
Chapter 43
ANFIS-Based Subtractive Clustering
Algorithm for Prediction of Response
Parameters in WEDM of EN-31

Kunal Chopra, Aishwarya Payla, Guneet Kaur
and Eswara Krishna Mussada

Abstract Wire electrode discharge machining (WEDM) is an accurate but an
expensive and time-consuming process. In order to establish a stable connection
between input and output variables, implementation of soft computing techniques
can be useful. Therefore, the current study focuses on comparing adaptive
neuro-fuzzy inference system (ANFIS)-based subtractive clustering algorithm with
numerous input combinations as well as multivariate regression models in order to
simulate and map the output variables with the process parameters used during
experimentations, namely pulse-on time (Ton), servo voltage (Sv), wire feed (Wf),
and wire tension (Wt). Results show that ANFIS models have the ability to estimate
the edge roughness (Er) and kerf width (Kw) more accurately with 96.2 and 97.3%
accuracy. ANFIS model is more reliable, accurate, and productive as it uses the
learning of neural networks to predict. Also, the developed model has been used to
study and explain the effect of various input variables upon the quality of
machining. High pulse-on time directly decreases the quality increasing the edge
roughness and kerf width which are both undesirable. Low wire feed has shown to
decrease both the response parameters regardless of other input parameters. Wire
tension has shown much less significant effect as compared to the other three
variables.
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43.1 Introduction

Manufacturing industry all around the world is focusing on improving quality even
for intricate geometries but not at the expense of high cost. The issue of high forces
generated in traditional machining processes has been overcome by the advent of
non-conventional machining processes which removed the contact between the tool
and workpiece and hence reducing contact and frictional stresses. Wire electrode
discharge machining (WEDM) is one of the advanced machining process which
uses electro-thermal process for machining conductive materials. A thin metal wire
as the electrode removes the material by melting and vaporization of workpiece
material [1]. Continuously flowing dielectric fluid ensures the flushing of debris
thus formed from the workpiece surface. The spark erosion process used for
material removal in WEDM makes it possible to machine even the hard materials.
Since there is no contact between tool and workpiece surfaces, friction does not
come into play and hence residual stresses generated at the cutting zone are low.

Mahapatra et al. [2] through the study of different input variables including
pulse-on time (Ton), pulse frequency, discharge current, wire speed, wire tension
(Wt) and dielectric flow on the surface finish, and kerf width (Kw) found discharge
current, pulse duration, and dielectric flow rate to be the most influential parameters
for minimization of surface roughness and kerf width in rough cutting operations.
Kumar et al. [3] found IP (peak current), Ton, Toff, and Wf to have effect on the
surface finish in that order while WEDM of high-speed steel (HSS) through
zinc-coated wire. Sharma et al. [4] did the experimental study followed by
parameter optimization on WEDM and found out that Ton majorly affects the
response parameters such as surface roughness (Sr) and Cr. Experimental investi-
gation done by Garg et al. [5] focused on machining Al/10% ZrO2(P) metal matric
composite by WEDM. They studied the effect of the input parameters on surface
roughness (Sr) and cutting velocity (CV). Machining parameters such as pulse
width, short time pulse and time between pulses were found to affect both the
response parameters most. Servo control mean reference voltage was observed to
have similar significance on affecting the response parameters. Fard et al. [6]
machined AlSiC metal matrix composite to study the effect of Ton, Toff, Wf, Wt, Sv,
and discharge current on Sr and cutting speed by applying ANOVA to the exper-
imental results. In his study, Ton and discharge current were found to be the most
significant factors influencing the studied targets while Wt had the least impact.
Parmanik et al. [7] processed duplex stainless steel in WEDM and observed that
increasing Ton did not have a linear effect on Kw and craters along with resolidified
molten were noticed on the machined surface. Tosun et al. [8] analyzed the crater
sizes formed due to 0.25 mm diameter brass wire under different cutting parame-
ters. It was concluded that pulse duration and open-circuit voltage have adverse
effect on crater [8]. Chopra et al. [9] found low Ton and Sv to be the important
parameters to minimize edge roughness (Er) while machining EN-31 through
WEDM.
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Regression is a statistical approach to establish a relationship between two sets
of variables, dependent variables and the independent variables. Regression can
further be multivariate regression or multiple regression. Multivariate regression
refers to estimating more than one output variable using single regression model
and when multivariate regression consists of more than one predictor variable it
refers to multivariate multiple regression. Majumder et al. [10] studied the impact of
pulse-on time, pulse-off time and wire feed on kerf width (Kw), Sr, and material
removal rate (MRR). They developed general regression neural network (GRNN)
and multiple regression models for prediction and comparison of studied key
machinability aspects. Maher et al. [11] performed experiments to study the impact
on CNC WEDM response parameters like cutting speed, surface roughness, and
white layer thickness while machining titanium alloy grade 5(Ti6Al4V). Their
study involves development of a regression model to study the effect of perfor-
mance index on the machinability aspects studied. In order to increase the pro-
ductivity and accuracy of the machining of super alloy, Udimet-L605 done by
WEDM, Nain et al. [12] developed linear regression model to understand the
relation between input and output parameters followed by application of particle
swarm optimization (PSO), concluding Ton to be the most impacting factor on Cr.

