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Abstract
In this chapter, we have discussed the basic factors required to understand the 
systems biology of host-pathology interaction, which can be applied for model-
ing and simulating the interaction between plant and pathogens and to get an idea 
about drug discovery and metabolic engineering. Further, we highlight the high-
throughput technologies, such as omics technologies (genomics, transcriptomics, 
proteomics, and metabolomics), which can be used as a tool for identifying 
molecular mechanisms of the cell and biochemical pathway of the host-pathogen 
system. Several mathematical models, such as genome-scale metabolic model-
ing (constrain-based modeling) and interaction-based modeling (e.g., gene regu-
latory networks and protein-protein-based interactions) have been demonstrated 
which help in understanding the genotypic-phenotypic relationship of the host-
pathogen interactions.
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19.1	 �Introduction

In the present scenario, the major question is how to address the cause of crop yield 
and field stock infection, which is impacting the economy worldwide. Recent stud-
ies have shown that the amount of these infections may increase even more due to 
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global warming. Several new variants of microorganisms, including viral, bacterial, 
and fungal pathogens, can find novel hosts and ecologic niches. Also by systems 
perspective, lack of understanding of the complex mechanism by which these 
pathogens evade the host defense machinery and adapt according to their lifestyle 
needs is evident. Hence, there is an absolute necessity to study the relationship 
between the host and pathogen in order develop suitable chemicals to reduce patho-
genicity (Aderem et al. 2011). Over the past few decades, the advancement in tech-
nology has developed strategies for investigating the host-pathogen interaction on 
the scale of molecular levels by adapting various computational and analytical tools. 
With the outbreak of genome sequencing, various databases are present to show 
strains and variants of pathogens sequenced to date. At the same time, availability 
of vast data on population-level genetic variation for plant hosts offers a huge poten-
tial for the study of host-pathogen interaction.

Further to gain the insight into the pathogen virulence and how these pathogens 
rewire the cellular transcription and dynamics of protein networking of host systems 
(McDermott et al. 2011), several molecular tools, such as deep sequencing, high-
throughput proteomics, and sophisticated interactome analysis, have been used 
(Peng et al. 2010; Niemann et al. 2011; de Chassey et al. 2008; Shapira et al. 2009; 
Mukhtar et al. 2011; Das and Kalpana 2009). During the course of evolution, the 
pathogens have developed a strong selection for the defense mechanism exerted by 
the host system and consequently adapt to their environment. It is very difficult to 
extract data through experimental observation of the host-pathogen relationship 
(Shi et al. 2006; Eriksson et al. 2003). In order to develop improved therapeutic 
agents, knowledge related to these interactions is essential. Previously most of the 
treatments, such as vaccines, antibiotics, and antivirals, were designed by exploiting 
the structural and molecular differences between the host and pathogen. However, 
most of the pathogens have developed resistance to antibiotics, which is again a 
major issue. Hence, periodic development of novel methodology based on the study 
of these pathogens to develop novel therapies is of utmost importance. The sche-
matic of the PHI modeling system is depicted in Fig. 19.1.

19.2	 �Systems Biology as a Tool

The deeper understanding of the complex biological systems is very crucial in pre-
dicting the pathogen-host interactions (PHIs) (Durmuş et al. 2016). Systems biol-
ogy helps to assemble a framework for models of biological systems for systematic 
measurements. It is an interdisciplinary field in life sciences integrating engineer-
ing, mathematical, bioengineering, medical, and computational disciplines to 
understand the nonlinear behavior in biological systems (Kitano 2002; Durmuş 
et al. 2015). Previously, reductionist approaches were used to understand the bio-
logical systems which consider only fewer molecules of interaction, whereas sys-
tems biology uses holistic approaches based on omics data, which gives the overall 
view of the interactions between protein, nucleotide sequences, ligands, and metab-
olites in PHIs. Further, noncoding RNAs and small molecules play a crucial role in 
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understanding virus-host interactions and bacterial-host interactions (Durmuş et al. 
2015; Raja et al. 2017; Likić et al. 2010).

