
Chapter 5
Topologically Protected Measurement-Based
Quantum Computation

In this chapter, we reformulate topological fault-tolerant quantum computation
explained in the previous chapter in terms of meausrement-based quantum com-
putation.

5.1 Topological Cluster State in Three Dimensions

Consider a (primal) cubic lattice L and Z2 chain complex on it, {C0, C1, C2, C3},
where

c0 =
∑

k

zkvk ∈ C0, c1 =
∑

l

zlel ∈ C1, (5.1)

c2 =
∑

m

zmfm ∈ C2, c3 =
∑

n

znqn ∈ C3, (5.2)

with zk, zl, zm, zn ∈ Z2. We also consider a dual cubic lattice L̄ through the relations
vk ↔ q̄k , el ↔ f̄l, fm ↔ ēm, and qn ↔ v̄n.

Qubits are defined on the edges and faces of the primal latticeL (or equivalently
primal and dual edges), as shown in Fig. 5.1. We define an operator A(ci) (i = 1, 2)
in terms of a 1-chain c1 = ∑

j zjej or a 2-chain c2 = ∑
j zjfj as

A(ci) =
∏

j

Azj . (5.3)

The stabilizer generators of a 3D cluster state for topologically protected MBQC are
defined on the primal and dual elementary faces fm, f̄m′ (see Fig. 5.2a):

Kfm = Xfm Z(∂fm), (5.4)

Kf̄m′ = Xf̄m′ Z(∂ f̄m′). (5.5)
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Fig. 5.1 A unit cell of the
cluster state for topological
MBQC. The primal and dual
cubes, faces, and edges are
also shown

primal cubic lattice

primal edge

primal face

dual cubic lattice

dual edge 
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Fig. 5.2 a A stabilizer
operator defined on a primal
face. b Kfm Kfm′ =
X(fm + fm′ )Z(∂(fm + fm′ )). c
K(c2) ≡ ∏

m Kzm
fm

=
X(c2)Z(∂c2)

(a)

(c)

(b)

Aunit cell of the 3D cluster state is shown in Fig. 5.1. This notion of stabilizer genera-
tors of the cluster state is quite useful; it provides a connection between the operators
and the chain complex as follows. By multiplying the two stabilizer operators Kfm
and Kfm′ , we have

Kfm Kfm′ = X(fm + fm′)Z(∂(fm + fm′)), (5.6)

(see also Fig. 5.2b). By using this property, we can define a stabilizer operator on a
2-chain c2,

K(c2) ≡
∏

m

Kzm
fm

= X(c2)Z(∂c2), (5.7)
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(see also Fig. 5.2c). Furthermore, for the two 2-chains, c2 and c′
2, we have

K(c2 + c′
2) = K(c2)K(c′

2). (5.8)

Let us see how the 3D cluster state is related to topological quantum computation
on the surface code explained inChap.4. Recall the circuit diagrams for the syndrome
measurements of the plaquette and star operators in Fig. 4.12. The measurement for
the plaquette operator is done by applying the CZ gates between the ancilla qubit
on the face center and the four qubits on the edges. This operation is the same as
generation of the cluster state stabilized by K(fm) with a horizontal face fm. The
syndrome measurement for the star operator can be done by the CZ gates with the
basis change by the Hadamard gates. This corresponds to generation of the cluster
state stabilized by K(f̄l) with a horizontal dual face f̄l. Moreover, the horizontal edge
qubits, which constitute the surface code, are connected by applying the CZ gates
vertically in order to perform theHadamard gates for the basis change. In this way,we
recover the 3D cluster state stabilized byK(fm) andK(f̄l) for all primal and dual faces
fm and f̄l. Two of three dimensions are employed for the spatial degrees of freedom,
constituting the surface code. One is for the time evolution of measurement-based
quantum computation. The measurements are done along the time-like axis, where
even and odd layers, corresponding to the syndrome measurements of the plaquette
and star operators respectively, togetherwith constitute an elementary time step of the
topologically protected MBQC. Below we will see how the topological operations
on the surface code are translated into a measurement pattern of the MBQC on the
3D cluster state.