Artificial neural networks were introduced to simulate the neural structure
similar to brain by establishing a relationship between I/O data during training
phase which could be recalled during the verification or optimization process [13].
In ANN algorithms, each processing element or neurons can reproduce the bio-
logical NN having numerous inputs and a single output considering certain
assumptions and constraints. ANN is an effective technique which can approximate
with high precision even nonlinear functions [14] but the efficiency is constrained to
problem under consideration [15]. Ramakrishnan et al. [16] designed an ANN
model using back-propagation algorithm to predict the characteristic parameters,
namely MRR and Sr, of CNC WEDM while machining Inconel 718. Optimization
was done using multi-response signal-to-noise ratio (MRSN) and analysis of
variance (ANOVA) was applied to determine the level of impact of the response
parameters.

Adaptive neuro-fuzzy inference system (ANFIS) combines ANN with fuzzy
modeling thus capturing benefits of both techniques in one framework only. It
provides a means to map the input–output data relations. Yilmaz et al. [17]
developed a fuzzy model that allowed precise selection of EDM parameters using
if-then. Fuzzification was done by triangular membership function while defuzzi-
fication process was then carried out by centroid area method in order to obtain
minimum electrode wear and better surface quality. Maher et al. [18] applied
ANFIS to predict the value of white layer thickness (WLT) in WEDM and obtained
an accuracy of 97.39%. Maher et al. [19] successfully designed ANFIS model for
the selection of optimum machining parameters with the objective of achieving
higher productivity at the highest possible surface quality and sustainable devel-
opment at minimum cost.
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Present study is conducted with the objective of investigating the effect of four
input parameters, pulse-on time, servo voltage, wire tension, and wire feed on the
machining performance of die steel EN-31 and to develop both multivariate
regression and ANFIS model to predict and improve the output parameters, viz.
edge roughness (Er) and kerf width (Kw). EN-31 alloy steel has a number of
applications in manufacturing industry due to its outstanding wear resistance and
high load-carrying capacity. There is limited literature available on the prediction
and optimization of Kw; however, no study has been carried out for prediction of Er

while machining through WEDM.

43.2 Experimental Work

The experiments were conducted on “Electronica Wire-cut Electric Discharge
Machine” which can cut with speeds upto 230 mm2/min and workpiece of heights
up to 250 mm can be held in its clamp. Out of many wires available for cutting
operation, brass wire having a diameter of 250 µm was used which provides better
integrity of surface while conducting current. Deionized water is a proven dielectric
to provide a good conducting sphere of influence while machining and hence was
used in our experimentations.

Four machining parameters, namely pulse-on time (Ton), servo voltage (Sv), wire
tension (Wt), and wire feed (Wf), were selected in this study for investigating the
effect on edge roughness and kerf width. These parameters were identified on the
basis of literature survey and pilot experimentation to maintain the appropriate
spark gap. Ton and Sv were scrutinized at three levels while Wf and Wt were scru-
tinized at two levels on the basis of economic impact of changing the parameters.
Duty factor for the machine was kept at 0.7. A general full-factorial design for
experimentation was used for studying the effect of each parameter on performance.
Table 43.1 shows the control parameters and their levels along with the other
parameters that were kept constant throughout the machining operation.

The crests and troughs formed along the edge were the result of craters and
irregularities formed due to the rapid melting and re-solidification of material. The
accuracy of machined component is a direct measure of kerf width and edge
roughness which were measured at several locations along the machined edge by
“Olympus optical microscope” as shown in Fig. 43.1 and averaged over all the
readings for each experiment. Each machined specimen was cleaned with acetone
before observing under the optical microscope.

