
Chapter 4
Lattice Boltzmann Method for Acoustics
Levitation

Xiao-Peng Chen

Abstract In this chapter, a novel computational method for flow, lattice Boltzmann
method, is introduced. We first present the fundamentals and general implements
of the method, followed by non-reflective boundary condition techniques, which is
important for acoustic simulations. The von Neumann analysis shows lattice Boltz-
mann method is promising for acoustic simulations. In the latter part of this chapter,
we present the applications of lattice Boltzmann method on sound phenomena, such
as aeroacoustics, non-linear sound effect and acoustic levitation.

4.1 Introduction

Sound generation and propagation have inherent fundamentals of fluid dynamics,
where the media carrying sound waves is considered as a compressible fluid. It is
shown that the simplest wave equation can be derived from the governing equations
of fluid dynamics (Navier–Stokes/N–S equations) with the assumption of extremely
small density and velocity fluctuation [1]:

∂2φ

∂t2
− c2∇φ = 0. (4.1)

In the equation, φ denotes velocity potential: u′ = −∇φ, and c = √(∂p/∂ρ)s is
speed of sound. The disturbed pressure is p′ = −ρ0∂φ/∂t . It is also revealed that
acoustic energy is propagated with sound wave: E = 1

2ρ0u′2+ 1
2
c2ρ ′2
ρ0

. In this chapter,
we denote the deviations of the respective quantities from their equilibrium values,
which are denote with the subscript “0”, by using primed letters. Non-linear effects
can be further explored by taking account of the second-order terms (O

(
M2
)
, M =∣∣u′∣∣/c) in the N–S equations [2]. Burger’s equation is applicable (in one-dimensional

space):
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∂u′

∂t
+ u′ ∂u

′

∂x
= ν

∂2u′

∂x2
, (4.2a)

which successfully predicts the occurrence of shockwave from a sinusoidal wave,
and ν is viscosity. The last term on the right-hand side represents a dissipation effect.
Combined with mass conservation equation, it can be recast as

∂2u′

∂t2
−
(
c2 + ν

∂

∂t

)
∂2u′

∂x2
= 0. (4.2b)

Although the linear sound theory achieves great successes in sound prediction, the
mechanical fundamentals of sound are still worthy of studying in many complicated
situations. One of the notable subjects is aeroacoustics, which normally refers to the
study on noise generation via either turbulent flow or aerodynamic forces interact-
ing with surfaces. The topics include the aeolian tones produced by wind blowing
over fixed objects. Starting from N–S equations, the celebrated Lighthill equation of
aeroacoustics is derived without any additional assumptions:

∂2ρ

∂t2
− c20∇2ρ = ∇∇:T , (4.3)

where T is the Lighthill stress tensor (second-order tensor). The last term in the
equation is the source term, which can also includemonopole, dipole and quadrupole
motions of the fluid depending on flow conditions [3–5]. On the other hand, almost
all the studies on non-linearity of sound phenomena root in N–S equations, while
different mathematical approaches are applied [6, 7].

Therefore, well-developed numerical methods on fluid dynamics, known as Com-
putational Fluid Mechanics (CFD), are supposed to be valuable in acoustic studies.
In this chapter, lattice Boltzmann method, a promising numerical method, is to be
introduced, and its applications on acoustics and acoustic levitations will be included
as well.

4.2 Fundamentals on Lattice Boltzmann Method (LBM)

4.2.1 Governing Equations and Mathematics

It has been realized that the particle dynamics in a massive system can be applied to
recover fluidflow.For these particle systems, various numerical approaches are devel-
oped, such as smooth particle hydrodynamics (SPH), molecular dynamics (MD) and
moving particle semi-implicit method (MPS). A slightly different method is lattice
Boltzmann method (LBM), which could be obtained from the classical Boltzmann
equation (Fig. 4.1):
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∂ f

∂t
+ e · ∂ f

∂x
+ a · ∂ f

∂e
= −1

τ
( f − f eq), (4.4)

where f (x, e, t) denotes the particle population (or velocity distribution function)
with microscopic velocity e at position x and time t (see Fig. 4.2a, b), and a is the
acceleration due to forces exerted on the particles. The first two terms on the left-hand
side show a propagation process. On the right-hand side, we use BGK assumption,
named after Bhatnagar, Gross andKrook. TheBGKassumption implies f approaches
the Maxwell-Boltzmann distribution, f eq, after a large number of collisions preserv-
ing mass, momentum and kinetic energy conservation [8, 9]. τ is a relaxation time,
which reflects the strength and frequency of the collisions and determines the vis-
cosity of the fluid (to be shown in the rear part of this subsection). Therefore, this
method is essentially a partial differential equation-based method, although it has
strong particle kinetics background.