5.2 Vacuum, Defect, and Singular Qubit Regions

The cubic lattice is divided into three regions: the vacuum V , defect D , and singu-
lar qubits S (the detailed definitions are provided later). In the vacuum region, the
topological quantum computation is protected through topological quantum error
correction. The defect regions are utilized to implement topological quantum com-
putation by braiding defects. We have two types of defects: the primal (D) and dual
(D̄) defects. For simplicity, we only consider the primal defect. The extension to the
dual case is straightforward by replacing primal by dual in the derivation. The primal
defect D is defined as a set of primal cubes. The primal face qubits inside the primal
defect (except for those on the boundary ∂D) are measured in the Z-basis to remove
the corresponding bonds of the cluster state (or, equivalently, we can prepare the
cluster state without those bonds from the beginning). On the boundary ∂D, the pri-
mal face qubits are measured in the X-basis. The primal edge qubits belonging to the
primal defect (including its boundary) aremeasured in theX-basis. Themeasurement
pattern for the dual defect is defined similarly.

Unfortunately, only Clifford circuits such as Pauli-basis preparations, measure-
ments, and CNOT gates, are implemented in a topologically protected way. For
universal quantum computation, magic states for the non-Clifford gates are injected

http://dx.doi.org/10.1007/978-981-287-996-7_4
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on the singular qubits, which are always located in-between two defects. The injec-
tions are executed by measuring the singular qubits in the Y - and (X + Y)/

√
2-

bases. These measurements correspond to injections of (|0〉 + e−iπ/2|1〉)/√2 and
(|0〉 + e−iπ/4|1〉)/√2 (up to global phases), which are utilized to implement the
S = e−i(π/4)Z and T = e−i(π/8)Z gates via gate teleportation, respectively. The sin-
gular qubits are not topologically protected, because two defects are made close to
each other resulting in shortening the code distance. However, we can obtain clean
magic states with topologically protected Clifford gates through the magic state dis-
tillation protocols [60]. In this way, an arbitrary quantum computation is executed
fault-tolerantly. Below, we will define these three regions more precisely and see
how topological quantum computation is executed in a measurement-based way.

5.3 Elementary Operations in Topological
Measurement-Based Quantum Computation

Definition of a Logical Qubit

The logical information is encodedbyusing apair of twodefects as shown inFig. 5.3a,
b, where the measurements are done from left to right. The logical degree of infor-
mation at time step t is described a primal 1-chain c1surrounding the defect and a
dual 1-chain c̄1 connecting the two defects, as shown in Fig. 5.3a. After measuring
qubits up to the (t −1)th even and odd layers, according to the measurement patterns
presented before, the following two operators may become logical operators, which
commute with the stabilizer group of the remaining cluster state and are independent
of it:

L(t)
Z = Z(c1), L(t)

X = X(
←−̄
c1 )Z(c̄1), (5.9)

where
←−̄
c1 indicates the dual face qubits on the even layer at time step t that are the left

neighbor of c̄1, as shown in Fig. 5.3b. These two operators anticommute with each
other and represent a logical qubit. (If the cluster state ends at the even layer at the
time step t, then the two logical operators are equivalent to the logical operators of
the surface code. Because there are the time-like CZ gates for the Hadamard gates,
the logical X operator in Eq. (5.9) accompanied by the Z operators.)

Identity Gate

Next, we will see how these logical operators evolve with the measurements. We
consider a correlation surface defined by a primal 2-chain c2 and a dual 2-chain
c̄2 as shown in Fig. 5.4. A stabilizer operator K(c2) on the correlation surface c2
surrounding the defect is obtained by multiplying the stabilizer generators Kfm on the
primal 2-chain c2:

K(c2) ≡
∏

m

Kzm
fm

= Z(∂c2)X(c2). (5.10)
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Fig. 5.3 a A defect pair
logical qubit. b The logical
operators L(t)

Z and L(t)
X at

time step t

(a) (b)

Fig. 5.4 A logical identity
gate. The logical operators at
time steps t and t′ are related
by the correlation surfaces
K(c2) and K(c̄2) via the
measurements

Similarly, a stabilizer operator on the dual correlation surface c̄2 is defined by mul-
tiplying Kf̄m on the dual 2-chain c̄2:

K(c̄2) ≡
∏

m

Kzm

f̄m
= Z(∂ c̄2)X(c̄2). (5.11)

Suppose measurements are done from the left to the right, except for those qubits on
the final even layer. Using the correlation surface, we obtain equivalence relations
between the logical operators at time t and t′:

L(t)
Z ∼ Z(c(t)

1 )K(c2) = Z(c(t′)
1 )X(c2). (5.12)