500 K. Chopra et al.



43.3 Modeling Approach

Regression analysis has been used to map the input and output variables in order to
obtain a function which could predict the response measures on the basis of given
input values. Since the ranges of our parameters are not consistent and hence
weights were required, instead, techniques like feature scaling, normalization, and
polynomial feature scaling were applied as a part of data preprocessing step. It is
usually done using Min-Max scaling method, which is the simplest method of all
and consists of rescaling the range of features in range of [−1, 1]. Equation (43.1)
shows the formula used. Platform used for this project is Jupyter Notebook and
programming language was Python. Scikit-learn is a popular open-source library
used to implement machine learning and perform statistical analysis in Python. It
features various classification, regression, and clustering algorithms and is designed
to interoperate with the Python numerical and scientific libraries NumPy, SciPy,
and Pandas.

x0 ¼ x�min xð Þ
max xð Þ �min xð Þ ð43:1Þ

After that, polynomial feature transformation was applied for both degree 2
polynomial and degree 3 polynomial. It helped find relationship between different
dependent variables and their impact on independent variables, Er and Kw. Cubic
polynomial regression helped improve the R score from 67 to 94% for both of our
response variables which is more accurate than linear regression. The function
obtained for Kw and Er are depicted in Eqs. (43.2) and (43.3).

Table 43.1 Control and constant parameters

Parameters Level-1 (low) Level-2 (medium) Level-3 (high)

Ton (µs) 100 110 120

Sv (V) 20 40 60

Wf (m/min) 5 8 –

Wt (g) 660 g 1140 g –

Wire diameter 250 µm – –

Constant machining parameters

Wire material Standard brass

Peak current 12 (fine pulse and 2 power pulses ON)

Peak voltage 11

Cutting speed override 25%

Duty cycle 0.70

Servo feed 10 mm/min

Dielectric fluid De-ionized water
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kw ¼ �2:50e� 10ð Þþ �192:45ð Þx1þ �2165:67ð Þx2þ 554:52ð Þx3þ �7:49ð Þx4
þ �48:36ð Þx12 þ 6677:44ð Þx1x2þ �1715:03ð Þx1x3þ 79:42ð Þx1x4
þ �754:35ð Þx22 þ �725:72ð Þx2x3þ �233:69ð Þx2x4þ 554:52ð Þx32
þ �159:07ð Þx3x4þ �7:49ð Þx42 þ 94:92ð Þx13 þ �3708:53ð Þx12x2
þ 2081:60ð Þx12x3þ �222:51ð Þx12x4þ �125:49ð Þx1x22 þ 575:63ð Þx1x2x3
þ �854:05ð Þx1x2x4þ �1950:18ð Þx1x32 þ 895:14ð Þx1x3x4
þ 115:820ð Þx1x42 þ 439:84ð Þx23 þ 118:36ð Þx22x3þ �11:80ð Þx22x4
þ �35:93ð Þx2x32 þ 213:71ð Þx2x3x4þ 605:77ð Þx2x42
þ 554:52ð Þx33 þ �210:62ð Þx32x4þ �355:05ð Þx3x42 þ �7:49ð Þx43

ð43:2Þ

Er ¼ ð6:68409772e� 13Þþ ð44:15Þx1þð95:005Þx2þð47:19Þx3þð�10:25Þx4
þð�2:44Þx12 þð�310:30Þx1x2þð�165:98Þx1x3þð62:73Þx1x4þð36:996Þx22
þð59:24Þx2x3þð8:78Þx2x4þð47:19Þx32 þ �33:66ð Þx3x4þ �10:25ð Þx42
þ �48:77ð Þx13 þ 236:87ð Þx12x2þ 207:42ð Þx12x3þ �156:19ð Þx12x4
þ �34:74ð Þx1x22 þ �127:937ð Þx1x2x3þ 34:075ð Þx1x2x4
þ �198:43ð Þx1x32 þ 216:10ð Þx1x3x4þ 65:22ð Þx1x42 þ �12:088ð Þx23
þ 8:95ð Þx22x3þ 13:79ð Þx22x4þ 42:10ð Þx2x32 þ �21:76ð Þx2x3x4
þ �28:67ð Þx2x42 þ 47:19ð Þx33 þ �41:62ð Þx32x4þ �55:87ð Þx3x42 þ �10:25ð Þx43

