), and personality characteristics of subjected individuals (Assari and
Lankarani 2016; Mazure et al. 2000; Monroe et al. 2014; Morse and Robins 2005;
You and Conner 2009). Overall, in response to stressful life events with some excep-
tions of specific event types,womenwere found to bemore likely thanmen to develop
major depression (Maciejewski et al. 2001).No gender differencewas detected in risk
for depression associated with loss of beloved ones, marital conflicts, or events cor-
responding to acute financial or legal difficulties, while increased risk for depression
associated with more distant interpersonal losses (death of a close friend or relative)
and other types of events (change of residence, physical attack, or life-threatening ill-
ness/injury) were found in woman as compared with man (Maciejewski et al. 2001).
Elevated risk in women for major depression was found to be related with low but
not high level of stress exposure (Kendler et al. 2004). A longitudinal study on the
long-term predictive role of stressful life events (SLEs) on the subsequent risk of
major depressive disorder found a stronger predictive role of SLEs for subsequent
clinical depression for men as compared with women (Assari and Lankarani 2016).
In rat model of prenatal stress exposure, increased vulnerability for depression-like
behaviors was observed in females (Sickmann et al. 2015). So, gender is an important
element to consider when analyzing predictive role of SLE on the risk of depressive
disorders. The congruence of cognitive-personality characteristics (sociotropy and
autonomy) and life stress can confer susceptibility to depressive disorders, in which
congruent interaction of sociotropy with negative interpersonal events and auton-
omywith negative autonomy events significantly predicted depression (Mazure et al.
2000; Morse and Robins 2005). Moreover, individuals with high neuroticismwere at
increased risk for major depression and more sensitive to the depressogenic effects
of stressful life events (Kendler et al. 2004). Severe life events were significantly
associated with current depressive symptoms among women without depression his-
tory as compared with women depressed before (You and Conner 2009). Individuals
with family history of depression would have more lifetime episodes of depression
under a major life event than those without family history of depression (Monroe
et al. 2014). And the risk of depression relapse in one’s life is higher when the first
episode occurs at earlier age or when there is family history of depression (Palazi-
dou 2012). Thus, personality characteristics and depression history are also potential
elements to impacting depression onset under stressful life events.
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8.4 Genetic Contributions in the Association of Stress
with Depressive Disorders

On the etiology of depressive disorders, the interaction of gene–environment is con-
sidered to be essential in the development of depressive disorders although environ-
ment may havemore intense impact (~60%) than genetic factors (~40%). Besides the
important role of stressful life experience in predisposing depressive disorders, indi-
vidual genetic background which can in turn regulate and affect coping mechanism
in response to stressful life stimuli is another important effector involved in the final
depressive outcome of stressed subjects. So not all people with adverse life exposure
develop depression despite the intensity of stressful life events, which is supposed
to be due to the moderating effects of genetic factors on individual sensitivity to life
stress (Klengel and Binder 2013; Lopizzo et al. 2015; Uher 2014). A large body of
research has focused on identifying genetic factors that are interacted with stressful
life exposure in modulating vulnerability and severity of depressive disorders (Bleys
et al. 2018; Caspi et al. 2003; Dalton et al. 2014; Kessing and Bukh 2013; Klengel
and Binder 2013; Lopizzo et al. 2015; Risch et al. 2009; Tafet and Nemeroff 2016).

The first supportive evidence of gene–stressful life experience interaction, or
gene–stress interaction, inmodulating the risk for depressive disorder development is
from the study of Caspi et al. (2003). They found 5-HTTLPR polymorphism involv-
ing short or long alleles in the promoter region of serotonin transporter gene (SERT
or SLC6A4) can modulate the influence of stressful life experience on depression,
in which subjects with short allele of 5-HTTLPR (homozygotes or heterozygotes)
exhibited more depressive symptoms, diagnosable depression, and suicidality than
individuals with long allele homozygotes of 5-HTTLPR when exposed to life stress
(Caspi et al. 2003). Short allele variant of 5-HTTLPR is associated with lower pro-
moter transcriptional efficiency of 5-HTT gene as compared with long allele (Heils
et al. 1996; Hranilovic et al. 2004). The association of 5-HTTLPR short variant with
increased vulnerability to depressive disorders under stressful life exposure is sup-
ported by a lot of studies replicating the results of Caspi et al., but still controversial
as some others failed to repeat it (Bleys et al. 2018; Caspi et al. 2010; Chipman
et al. 2007; Dalton et al. 2014; Karg et al. 2011; Risch et al. 2009; Saul et al. 2018;
Sharpley et al. 2014). This disagreement could be mainly due to the methodological
differences in the assessment of stress and depression between studies (Wankerl et al.
2010).

