
Chapter 2
Stabilizer Formalism and Its Applications

In general, the description of quantum states is a difficult task because it requires
exponentially many parameters in the number of qubits as shown in Eq. (1.38). To
understand these complex quantum systems, it is essential to have efficient tools.
The stabilizer formalism is one such powerful tool to describe an important class of
entangled states. It also provides a diagrammatic understanding of quantum states
and operations. The stabilizer states, described by the stabilizer formalism, play
important roles in quantum computation, such as for quantum error correction codes
and resource states in MBQC. In this chapter, we introduce the stabilizer formal-
ism, especially focusing on its diagrammatic understanding. Based on the stabilizer
formalism,we explain quantum error correction,magic state distillation, andMBQC.

2.1 Stabilizer Formalism

We first define an n-qubit Pauli group Pn:

Pn := {±1,±i} × {I, X, Y , Z}⊗n. (2.1)

An element of the Pauli group is called a Pauli product. For example, the two-qubit
Pauli group is given by

P2 := {±1,±i}
× {II, IX, IY , IZ, XI, XX, XY , XZ, YI, YX, YY , YZ, ZI, ZX, ZY , ZZ}, (2.2)

where A ⊗ B is denoted by AB for simplicity. (We will frequently use this notation
when there is no possibility for confusion.) Next, we define an n-qubit stabilizer
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group S as an Abelian (commutative) subgroup of the n-qubit Pauli group:

S := {Si} s.t. −I /∈ S and ∀Si, Sj ∈ S , [Si, Sj] = 0. (2.3)

Because−I is not included in the stabilizer group, all elements are hermitian Si = S†
i ,

which guarantees that the eigenvalues = ±1. An element of the stabilizer group is
called a stabilizer operator. The maximum independent subset Sg of the stabilizer
group is called stabilizer generators. Here, independence means that any element
of Sg cannot be expressed as a product of other elements in Sg. Any element of
the stabilizer group can be generated as a product of the stabilizer generators. The
stabilizer group S generated by the generators Sg is denoted by S = 〈Sg〉.

Let us, for example, consider a two-qubit stabilizer group:

SBell = {II, XX, ZZ,−YY}. (2.4)

Because they contain two anticommuting Pauli operators, XX and ZZ commutes.
The stabilizer groupSBell is generated by {XX, ZZ}, because −YY can be expressed
as a product of XX and ZZ . Thus, we can writeSBell = 〈{XX, ZZ}〉.

For a given stabilizer group S , the stabilizer state is defined as a simultaneous
eigenstate of all stabilizer elements Si ∈ S with the eigenvalue +1:

∀Si ∈ S , Si|ψ〉 = |ψ〉. (2.5)

It is sufficient that the state is an eigenstate of all stabilizer generators:

∀Si ∈ Sg, Si|ψ〉 = |ψ〉. (2.6)

Let k be the number of elements in the stabilizer generator Sg. Each stabilizer
generator divides an n-qubit system (Hilbert space) into two orthogonal subspaces
associated with the eigenvalues ±1. Because all stabilizer operators commute with
each other, the k stabilizer generators divide the n-qubit system into 2k orthogonal
subspaces. Thus, the dimension of the space spanned by the stabilizer states, which
we call a stabilizer subspace, is 2d = 2n−k . When n = k, we can define the quantum
state uniquely.Thenumber of stabilizer generators is atmostn for ann-qubit stabilizer
group. In the case of k < n, the degrees of freedom in the stabilizer subspace can be
addressed by using logical operators, which commute with all stabilizer generators
and also are independent of them.

Let us consider the stabilizer group SBell again. The stabilizer state is the
eigenstate of XX and ZZ with eigenvalue +1, and hence given by the Bell state
(|00〉 + |11〉)/√2 [55]. If XX is removed from the generators, the two-dimensional
subspace spanned by |00〉 and |11〉 is stabilized. By choosing logical operators
LX = XX and LZ = ZI , we can specify the state in the subspace. For example,
the eigenstate of LX with the eigenvalue +1 is the Bell state. The eigenstate of LZ
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with the eigenvalue+1 is |00〉. Another representative example of the stabilizer states
is an n-qubit cat state,

|cat〉 = 1√
n
(|00 . . . 0〉 + |11 . . . 1〉), (2.7)

whose stabilizer group is given by

〈
Z1Z2, . . . , Zn−1Zn,

n∏
i=1

Xi

〉
. (2.8)

The cat state is a representative example of a macroscopically entangled state. If it is
determined whether a particle is |0〉 or |1〉, the superposition is completely destroyed.
If an element

∏n
i=1 Xi is removed from the stabilizer generator, it defines a stabilizer

subspace spanned by |00 . . . 0〉 and |11 . . . 1〉. We can choose LX = ∏n
i=1 Xi and

LZ = Zi as logical operators, which anti-commute with each other and behave as
logical Pauli operators.