L(t)
X ∼ X(

←−
c̄(t)
1 )Z(c̄(t)

1 )K(c̄2) = X(
←−̄
c1 )X(c̄2)Z(c̄(t′)

1 ) (5.13)

Here, A ∼ B means that A and B are equivalent up to a multiplication of the stabilizer
operator of the cluster state, meaning that both A and B act the same on the cluster
state. When the qubits on c2 have been measured in the X-basis, we obtain



112 5 Topologically Protected Measurement-Based quantum Computation

L(t)
Z ∼ L(t+1)

Z , (5.14)

L(t)
X ∼ L(t+1)

X , (5.15)

wherewe assumed that allmeasurement outcomes are+1 for simplicity. This relation
indicates that the logical information at time step t is propagated to time step t′ without
any operation, i.e., a logical identity operation.

State Preparation and Measurement

Next, we consider how the logical qubit is prepared from the vacuum. To prepare
the eigenstate of L(t)

Z , we utilize the defect shown in Fig. 5.5a. By considering the
correlation surface c2, we obtain

K(c2) = X(c2)L
(t)
Z . (5.16)

Because X(c2) commutes with the measurements, the state at time step t is stabilized
by L(t)

Z , and hence a logical Z-basis state is prepared. Considering another surface
c′
2, shown in Fig. 5.5b, the state at time step t is also stabilized by Z(∂c′

2) = L(t)
Z L′

Z
(t).

Thus the pair of the defects is appropriately encoded into the code space. Both L(t)
Z

and L′
Z

(t) act equivalently as logical Z operators.
Next, we consider the defect shown in Fig. 5.6. Considering a correlation surface

c̄2, we obtain

K(c̄2) = Z(∂ c̄2)X(c̄2). (5.17)

Fig. 5.5 a A logical Z-basis
state preparation. b
K(c′

2) = X(c′
2)L

(t)
Z L′

Z
(t)

(a) (b)

Fig. 5.6 A logical X-basis
state preparation



5.3 Elementary Operations in Topological Measurement-Based Quantum Computation 113

After the measurements, the state at time step t is stabilized by L(t)
X = X(

←−̄
c1 )Z(c1),

where c1 is a 1-chain on the tth even layer connecting the two defects. Thus, a logical
X-basis state is prepared. Again, the logical state is stabilized by Z(c1)Z(c′

1), with
c1 and c′

1 being a cycle surrounding each defect. Hence, we can choose either L(t)
Z =

Z(c1) or L(t′)
Z = Z(c′

1) to serve as the logical operator. The logical measurements of
the defect pair qubits can be done with the same defects as the state preparations, but
by reversing the time-like direction.

CNOT Gate by Braiding

Let us consider primal defects braiding around a dual defect as shown in Fig. 5.7a.
Similarly to the previous case, we calculate the time evolution of logical operators by
themeasurements. The state at time step t is described by {L(t)

Z , L(t)
X } and {L′

Z
(t)

, L′
X

(t)}
corresponding to {c(t)

1 , c̄(t)
1 } and {c′

1
(t)

, c̄′
1
(t)}, respectively. We first consider a corre-

lation surface c2 with respect to c(t)
1 , as depicted in Fig. 5.7b. Similarly to the identity

gate, L(t)
Z is transformed into L′(t)

Z . An interesting thing happens when we consider
the correlation surface c′

2 with respect to c′
1
(t), as shown in Fig. 5.7c. The stabilizer

operator on c′
2 is given by

K(c′
2) = Z(∂c′

2)X(c′
2)

= Z(c′
1
(t)

)Z(c1
(t′))Z(c′

1
(t′)

)Z(c′′
1)X(c′

2), (5.18)

where c′′
1 is a cycle in the dual defect of a loop as shown in Fig. 5.7c. Then after the

measurements, we obtain an equivalence relation,

L(t)
Z ∼ L(t′)

Z L′(t′)
Z . (5.19)

(a) (b)

(d) (e)

(c)

Fig. 5.7 a A diagram for defect braiding for a logical CNOT gate. b–e Time evolutions of the
logical operators and the corresponding correlation surfaces
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Note that inside the dual defect region, the dual face (primal edge) qubits aremeasured
in the Z-basis, and hence we can obtain the eigenvalue of Z(c′′

1). After a similar
argument using a defect surface c̄2 and c̄′

2 with respect to the dual 1-chain c̄1 and c̄′
1,

shown in Fig. 5.7d and e, respectively, we obtain

L(t)
X ∼ L(t)

X , (5.20)

L(t′)
X ∼ L(t′)

X L′(t′)
X . (5.21)

These relations between the logical operators at time steps t and t′ are equivalent
to those for the CNOT gate. Thus, the defect braiding in Fig. 5.7 results in a logical
CNOT gate. Now we realize that the correlation surface introduced in Chap. 4 as a
trajectory of the logical operator corresponds to the correlation surface defined by
the stabilizer operator of the cluster state.