Another genemodulating stress impact on thevulnerability of depressive disorders
is brain-derived neurotrophic factor (BDNF), an important factor involved in normal
brain development and function, as well as pathological changes of brain structure
and function in brain disorders including depression (Begni et al. 2017; Brunoni et al.
2008; Bus and Molendijk 2016; Lu et al. 2014). Stress is hypothesized to decrease
BDNF activity to result in reduced function of brain regions particularly linked to
emotion processing and cognition (e.g., hippocampus, amygdala, neocortex), which
finally alters mood and may cause depression (Martinowich et al. 2007; Molendijk
et al. 2014; Stein et al. 2008). The BDNF gene has been implicated in stress and
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depression vulnerability in human, even animal model (Blugeot et al. 2011; Groves
2007; Homberg et al. 2014; La Greca et al. 2013; Seo et al. 2016). Many studies on
the effect of BDNF gene in predictive role of life stress to depression are focusing on
BDNFVal66Met polymorphism, which is valine to methionine substitution at codon
66 (Val66Met) of BDNF gene due to a functional SNP (rs6265) in the promoter
region, and found a significant interaction between BDNF Val66Met polymorphism
and stressful life experience in depression(Gatt et al. 2009; He et al. 2018; Hosang
et al. 2014; Jiang et al. 2013; Lopizzo et al. 2015; Zhao et al. 2018). Such Val66Met
polymorphism affects BDNF activity including intracellular distribution, packag-
ing, and release of BDNF protein, in which Met allele leads to adverse effect of
BDNF activity (Egan et al. 2003). TheMet allele of BDNFVal66Met polymorphism
is also linked with impaired memory, reduced brain volume, and harm avoidance
(Jiang et al. 2005; Lamb et al. 2015; Toh et al. 2018). Interestingly, individuals with
Met allele (heterozygotes or homozygotes) show elevated evening cortisol levels and
a significantly attenuated HPA axis response to acute psychosocial stressor as com-
pared with Val/Val genotype (Alexander et al. 2010; Shalev et al. 2009; Vinberg et al.
2009). Transgenic mice with Met allele of BDNF Val66Met polymorphism exhib-
ited increased anxiety under stress conditions (Chen et al. 2006). More prominent
effects of Met allele are indicated in the impact of early life stress on depression,
while the impact of stress in adulthood on depressive symptoms seems more signif-
icant in Val/Val genotype individuals, which might due to the different functions of
BDNF at different life stages (Aguilera et al. 2009; Gatt et al. 2009; He et al. 2018;
Jiang et al. 2013). Meta-analyses consistently indicated that the Met allele of BDNF
Val66Met polymorphism significantly moderates the relationship between life stress
and depression (Hosang et al. 2014; Zhao et al. 2018). Furthermore, a combinatory
effect of 5-HTTLPR and BDNF Val66Met is implicated to interact with early life
stress (childhood adversity) in relation to depression, as indicated by more com-
mon depressive symptoms among carriers of either the ss/sl +Val/Val or the ll+Met
genotypes in the presence of early life adversities (Comasco et al. 2013).