2.2 Clifford Operations

In the stabilizer formalism, we can describe a restricted class of unitary operations,
the so-called Clifford operations, acting on the stabilizer states quite efficiently. The
Clifford operation is defined as an operation U that transforms a Pauli product into
another Pauli product under its conjugation, [. . .] → U[. . .]U†. Let us consider the
action of a Clifford operation U on the stabilizer state |ψ〉 defined by a stabilizer
group S = 〈{Si}〉:

U|ψ〉 = USi|ψ〉 = USiU
†U|ψ〉 = S′

iU|ψ〉, (2.9)

where we define S′
i ≡ USiU†. The above equality indicates that the state U|ψ〉 is

an eigenstate of the operator S′
i with an eigenvalue +1 for all S′

i . Because U is a
Clifford (unitary) operation, the group {S′

i} is also an Abelian subgroup of the Pauli
group. Accordingly, the state U|ψ〉 is a stabilizer state with respect to the stabilizer
group {S′

i}. In this way, the action of U on the stabilizer state can be represented
as a transformation of the stabilizer groups under the conjugation of U as shown in
Fig. 2.1. For example, the stabilizer state stabilized by 〈X1I2, I1Z2〉 is |+〉1|0〉2. The
stabilizer group is transformed by Λ(X)1,2 into 〈X1X2, Z1Z2〉, whose stabilizer state
is (|00〉 + |11〉)/√2.

The stabilizer formalism corresponds to the Heisenberg picture of quantum com-
putation, where aminimumnumber of operators are employed to describe a restricted
type of quantum states and operations [56, 57]. This representation is powerful
because it requires us to keep a time evolution of at most n operators, while a
straightforward state-based approach needs exponentially many states. For exam-
ple, let us consider the following quantum circuit:
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Si|Ψ = |ΨSi

Si

Si|Ψ = |Ψ

U

Schrödinger pictureHeisenberg picture

U

|Ψ

|Ψ = U |ΨSi = USiU
†

Fig. 2.1 The stabilizer formalism: a Heisenberg picture of quantum computation. A Clifford oper-
ation is represented as a transformation of the stabilizer group by the conjugation of U
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A straightforward calculation yields the output state |ψ〉,

|ψ〉 = (|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉
+ |1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+ |1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)/4. (2.10)

It is rather cumbersome to write down the above state. Instead, we can understand
the output state as a stabilizer state whose stabilizer generators are

{ZIZIZIZ, IZZIIZZ, IIIZZZZ, XXXIIII,

XXIXXII, IXIXIXI, XIIXIIX}. (2.11)

Equivalently, we may also choose the following stabilizer generators because they
generate the same stabilizer group:

{ZIZIZIZ, IZZIIZZ, IIIZZZZ, XXXXXXX,

IIIXXXX, XIXIXIX, IXXIXXI}. (2.12)

Actually, these stabilizer generators are enough to understand the properties of the
quantum state |ψ〉. If an explicit description of the state is required, we can system-
atically write it down as follows:
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|ψ〉 = 4
I + S4

2

I + S3
2

I + S2
2

I + S1
2

|0000000〉, (2.13)

where S1 = XIXIXIX, S2 = IXXIIXX, S3 = IIIXXXX, and S4 = XXXXXX. The above
equation means that |0000000〉 is an eigenstate for all Z’s stabilizer operators. By
projecting it into the +1 eigenstate of the stabilizer generator Si by the projection
I+Si
2 , we obtain the stabilizer state |ψ〉.
In order for the above calculation to work, we have to obtain the stabilizer gener-

ators of the output state. This can easily be done graphically. We introduce commu-
tation rules between the Pauli operators and Clifford operations below. In the case
of the Hadamard operation, HX = ZH and ZH = HX, and hence we have