For computer-aided calculations, a discretization process is implemented as in
Fig. 4.2c. The lattice shown has three major contents: the geometry of the control
volume, the discrete microscopic velocity set (see ei in the panel) and time step (δt).
In standard LBM, it is supposed that the particle will jump to the neighbouring point
at x + eiδt in each time step. For convenience, δt = 1 and the size of the lattice are
chosen as the units of time and length, respectively. Equation (4.4) is then discretized
(ignoring the volumetric force term) as

fi (x + eiδt, t + δt) − fi (x, t) = −1

τ

(
fi (x, t) − f eqi

)
, (4.5)

and the corresponding Maxwell distribution is

Fig. 4.2 Discretization of a particle system. a A particle system. The particles walk randomly,
freely without interactions except when they collide with each other. b A volume element in the
particle system. The space is discretized accordingly. c The microscopic velocity in panel (b) is
discretized into nine velocities (ei, i = 0, 1, 2 … 8) according to the lattice model chosen. Since
two-dimensional space and nine discretized microscopic velocities are chosen, it is named as D2Q9
lattice. f i denotes the particle population with microscopic velocity ei
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f eqi (ρ, u) = ωiρ(x)

[
1 + 3

ei · u
c2

+ 9(ei · u)2

c4
− 3u2

2c2

]
. (4.6a)

The local macroscopic quantities can be easily assembled from the moments of
fi : density ρ = ∑

i fi and momentum ρu = ∑
i fi ei . c = 1/

√
3 is the speed of

sound on D2Q9 lattice, and

ωi =
⎧
⎨

⎩

4/9, i = 0
1/9, i = 1, 2, 3, 4
1/36, i = 5, 6, 7, 8.

(4.6b)

Equation (4.5) is a typical LB equation. On numerical side, the calculations can
be implemented quite easily, and that is one of the important reasons that LBM is
applied in many fields explosively [10, 11].

The Chapman-Enskog expansion can be applied to recover N–S equations from
Eqs. (4.5) and (4.6). To do so, we first introduce a multi-scale expansion:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (4.7)

∂t = ∂t0 + ε2∂t1, ∂α = ε∂α0. (4.8)

The subscripts t and α denote the derivatives with respect to time and position,
respectively, and ε is a small number proportional to Knudsen number (the ratio
between the mean free path of the particles and the characteristic length of the
problem). Conduct Taylor expansion on Eq. (4.5) and use (4.8).

fi (x + eiδt, t + δt) − fi (x, t)

=
[
∂t fi + eiα∂α fi + 1

2

(
∂2
t fi + 2eiα∂t∂α fi + eiαeiβ∂β∂α fi

)]
δt

=
⎡

⎢
⎣ε (∂t0 + eiα∂α0)︸ ︷︷ ︸

D(0)
i

fi + ε2∂t1 fi +

1

2
ε2δt

(
∂2
t0 + 2eiα∂t0∂α0 + eiαeiβ∂β0∂α0

)
fi + · · ·

]
δt

=
[
εD(0)

i fi + ε2∂t1 fi + ε2
δt

2
D(0)2

i fi + · · ·
]
δt. (4.9)

In the equation, Einstein’s notation is used. Substituting (4.9), (4.7) to (4.5), we
can get the following cascaded equations with the consideration of the coefficients
of each order of ε:

ε0:0 = f (0)
i − f eqi , (4.10)
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ε1:D(0)
i f (0)

i = − 1
τδt f

(1)
i , (4.11)

ε2:∂t1 f (0)
i + D(0)

i f (1)
i + δt

2

[
D(0)

i

]2
f (0)
i = − 1

τδt f
(2)
i . (4.12)

On the other hand, it is easy to known

∑

i

f (0)
i =

∑

i

f eqi = ρ

∑

i

f (0)
i ei =

∑

i

f eqi ei = ρu, (4.13a)

and

∑

i

f (k)
i = 0,

∑

i

f (k)
i ei = 0, k > 0. (4.13b)

Multiplying Eq. (4.11) by 1 and ei , respectively, and taking summation over i, we
can obtain the mass and momentum equation at the order of ε1:

∂t0ρ + ∂α0(ρuα) = 0, (4.14)

∂t0(ρuα) + ∂α0 π
(0)
αβ = 0, (4.15)

where π
(0)
αβ = ∑

i eiαeiβ f (0)
i = ρuαuβ + pδαβ is the zeroth-order momentum flux

tensor, and δαβ is Kronecker delta, p = c2ρ, respectively (please refer to Refs. [9,
10] for details). Equations (4.14) and (4.15) are Euler equations.