A Singular Qubit Injection for Magic State Distillation

So far, we have shown that the Clifford circuits, Pauli-basis preparation, measure-
ments, and CNOT gate, can all be implemented in a topological way. Unfortunately,
these operations are not enough to generate universal quantum computation. To
implement universal quantum computation, we inject Y - and (X + Y)/

√
2-basis

states by measuring singular qubits in the Y - and (X +Y)/
√
2-bases, respectively, as

shown in Fig. 5.8. Let us see how this measurement works. Similarly to the previous
case, we have two correlation surfaces c2 and c̄2:

K(c2) = Z(∂c2)X(c2) = Z(∂c2)X(c2\s)Xs, (5.22)

K(c̄2) = Z(∂ c̄2)X(c̄2) = ZsZ(∂ c̄2\s)X(c̄2), (5.23)

where As is a Pauli operator on the singular qubit and [·]\s indicates a chain with
a removal of an element corresponding to the singular qubit. Suppose the singular
qubit is measured in the Y -basis. After the measurements, the state at time step t is
stabilized by

Fig. 5.8 A state injection on
the singular qubit

http://dx.doi.org/10.1007/978-981-287-996-7_4
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K(c2)K(c̄2) 
 L(t)
X L(t)

Z ≡ L(t)
Y . (5.24)

Thus, a logical Y -basis state is prepared. When the singular qubit is measured in the
(X + Y)/

√
2-basis, the state at time step t is stabilized by

[K(c̄2) + K(c2)K(c̄2)]/
√
2 
 (L(t)

X + L(t)
Y )/

√
2, (5.25)

which means that a logical (X + Y)/
√
2-basis state is prepared.

These states are utilized to implement S, T , HSH, and HTH gates using gate
teleportation with the CNOT gate. These gates form a universal set of gates.

5.4 Topological Quantum Error Correction
in Three Dimensions

Next, we will see how topological quantum error correction is done in 3D. Indeed,
in the 3D case, the argument for the noisy syndrome measurements made in Chap.4
becomes more simple as follows. All measurements in the vacuum region are done
in the X-basis. We consider a stabilizer operator on a unit primal cube q,

K(∂qn) =
∏

fm∈∂qn

Xfm , (5.26)

where there is no Z operator due to ∂ ◦∂qn = 0. This implies that, if there is no error,
the parity of each six X-basis measurement outcomes on the primal cube is always
even. The errors are described by using a dual 1-chain E = Z(c̄1). At a unit cube
qn belonging to ∂ c̄1, we have |qn ∩ ∂ c̄1| = odd. (Recall that the primal 3-chain and
the dual 0-chain are identified.) From a set of odd parity cubes ∂ c̄1, we estimate the
actual location of errors E′ = Z(c̄′

1) such that ∂ c̄1 = ∂ c̄′
1. If the total of the actual and

estimated error chains c̄1+ c̄′
1 results in a trivial cycle, meaning that there is no defect

inside the cycle, it can be contracted and removed by a continuous deformation. If the
total of the actual and estimated error chains c̄1+c̄′

1 results in a nontrivial cycle,mean-
ing a cyclewinding around a defect,EE′ = Z(c̄1+c̄′

1)may result in a logical operator.
In such a case, the topological error correction has failed. This property is completely
the same as the topological quantum error correction under faulty syndrome mea-
surements argued in Sect. 4.6. If the error probability is smaller than a constant value
(the threshold), the failure probability of the topological quantum error correction
decreases exponentially in the characteristic size and distance of the defects.