It is very important to understand the biochemical networks of the system (viz., 
gene regulatory network, protein-protein interaction network, and metabolic net-
work), which helps in deciphering the systems studies on biochemical subnetworks 
or cross-networks. Integrating the information from various biological levels pro-
vides complex and unanticipated global behavior of PHIs (Durmuş et  al. 2015, 
2016). The biochemical networks give the idea of how each component in the sys-
tem behaves in the spatial and temporal ways and also how precisely the controls 
are excreted on them. The metabolomics approach makes it possible to precisely 
measure the metabolite concentration, whereas the transcriptomics and proteomics 
approaches provide the quantitative data of mRNA and protein levels, respectively 
(Karahalil 2016). Experimental approaches to assess in vivo reaction rates (fluxes) 
are again important parameters and are well developed to ascertain metabolic net-
works. The metabolic flux helps in determining the genotype-phenotype relation-
ship (Antoniewicz 2015; Chen and Shachar-Hill 2012; Deidda et  al. 2015). The 
omics data collected from infected cells and pathogens will be subjected to bioin-
formatics analysis to construct an infection-specific gene regulatory, metabolic, and 
protein-protein networks. The analysis of PHI omics data using computational sys-
tems biology tool unravels the infection mechanism, dynamics, and potential drug 
targets for the prevention of infections. Recently, web-based databases are available 
to accommodate the increasing data generated in PHI experiments, and also, they 
provide pathogen-host interactome data, which helps in focusing on specific patho-
gen or host system. Also novel text mining methods, which help in PHI data 
retrieval, are required (Durmuş et al. 2015).

Fig. 19.1  Schematic modeling system for pathogen-host interaction (PHI)
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19.3	 �Omics Technology: To Understand the Relationship 
between Host-Protein Interaction

During the 1920s, a botanist named Hans Winkler introduced a word genome by 
merging the words “GENe” and “chromosOME.” It is known that omics involves a 
mass or a large number of measurements per end point. Today, more than 1000 omics 
fields are available for describing the properties of lipids, nutrients, etc. (Karahalil 
2016; Antoniewicz 2015; Chen and Shachar-Hill 2012; Deidda et al. 2015). The gen-
eration of omics data through the application of high-throughput techniques and the 
data management and analysis via computational biology and mathematical model-
ing has brought the major revolution in the field of infection biology. A deeper insight 
of host immune response during infectious conditions gives an idea for the develop-
ment of diagnostics, therapeutics, and vaccines. Also the systems biology of the 
infection led to the development of personalized medicines and novel therapeutic 
targets. The integrative personal omics profile (iPOP) combines genomics, transcrip-
tomics, proteomics, metabolomics, and autoantibody profiles from a single individ-
ual over a 14-month period (Sarker et al. 2013; Chen et al. 2012).

19.4	 �Genomics and Transcriptomics Data for PHI

In genomics, the analysis of the nucleotide sequences, genome structure, and 
nucleotide composition will be carried out. Further this analysis helps in under-
standing the genetic variation among the individual and thereby providing the struc-
ture and functional relationship, their variants and diseases or response to therapy. 
Understanding the genetic variations helps in elucidating the genetic basis of dis-
eases using genome-wide association study (GWAS) associated with genome link-
age analysis and case-control studies with individual gene. To obtain the insight of 
this genetic information known as central dogma (DNA-mRNA-proteins), high-
throughput techniques, such as microarray and next-generation sequencing (NGS), 
are being used. Further whole-genome sequencing helps to identify the type of 
pathogen and its nature of virulence, antibiotic resistance, and diagnosis and the 
development of new vaccines. A plethora of the literatures published show the rela-
tionship between gene polymorphism and disease susceptibility. Single-nucleotide 
polymorphism (SNP) can be used as an important tool for the identification and 
characterization of pathogen variants and disease susceptibility in plants and 
humans (McCourt et al. 2013; Yağar et al. 2011; Karahalil et al. 2011; Mardan-Nik 
et  al. 2016). Over the past few decades, with the development of NGS, a large 
amount of genomic sequencing data are available in public databases. These 
sequencing technologies are capable of handling huge genome dataset in a timely 
and cost-effective manner. The phylogenetic studies based on whole-genome 
sequencing have helped in understanding the evolution of the PHIs and the possible 
prevention of infectious diseases. Metagenomics and metatranscriptomics of patho-
gens revealed how pathogenic microorganisms adapt to hosts, e.g., plants (Guttman 
et al. 2014).
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The systematic whole-genome sequencing procedure of PHI is shown in 
Fig. 19.2. Whereas on the other hand, to get more insights into the evolution of 
pathogen, molecular pathogenesis and host specificity by using comparative genom-
ics. Further NGS gives the molecular insight for diverse pathogens on genomic and 
transcriptomic levels (Fig. 19.3). Usually genomics is based on static data, whereas 
transcriptomics gives a dynamic profile of gene expressions with time. The geno-
type and expression phenotype can be linked through the through mRNAs match 
with particular genes in the genome (Karahalil 2016). The functionality differences 
between tissues and cells, interaction between genes, gene regulation and regulatory 
sequences, and identification of diseased states can be provided using RNA profil-
ing (Durmuş et al. 2015). Some of the genomics and transcriptomics tools are pro-
vided in Table 19.1.

