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Chapter 9
Chemical and Physical Treatments 
for Reducing Mycotoxin Contaminations

Dongqiang Hu and Aibo Wu

Abstract In most cases, enzymes, antifungal microbial, and various bio-sourced 
methods were effective for the control of mycotoxin contaminations, while it has a 
common deficiency that not all of the mycotoxins were desirably controlled when 
treating with these abovementioned means. Herein, we concluded multiple physical 
and chemical agents to control mycotoxins and also the most widely used way in the 
factory production. All of the physical and part of the chemical treatments aimed at 
the reduction of the mycotoxins themselves, which means destroying or transforma-
tion of their molecular structures. Most chemical reagents were used in the field 
experiments where they aimed at the resources of these mycotoxins, i.e., fungal 
pathogens. Of course, some antifungal reagents are especially absorbed or com-
bined with these mycotoxins just like multiple bio-resourced agents. After all, these 
two methods played an important role in the front of food processing procedures, 
due to their low cost, simplicity, high efficiency, and sufficient universality.

Keywords Chemical treatment · Physical treatment · Contaminations · Reduction 
· Mycotoxins

9.1  Physical Treatments for Reducing Mycotoxin 
Contaminations

Before the appearance of variable chemical reagents and specific biogenic enzymes, 
physical processing was the most effective way to remove mycotoxins during the 
production practice, and it is still under extensive uses till now. Among these, 
thermo-treatment is seemed to be the simplest and operable method. Gbashi et al. 
(2019) suggested parameters of 210.85 °C/54.71 min for mycotoxin-contaminated 
maize flour as the optimum degradation conditions. Siciliano et  al. (2017) also 
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tested the heat exposure of 140 °C for 40 min, and it was effective for detoxification 
of aflatoxin with no effects on lipid profile and the nutritional quality in foodstuffs. 
Furthermore, during food processing at high temperature, ochratoxin A (OTA) 
could be turned to its thermal isomerization product 2′R-Ochratoxin A, showing 
different metabolic characteristics in human body (Sueck et al. 2018) (Fig. 9.1).

Besides heat, plasma and various waves were also attempted to be widely applied 
for mycotoxin control. The treatment of Penicillium verrucosum on barley after an 
incubation of 5 days using a CO2 + O2 plasma and air plasma resulted in a reduction 
of the ochratoxin A (OTA) content from 49.0 (untreated) to 27.5 (1 min) and 25.7 
(1 min), respectively (Durek et al. 2018). In addition, Shi et al. (Shi 2017) confirmed 
the disappearance of the C8═C9 double bond in the furofuran ring of aflatoxin B1 
(AFB1) after treatment of high-voltage atmospheric cold plasma (Shi 2017). Very 
recently, the cold atmospheric pressure plasma may overcome multiple weaknesses 
associated with the classical methods, and most mycotoxins exposed to this plasma 
were degraded almost completely within 60 s (Hojnik et al. 2017; Ten Bosch et al. 
2017). Hernández et  al. compared three treatments during milk storage, non- 
treatment, pasteurization, and thermoultrasound (Hernandez-Falcon et  al. 2018), 
suggesting that 10 min-thermoultrasound unhomogenized milk 1 day after storage 
kept the lowest aflatoxin M1 (AFM1) level of 0.15 ± 0.05 pg/mL. Similarly, oven 
roasting and microwaving of chicken breast muscles can reduce the content of ten 
prevalent mycotoxins, reducing their increased bioaccessibility (Sobral et al. 2019) 
(Fig. 9.2).

Fig. 9.1 The hypothetical molecular structures of ochratoxin A (OTA) and its thermal isomer 2′R- 
OTA. Important interacting residues are shown as sticks, OTA can form salt-bridge interactions 
with R218, R222, and K195; 2′R-OTA can only form these interactions with R222. (Sueck F et al. 
2018)
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Interestingly, the light might be connected with mycotoxin production. As dem-
onstrated, the optimized combinational treatments of radiation and essential oil 
were very effective in reducing the fungal growth and mycotoxins content (Kalagatur 
et al. 2018a). Also, Wang et al. found that high intensity of blue light decreased the 
accumulation of citrinin (CIT) production in Monascus ruber, providing a unique 
mentality of mycotoxin reduction in the field production (Wang et  al. 2016) 
(Fig. 9.3).