H

X Z

XZ

meaning that the PauliX operator acting before the Hadamard operation is equivalent
to the Pauli Z operator acting after the Hadamard operation and so on. Similarly, for
the phase operation X, we have

X

Z

S

Z

Y

The CNOT operation transforms the Pauli operators under its conjugation as
follows:

Λc,t(X)XcΛc,t(X) = XcXt, (2.14)

Λc,t(X)XtΛc,t(X) = Xt, (2.15)

Λc,t(X)ZcΛc,t(X) = Zc, (2.16)

Λc,t(X)ZtΛc,t(X) = ZcZt . (2.17)

The commutation relation between the CNOT operation and the Pauli operators is
understood as follows:

X X

X X X

correlate

commute

correlate commute

Z Z

Z Z Z

In the above circuit diagram, the solid circle commutes with the Pauli Z operator,
while the Pauli X operator is propagated as the Pauli X operator on the target qubit,
making a correlation. Similarly, the open circle commutes with the Pauli X operator,
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while the Pauli Z operator is propagated as the Pauli Z operator on the control qubit,
making a correlation.By recalling that theCNOToperation is transformed into theCZ
operation by the Hadamard operations on the target qubit, the commutation relation
between the CZ operation and the Pauli operators are obtained straightforwardly.
This is described graphically as follows:

X X

correlate

commute

correlate
commute

Z Z Z

ZZ

X X

Z

In this case, note that the Pauli X operation is propagated as the Pauli Z operation.
This graphical understanding allows us to calculate the stabilizer generators of

the output of the Clifford circuits. For example, in the following circuit diagram, the
first qubit is stabilized by X before the Clifford operation. The Pauli X operator is
propagated toward the right, and we obtain the stabilizer operator ZIZIZIZ for the
output:
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The reader should use this graphical technique to calculate the other stabilizer gen-
erators and verify Eq. (2.11).

2.3 Pauli Basis Measurements

Next, we will see how the Pauli-basis measurements on the stabilizer states are
described in the stabilizer formalism. Suppose the A-basis (A = X, Y , Z) measure-
ment is performed on a stabilizer state |ψ〉, whose stabilizer group is given by 〈Si〉.
(We assume that the number of stabilizer generators is equal to the number of qubits,
and hence that the stabilizer state is uniquely defined.) Depending on the stabilizer
group 〈{Si}〉 and A, there are two possibilities:
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(i) The Pauli operator A commutes with all stabilizer generators. In that case, either
A or −A is an element of the stabilizer group. If A (−A) is an element, the
eigenvalue +1 (−1) is obtained with probability 1. The post-measurement state
is the same as the stabilizer state before measurement.

(ii) At least one stabilizer operator does not commute with A. In this case, we can
choose another set of generators {S′

i} such that S′
1 anti-commutes with A but all

other generators commute with A. The measurement outcomes +1 and −1 are
obtained with an equal probability of 1/2. The post-measurement state is given
by 〈(−1)mA, S′

2, . . . , S′
k〉 depending on the measurement outcomes m = 0, 1

corresponding to the eigenvalues (−1)m.

For example, supposewe perform theY -basismeasurement on the first qubit of the
Bell state stabilized by SBell = 〈XX, ZZ〉. We can redefine the stabilizer generators
by {XX,−YY}. The measurement outcome m is randomly given. Then the stabilizer
group after themeasurement is given by 〈(−1)mYI,−YY〉 = 〈YI, (−1)m+1IY〉. Thus,
we obtain | − i〉 as the post-measurement state on the second qubit.

2.4 Gottesman–Knill Theorem

Because the stabilizer states and Clifford operations are described efficiently in the
stabilizer formalism, it implies that such a restricted type of quantum computation
can be simulated efficiently on a classical computer. This is stated by the Gottesman–
Knill theorem [9, 56, 57].

Theorem 2.1 Any Clifford operations, applied to the input state |0〉⊗n followed by
the Z measurements, can be simulated efficiently in the strong sense.

Here, an efficient strong classical simulation of a quantum circuit C is a classical
polynomial-time computation that calculates the probabilityPC(x) for a given output
x of the circuit C, including an arbitrary marginal distribution

∑
x′ PC(x). (See, for

example, Ref. [58] for the definition of a strong simulation.) Note that this theorem
holds true even when the initial state is generalized to an arbitrary stabilizer state,
and also any Pauli products are measured, because they are done in the above setup
by modifying the Clifford operations appropriately.