On ε2 level, it can be easily derived following the above process:

∂t1ρ = 0, (4.16)

∂t1(ρuα) +
(
1 − 1

2τ

)
∂α0 π

(1)
αβ = 0, (4.17)

where π
(1)
αβ = ∑

i
eiαeiβ f (1)

i . To obtain the macroscopic meaning of π
(1)
αβ , (4.11) is

treated

− 1

τδ

∑

i

eiαeiβ f (1)
i = ∂t0

∑

i

eiαeiβ f (0)
i + ∂γ 0

∑

i

eiαeiβeiγ f (0)
i

= ∂t0
(
ρuαuβ + c2ρδαβ

)+ ∂γ 0
[
c2ρ
(
uαδβγ + uβδγα + uγ δαβ

)]

= c2
[
∂t0ρ + ∂γ 0

(
ρuγ

)]
δαβ + uβ[∂t0(ρuα) + ∂α0 p]

+ uα

[
∂t0
(
ρuβ

)+ ∂β0 p
]+ c2ρ

[
∂α0uβ + ∂β0uα

]
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= c2ρ
[
∂α0uβ + ∂β0uα

]− ∂γ 0
(
ρuαuβuγ

)

= c2ρ
[
∂α0uβ + ∂β0uα

]+ O
(
M3), (4.18)

whereM is Mach number. Further using the results in (4.14) and (4.15), (4.18) leads
to

π
(1)
αβ = −τpδt

(
∂α0uβ + ∂β0uα

)
, (4.19)

after neglecting the O
(
M3
)
term.

Finally, we combine the equations on ε1 and ε2 scales and get the hydrodynamic
equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.20)

∂(ρuα)

∂t
+ ∇(ρuu) = −∇ p + ∇ · [ρν

(∇u + ∇uT
)]

. (4.21)

They also show the kinematic viscosity

ν = c2
(

τ − 1

2

)
δt. (4.22)

As amatter of fact, in both (4.6) and (4.19), we use lowMach number assumption,
which is fortunately the usual situation for acoustic phenomenon. On the other hand,
with lowMach number condition, LBM is considered as a semi-incompressible flow
solver.

4.2.2 Implement of LBM Simulation

In Eq. (4.5), only one relaxation time (τ ) is presented for all fi ’s relaxation and the
approach is named as single relaxation time (SRT) LBM. The calculation generally
goes in two steps:

f +
i (x, t) = fi (x, t) − 1

τ

(
fi (x, t) − f eqi (ρ, u)

)
, (4.23a)

fi (x + ei�t, t + δt) = f +
i (x, t), (4.23b)

where the first one is collision step and the second one streaming step. The code is
then organized as follows:
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STEP 1: Initiate fi on each grid node.
STEP 2: Calculate ρ, u (the moments of fi ) according to fi .
STEP 3: Calculate equilibrium states, f eqi (ρ, u), according to (4.6a).
STEP 4: Implement collision step according to (4.23a).
STEP 5: Swap fi between neighbouring grids following (4.23b).
STEP 6: Return STEP 2, if the stop criterion is not reached. Otherwise

terminate the calculation.

The superior features of LBM will be introduced in the next section. Besides
that, a well-proposed boundary condition should be applied in capturing acoustic
phenomenon in numerical simulations. That is because the computational domain is
usually truncated. In many acoustic simulations, the disturbance/sound propagated
from the domain inside should penetrate the boundary without reflection, because
the reflections could be of the same order as the real sound waves and contaminate
the results [12]. The well-developed non-reflecting boundary conditions (NRBC)
in traditional CFD can be applied in LBM. Although they must not be applica-
ble, some of them do show great successes. Following the traditional classification,
there are three categories of NRBC: open boundary (extrapolation method, EMBC),
characteristics-based boundary condition (NSCBC) and absorbing layer boundary
condition (ABC).

EMBC possibly was first proposed to remove the apparent influences of bound-
aries on flow field when the computational domain is truncated. In these domains, the
influences of the model on the flow are hardly dissipated at the far end of the domain.
For instance, the shedding vortex can reach the outlet boundary periodically in flow
around a cylinder (see Fig. 4.3). Therefore, the quantities on the boundary are actu-
ally unknown for the calculations, leading to inapplicability of fixed velocity/pressure
boundary condition.On inlet side, a poor-posed condition could lead towrong results.

Fig. 4.3 An imaginary computational domain, where fixed pressure/velocity boundary condition
cannot be applied on the outlet. The wavy arrows indicate the direction of flow information prop-
agating. They could be from inside the domain (thick) or outside (thin) in real flow. The later one
should be designed/modelled because it is unknown in calculations
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Table 4.1 EMBC used by Chen [13]. The subscripts “I”, “O” denote inlet and outlet of the domain,
respectively

Boundary Prescribed quantity on the boundary Extrapolated quantity on the boundary

Inlet uI = U
ρI = ρn

I = ρ̄n + αI ρ
n−1
I

1+ αI

Outlet
pnO = pn−1

O + ρc
(
ūnn − ūn−1

n
)+ αO� t P

1+ αO� t
unO = ūn

The overbars represent extrapolated variables, and the capitals are prescribed ones. The superscripts
represent time step. α’s are adjustable parameters. A damping effect is applied in pnO

A simple remedy is to extrapolate the variables, either macroscopic ones or meso-
scopic ones ( fi ’s), near the boundary from in the domain. Table 4.1 shows an exam-
ple applied by Chen [13], where the author extrapolates macroscopic variables. The
mesoscopic quantities are then constructed according to non-equilibrium extrapo-
lating method proposed by Guo et al. [14]. The unknown mesoscopic values are
also constructed directly by using the extrapolation technique. Yu et al. [15] noticed
the reflected wave can largely contaminate the meaningful pressure signal, and both
equilibrium and deviated components of the distribution function are extrapolated.
Smooth density distributions are obtained in the flows around cylinder and airfoil
with different Reynolds numbers, respectively.