Inside the defect region, the face qubits aremeasured in theZ-basis. Especially, the
Z-basis measurement outcomes near the defect boundary are employed to evaluate
the correlation surface. Note that these Z-basis measurements and the removal of the
corresponding bonds of the cluster state can instead be done by generating a cluster
without connecting the corresponding bonds in advance. In such a case, the errors
on the Z-basis measurements do not appear. We can obtain an additional parity Kfm

http://dx.doi.org/10.1007/978-981-287-996-7_4
http://dx.doi.org/10.1007/978-981-287-996-7_4
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and Kf̄m′ at the primal and dual faces on the boundary of the defects, respectively. If

the errors on the face qubits fm and f̄m′ are suppressed, the errors on the boundary are
reduced into errors on a toric code on a 2D surface, ∂D or ∂D̄. Again, if the error
probability is sufficiently smaller than a constant threshold value, we can correct it
faithfully.

The X- and Z-basis state preparations and measurements, and the CNOT gate
obtained by braiding, are topologically protected because we can execute these topo-
logical operations by keeping the defect size and distance larger than an arbitrarily
large constant length. Unfortunately, through the state injection, we shrink the defect
size into an elementary unit cell, where the defect size and distance become very
small. Thus, the topological protection is broken down around the singular qubit
(see Fig. 5.8a). There will also be lower weight errors, which effectively increase the
logical error probability on the injected logical states. However, noisy injected states
can be purified by using the topologically protected Clifford gates, the so-called
magic state distillation. The Y - and (X + Y)/

√
2-basis states are distilled by using

the 7-qubit Steane and 15-qubit Reed-Muller codes, respectively as explained. The
distilled states are utilized to implement non-Clifford gates via gate teleportation, as
seen before. In this way, universal quantum computation is executed with arbitrary
accuracy.

5.5 Applications for Measurement-Based Quantum
Computation on Thermal States

Topologically protected MBQC in 3D is useful to study the quantum computational
capacity of quantum many-body states at finite temperature. Consider the stabilizer
Hamiltonian of the 3D cluster state for topological MBQC [65, 223, 224]:

Hfc = −J

⎡

⎣
∑

f

K(f ) +
∑

f̄

K(f̄ )

⎤

⎦ . (5.27)

The thermal state at temperature T = 1/(βJ) is given by

ρfc = e−βHfc/Tr[e−βHfc ]. (5.28)

Using a unitary operator UCZ = ∏
(fm,f̄l)

Λfm,f̄l (Z), consisting of CZ gates on all
nearest-neighbor two qubits, the thermal state can be mapped into the thermal state
of an interaction-free spin model:

UCZρfcU
†
CZ = e−βHf /Tr[e−βHf ], (5.29)
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where

Hf ≡ −J
∑

i

Xi = UCZ HfcU
†
CZ . (5.30)

Because Hf is an interaction-free Hamiltonian, the stabilizer Hamiltonian, which we
will call the free cluster Hamiltonian, does not undergo any thermodynamic phase
transition.

The thermal state of the free cluster Hamiltonian is given as a product state of the
single-spin density matrix:

ρf = e−βHf/Tr[e−βHf ] =
∏

i

eβJXi/Tr[eβJXi ] (5.31)

=
∏

i

Ei(pβJ)(|+〉〈+|)⊗n, (5.32)

where

Ei(p) = (1 − p)ρ + pZiρZi, (5.33)

and pβJ = e−2βJ/(1 + e−2βJ). Because Ei and UCZ commute, the thermal state of
Hfc is rewritten as

ρfc = UCZρfU
†
CZ =

[
∏

i

Ei(pβJ)

]
UCZ(|+〉〈+|)⊗nU†

CZ

=
[
∏

i

Ei(pβJ)

]
|Ψ3D〉〈Ψ3D|, (5.34)

where |Ψ3D〉 is the ground state of Hfc, i.e., the 3D cluster state. This means that the
thermal state is given as an ideal 3D cluster state, followed by an independent dephas-
ing for each qubitwith probability pβJ = e−2βJ/(1+e−2βJ). From the argumentmade
in the previous section, if p ≤ 2.9 − 3.3% and hence T = 1/(βJ) ≤ 0.57 − 0.59,
we can then perform universal quantum computation reliably on the thermal state
at a finite temperature, where the errors originating from the thermal excitations are
corrected by the topological quantum error correction. On the other hand, in the high
temperature limit T = 1/(βJ) → ∞, the thermal state is given by a completely
mixed state, and hence MBQC on it can be simulated classically.