Key factors involved in stress response have also been studied as possible genetic
risking factors for depression vulnerability under life stress exposure. Polymor-
phisms within four critical factors involved in stress including glucocorticoid recep-
tor (GR) gene, mineralocorticoid receptor (MR) gene, FK506 binding protein 51
gene (FKBP5), and corticotropin-releasing hormone receptor 1 gene (CRHR1) are
suggested to be risk factors in predicting depression (Claes 2009; de Kloet et al.
2016; Grabe et al. 2010; Grimm et al. 2017; Szczepankiewicz et al. 2014). Dur-
ing stress response, stress hormone cortisol will be released to bind with GR,
while more and more binding of cortisol with GR provides signal for reduction of
corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone release.
GR is kept in an inactive state by binding with FKBP5 without cortisol, which
will be activated by binding with cortisol to trigger GR-dependent gene expres-
sion. FKBP5 is a significant player in stress response through regulating the GR
receptor sensitivity to cortisol, and chronic stress was found to increase FKBP5
expression to generate greater inhibition of GR sensitivity (Guidotti et al. 2013;
O’Leary et al. 2013). A dysregulation of GR function, called GR resistance, is a
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common feature of depressed subjects and is related with HPA axis hyperactivity
(Juruena et al. 2004; Rodriguez et al. 2016). Binding of cortisol with MR receptor
will exert tonic inhibitory effects on basal HPA axis activity, and MR is found to be
an important stress modulator and influences basal as well as stress-induced HPA
axis activity.

Several GR gene polymorphisms (BclI RFLP, N363S, ER22/23EK, 9β, TthI-
IIl, NR3C1-1) and MR gene polymorphisms (-2C/G and I180V) are implicated
to affect HPA axis activity to psychosocial stress, and interact with stressful life
experience in predicting the development of stress-related disorders like depression
(Bet et al. 2009; de Kloet et al. 2016; Derijk and de Kloet 2008; Hardeveld et al.
2015; Juruena et al. 2015; Kumsta et al. 2007; ter Heegde et al. 2015; Vinkers
et al. 2015; Wust et al. 2004). Similarly, single nucleotide polymorphisms in FKBP5
gene (rs1360780, rs3800373, rs9296158, rs4713916, rs9470080), which will affect
FKBP5 basal level, are also shown to modulate the risk of depression to stress-
ful life experience (Appel et al. 2011; Binder 2009; Kohrt et al. 2015; Lavebratt
et al. 2010; Menke et al. 2013; Szczepankiewicz et al. 2014; Zimmermann et al.
2011). Besides, single nucleotide polymorphisms within CRHR1 gene (rs4792887,
rs12936511, rs4792887, rs17689882, rs7209436, rs110402, and rs242924) canmod-
ulate predictive role of early life stress in depression (Grabe et al. 2010;Kranzler et al.
2011; Polanczyk et al. 2009; Rogers et al. 2013; Wasserman et al. 2009). Interaction
of 5-HTTLPR S allele with CRHR1 haplotypes moderates effect of child abuse on
predicting depressive symptoms (Ressler et al. 2010).

Taken together, in the association of stress with depressive disorders development,
genetic element is an important risking factor in increasing vulnerability of depres-
sion under environmental life stress. It should be kept in mind that different risking
genes will interact with each other and with stressful life events to exert cumulative
role in predisposing depressive disorders.

8.5 Epigenetic Modification in Linking Stress
with Depression

Epigenetic regulation means stable change of gene expression and function via chro-
matin structure alteration or noncoding RNA regulation without change of DNA
sequence, which is heritable and can be modified by environmental stimuli. Epige-
netic modification caused by environment factors, such as stress especially early life
stress, is considered as a key mechanism through which environmental risk factors
can modify gene function without affecting DNA sequence to cause brain structural
and functional alteration, finally increasing the vulnerability to mental disorders
including depressive disorders (Bagot et al. 2014; Bakusic et al. 2017; Roy et al.
2017b; Sun et al. 2013; Vialou et al. 2013). And epigenetic mechanism also under-
lies extraordinary interindividual variability in sensitivity to stressful life exposure
and variability in depressive symptoms (Bagot et al. 2014; Sun et al. 2013).
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Among epigenetic modification, DNA methylation and histone acetylation are
extensively studied in the context of long-term effects of stressful life events on
gene transcription and on mental disorders etiology especially depression (Bagot
et al. 2014; Bakusic et al. 2017; Deussing and Jakovcevski 2017; Fatima et al. 2017;
Klengel et al. 2014; Li et al. 2017; Liu et al. 2014;Nemoda andSzyf 2017;Weder et al.
2014; Zheng et al. 2016). DNA methylation changes within promoter and enhancer
regions of genes are closely related to the alteration of gene expression, as they reduce
the entry of transcription factors into regulatory elements to promote silencing or
downregulation of gene expression. The role of DNA methylation in several genetic
risk genes, such asBDNF, 5-HTT,GR, andFKBP5, has been extensively investigated
in the pathology of stress-related depressive disorders. Acetylation of histone is
associated with greater level of gene expression, and its alteration inmental disorders
and the role in vulnerability to depressive disorder under stressful life exposure are
alsowidely studied. For example, in depressed ratmodelwith chronically unpredicted
stress treatment, increased depression-like behaviors were associated with decreased
acetylated histone (H3K14, H3K23, H4K16), suggesting the decrease of histone
acetylation modification level may contribute to the mechanism of depression-like
behaviors (Li et al. 2017).