Another important NRBC roots in the disturbance/information propagation fun-
damentals in fluid. It is known that two symmetric or asymmetric waves meeting
with each other on the boundary results in a Dirichlet boundary (either for pres-
sure or velocity) [16]. It shares the common concept of characteristic line in fluid
mechanics, so it is called NSCBC. The mathematical basis can be illustrated through
one-dimensional derivation, also named as local one-dimensional inviscid (LODI)
equation. The basic idea of NSCBC is presented as follows.

Supposing we have an unknown vector: U = [ρ, ux ]T, the one-dimensional flow
governing equations read

∂

∂t
U + Γ x

∂

∂x
U = 0

Γ x =
[

ux ρ

c2/ρ ux

]
= S−1�S, (4.24a)

� =
[
c + ux 0

0 c − ux

]
, S =

[
c
2ρ

1
2

− c
2ρ

1
2

]

, (4.24b)

Equation (4.24a) is recast as

∂ρ

∂t
+ ρ

c
(L1 + L2) = 0, (4.25a)
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∂ux

∂t
+ L1 − L2 = 0, (4.25b)

L1 = (ux + c)

2

(
c

ρ

∂ρ

∂x
+ ∂ux

∂x

)
, (4.25c)

L2 = (ux − c)

2

(
c

ρ

∂ρ

∂x
− ∂ux

∂x

)
, (4.25d)

where L1 represents rightward travelling wave and L2 leftward wave. We hope the
flow state on the boundaries is influenced more from one side. For instance, in
Fig. 4.3, the outlet is dominated by the flow upwind and an unknown incoming
wave. Therefore, the leftward travelling wave should be suppressed artificially or
modelled.

An example was presented by Izquierdo [17]. To obtain LODI equations, the
authors used four inviscid flow equations (one mass, two momentum and one energy
equations) and got four Li ’s (refer to Eq. 4.25). For an outlet with a prescribed
pressure (pO), the incoming wave is modelled according to a relaxation process:

L1(xb, t − 1) = d[p(xb, t − 1) − pO ], (4.26a)

rather than the original one:

L�
1(xb, t − 1) = (ux − c)

(
∂p

∂x
− ρc

∂ux

∂x

)
. (4.26b)

In the equation, the subscripts b, O denote the variables on the boundary and the
prescribed quantity, respectively, and d is a parameter. As d = 0 no information
comes into the domain and the pressure is entirely floating. Nonzero d implies a
partial reflective boundary condition and makes p varies around pO . Subsequently,
the macroscopic variables are calculated numerically:

ρ t
b = ρ t−1

b + Lt−1
1 − 1

c2
Lt−1
3 , (4.27a)

utbx = ut−1
bx − 1

2ρc

[
Lt−1
4 − Lt−1

1

]
, (4.27b)

utby = ut−1
by − Lt−1

2 . (4.27c)

By using the quantities, the equilibrium function on the boundary is obtained as
f eq+i (ρb, ub, t), which is further used to estimate the incoming distributions (through
a virtual streaming step):

fi (xb−1, t + 1)

= − fi (xb−1, t) + 2 f eq+
i (xb, t) + (2 − sv)

[
fi (xb−1, t) − f eq+

i (xb, t)
]
, (4.28)
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where the first term is antibounce back, the second term is for the Dirichlet pressure
setting, and the last one is a correction to eliminate second-order error term (sv is a
dissipation parameter). eī = −ei .

A third group of NRBC is ABC (or sponge layer condition), the key idea of which
is to introduce extra damping effect in a zone around the boundary. Any waves will
be dissipated gradually in this zone without reflection. Its ancestor can be also found
in traditional CFD model [12] and the governing equation generally reads

∂U
∂t

+ N (U) = −σ(x)(U − UO), (4.29)

where N represent a non-linear operator and σ(x) a spatially varying friction
coefficient. Provided σ(x) is large enough, the source term will drive U to UO

quickly. Therefore, to the absorbing zone, both incoming and reflected waves will
be dissipated, no matter what kind of numerical boundary is imposed.