ð43:3Þ

where x1, x2, x3, and x4 are the independent variables (Ton, Sv, Wf, and Wt,

respectively) along with the regression coefficients.
ANFIS model exploits the capability of learning by neural network in order to

establish a relationship between input–output parameters which uses fuzzy rules.
Due to high variability in the input variables, subtractive clustering algorithm was
used for fuzzy rule determination process which checks each and every data point
for potential cluster center and the point with highest density in its vicinity is
considered as the cluster center with readings outside the range of influence of that
center being excluded and are again checked for potential of being a cluster center.
It is an iterative process that runs until all points lie within the range of influence of
a cluster center. Subtractive clustering approximates the function as a generalized
bell curve and determine the number of rules and membership functions. Since the
number of centers to be created for the distribution of data was not clear, automated
algorithm of subtractive clustering and fuzzy rules were used. Similar to feature
scaling, the data were first normalized as ranges for our variables are not same. In
normalization, mean is involved when standardizing the data as shown in the
equation below:
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x0 ¼ x� average xð Þ
stdev xð Þ : ð43:4Þ

The data were then trained using the MATLAB’s ANFIS toolkit using sub-
tractive clustering as an FIS technique having 0.5 s the range of influence using the
hybrid training algorithm. The structure with four input and single output param-
eters formed a structure containing 30 input membership functions and fuzzy rules
as shown in Fig. 43.1. The membership functions and parameters obtained are
shown in Table 43.2. Training error for Er and Kw came out to be 2.16e–7 and
1.51e–7, respectively. The trained model was used to test the data and predict for
randomly selected readings as mentioned in Sect. 43.4.

43.4 Results and Discussion

Effect of machining parameters on Er and Kw is shown in Figs. 43.2 and 43.3. With
the rise in Sv and Ton values roughness is found to be increasing. While wire tension
at higher Sv values and wire feed has negligible effect on the roughness. Higher
values of wire tension reduce the vibration in the wire thus maintaining the spark
gap required for the machining process. The reduced vibrations give more inter-
action time to electrode with the workpiece thus utilizing the energy available for
material removal and forming larger number of craters on the surface. At higher
gap, voltage energy density is more resulting in more rapid vaporization and hence
localized material removal takes place at the cutting edge which leads to higher

Fig. 43.1 a Experimental setup, b kerf width measurement, and c microscopic image of machined
surface at Ton = 110 µs, Sv = 60 V

Table 43.2 Information of
the trained ANFIS model

Number of nodes 307

Number of linear parameters 150

Number of nonlinear parameters 240

Number of training data pairs (membership functions) 30

Number of fuzzy rules 30
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roughness. As the pulse duration increases, discharge energy around the wire
intensifies. Due to more energy available at the spark zone, deep craters are formed
which contribute to the roughness of the cutting edge.

Kerf width depends on the radius of effective spark gap. With the rise in Sv spark
energy increases, this increases accounts for a wider spark gap and hence higher
kerf width values. Kerf width was found to be increase with Ton. As at higher Ton
values, more electrons from the wire comes in contact with the neutral particles of
dielectric fluid. This interaction magnifies the ionization effect which causes more
material to vaporize. While wire tension is not affecting the kerf much, wire feed at
lower Sv and Ton values decreases the kerf. This can be accounted to the inability of
wire to maintain least required spark gap for conduction when the vibrations in the
wire are more at higher feed. When more discharge energy is available, increase in
vibrations results in widening the gap further.

43.5 Model Verification

Six random readings were selected to test the models generated by both the
methods. First, they were put into the relation obtained from multivariate regression
and each output value was compared with experimental value and a prediction error
was calculated for both Er and Kw as shown in Tables 43.3 and 43.4. Average error,
Eavg was measured by the following formula:

Fig. 43.2 Modeled edge roughness by ANFIS w.r.t a wire feed and servo voltage, b wire tension
and servo voltage, and c wire feed and pulse-on time

Fig. 43.3 Modeled kerf width by ANFIS in w.r.t. a wire feed and servo voltage, b wire tension
and servo voltage, and c wire feed and pulse-on time
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Eavg ¼ 1
m

Xm

i¼1

Ei: ð43:5Þ

where Ei = error of sample number i an m is the total number of samples.