19.5	 �Proteomics and Metabolomics

The actual information related to metabolic and enzymatic processes can be obtained 
through a comprehensive study of the proteins. The characteristics of proteins and 
protein-protein interaction rapidly change cell proliferation and migration. Further 
characters, such as posttranslational modification, help to understand the dynamic 
proteome analysis (Wright et  al. 2012; Larance and Lamond 2015). The protein 
structures and functional studies play a crucial role in PHIs as they can elucidate the 
role of the pathogens in eliciting the innate and adaptive immune responses. 
Pathogen-associated molecular patterns (PAMPs) are molecules or small molecular 
motifs within a group of pathogens (e.g., the protein flagellin, lipopeptides, lipo-
polysaccharide (LPS)) that are recognized by proteins, the so-called pattern recog-
nition receptors (PRRs), such as Toll-like receptors (TLRs (Qian and Cao 2013)). In 
many cases, the signal transduction is stimulated by PRRs via different pathways, 

Fig. 19.2  Systematic whole-
genome sequences procedure 
of PHI
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for example, JAK-STAT pathway, interferon gamma (IFNγ)-receptor pathway, and 
tumor necrosis factor-alpha (TNFα) signaling. During viral and microbial infec-
tions, the type II cytokines (IFN-γ) play a key role in innate and adaptive immunity 
(Prabhu et al. 2016, 2017, 2018). Transcription factor NF-κB also activated by vari-
ous intra- and extracellular stimuli, such as bacterial or viral products, e.g., the 
TLRs signaling, and induces the expression of pro-inflammatory cytokines (inter-
leukins, TNFα, Type I interferons) (Chen et al. 2012).

Utilizing bioinformatics as a tool for understanding the descriptive proteome 
analysis of the pathogen and its interaction with the host will give a better idea for 
designing the diagnostics and medicines. Several proteomics methods, such as mass 
spectrometry (MS), for protein and peptide analyses via, for instance, the matrix-
assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) 
techniques resulted in powerful MS instrumentations (Del Chierico et al. 2014). The 
detail of the techniques is mentioned in Table (19.1). Further the alteration to the 
environmental variations can be determined by estimation of metabolites, which are 
the end products of the cellular regulatory process. Because endogenous metabo-
lites are fewer than genes, transcripts, and proteins, only fewer data can be inter-
preted. Hence, metabolomics has a great advantage over genomics and proteomics. 
The change in the metabolites reflects the biological states of organism. An in silico 
study, such as genome-scale metabolic models, utilizes metabolites to identify the 

Fig. 19.3  Overview of next-generation sequencing technology used for sequencing PHI data
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effective target of the drugs. One important PHI is the production of toxins by the 
pathogen that affects the host immune system. The fungus Aspergillus fumigatus 
which secretes gliotoxin induces apoptosis in host system. Systems biology-based 
models, including genetic regulatory networks (GRNs), help in understanding the 
uptake of important nutrients, such as nitrogen, carbon, and iron, by pathogens from 
the host system and how they regulate the biochemical network (Scharf et al. 2012; 
Gardiner and Howlett 2005).

19.6	 �Mathematical Modeling Assisting PHI Interaction

In the past few decades, the synthetic and systems biology field has witnessed a 
major paradigm shift with the availability of whole-genome sequencing for various 
organisms, which gave the whole picture of metabolic network, signaling and regu-
latory pathways in cells. For altering the metabolism of an organism, understanding 

Table 19.1  Techniques used for genomics, transcriptomics, proteomics, and metabolomics and 
their applications

Omics technologies Applications
Genomics
RFLP Identification of single-nucleotide polymorphism (SNP) by 

Affymetrix SNP GeneChip and 
IIIuminaGoldenGateBeadChips assays, TaqMan assay

ASO

AFLP Study on gene polymorphism
PCR Help in early diagnosis, treatment of similar disease, 

susceptibility to drugs, and variation among the individualRAPD
DNA microarrays
Transcriptomics
Microarray, hybridization-
based, sequence-based, 
Taq-based methods

Identification of metabolic pathway and drug response

Sequence-based, Taq-based 
methods (SAGE, CAGE, 
MPSS, etc.)