Xu and Sagaut gave a detailed analysis on the implement of ABC in LBM [18].
The LB equation in ABC zone is presented as

fi (x + eiδt, t + δt) − fi (x, t)

= −1

τ

(
fi (x, t) − f eqi

(
ρ∗, u∗))+ χ

(
f refi (x, t) − f ∗

i (x, t)
)
, (4.30)

where χ characterizes the absorbing strength in the zone. f refi (x, t) denotes the
reference state of fi (x, t), and f ∗

i (x, t) the possible representations of distribution
functions. Xu and Sagaut [18] analysed and compared several choices of f refi (x, t)
and f ∗

i (x, t). They suggest:

f refi (x, t) = f eqi (ρO , uO , t), (4.31a)

f ∗
i (x, t) = f eqi (ρ, u, t). (4.31b)

In the equations, modified macroscopic density and velocity (ρ∗ and u∗) are
applied considering the source term in Eq. (4.30) (the last one). They followed Guo
et al. [19] to get the macroscopic quantities:

ρ∗ =
∑

i

fi + 1

2

∑

i

χ
(
f eqi (ρO , uO , t) − f eqi (ρ, u, t)

)
, (4.32a)

ρ∗u∗
α =

∑

i

eiα fi + 1

2

∑

i

χeiα
(
f eqi (ρO , uO , t) − f eqi (ρ, u, t)

)
. (4.32b)

The equations recover (4.29) and have a knownmapping relation σLBM ≡ g(τ, χ).
It is found the sound speed is also tuned due to the source term; however, we do not
really care about the physics in the absorbing layer and the flow in it can be ignored.



68 X.-P. Chen

At last, given σLBM(x), such as σLBM(x) = 3125(L−x)(x−x0)
4

256(L−x0)
(where L is the width of

the absorbing layer and x0 is the inner most position of the layer), local damping
parameter can be achieved: χ(x) = g−1(σLBM(x), τ ).

The above methods are chosen in various studies according to the specific pur-
poses, respectively. On the other hand, some of them can be combined with each
other. In Fig. 4.4, a comparison of the boundary condition is presented, where panel
(a) shows the density distribution slightly before the wave reaches the boundary
layer. The (fully reflective) wall boundary (Fig. 4.4b) and Xu’s (Fig. 4.4d) boundary
[18] are the worst and best, respectively, for absorbing. A virtual layer of fluid with
tuned viscosity is imposed around the computational domain in Fig. 4.4c. The vis-
cosity profile in the boundary zone is of cosine: νABC = [ ν−νO

2

(
1 + cos πx

L

)+ νO
]
,

where νO > ν is an increased virtual viscosity in absorbing layer. The sound wave
is reflected partially on this boundary.

In this section, some basic ingredient of LBM is introduced, which might help
the readers for their first LBM codes. LBM is actually considered as a general CFD
solver in wide range of academic and applied fields, where free surface, turbulent and

Fig. 4.4 Absorption of Gaussian density wave on the computational domain boundary. a Density
distribution slightly before the density/pressure wave reaches the boundary (the “initial state”).
Density distribution after the wave is “reflected” by b solid wall, c absorbing layer with tuned
viscosity, d Xu & Sagaut’s ABC
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thermal effects might be concerned. There are also fast improvement and extension
on the subjects in the very recent years. The readers are strongly suggested referring
to relative publications for details, some of which are presented in the context.

4.3 Acoustic Studies by Using LBM

In the presenting section, we mentioned the flow fundamentals for aeolian tones,
which theoretically can be explored by using proper flow model. With consideration
of environment protection, aero/hydro-acoustics emerges as one of the most impor-
tant subjects in modern aircraft, automobile and high-speed train industry. Noise
control of marine vehicles is also required urgently for animal health. On the other
hand, acoustic techniques are also widely used in the frontier of precise machinery,
such as acoustic levitation, acoustic tweezer and cavitation bubble manipulation.

Computational aeroacoustics (CAA) has been developed as an efficient tool for
the studies [5]. Deviating from normal CFD, there are special requirements for CAA.
For instance, the unsteadiness and scale separation require high temporal and special
resolution of the numerical model; the magnitude of acoustic wave is far smaller than
the flow itself, which places stringent requirement on numerical accuracy. Therefore,
two types of approaches are developed: direct numerical simulation (DNS) and indi-
rect (hybrid) one. Sound and flow are computed together in the former one; only
flow scale is resolved in numerical in the later one, while the propagation of sound is
computed by using simplified model (like linearized Euler equation). In this section,
the numerical feature of LBM is introduced, followed by the applications on both
direct and indirect simulation levels.

4.3.1 The Dispersion Relation in LBGK Model

Interestingly, LBM is quite suitable for the sound capture in low speed (semi-
incompressible) flow. In fact, one who conducts LBM simulation can always observe
acoustic/pressure waves shortly after the calculation is started. The relative studies
in fact have been carried out in the last decade, where the stability of the method
is focused in. The propagation and development of disturbance are considered in
both quiescent and flowing fluid. The validation of LBM on acoustic simulation is
directly demonstrated in the framework of mathematics, or specifically, by using von
Neumann analysis.