Proof The stabilizer group of the input state is 〈{Zi}〉 (i = 0, 1, . . . , n − 1). By
applying the Clifford operations as mentioned, we obtain the stabilizer generators
〈{Si}〉 of the quantum output before the measurements. Suppose the measurement
outcome, the classical output, is given by {mi = 0, 1}. Then the probability of
obtaining the measurement outcome {mi} can be calculated as follows:

(i) Set the stabilizer generators S (0) = 〈{Si}〉 and the initial probability p(0) = 1.
(ii) For k = 0, 1, . . . , n − 1, repeat the following procedures.

(1) If (−1)mk Zk ∈ S (k), update the probability p(k+1) = p(k), because the mea-
surement outcome mk is obtained with probability 1. The stabilizer group
after the measurement is also updated toS (k+1) = S (k).
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(2) Else, if (−1)mk⊕1Zk ∈ S (k), update the probability p(k+1) = 0, because such
a measurement outcome does not appear. (You may stop the calculation at
this stage, and return the probability 0.)

(3) Else,S (k) is updated intoS (k+1) by removing an anticommuting generator
and adding (−1)mk Zk as a new generator. Because themeasurement outcome
is obtained randomlywith probability 1/2, the probability is taken asp(k+1) =
p(k)/2.

(iii) Return p(n) as the probability of obtaining the measurement outcome {mi}.
Note that, in step (ii), we can efficiently decide which of the three is the case for any
k by checking the commutability of Zk with the stabilizer generators of S (k). �

The statement of Theorem 2.1 can be extended by weakening the notion of the
classical simulation.

Theorem 2.2 Any Clifford operations, applied to any product states of convex mix-
tures of the Pauli basis states, followed by Z measurements can be efficiently simu-
lated in the weak sense.

Here, an efficient weak classical simulation of a quantum circuit C is a classical
polynomial-time randomized computation that samples the output x according to
the probability distribution PC(x) of the output of the circuit C. (See, for example,
Ref. [58] for the definition of weak simulation.) Apparently, a strong simulation
includes a weak simulation, because we sample the output by using the marginal
distributions [59].

Proof Suppose that the ith input qubit is given by

ρi = p(i)
x,+|+〉〈+| + p(i)

x,−|−〉〈−| + p(i)
y,+| + i〉〈+i| + p(i)

y,−| − i〉〈−i|
+ p(i)

z,+|0〉〈0| + p(i)
z,−|1〉〈1|, (2.18)

where
∑

α=x,y,z

∑
ν=+,− p(i)

α,ν = 1. By using the probability distribution {p(i)
α,ν}, the

input state of each qubit is randomly sampled. Conditioned by the sampling result,
the input state is a product of the Pauli basis states, and hence the output probability
distribution can be calculated as shown in Theorem 2.1. Combined with the random
sampling of the input state, this provides an efficient weak simulation of the Clifford
circuit with noisy input states (convex mixture of the Pauli basis states). �

The input state can be generalized into a classical mixture of stabilizer states, when
its polynomial size description of the probability distribution is provided. Similarly,
the Clifford operations can be extended to stochastic Clifford operations such as the
stochastic Pauli error.

The convex mixture of the Pauli basis state lies inside the octahedron of the Bloch
sphere as shown in Fig. 2.2. It is natural to ask whether or not the Clifford circuit
allows universal quantum computation if the input state lies outside the octahedron.
If the input state is a pure non-stabilizer state such as e−i(π/8)Z |+〉, we can implement
a non-Clifford gate e−i(π/8)Z by using gate teleportation, explained in Sect. 2.6. Even
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Fig. 2.2 A convex mixture
of the Pauli basis states lies
inside the octahedron of the
Bloch sphere
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some mixed states can be converted into a pure non-stabilizer state, the so-called
magic state, by using only Clifford operations. Such a protocol is called magic state
distillation [60] and will be explained in Sect. 2.8.

2.5 Graph States

In this section,we introduce an important class of stabilizer states, the so-called graph
states [61], whose stabilizer generators are defined on graphs. The graph states are
employed as resource states for MBQC as explained in the next section.