Ei ¼ jExperimental� Predicted
Experimental

j ð43:6Þ

The errors in multivariate regression model came out to be 15.1 and 5.3% for Er,
and Kw, respectively. The same six readings were then predicted with the ANFIS
model and again a prediction error was measured. ANFIS model predicted the
output with an error of 3.8 and 2.7% for Er and Kw, respectively. Figure 43.4 shows
the comparison of measured and predicted values of test data in ANFIS model.
These low values of average error show that the ANFIS model developed is ade-
quate to predict the studied response parameters, Er and Kw. However, the average
prediction error obtained through multivariate regression model for Er and Kw are
quite high when compared with ANFIS model and is thus, not capable of predicting
the machinability aspects accurately.

Table 43.3 Comparison of experimental and predicted responses of Er for test data

Machining parameters Response parameters Predictive error

Ton Sv Wf Wt Experimental ANFIS Regression ANFIS Regression

100 40 8 1140 8.09 8.44 6.91 0.043 0.147

100 60 8 660 11.61 10.97 15.09 0.054 0.301

110 40 5 660 10.49 10.79 11.22 0.028 0.069

110 60 5 1140 10.81 10.63 11.43 0.017 0.057

120 20 8 1140 10.12 9.82 10.98 0.030 0.084

120 20 5 1140 9.38 9.90 7.04 0.055 0.249

Eavg 0.038 0.151

Table 43.4 Comparison of experimental and predicted responses of Kw for test data

Machining parameters Response parameters Error

Ton Sv Wf Wt Experimental ANFIS Regression ANFIS Regression

100 40 8 1140 302.689 299.811 302.689 0.009 0.055

100 60 8 660 292.041 297.377 292.041 0.018 0.002

110 40 5 660 271.998 288.615 271.998 0.057 0.129

110 60 5 1140 325.289 316.444 325.289 0.027 0.033

120 20 8 1140 331.386 325.799 331.386 0.016 0.003

120 20 5 1140 311.654 322.612 311.654 0.035 0.095

Eavg 0.027 0.053
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43.5.1 Analysis of Machining Variables

Analysis of variance (ANOVA) was performed to determine significance of each
machining parameters on both the responses. Er is most influenced by servo voltage
followed by Wt, Wf, and Ton as can be seen from Table 43.5 below, whereas
Table 43.6 shows that Ton and Wf are the most and least important parameters,
respectively, for affecting the kerf.

Main effects plots for the mean of Er and Kw were also plotted using MiniTab
software. Figure 43.5a shows the relation of Er with the various machining
parameters. Roughness is increasing with the increase in Wt, Sv, and Ton but is
inversely dependent on the Wf, while Kw is seen to be directly dependent on all the
input parameters.

Fig. 43.4 Measured vs. predicted values for a edge roughness and b kerf width

Table 43.5 ANOVA table
for mean w.r.t. Er

Source DF Adj SS Adj MS F-value P-value

Ton 2 2.565 1.282 0.3 0.745

Sv 2 56.17 28.087 10.39 0

Wf 1 14.83 14.827 3.86 0.058

Wt 1 1.489 1.489 0.35 0.557

Table 43.6 ANOVA table
for mean w.r.t. Kw

Source DF Adj SS Adj MS F-value P-value

Ton 2 7344 3671.9 16.83 0

Sv 2 2023 1011.6 2.67 0.084

Wf 1 267.3 267.3 0.64 0.43

Wt 1 729.7 729.7 1.8 0.189
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43.6 Conclusion

Manufacturing Industry has a socio-economic responsibility in providing quality
products keeping the costs incurred as low as possible. This has driven many
researchers to look for best set of machining conditions. A full-factorial design has
been used for experimentations upon which predictive models were built through
multivariate regression and ANFIS. ANFIS model was able to predict with an
accuracy of 96.2 and 97.3% for Er and Kw, respectively, which is higher than that
obtained by regression model. Surface plots from ANFIS show that high Ton values
increase the Er significantly. High Wt also increased the roughness on edges.
Similarly, increasing Ton and Sv increased the Kw. Lower wire feed value was able
to decrease the Kw even at high Sv and Ton. These inputs cannot be kept too low as
productivity is again a matter to be considered while production and hence a
trade-off is necessary while deciding the input variables for any machining process.
Further work can include finding the most optimum input variables which could
give highly efficient process.
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