As described by Sagaut and Cambon [20], the N–S equations imply that the
fluctuation can be divided into acoustic (longitudinal) and vorticity (shear) mode,
which correspond to compressible and incompressible motion, respectively. There
is another energy (entropic) mode, and it is neglected in LBM analysis because
we normal focus on isothermal processes and the variation of entropy is neglected.
Simplified N–S equations lead to a dissipation parameter and dispersion relation:
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α = k2ν ′

2
,

ω

k
= c

√

1 + k2ν ′2

4c2
. (4.33)

The details can be found in the relative textbooks and references [2, 16, 21]. The
results will be compared simply with the LBM results obtained in the rear part of
this section.

The key idea of the von Neumann analysis is described as: tracking the evolution
of fluctuations with various frequency in a numerical approach. Fortunately, in many
circumstances, the speed of sound is much higher than mean flow (lowMach number
assumption: M � 1) and the sound propagation and flow are decoupled with each
other [see also Eq. (4.3)]. Then we focus on sound capture in media at rest. Mean-
while,with infinitesimallyweakfluctuation, the governing equation canbe linearized,
which makes feasibility for the analysis. Both the macroscopic and mesoscopic
quantities can be decomposed as a mean and fluctuating part, respectively:

ρ(x, t) = ρ0 + ρ ′(x, t), (4.34a)

p(x, t) = p0 + p′(x, t), (4.34b)

u(x, t) = 0 + u′(x, t), (4.34c)

fi (x, t) = Feq
i + f ′

i (x, t), (4.34d)

ρ0 � ρ ′(x, t), p0 � p′(x, t), u′ � 1,

noting ideal gas equation of state is applicable in isothermal LBM (see Sect. 4.1):
p = c2ρ and p = ρ/3 in D2Q9 lattice model. F std

i denotes the distribution function
for resting state. According to Eq. (5.6),

F std
i = Feq

i (ρ0, 0) = ωiρ0, (4.35)

where the non-linear parts are dropped off. It is worthy knowing that f ′
i corresponds

to unsteady flow. Without losing generality, f ′
i = f ◦

i e
i(ω�t−k·x), where ω� is angular

speed and k = 2π/λk̂ the wavenumber vector, λ is the wave-length. Calculate the
moments:

[
ρ

ρu′

]
=
[

ρ0

0

]
+
[

ρ◦

ρ0u◦

]
e(ω�t−k·x)

=
⎡

⎣

∑

i
F std
i

∑

i
F std
i ei

⎤

⎦+
⎡

⎣

∑

i
f ◦
i

∑

i
f ◦
i e

⎤

⎦e(ω�t−k·x), (4.36)

and the equilibrium state is expended as



4 Lattice Boltzmann Method for Acoustics Levitation 71

f eqi
(
F std
j + f ′

j

) = Feq
i (ρ0, 0) + ∂ f eqi

∂ f j

∣∣∣∣
f j=F std

j

f ′
j + O

(
f ◦2
j

)

= ωiρ0 + ωi

(
ρ ′ + 3

ρ0u′ · ei
c2

)

︸ ︷︷ ︸
f ′ eq
i

+ · · · . (4.37)

Substitute Eq. (4.37) into (4.5), we obtain

f ′
i (x + ei , t + 1) =

(
1 − 1

τ

)
f ′
i (x, t) + 1

τ
f ′eq
i (x, t), (4.38a)

and by using sinusoidal wave denotation,

f ◦
i e

i(ω�−k·ei ) =
(
1 − 1

τ

)
f ◦
i + ωi

τ

⎛

⎝
∑

j

f ◦
j + 3ei

c2
·
∑

j

e j f
◦
j

⎞

⎠, (4.38b)

Set f ◦ = [ f ◦
0 , f ◦

1 , . . . , f ◦
8

]T
, the equations can be re-organized as

eiω
�

f ◦ = A−1

(
I − 1

τ
B
)
f ◦ = M f ◦,

A = diag
[
1, e−ik·e1 , e−ik·e2 , . . . , e−ik·e8], (4.38c)

which leads to an eigenvalue problem. The dispersion relation can be obtained
through the characteristic equation:

det
(
M − Ieiω

�) = g
(
ω�, k, τ

) = 0. (4.39)

Generally speaking, an analytical solution cannot be obtained easily. In fact, the
above introduction only gives a very simple route for the dispersion relation. A more
complicated version is given by Marie [22] and Lallemand [23], respectively, who
considered the non-linear terms in f eqi ’s. Figure 4.5 shows the relations indicating
ideal speed of sound and dissipation can be preserved in small wavenumber. It is
suggested roughly 12 points should be applied to capture sound propagation properly.