A graph state is defined by a graph G = (V , E). Here, V and E are the sets of the
vertices and edges, respectively. A qubit is located on each vertex of the graph. The
stabilizer generator of the graph state |G〉 is defined as

Ki = Xi

∏
j∈Vi

Zj for all i ∈ V , (2.19)

where we define a set of vertices Vi := {j|(i, j) ∈ E}, which are connected to the
vertex i by an edge on the graph G (see Fig. 2.3). The graph state |G〉 is generated
from a product state |+〉⊗|V | by applying the CZ gate on each of the graphs:

|G〉 =
∏

(i,j)∈E

Λ(Z)i,j|+〉⊗|V |, (2.20)

where |V | indicates the number of vertices of the graph G = (V , E). This can be
understood that the stabilizer generator Xi for the state |+〉 is transformed into Ki

by the CZ operations U ≡ ∏
(i,j)∈E Λ(Z)i,j. Especially, when the graphs are regular

lattices such as one-dimensional (1D), square, hexagonal, and cubic lattices, the
corresponding graph states tend to be referred to as cluster states [62]. Any stabilizer
state is equivalent to a certain graph state up to local Clifford operations [61, 63].
For example, the cat state is equivalent to the following graph state by applying the
Hadamard operation on the kth qubit:
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Fig. 2.3 The graph state |G〉
associated with a graph
G = (V , E). A stabilizer
generator Ki is also shown
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G=(V,E)
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k

Unfortunately, the graph associated with a stabilizer state is not uniquely defined,
because there are local Clifford operations that change the underlying graph. This
property is called the local complementarity of the graph states [61, 63].

Next, we will see how the Pauli basis measurements transform the graph states.
For simplicity, we assume that the state is projected into an eigenstatewith eigenvalue
+1. Let us consider a 1D graph state as follows:

i-1 i i+1

whose stabilizer generator is given by

Ki = Zi−1XiZi+1. (2.21)

We first consider the Z basis measurement (projective measurement of the observ-
able Z) on the ith qubit. Following the procedure seen in Sect. 2.3, Ki is removed
from the stabilizer generator. By adding Zi instead, we obtain the stabilizer group for
the post-measurement state

〈. . . , Ki−1, Zi, Ki+1, . . .〉. (2.22)

After the projection, the ith qubit is |0〉 and hence decoupled from the other qubits.
By rewriting the stabilizer generators, we obtain three decoupled stabilizer groups

〈. . . , Zi−2Xi−1〉, 〈Zi〉, 〈Xi+1Zi+2, . . .〉. (2.23)

This means that the graph is divided into two parts as follows:

Z
i-1 i i+1 i-1 i+1

For any graph, this property of theZ-basismeasurement holds; the post-measurement
state is defined by a modified graph, where the vertex corresponding to the measured
qubit and the edges incident to it are removed from the original graph.
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Next, we consider theX-basis measurement. The observableXi does not commute
withKi−1 andKi+1, but does commutewithKi−1Ki+1 = Zi−2Xi−1Xi+1Zi+2. Following
the procedure in Sect. 2.3, the stabilizer group for the post-measurement state is
calculated to be

〈. . . , Zi−2Xi−1Xi+1Zi+2, Zi−1Zi+1, . . .〉, 〈Xi〉. (2.24)

By performing the Hadamard operation H on the (i − 1)th qubit, we obtain a new
stabilizer group

〈. . . , Zi−2Zi−1Xi+1Zi+2, Xi−1Zi+1, . . .〉, 〈Xi〉, (2.25)

which indicates that the graph is transformed into the following graph with the
Hadamard operation:

X
i-1 i i+1 i+1

i-1
H

i+1

i-1

H

Instead of the (i − 1)th qubit, we can obtain a similar result by performing the
Hadamard operation on the (i + 1)th qubit as shown above.

Suppose the ith and (i+1)th qubits aremeasured in theX-basis on a 1Dgraph state.
This is equivalent to measuring the (i + 1)th qubit of the above post-measurement
graph state in the Z basis, because the Hadamard operation is applied on it as a
byproduct. From the previous argument, the Z-basis measurement remove the mea-
sured qubit from the graph. Thus, two neighboring X-basis measurements remove
the measured qubits and connect the left and right hand sides directly:

X X

which we call a contraction.
Finally, we consider the Y -basis measurement. The observable Yi does not com-

mute with either Ki−1, Ki, or Ki+1, but does commute with Ki−1Ki = Zi−2Yi−1YiZi+1

and KiKi+1 = Zi−1YiYi+1Zi+2. The stabilizer group for the post-measurement state
is calculated to be