Specially for mycotoxins of Alternaria toxins, improved food processing meth-
ods, such as milling process (Janic Hajnal et  al. 2019) and extrusion processing 
(Janic Hajnal et al. 2016), can affect the residue of tenuazonic acid (TeA), alter-
nariol (AOH), and alternariol monomethyl ether (AME), suggesting the demands of 

Fig. 9.2 Chromatograms of AFB1 untreated (5 μg/mL) in 50% ethanol solution (a) and AFB1 
sample treated by HVACP in ambient air for 5 min (b). (Shi et al. 2017)
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high-grade raw-food material and optimized machine process. Not just Alternaria, 
various physical postharvest treatments were deadly for pathogenic fungi, which 
obviously cause oxidative injury, protein impairment, and cell wall degradation, 
thus reduced mycotoxin contaminations (Liu et al. 2018; Karlovsky et al. 2016), for 
instance, extrusion and alkaline cooking of corn kernels reduced the fumonisin tox-
icity for mice (Voss and Ryu 2017). Also, processing methods such as color sorting 
reduced the levels of aflatoxin and can be practically utilized to monitor the occur-
rence of aflatoxins in some commercial products (Zivoli et al. 2016) (Fig. 9.4).

9.2  Chemical Treatments for Reducing Mycotoxin 
Contaminations

With the rapid development of traditional inorganic and synthetic chemistry, struc-
tural biologists applied the known interplay between multiple mycotoxins and 
diverse structures, eliminating mycotoxins from the molecular levels. The common 
removers normally include various acids, fungicides, organic oils, and little parts of 
other materials, while all of the compounds can be divided into two parts, some are 
the inhibitors of fungal growth, especially the essential metabolic pathways of 
mycotoxin synthesis, and the others act on the mycotoxins themselves, removing 
them by modification or completely degradation.

Fig. 9.3 The principles of light affect the production of citrinin (CIT). (Wang L et al. 2016)
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Over the past decades, some scientists have found plenty of antifungal agents to 
control mycotoxin contamination. Moon et al. (2017) tested 38 coumarins and found 
that 4-hydroxy-7-methyl-3-phenyl coumarin was the most effective controller of 
aflatoxin for its downregulated function of aflD, aflK, aflQ, and aflR in the pathways 
of aflatoxin biosynthesis. Furthermore, coumarins can prevent the aflatoxin B1 
(AFB1)-induced hepatotoxic effects via increasing antioxidant capacities and inhibit-
ing the CYP450 isozyme-mediated activation (Zhang et al. 2016). One of the antho-
cyanins, delphinidin, showed great protection effects of gut from Alternaria-induced 
genotoxicity (Aichinger et al. 2018). Also, grape seed proanthocyanidin extract was 
found to be related to the activation of the Nrf2/ARE signaling pathway, which 
mRNA expression levels can be downregulated by zearalenone (ZEN), protecting 
the ZEN-induced hepatic injury (Long et al. 2016). Besides, more and more active 
substances, such as rutin and its derivatives (Huang et al. 2019), tannis (Peng et al. 
2017) and validamycin (Li et al. 2019), were revealed to be connected with biocon-
trol efficiency and mycotoxin production of filamentous fungi. A similar group of 
biocontrol substances also includes piperine, and the main purpose was aimed at 
AFB1. Results showed that piperine inhibits AFB1 production while positively mod-
ulating fungal antioxidant status in Aspergillus flavus (Caceres et al. 2017), and thus 
it was demonstrated useful of its antigenotoxic effect in broiler chickens (da Silva 
Cardoso et al. 2016). Furthermore, researchers assessed several piperine-like syn-
thetic compounds, in which  1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one 
showed the most potential of antifungal and antiaflatoxigenic effects against 
Aspergillus flavus (Moon et al. 2016) (Fig. 9.5).

Fig. 9.4 Optimum region obtained after superimposing the contour plots of the system response. 
(Janic Hajnal et al. 2016)
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Fortunately, we can also see some valuable investigations aimed at the detoxifi-
cation of mycotoxin in vitro. With the development of new macromolecular inor-
ganic carbon matters such as activated carbon (Kalagatur et  al. 2017), activated 
carbon fibers (El Khoury et  al. 2018) make the mycotoxin absorption available. 
Similar eliminated artificial adsorbents include varied clays or bentonites. 
Cetylpyridinium chloride ions modified around organozeolites prepared by clino-
ptilolite and phillipsite are responsible for ZEN absorption (Markovic et al. 2016). 
Moreover, it was identified from two human cells that bentonite modified with zinc 
enhanced the antiaflatoxigenic ability (Nones et al. 2017). Researchers also evalu-
ated the detoxification potential of both ZEN and AFB via multiple montmorillon-