Environmental factorsmay alsomodify gene expression via changingmicroRNAs
(miRNAs) synthesis (Carthew and Sontheimer 2009), a type of small noncoding
RNAs (20–22 nt), which play a major role in posttranscriptional regulation of gene
expression. Individual miRNAs are able to target hundreds of different mRNAs,
and a single gene can be modulated by several different miRNAs. Many studies
have observed expression change of miRNAs targeting to important genes for brain
development and function in rodent brain with life stress exposure, indicating the
contribution of miRNAs in epigenetic modulation by stress to affect the vulnerability
of depressive disorders (Babenko et al. 2015; Dirven et al. 2017; Higuchi et al.
2016; Liu et al. 2017a; Lopizzo et al. 2015; Ma et al. 2016). With early life stress
exposure, the expression level of two miRNAs which are closely related to 5-HT
neurotransmitter system was found to be altered in rat brain, with a reduction of
miRNA-135a in the prefrontal cortex and increase of miRNA-16 in the hippocampus
(Liu et al. 2017a). In depression-like mice induced by chronic unpredictable mild
stress, upregulation of miRNAs responsible for downregulating genes functioning in
GABAergic synapses, dopaminergic synapses, myelination, synaptic vesicle cycle,
and neuronal growth were detected in the medial prefrontal cortex (Ma et al. 2016).
Interestingly, expression change of several miRNAs (such as miR-709, miR-132,
miR-124) under life stress can persist for a long time (Babenko et al. 2012; Liu
et al. 2017a; Uchida et al. 2010), which might be due to the epigenetic changes of
miRNAs, as hypermethylation in 31miRNAs from adult males exposed to childhood
abuse were detected (Suderman et al. 2014).

Due to the high sensitivity of depression risk geneBDNF to stress and its decreased
level in depressed patients and animalmodels, epigeneticmodification ofBDNF gene
attractedmuch attention. In rodents studies, stress exposure at gestation, early life and
adult stages can induce epigenetic change of BDNF gene to decrease its expression
level in several brain regions including hippocampus and prefrontal cortex, which
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could increase the vulnerability to stress or mental disorder including depression
(Roth et al. 2009; Seo et al. 2016; Weinstock 2017; Xu et al. 2018; Zheng et al.
2016). In the hippocampus of rodents with stress exposure, increased methylation
within BDNF promoter, elevated level of DNA (cytosine-5)-methyltransferase and
histone deacetylase (such as HDAC1, HDAC2), as well as decreased expression of
acetylated histone and its binding on specific BDNF promoters were observed (Seo
et al. 2016; Zheng et al. 2016). Similarly, an increase of methylation at CpG sites
within the promoter region of theBDNF exon IVwas detected in the prefrontal cortex
of mice with early maltreatment from adolescence till adult stages, which account
for the reduced BDNF mRNA level in this brain region (Roth et al. 2009). And such
increased methylation of BDNF gene promoter in the frontal cortex can even be
transmitted from one generation to the next generation, as this epigenetic modifi-
cation was also observed in the offspring of females with early maltreatment (Roth
et al. 2009). Changed epigenetic modification of BDNF has also been detected in
human brain or peripheral blood or saliva from depressive subjects. Fuchikami et al.
reported a significant difference of CpG methylation within BDNF gene-specific
promoter of exon I but not IV, in peripheral blood between depressed patients and
controls (Fuchikami et al. 2011). Roy et al. also observed that BDNF gene CpG
methylation was significantly increased in peripheral blood of depressed patients
(Roy et al. 2017b). An increased methylation in BDNF gene promoter of exon IV
was found to be associated with reduced BDNF expression in Wernicke’s area of
postmortem brain from suicide victims with major depression (Keller et al. 2010).
Significant difference of BDNF gene methylation from saliva sample between mal-
treatment children and control was observed, whichmay confer risk for depression in
children (Weder et al. 2014). In contrast, prenatal maternal stress (maternal depres-
sion) significantly predicted decreased DNA methylation in BDNF IV in both male
and female infants, which was proposed to reflect a molecular basis for the rapid
maturation induced by adverse prenatal events (Braithwaite et al. 2015). It is note-
worthy that BDNF dysregulation may also be contributed by alterations of miRNAs
level. In depressed patients and depression-like animal models with early life stress
exposure, upregulation of several miRNAs (miR-132, miR-182, miR-16) which can
regulate BDNF translation are correlated with decreased BDNF expression in brain
or serum (Bai et al. 2012; Li et al. 2013, 2016; Su et al. 2015).