High-throughput techniques which provide gene expression 
profiles of organism

RNA-seq, whole transcriptome 
shotgun sequencing; WTSS

Predict absolute mRNA data and transcript profiles for better 
drug discovery

EST
SAGE
Proteomics and metabolomics
Gel-based proteomics: 2DGE High throughput (detection of hundreds of individual species 

within a single sample)
Gel-free proteomics: 2D-DIGE Finding biomarkers for chronic diseases
TOF Enable the analysis of proteins with low abundance in 

complex samples
MS, NMR spectroscopy Provide quantitative and comparative analysis of different 

samplesMS-based proteomics: 
LC-MS,GC-MS, CE
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the cellular biochemical network is very much essential (Bose 2013; Chuang et al. 
2010; Chae et al. 2017). With the evolution of systems-based approaches, a wide 
range of techniques were applied for the simulation and analysis of biochemical 
systems. The entire biochemical modeling can be classified into (i) constrain-based 
modeling, which relies on the reaction stoichiometry; (ii) kinetic modeling, which 
is based on comprehensive mechanistic modeling; (iii) interaction-based network 
(Raman and Chandra 2009). The steps involved in reconstruction of metabolic path-
ways are shown in Fig. 19.4.

Compared with kinetic modeling, which requires a detailed study for evaluat-
ing its parameters, constrain-based model offers a more precise quantification of 
genotype-phenotype relationship and hence is widely used in metabolic engineer-
ing (Antoniewicz 2015; Çalık and Özdamar 2011; Dai and Locasale 2016). In 
constrain-based analysis, the organism fine-tunes itself with the change in the 
environment satisfying the given constrain and achieves better survival capabili-
ties. For in silico metabolic engineering, metabolic networks are simulated using 
constrain-based method and ultimately represent all biochemical networks in the 
organism. The metabolic network reconstruction may be focused on specific path-
ways/central metabolic pathways to encompass the entire genome leading to a 
genome-scale metabolic model. The reconstruction of genome-scale metabolic 
models involves various steps that includes (a) draft model creation, (b) detailed 
model reconstruction, (c) mathematical format conversion, (d) gap identification 

Fig. 19.4  Overview of the steps involved in designing metabolic modeling of organism
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and filling, and (e) simulation and visualization (Faust et  al. 2011; Geng and 
Nielsen 2017; Kim et al. 2012).

In the PHI context, the pathogens are solely dependent on the host for getting the 
substrate, thereby maintaining the active metabolic state; hence, there is a continu-
ous exchange of metabolites between hosts and plant pathogen (Orth et al. 2010; 
Kauffman et al. 2003). Also for the pathogenesis of an organism it depends on the 
availability of the nutrients in the host system there is a direct link between the 
metabolism and the virulence. Recently advanced version of bioinformatics tools 
for the reconstruction of metabolic network based on genomics data and constrain-
based modeling, there in silico metabolic networks are very essential in understand-
ing the physiology of pathogen for e.g. substrate availability in the host that decides 
the pathogenicity or the secretion of the toxins based on the host environmental 
conditions (Chavali et al. 2012; Eisenreich et al. 2013; Gouzy et al. 2014; Brown 
et  al. 2008; Milenbachs et  al. 1997). A constrain-based modeling of the Gram-
negative bacterial pathogen, Salmonella typhimurium, showed a systematic meta-
bolic modeling between the pathogens and the hosts (Raghunathan et al. 2009). The 
simulation of flux balance models for the reconstruction of genome-scale metabolic 
models answered the question of survival capabilities of pathogen. It has been 
shown that when the author used the media similar to the host cell, the model-
predicting ability was superior. The author also showed that integration of transcrip-
tome data with this flux analysis  data led to a better understanding of transport 
mechanism. Recently, a dynamic flux balance analysis (FBA) model of a barley 
plant was constructed, which is capable of predicting the steady-state flux distribu-
tion of the metabolism of different organs throughout the entire plant development 
(Grafahrend-Belau et al. 2013).

19.7	 �Gene Regulatory Network Modeling in PHI

The phenotype of an organism is solely dependent on the gene expression, the gene 
regulation is an interconnection of regulatory circuits at molecular levels. The 
molecular mechanism includes controlling of transcription by transcriptional fac-
tors; RNA transporting, which is responsible for the posttranscriptional control of 
RNA; chromosomal remodeling; controlling of protein translation through signal 
transduction network; and posttranslational modifications, such as phosphorylation 
and acetylation (Thompson et al. 2015). Measuring the interactions between these 
molecular components is very difficult, but the advances made in the past two 
decades to precisely measure these components have enabled large-scale measure-
ments of gene expression at steadily decreasing costs. With this data, the reconstruc-
tion of the molecular systems can be done using computational techniques, and the 
interaction underpinning patterns of gene expression can be easily interpreted 
(Vijesh et  al. 2013). Interactions among the molecular components of the living 
systems are collectively known as gene regulatory network (GRN) models. Most of 
the biological models help in understanding the pathogenicity of the organisms, 
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ODE-based modeling are based on kinetic parameters describes PHI phenomeno-
logically and does not consider the molecular mechanism (Hecker et al. 2009).