Fig. 9.5 The proposed working model of how validamycin affects the pathogen F. graminearum 
and the host wheat. (Li et al. 2019)
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ites (Wang et al. 2018a, 2019b) and surfactants (Wang et al. 2018b), plus, Kang 
et al. (2016) used the combined batch experiment with computational models, indi-
cating that adsorption affinity of mycotoxins is dependent on the surfaces of clay 
aggregates. With the aid of micropore structure in chitosan derivatives (Yang et al. 
2017), shrimp shells (Assaf et al. 2018), natural zeolites (Eroglu et al. 2017), and 
bentonite clay (Shannon et al. 2016), small molecules of mycotoxins were all sedi-
mented and aggregated to the fixed microporous structure, reducing their toxicities 
to variable target organisms (Fig. 9.6).

There is also one part of important mycotoxin absorbents or antifungal agents, 
nanocomposites. Gao et al. (2019) synthesized an organic-inorganic P(DMDAAC- 
AGE)/Ag/ZnO composite for the usage of antibacterial cotton fabrics with launder-
ing durability, showing more than 99.00% of anti-mildew performance even after 11 
washing cycles. A kind of surface active maghemite nanoparticles was made to bind 
citrinin; mass spectroscopy and magnetization measurements showed that the mate-
rial was an efficient and reliable mean for citrinin removal (Magro et al. 2016). Ag 
doped hollow TiO2 nanoparticles were identified to be effective in protecting farm 
products affected by Fusarium solani or other fungi, where the Ag promotes the 
formation of stable Ag-S and disulfide bonds (R-S-S-R) in cellular protein, leading 
to cell damage (Boxi et al. 2016). Furthermore, nanocomposites mixed with other 
agents can significantly increase their antifungal property, such as chitosan nanopar-
ticles encapsulated with essential oil (Kalagatur et al. 2018b), pyraclostrobin solid 
nanodispersion by self-emulsifying technique (Wang et al. 2019a).

Ozone treatment was also effective for pathogen prevention and mycotoxin con-
trol. It has been concluded that ozone has great potential to improve the functional-

Fig. 9.6 Adsorption/partition mechanisms of adsorption of AFB1 to natural Mt. (Wang et  al. 
2018a, b)
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ities of grain products while ensuring food safety (Zhu 2018). After treatment of 
ozone at 1.10 mg/L for 120 min, Fusarium rot development and neosolaniol accu-
mulation in fruits were discriminately controlled (Hua-Li et al. 2018) (Fig. 9.7).

Interestingly, potassium may also relate to the antifungal attempt. Penicillium 
expansum under 5 mM potassium phosphite stress presented yield reduction of pat-
ulin and lower infectivity to apple fruit (Lai et al. 2017). Moreover, Chang et al. 
demonstrated that addition of triphenylphosphonium cation can enhance or at least 
restore compounds’ antifungal activity, resulting in mitochondrial dysfunction and 
increased levels of intracellular reactive oxygen species (Chang et al. 2018).

Besides, other common chemical treatments to remove mycotoxins were varied 
organic active substances; among these organic acids, essential oils, aldehyde deriv-
atives, organism extracts, and artificial fungicides were the substances with great 
representations.

9.3  Organic Acids

Acids play a great role in control of pathogens and mycotoxins; single or multiple 
combined acids were proved effective in the food or food products protection. 
Researchers purified cuminic acid from the seeds of Cuminum cyminum L., which 
significantly distorted the mycelial morphology of Fusarium oxysporum; more 
importantly, synthetic genes of bikaverin (Bike1, Bike2, and Bike3) and fusaric acid 

Fig. 9.7 The proposed mechanism of the reaction of ozone to the mycotoxin NEO. (Hua-Li et al. 
2018)
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(FUB1, FUB2, FUB3 and FUB4) both were downregulated (Sun et al. 2017). Also, 
p-aminobenzoic acid was present in the secretions of rhizobacterium Lysobacter to 
show a broad spectrum of antifungal activities, which inhibits septation during cell 
division (Laborda et  al. 2019). Most acids targeted in the membrane of fungal 
hyphae, ethyl p-coumarate, can cause severe lipid peroxidation and heavy oxidative 
damage to the cellular membranes and organelles of pathogens (Li et  al. 2018). 
Chlorogenic and caffeic acids were also groups of antifungal micromolecular acids; 
both can be degraded into protocatechuic acid in the Fusarium graminearum and 
dramatically enhanced the counteraction of the fungal ability of mycotoxin produc-
tion (Gauthier et  al. 2016). Similar compounds including I-pyroglutamic acid 
(Bilska et al. 2018), sinapic acid (Kulik et al. 2017a), fluorinated dihydroguaiaretic 
acid (Yamauchi et  al. 2017), etc. were all with antifungal potential. Meanwhile, 
gene expression revealed that Tri genes responsible for trichothecene biosynthesis 
were downregulated after acid treatment (Fig. 9.8).