Another genetic risk gene for depressive disorders, 5-HTT (SLC6A4 or SERT ),
has also been investigated on its epigenetic modification correlated with life stress
exposure and depression pathology. Since SLC6A4 gene plays an important role in the
normal development and function of brain regions, and itsmalfunctioning is supposed
to be involved in the pathology ofmental disorders including depressive disorders, the
alteration of 5-HTT expression will be closely related to brain structure and function,
behavior change, as well as vulnerability of mental disorders. The expression of 5-
HTT is dependent not only on genetic variation (5-HTTLPR polymorphism) but also
epigenetic modification in response to environmental stress exposure (such as hyper-
methylation with early life exposure or chronic stress) (Palma-Gudiel and Fananas
2017; Vijayendran et al. 2012). Besides that short(s) 5HTTLPR allele is associated
with lower amounts of 5-HTTmRNA transcription, several in vitro and in vivo studies
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consistently observed higher level of specific-site methylation in SLC6A4 promoter
which is associated with its lower mRNA expression (Abdolmaleky et al. 2014;
Palma-Gudiel and Fananas 2017; Philibert et al. 2008; Wang et al. 2012). Methyla-
tion level of SLC6A4 has been associated with a number of environmental stresses
originated from maternal stress, childhood trauma and abuse, and other early life
stress, which is confirmed as an epigenetic biomarker of early adversity exposures
in human (Palma-Gudiel and Fananas 2017; Provenzi et al. 2016). In patients with
major depression, higher 5-HTT promoter methylation status was found to be signif-
icantly associated with childhood adversities and worse clinical presentation (family
history of depression, higher perceived stress, and more severe psychopathology)
(Kang et al. 2013). And the increased methylation within SLC6A4 promoter can
affect brain responses to negative stimuli, as indicated by the results that twins with
higher peripheral SLC6A4 methylation levels showed greater orbitofrontal cortical
(OFC) activity, greater connectivity of left amygdala–anterior cingulate cortex (ACC)
and left amygdala–right OFC in response to sadness, as well as greater ACC–left
amygdala and ACC–left insula connectivity in response to fearful stimuli (Ismaylova
et al. 2018).