4.3.2 Applications of LBM in CAA

In the recent decades, LBM has already been demonstrated as a great candidate for
acoustic simulations. The studies range on three levels: fundamentals and techniques,
modelled flow simulations and industrial applications.
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Fig. 4.5 The speed of sound (dispersion relation) (a) and dissipation (b) variations against wave
number. The curves indicate the theoretical results and the symbols are numerical ones [22]

On technical levels, there are some valuable developments on the elementary
issues about LBM simulation besides the aforementioned dispersion analyses and
NRBC’s. These work supplies more feasibility and accuracy for the simulations.

• Sound source in LBM. They could be modelled as solid boundary motion or point
pressure oscillation. Many sounds are emitted from wall oscillation. Especially
when thewall geometry should be concerned, it is naturally that we simply impose
oscillating motion on a wall. Barrios and Rechtman [24] added additional source
term, Qi = ωi Peiy , in the collision step [see Eq. (4.23a)] on the lattice coinciding
with the acoustic source. The subscript y denotes the vibrating direction, and
P = P0 cosωt . The modification leads to instantaneous input of momentum
from the wall. Chen and Ren [25] directly imposed oscillating pressure on the
boundary, and standing acoustic wave could be achieved. On the other hand,
point sources are interested in many circumstances. They are valuable for both
numerical models and many industrial designs. One can of course set some points
in a simple manner like fi (x, t) = f eqi (ρ0 cosωt, 0). However, the flow/wave
information is entirely isolated from the points. Viggen [26] extended the idea of
Barrios andRechtman’s [24] tomultipole acoustic sources, bywhich the simulated
noise is greatly decreased.

• In Sect. 5.2.1, we derive the dispersion relation of BGK-LBM. It is shown that
BGK-LBMstill suffers from some drawbacks, such as anisotropic and conditional
stability [22, 23]. One of the successful improvements is multiple-relaxation time
LBM (MRT-LBM), where the relaxation of moments/macroscopic quantities is
applied rather than the density populations in collision step [23]. A relaxation
time matrix is proposed,

T = M−1ΛM,Λ = diag(s0, s1, . . . , s8), (4.40a)

and the collision process is undergone on the corresponding moment space:
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m = M f , f = [ f0, f1, . . . , f8]
T. (4.40b)

In MRT-LBM, the relaxation of the density distributions is coupled; however,
the speed of it can be adjusted independently. In Eq. (4.40a), s0 = s1 = . . . =
s8 = 1/τ recovers the SRT-LBM. By tuning the bulk damping property of the fluid
(in numerical calculations), the stability of the calculation is strengthened. Filter
techniques are further proposed [27, 28] to remedy the overdamping on acoustic
waves in MRT-LBM.

In aeroacoustics, there are bunch of standard flowswhich result in sound emission.
They basically relate to aeroacoustic theories and also have realistic meanings. For
instance, the Lighthill equation describes a flow without solid boundary, which can
occur in free jet flow. To simulate high Reynolds number (characterizing the ratio
between kinetic energy and viscous dissipation of the flow) jet flow can not only
be used to explore fluid mechanics but also assess numerical method. Coupled with
certain turbulence model, such as VLES, RNG-k − ε model, SRT-LBM can well
predict the turbulent flow ejected from a nozzle [29, 30]. The results show the prior
feature of LBM on capturing both flow details and sound signals.

Guo andChen [31] conductedLBMsimulation on two-dimensional vortexmotion
and investigated the sound emission. In their studies, a vortex pair (VP), either co-
rotating or counter-rotating, is set in a space with or without wall boundary. Two
approaches were applied to obtain the far field sound: direct measurement from
numerical results and calculations according to Lighthill theory. Although large
Reynolds number was applied, which traditionally is treated with simple inviscid
flow model, the results showed a subtle viscous influence on the vortices motion,
and therefore influence the sound emission. Recalling the mathematical analysis in
Sect. 4.2.1, it is not surprising that directly simulated results agreewith the theoretical
results on both mean flow and disturbance propagation (see Figs. 4.5 and 4.6).

Fig. 4.6 LBM simulation of vortex pair dynamics in a free space and the sound emission. a Far
field sound pressure oscillation obtained by direct measurement in numerical results and theoretical
predictions (upper part). The spectra of the signals are compared in the lower part. b The sound
pressure distribution of a co-rotating vortex pair in free space [31]
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LBM simulation has been applied in industry. As proposed in the previous part,
turbulent jet flow is well studied in CAA, which has important practical purposes,
such as assessment of noise level in jet propelling of airplane. The similar numer-
ical approaches are used in many other problems. Khorrami et al. [32] conducted
large-scale numerical simulations on the flow and noise performance of Gulfstream
aircraft model. Compared to experiments and third party numerical results, the LBM
simulation is demonstrated very accurate and effective. In the simulations, flowing
M = 0.2 and the flap deflected 39◦ are applied. The former condition almost touches
the LBM’s lowMach number limit, and the later one is obviously very tough for CFD
technique due to severe flow separation. Besides that, the flows at the flap inboard
and outboard tips and main landing gear are captured correctly, which is consid-
ered as main noise sources on landing phase of aircraft. The authors also applied
Ffowcs-Williams and Hawkings acoustic analogy approach to the numerical results
and obtained good agreement on far-field noise prediction.