Combination of multiple or even unknown acids seems like to have synergistic 
effects for the antifungal property. For example, the cell-free supernatant of 
Lactobacillus plantarum inhibits the production of aflatoxins by 91%, where lactic 
acid, phenyllactic acid, hydroxyphenyllacetic acid, and indole lactic acid were 
detected in the metabolites and all were tested separately with antiaflatoxigenic 
property (Guimaraes et al. 2018). Combination of exogenous abscisic acid and gib-
berellic acid can also reduce head blight severity, as phytohormones, combining 
fungicidal agents and these acids may also be useful for the management of head 
blight infection (Buhrow et al. 2016). Phenolic acids were a group of organic mat-
ters with a phenolic hydroxyl group; caffeic, chlorogenic, ferulic, and p-coumaric 

Fig. 9.8 Effect of cuminic acid on mycelia morphology of Fusarium oxysporum f. sp. niveum. 
(d–f) Untreated plates; (a–c) plates treated with cuminic acid at EC50 value (22.53 μg/mL). Values 
are means and standard errors. (Sun Y et al. 2017)
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acid were all tested. All those have somewhat variable effects on fungal growth and 
mycotoxin production, depending on the host strain and the concentration (Ferruz 
et al. 2016). Moreover, Ferruz et al. also proved that phenolic acids have the antifun-
gal property and upregulated ergosterol biosynthesis by Fusaria (Kulik et  al. 
2017b).

9.4  Fungicides

Traditional fungicides were mostly aimed at pathogen growth inhibition, thus lead-
ing to the reduction of multiple mycotoxins. Wayne et al. (Jurick et al. 2019) tested 
the sensitivity of Penicillium spp. to difenoconazole and suggested a minimum limi-
tation of 5 μg/ml to fruit quality and mycotoxin control. A field experiment showed 
that prothioconazole could significantly reduce the total deoxynivalenol and zeara-
lenone contents by applications at 18th leaf and R2 stages, while not visibly chang-
ing other mycotoxin contents (Limay-Rios and Schaafsma 2018).

And tebuconazole was also one efficient fungicide, the addition of tebuconazole 
significantly decreases the DON production, and meanwhile, TRI5 and TRI6 of 
biosynthetic genes were downregulated (Diao et al. 2018). Similarly, epoxiconazole 
(Duan et  al. 2018), triticonazole (Zhang et  al. 2018), arylpyrazole (Zhang et  al. 
2017), and varied triazoles (Hellin et al. 2017) were all verified to be effective to the 
pathogen prevention and mycotoxin control (Fig. 9.9).

Fig. 9.9 Frequency distribution of isolates in fungicide concentration that inhibit mycelial growth 
by 50% for technical grade difenoconazole for Penicillium isolates. (Jurick et al. 2019)
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As a powerful and simple method to control fungal pathogens, fungicides were 
always compared with other emerging antifungal agents, but no doubt, fungicides 
were still the most widely used field method. Scaglioni et  al. (Scaglioni and 
Blandino 2018) compared the inhibition effects of fumonisin production between 
tebuconazole and microalgal phenolic extracts, and both showed antifungal poten-
tial, while either would directly control the fumonisin contents. Moreover, a direct 
comparison of the synthetic commercial antifungal compound and the antifungal 
protein PgAFP showed that both were with fungal growth inhibition. Furthermore, 
the presence of PgAFP produced a significant reduction in mycotoxins accumula-
tion (da Cruz Cabral et al. 2019). Additionally, researchers investigated the effects 
of two fungicides, quinone outside inhibitors and demethylation inhibitors, on 
Fusarium head blight and deoxynivalenol production, and results suggested that 
the combination effect of two fungicides depended on the active ingredients and 
whether the two were applied as a mixture at heading or sequentially (Paul and 
Bradley 2018). Anyway, new emerging antifungal agents were always tested by 
making comparison with these commercial fungicides, which represents a domi-
nance of fungicides in fungal pathogens and mycotoxins control in a very long 
period (Fig. 9.10).