Further, miRNAs also contribute to the epigenetic regulation of 5-HTT expres-
sion in response to life stress exposure. In depression-like rat model induced by
chronic mild stress, the expression of seven miRNAs targeting 5-HTT (miR-18a-5p,
miR-34a-5p, miR-135a-5p, miR-195-5p, miR-320-3p, miR-674-3p, miR-872-5p)
was increased in ventral tegmental area (VTA) but decreased in prefrontal cortex,
and more profound increase of these miRNA in VTA was detected in resilient rat
accompanied by lower 5-HTT level (Zurawek et al. 2017). Cell line and animal
studies demonstrated that miR-16 (also targeting on BDNF) and miR-15a can also
negatively regulate 5-HTT expression, whichmight be associated withmajor depres-
sive disorder, as alteration of these twomiRNAs level can be detected under life stress
and in depression patients and animalmodels (Baudry et al. 2010; Launay et al. 2011;
Moya et al. 2013; Shao et al. 2018; Song et al. 2015). In the same paradigm of chronic
mild stress-induced depression, miR-16 level in cerebrospinal fluid (CSF) and raphe
nuclei was significantly decreased with obviously increase of 5-HTT protein in raphe
(Shao et al. 2018). And with anti-miR-16 treatment, rats exhibited depression-like
behaviors, extremely lower CSF miR-16, and obviously higher raphe 5-HTT protein
than control (Song et al. 2015). Similarly, CSF miR-16 is also decreased in major
depression patients (Song et al. 2015). Interestingly, antidepressants drugs like selec-
tive serotonin reuptake inhibitors (SSRI) can increase miR-16 levels in serotonergic
raphe nuclei, which was accompanied by reduction of 5-HTT expression in raphe
(Baudry et al. 2010; Yang et al. 2017), supporting the role of miR-16 in depressive
disorders pathology.

Due to the essential role ofHPAaxis in stress response under aversive environment
stimuli, the involved genes are also investigated on their epigenetic modulation in
stress exposure and depressive disorders onset. Numerous studies have focused on
the relationship of methylation in glucocorticoid receptor (GR) gene, also known as
NR3C1 (nuclear receptor subfamily 3, group C, member 1), with early life stress.
And increasedmethylation ofGRpromoter in brain or periphery samples from rodent
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or human subjected with early life stress (e.g., prenatal or postnatal maternal stress,
paternal stress, child abuse, low maternal care) are consistently reported among
these studies (Bockmuhl et al. 2015; Braithwaite et al. 2015; Efstathopoulos et al.
2018; Farrell et al. 2018; Smart et al. 2015; Turecki and Meaney 2016). Mainly
increased methylation of rat NR3C1 exon 17 and human homolog NR3C1 exon 1F
are found to be related with early life stress. Prenatal depressive symptoms were
shown to significantly predict increased NR3C1 exon 1F DNA methylation in male
infants (Braithwaite et al. 2015). Mean NR3C1 exon 1F DNA methylation levels
were significantly increased in depressed patients, and the degree of methylation
was positively associated with morning cortisol concentrations (Farrell et al. 2018).
Meanwhile, DNA methylation level at specific CG sites in the NR3C1 exon 1F was
related to childhood emotional abuse severity (Farrell et al. 2018). The methylation
level of NR3C1 exon 1F was also significantly increased in the hippocampus from
suicide victims with a history of childhood abuse, as compared with those from
suicide victims without childhood abuse or with control samples (McGowan et al.
2009). Furthermore, the severity, number, and types of childhood maltreatments
positively correlated with NR3C1 exon 1F methylation (Perroud et al. 2011).

The GR co-chaperone, FKBP5, which is also one of the genetic risk factors in
depressive disorders, has likewise been widely investigated on its epigenetic changes
induced by life stress especially early life stress. The methylation of the FKBP5 gene
is associated with reductions in transcription; conversely, FKBP5 demethylation will
increase FKBP5 level to interfere GR sensitivity to cortisol. In human, childhood
maltreatment has been associated with demethylation in FKBP5 gene, as indicated
by lower DNA methylation at FKBP5 intron 7 in the blood or saliva of maltreated
subjects as compared with those unexposed (Klengel et al. 2013; Non et al. 2016;
Tyrka et al. 2015). Since polymorphisms of FKBP5 gene have been shown to influ-
ence glucocorticoid receptor sensitivity, stress response regulation, and depression
risk in traumatized subjects, the epigenetic modification in these functional variants
especially rs1360780 also attracts much attentions (Han et al. 2017; Mulder et al.
2017; Tyrka et al. 2015). For example, FKBP5methylation was positively correlated
with the thickness of the right transverse frontopolar gyrus in the C allele (FKBP5
rs1360780 polymorphism) homozygote group, suggesting that the FKBP5 genetic
and epigenetic changes may affect morphology of emotion-related brain regions,
which may be involved in depression development (Han et al. 2017).