A projected-entangled-pair state (PEPS)picture [223–225] allows us to obtain a
lower bound for the possibility of a classical simulation. In the PEPS picture, the
3D cluster state is described as follows (see Fig. 5.9). A maximally entangled pair
|ψMES〉 ≡ (|0〉|+〉 + |1〉|−〉)/√2 is shared on each bond. On each site consisting of
halves of the entangled pair, a projection
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Fig. 5.9 A PEPS picture of the cluster state

|0〉〈00 . . . 0| + |1〉〈11 . . . 1| (5.35)

is performed with an appropriate normalization. The resultant state is the 3D cluster
state. Because the projection and the Z error Ei commute, the effect of the thermal
excitations on the shared entangled state can be determined beforehand:

ρbond = Ea(p)Eb(p)|ψMES〉〈ψMES| (5.36)

If p ≥ (2− √
2)/2, the decohered entangled pair ρbond becomes a separable state. If

two bonds per site are made separable, the 3D cluster state becomes a separable state.
A sampling on such a resource state can be simulated efficiently classically [101,
224]. In this case, the Z error probability per site has to be pβJ ≥ √

2 − 1, i.e., T =
1/(β) = 5.77J . The true critical temperature Tc between the classically simulatable
and universal quantum computational phases is located in the range 0.59J < Tc <

5.77J . Note that this model exhibits a transition of the computational capability,
while there is no thermodynamic phase transition in the physical system [223, 224].

In classical information processing, a thermodynamic phase transition, or, more
precisely, an ordered phase below a critical temperature is utilized for robust infor-
mation storage in magnetic storage devises. While there is no such long range order
in the previous model, it is natural to ask whether or not a long range ordered phase
is useful to enhance the measurement-based quantum computation on many-body
thermal states for quantum information processing. To address this issue, Fujii et al.
proposed an interacting cluster Hamiltonian [184],

Hic = −J
∑

〈f ,f̄ 〉
K(f )K(f̄ ).

Because interactions are introduced between the cluster stabilizers, this model is
mapped by UCZ into an Ising model on a 3D lattice:

HIsing = UCZ HicU
†
CZ = −J

∑

〈f ,f̄ 〉
Xf Xf̄ .
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Thus, it undergoes a thermodynamic phase transition at a finite temperature. The
degenerate ground states

UCZ |+〉⊗n and UCZ |−〉⊗n (5.37)

are also the 3D cluster states, up to the simultaneous spin flipping due to the global
symmetry. Because the eigenvalues of the cluster stabilizer have a long range order
(they are likely to be aligned in the same direction) in a ferromagnetic ordered phase,
the topologically protected MBQC on the symmetry-breaking thermal state has a
special robustness against the thermal excitations. In Ref. [184], topological quantum
error correction of this model is mapped to a correlated random plaquette Z2-gauge
model in 3D, where the disorder in the signs of the plaquettes has an Ising-type
correlation. By using this property and the gauge transformation on the Nishimori
line [182], Fujii et al. showed that the critical temperature of thismodel, and hence the
threshold temperature for topological protection, is equal to the critical temperature
of the 3D Isingmodel, which is the unitary equivalent model of the interacting cluster
Hamiltonian. This means that the critical temperatures for the topological protection
and the thermodynamic phase transition of the underlying physical system coincides
exactly. Due to this fact, we can improve the threshold temperature for topological
protection by one order of magnitude.

While the above Hamiltonian employs multi-body interactions, the 3D cluster
state can be generated from the thermal states of a nearest-neighbor two-bodyHamil-
tonian for spin-3/2 and composite spin-1/2 particles via local filtering operations
[226, 227]. Let us consider a system consisting of a spin-3/2 particle located at site
r and a composite particle of two spin-1/2 particles located at the nearest-neighbor
site r + i, with i = 1, 2, 3, as shown in Fig. 5.10a. The Hamiltonian is given by

H = Δ
∑

r

Sr · (Ir+1 + Ir+2 + Ir+3)

where Sr ≡ (Sx
r , Sy

r, Sz
r) is the spin-3/2 operator of the center particle at the position

r and Ir+a = Ar+a or Br+a depending on the interaction types (line or dash). Here,
Ar+a ≡ (Ax

r+a, Ay
r+a, Az

r+a) and Br+a ≡ (Bx
r+a, By

r+a, Bz
r+a) are two independent

spin-1/2 operators on the composite particle at the position r + a (a = 1, 2, 3). The
above Hamiltonian H can be reformulated as