GRNs describe the logic of mode of infection by pathogens, adaption of patho-
gens to their hosts, and defense mechanism of hosts against pathogens. It is very 
difficult to reconstruct GRNs based solely on gene expression data. Proposed 
reverse engineering methods include those based on Boolean networks, Bayesian 
networks, differential or difference equations, and graphical Gaussian models that 
integrate gene expression data to better curate models (Hecker et  al. 2009; Chai 
et al. 2014). In plant system, only few literatures based on GRN are available. Varala 
et al. (Varala et al. 2018) applied GRN to understand the temporal transcriptional 
logic underlying dynamic nitrogen (N) signaling in plant. The time series transcrip-
tome analysis showed the dynamics of nitrogen signaling by a temporal cascade of 
cis elements. Recently, Ikeuchi et al. (Ikeuchi et al. 2018) used enhanced yeast one-
hybrid (eY1H) screen to build GRN models, systematically showing the regulations 
between transcription factors and promoters. Also they showed that wound/hor-
mone secretion invokes cross talks between genes and thereby regulates the com-
mon reprogramming-associated genes via multilayered regulatory cascades.

19.8	 �Protein-Protein Interaction Network Modeling in PHI

In recent years, the molecular structure and function of gene and proteins and their 
relationships are studied thoroughly, leading to a better identification of intra- and 
interspecies protein-protein interaction networks. Several characteristic features of 
PHIs, such as adhesion, colonization, and even invasion, can be interpreted through 
protein interaction map/protein-protein interaction (PPI) (Zhou et al. 2014). It has 
been observed that the PPI data used to predict the intra-species may not be appli-
cable for interspecies host-pathogen PPIs. Several approaches of PPIs for under-
standing the PHI have been proposed among species. PPIs are broadly categorized 
into homology-based approach, structure-based approach, domain-motif interaction-
based approach, and machine learning-based approach (Shao et al. 2012). Generally 
the protein-protein interaction network (PIN) is mathematically represented in the 
form of graphs where nodes symbolize proteins and edges connect the interacting 
protein pairs (Colizza et al. 2005). Interestingly it was observed that the datasets 
available for interaction show a similar nontrivial topological structure of the net-
works, defining a broad connectivity distribution P(k); i.e., the probability that any 
given protein interacts with k other proteins. This kind of pattern gives large hubs 
defining the nodes which have large number of connectivity leading complex archi-
tecture supporting nontrivial correlation and hierarchical features in network topol-
ogy (Yook et  al. 2004; Ravasz and Barabasi 2003; Maslov and Sneppen 2002). 
These features are shared among many biological networks that appear to have 
recurrent architectural principles that might point to common organizational mecha-
nisms (Ravasz and Barabasi 2003; Dorogovtsev and Mendes 2002). A detailed 
review by Zhang et  al. (Zhang et  al. 2010) describes the importance of protein-
protein interaction in the regulation of plant developmental, physiological, and 
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pathological processes. Zhu et  al. (Zhu et  al. 2016) developed a protein-protein 
interaction database of maize plant. The architecture of gene regulatory networks 
and protein-protein interactions is shown in Figs. 19.5a and b, respectively.

19.9	 �Conclusion

With the advancement in omics technology, a huge amount of data is generated on 
genomics, transcriptomics, proteomics, and metabolomics. These data can be easily 
interpreted with computational biology techniques, which help in understanding the 
regulations between the gene and perturbation in the external environment. Further 
these tools are very useful in predicting the interactions between the pathogens and 
the hosts. With the application of flux balance analysis, it is possible to understand 
the genotype-phenotype relationship between the organisms. GRN modeling and 
protein-protein interaction-based modeling show the regulations of molecular 
mechanisms between the hosts and the pathogens. Systems biology has provided a 
better way to understand pathogenicity and drug discovery.

Fig. 19.5  (a) Gene regulatory network using gene expression data. (b) Protein-protein interaction 
modeling using proteomic data
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