BesidesDNAmethylation affectingHPA axis responsiveness,miRNAswhich tar-
get key factors in HPA axis have also been shown to be changed under life stress. The
miR-124, an important effector in brain development, can also target GR. Chronic
stress led to the upregulation of miR-124 in the hippocampus and basolateral amyg-
dala of rats (Bahi et al. 2014; Xu et al. 2017), and a higher level of miR-124 was
detected in prefrontal cortex of depressive-like rats and in serum of major depres-
sive patients (Roy et al. 2017a). In rat model, depressive-like behaviors induced by
chronic unpredictable mild stress were positively correlated with the level of miR-
124a, whereas GR levels were negatively correlated with miR-124a level in both
adolescent and adult brain (Xu et al. 2017). Inhibition of miR-124 by its antagomir
was shown to reverse the depressive-like behaviors in mice exposed to chronic
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corticosterone (Wang et al. 2017). The exact role of increased mir-124 in regulating
GR expression and HPA axis response activity under life stress, and in linking stress
with depressive disorder need to be investigated. Upregulation of miR-34c in mice
exposed to acute and chronic stress was also observed (Haramati et al. 2011), which
may regulate stress response by targeting stress-related corticotropin-releasing fac-
tor receptor type 1 (CRFR1) mRNA. Under chronic unpredictable mild stress, the
expression of another miRNA targeting GR, miR-18a, was found increased in the
basolateral amygdala only in adolescent rats but not adult rat (Xu et al. 2017).

Overall, in this part, epigenetic modification including DNA methylation and
miRNA on key depression risk genes (BDNF, SERT, GR, and FKBP5) are demon-
strated. The changes in DNA methylation of these genes or expression of miRNAs
targeting on these genes are sensitive to life stress and can generate long-lasting
effects on brain structure and function, behavior, and most important the vulnera-
bility to mental disorders including depressive disorders. These epigenetic modifi-
cations provide a potential mechanism in linking environmental risk factors such as
early life stress with depression disorders onset. It is of noteworthy that these epige-
netic regulations will function together with genetic background to affect individual
vulnerability to depressive disorders under stressful life events.

8.6 Conclusion

Stress is an adaptive mechanism of individuals to cope with environment aversive
stimuli during evolution. However, excessive or prolonged stress triggered by stress-
ful life events will cause deleterious impacts on individuals’ both physiological and
psychological health. Dysregulated HPA axis activity under overloaded stress is con-
sidered to play important role in depression development. More and more evidence
have been supporting the causal association of stress, especially the chronic stress and
early life stress, with depressive disorders development. Thus, stressful life events
are high-risk factors of environment in predisposing depressive disorders.

While the effects of stressful life exposure on the vulnerability to depressive
disorders are moderated by individual’s genetic background, polymorphism of sev-
eral high-risk genes including SERT, BDNF, as well as key genes involved in stress
response (GR, FKBP5,MR, andCRHR1) have been found to affect aversive outcome
of life stress in depression onset. The interaction of environment–gene, meaning the
combinatorial function of stressful life exposure with genetic background, actu-
ally plays the essential roles in pathology of depressive disorders. Now it is widely
accepted that depressive disorders are multifactorial and polygenic mental disorders.

The close association of stressful life exposure to depressive disorders develop-
ment is also dependent on the epigenetic mechanism. Environmental risk factors
will lead to epigenetic modification in depression risk genes (BDNF, SERT,GR, and
FKBP5) through DNA methylation and miRNA regulation, to generate long-lasting
even heritable effects on risk genes expression. Such epigeneticmechanism can cause
brain structural and functional alteration, and finally increasing the vulnerability to
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depressive disorders. Meanwhile, epigenetic regulation will interact with genetic
background to affect the predicting role of stressful life events in vulnerability to
depressive disorders.

Therefore, as the mediator of environmental risk factors, stress will function
together with genetic risk factors and epigenetic modification to generate impacts
on brain structure and function, as well as physiology and psychology, to predispose
depressive disorders.
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