Fig. 9.10 The changes on the colonies of Alternaria tenuissima sp. grp. grown on wheat media in 
the presence of two antifungal treatments (PgAFP and F + M) at two water activity (aw) levels, 
0.95 and 0.98 after 6 days of incubation at 25 °C. (da Cruz Cabral L et al. 2019)

9 Chemical and Physical Treatments for Reducing Mycotoxin Contaminations



156

9.5  Aldehydes, Essential Oils, and Organism Extracts

Besides organic acids, aldehydes and their derivatives were also popular for myco-
toxin control, and most of them were derived from plants, especially herbs. 
Harohally et al. (2017) tried to enhanced the antiaflatoxigenic activity of 2-hydroxy- 
4-methoxybenzaldehyde, cinnamaldehyde and the molecules with similar chemical 
structures, and the productions, Schiff bases, which showed great commendable 
antiaflatoxigenic activity. Plus, the antiaflatoxigenic potential of cinnamaldehyde 
was attributed to alleviate oxidative stress, which was possibly induced by modifi-
cations of cellular structure (Sun et al. 2016). Meanwhile, cuminaldehyde thiosemi-
carbazone was structurally modified, and then it was testified to be more special for 
aflatoxin control via yeast experimental model (Degola et al. 2017).

Similarly, essential oils were mainly separated from medical plants, different 
from other antifungal agents; most of these oils were mixtures with complicated 
composition. As reported, the bioactive ethylene-vinyl alcohol copolymer (EVOH) 
films, containing cinnamaldehyde, linalool, isoeugenol, or citral, showed strong 
inhibition of OTA biosynthesis in corn at very low concentrations (Tarazona et al. 
2018). And Mateo et al. (2017) compared several oils contained in EVOH films; the 
result showed that EVOH-cinnamaldehyde film showed the most inhibition of fun-
gal growth and aflatoxin control. Natural essential oil derived from turmeric was 
used as an eco-friendly antifungal agent. Moreover, expression of mycotoxin genes 
in aflatoxin biosynthetic pathway was relatively downregulated (Hu et al. 2017). 
The essential oil of rosemary was also applied to the investigation of multiple patho-
gens, including Alternaria spp., Fusarium spp., Colletotrichum spp., and Penicillium 
spp., all with good control practice (Waithaka et al. 2017). Moreover, similar essen-
tial oils with antifungal properties were extracted from other plants, such as 
Hedychium spicatum L. (Kalagatur et  al. 2018a), Mentha cardiaca L. (Dwivedy 
et al. 2017), and so on. Clove oil-in-water nanoemulsions were one new material 
with different oil composition, and addition of corn oil or triacylglycerol would 
reduce its antifungal potential to this material, while the inhibition activity would be 
enhanced when clove oil was encapsulated in nanoemulsions (Wan et al. 2018).

Actually, all the pure antifungal agents were from multiple organisms; as a result, 
extractions from these can also be of antifungal potential. Researchers investigated 
the reduction rate of grape pomace to varied mycotoxins, and it can reduce the gas-
trointestinal absorption of mycotoxins, as well as be a natural binder for multiple 
mycotoxins (Gambacorta et al. 2016). In the extraction of peanut, peanut stilbenoids 
could provide the new strategies for preventing plant invasion and production of 
aflatoxin (Sobolev et  al. 2018). Furthermore, the fermentation liquid of Bacillus 
subtilis also showed great growth inhibition to varied fungal pathogens, for its vola-
tile organic compounds in the metabolites (Gao et al. 2018) (Fig. 9.11).
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9.6  Conclusion

To sum up, physical treatments for control of mycotoxin contamination were aimed 
at the molecular structure of mycotoxins; change of multiple physical parameters 
leads to the destruction or modification of their carbon skeleton, resulting in the 
removal of origin mycotoxins. On the other hand, for chemical treatments, most 
detoxifiers were aimed at the antifungal property, thus leading to the reduction of 
mycotoxins. Chemical reagents are too large of a group; some are broad antifungal 
agents, and some are specific, also with little certain microstructures to absorb 
mycotoxins. Unlike other emerging bio-sourced enzymes, physical and chemical 
detoxifiers were always the direct, simple, and broad ways to remove mycotoxins, 
or we can conclude that pretreatment of foodstuffs would always be these tradi-
tional ways to remove mycotoxins and protect food safety. Industrial production 
should be a processing chain, from treatment to the early generation and then to the 
final package and delivery; among these, before treatment, either the physical or 
chemical pretreatments show their indispensability in practical uses.
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