Coupled with various turbulence model, LBM is validated as a powerful tools
addressing industrial flows and noise predictions.

4.4 LB Simulation in Acoustic Levitation
and Second-Order Acoustic Flow

Buick et al. showed LBM can well reproduce non-linear acoustic effects, which is
not surprise concerning its dispersion and dissipation features [2]. For large-scale
flows, to capture their acoustic footprint depends also on turbulence model as afore-
mentioned: in fact that is a key issue for the accuracy. On the other hand, more precise
control of sound phenomena, such as propagation, reflection and deflection, also has
plenty of potentials for application. The flows in these circumstances are normally
laminar and many theoretical models were actually proposed. On the numerical side,
the requirement for dissipation and dispersion feature makes LBM very applicable.

Haydock and Yeomas [33, 34] firstly used LBM to reproduce acoustic streaming
correctly. In their study, a simple version of BGK-LBM is applied for classical
Rayleigh streaming and Eckart streaming. Both of the streaming originates from
attenuation, and they can be illustrated through a simple model as follows.

Suppose the oscillation of the fluid element is damped along the wave line and
has a general form of ux = Ue−αx cos(ωt − kx). It leads to Reynolds stress and a
pressure gradient:

∂x P2 = Fx = −ρ0〈2uxux 〉 = ρ0αU
2e−2αx , (4.41)

where the point bracket denotes time average value. It implies a steady flow. Obvi-
ously, the flow is of second order. If the dissipation is mainly in the boundary layer
near a wall, the streaming driven by the Reynolds stress is call Rayleigh streaming; if
the dissipation occurs in the bulk, Eckart streaming is resulted in. It is shown that both
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time dependent first order flow and the streaming are predicted well by using LBM
correctly. Furthermore, Haydock and Yeomas [34] and Rafat et al. [35] extended the
method to more complicated geometries, which is not well described by theories.

Following their prediction of LBM targeting detailed acoustic simulation, Hay-
dock [36] further investigated acoustic radiating forces on a (two-dimensional) cylin-
der. Full N–S equations were simulated through LBM in low viscosity regime. A
viscous penetrating depth was introduced: β−1 = √

2ν/ω. The results show that the
deviation of acted force on the cylinder against inviscid prediction vanishes linearly
as (aβ)−1 approaches zero, where a is radius of the cylinder. By setting the cylin-
der in a standing acoustic wave, its trajectory was presented, which approaches a
pressure node. The model was further set in a channel, where Rayleigh streaming
was induced by longitudinal standing wave. The viscous force is dominant and also
leads to transversal motion of the cylinder to the centre of the channel. Barrios and
Rechtman [24] simulated acoustic levitation in details by using LBM. The density
ratio, levitator geometry and acoustic strength are investigated. It is interesting that
two pressure nodes are found as a rounded cavity is used, which destabilizes the
cylinder oscillation. Barrios and Rechtman also propose that, although larger oscil-
lation and non-periodic motion of the “levitated” particle are obtained for rounded
cavity, it is easily to be levitated in weak sound waves. Chen and Ren [25] compared
the details of simulated acoustic flow and theoretical predictions around a cylinder.
Their results show that the viscous flow in boundary layer is discerned clearly from
the periodic far-field flow. The later can be described well by using potential flow
theory. The measured boundary thickness fulfils the theoretical prediction very well.
In the time averaged flow field, one or two layers of steady recirculation are found
depending on (aβ)−1.

4.5 Summary

In this chapter, we introduce the fundamentals, implement issues and applications
of lattice Boltzmann method in acoustics. It should be said that lattice Boltzmann
method is comparatively easy for coding and of high efficiency for parallel com-
puting. It could be considered as a substitutional approach for N–S equation-based
computational methods and beyond. By using von Neumann analysis, we show that
correct dispersion relation can be obtainedwhen thewavenumber is small. Of course,
recently improvement on lattice Boltzmann method allows further lower grid res-
olution for acoustic simulations. The prior features of the method lay solid basis
for acoustic simulation, which includes both aeolian tones and precise sound wave
reproducing. For the later one, non-linear motions may play important roles. On
acoustic levitations, lattice Boltzmann simulations show the viscous forces become
more salient as the viscous penetrating depth grows. As well, interesting results
are revealed for cavity geometry, etc. Besides the theoretical study, lattice Boltz-
mann simulation makes more precise design for levitation equipment and deeper
understanding of physics is presented available.
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