H =
∑

r

Hr = Δ/2
∑

r

(T2
r − S2

r − I2r)

where Ir ≡ Ir+1 + Ir+2 + Ir+3 and Tr ≡ Sr + Ir. The ground state |G〉 = ⊗
r |gr〉

is given by Tr = 0, Sr = 3/2, and Ir = 3/2, where Lr(Lr + 1) (L = T , S, I) is the
eigenvalue of the operator L2

r . Each center particle in the ground state |G〉 is filtered
by using the POVM measurement:

{Fα = (Sα
r
2 − 1/4)/

√
6} (α = x, y, z). (5.38)
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(a) (b)

(c)

Fig. 5.10 a A system consisting of spin-3/2 particles and composite particles of two spin-1/2. After
the filtering operation on the ground state, we obtain cluster states. b A system consisting of spin-2
particles and composite particles of two spin-1/2 for the 3D cluster state. c A system consisting of
spin-3/2 particles and composite particles of two spin-1/2 for the 3D cluster state

If the measurement outcome is α = z, we obtain a four-qubit GHZ (Greenberger-
Horne-Zeilinger) state [228] as the post-POVM measurement state:

|GHZ4
r〉 ≡ 1√

2
(|0̃ + ++〉 + |1̃ − −−〉),

where |1̃〉 and |0̃〉 are eigenstates of Sz with eigenvalues+3/2 and−3/2, respectively,
and |±〉 are the eigenstates of Az or Bz with eigenvalues ±1, respectively. Even if
we obtain other outcomes, we can transform the post-POVM measurement state
to |GHZ4

r〉 by local operations. The four-qubit GHZ state is subsequently used to
construct the 2D honeycomb cluster state, which is a universal resource for MBQC,
by measuring the operators Az ⊗ Bx and Ax ⊗ Bz on the bond particle as shown in
Fig. 5.10a.

In the case of finite temperature, we have the thermal state
⊗

r ρr with ρr ≡
e−βHr/Z instead of the ground state, where Z indicates the partition function and
β = T−1 for a temperature T . Then, the GHZ state becomes a noisy, say thermal,
GHZ state, σr ≡ FαρrFα†/Tr[FαρrFα†]. In the low temperature case, the thermal
GHZ state is calculated, in the leading order, to be E4(|GHZ4

r〉〈GHZ4
r |) with

E4 = (1 − q1 − 3q2 − 3q3)[I] + q1[Zr]
+ q2

∑

a=1,2,3

[Zr+a] + q3
∑

a=1,2,3

[ZrZr+a], (5.39)
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where q1, q2, and q3 are the error probabilities as functions of the temperature T , the
Pauli Z operator Zb on the qubit at the position b, and [C]ρ ≡ CρC†, respectively.
The probability of other errors such as ZrZr+aZr+a′ is several orders of magnitude
smaller than q1,2,3.

To obtain the 3D cluster state for topological MBQC, as done in Ref. [226], the
five-qubit GHZ state |GHZ5

r〉 is generated in a similar way by using spin-2 particles
and composite particles of spin-1/2, as shown in Fig. 5.10b. Instead of the spin-2
particles, spin-3/2 particles were employed in Ref. [227] to obtain the 3D cluster
state shown in Fig. 5.10c. After the filtering operation and local operations, the two
four-qubit GHZ states are connected to obtain the five-qubit GHZ state for building
the 3D cluster state.

By using the threshold for topologically protected MBQC, we can calculate
the threshold temperatures T = 0.21Δ and T = 0.18Δ for the cases of spin-2
and spin-3/2 center particles, respectively [226, 227]. Accordingly, we can perform
fault-tolerant universal measurement-based quantum computation even on the ther-
mal states of local two-body Hamiltonians at finite temperature.

5.6 Summary and Discussion

In this chapter, we have reformulated topological quantum computation with the
surface code in measurement-based quantum computation. In this formulation, the
space-time trajectory of the errors with imperfect syndromemeasurements discussed
in Sect. 4.6 becomes much clearer because they are already mapped into a spatial
degree of the 3D cluster state. For certain physical systems, the measurement-based
model is more feasible than the circuit model. For example, even if the entangling
gates are non-deterministic, we can generate the resource state efficiently [71–76],
and universal quantum computation can be executed scalably in the measurement-
based model. There have been several proposals of optically connected distrib-
uted systems for large scale fault-tolerant quantum computation with the surface
code [113, 115, 229, 230].

http://dx.doi.org/10.1007/978-981-287-996-7_4
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