〈. . . , Zi−2Yi−1Zi+1, Zi−1Yi+1Zi+2, . . .〉, 〈Yi〉. (2.26)

By performing the phase gates S on the (i − 1)th and (i + 1)th qubits, we obtain a
new stabilizer group

〈. . . , Zi−2Xi−1Zi+1, Zi−1Xi+1Zi+2, . . .〉, 〈Yi〉. (2.27)

This indicates that the graph is directly connected up to the phase operation S as a
byproduct:

Y
i-1 i i+1 i-1 i+1

S S
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Suppose three neighboring qubits (i−1), i, and (i+1) aremeasured in the Y -basis.
This is equivalent to measuring the ith qubit in the Y -basis, and then measuring the
(i − 1)th and (i + 1)th qubits of the post-measurement graph state in the X-basis,
because there is a phase operation S acting on them as a product. As seen previously,
the X-basis measurements on two neighboring qubits result in a contraction of the
two qubits on the graph. Thus, the Y -basis measurements on three neighboring qubits
contract them from the 1D graph state.

Y YY

This property is useful to change even and odd of the length of the 1D graph state.
While we have considered the Pauli-basis measurements only on the 1D graph

state, we can generalize these arguments into graph states of general structures. A
graph state is still mapped into another graph state up to some single-qubit Clifford
operations as byproducts.

2.6 Measurement-Based Quantum Computation

Measurement-based quantum computation (MBQC) is a model of quantum compu-
tation, where quantum gates are implemented by adoptive measurements on a highly
entangled resource state [64–66]. Specifically, certain graph states, the so-called clus-
ter states, are employed as resource states inMBQC. Belowwewill first demonstrate
quantum teleportation, a building block of MBQC. Then, we explain how adoptive
measurements on a graph state enable us to emulate universal quantum computation
via quantum teleportation.

Quantum teleportation is a quantum communication protocol, in which Alice
sends a quantum state to Bob by using a shared entangled state and classical com-
munication [67]. Suppose Alice and Bob share a maximally entangled state, the Bell
state,

|0〉a|0〉b + |1〉a|1〉b√
2

. (2.28)

For an unknown input state |ψ〉i and the half of the Bell state, Alice performs a Bell
measurement, which is a projection onto the Bell basis states

|Ψ (m1, m2)〉i,a = Xm1
i Zm2

i

|0〉i|0〉a + |1〉i|1〉a√
2

, (2.29)

where m1, m2 = 0, 1 correspond to the measurement outcomes. A straightforward
calculation provides

〈Ψ (m1, m2)|i,a
(

|ψ〉i
|0〉a|0〉b + |1〉a|1〉b√

2

)
= Zm2

b Xm1
b |ψ〉b/2. (2.30)
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Hence, the unknown input state is teleported to Bob with a byproduct operator
Xm1Zm2 . If Bob does not know the measurement outcomes (m1, m2), the teleported
state is a completely mixed state for Bob. However, if Alice sends the measurement
outcome as a classical message, Bob can undo the byproduct and obtain the unknown
quantum state at Bob’s side. The circuit diagram of quantum teleportation is:

|+

|0

|ψ

maximally entangled state

Bell measurement

Alice

Bob

X

Z
m1

m2

Zm2Xm1 |ψ

By using the following circuit equivalence, we can decompose the teleportation
circuit into two elementary teleportations, the so-called one-bit teleportations:

|+
|0

|ψ

X

Z
m1

m2

|+
|0

|ψ

X

Z
m1

m2

H H

H H

|+ X

m1

m2

|+

X
|ψ

Xm2Zm1 |ψ

Zm2Xm1 |ψ

Zm2Xm1 |ψ

X

one-bit teleportation

|ψ
|+

m1

Xm1H|ψ

One-bit teleportation is useful as a building block of the teleportation-based gates
employed in MBQC. A single-qubit Z rotation eiθZ can be implemented in a
teleportation-based way. Its action can be understood from the following circuit
equivalence:

X

|+

m1|ψ eiθZ

X

|+

m1|ψ eiθZ

Xm1HeiθZ |ψ

Xm1HeiθZ |ψ

where we utilized the fact that eiθZ and Λ(Z) commute. The controlled-Z operation
is also implemented in a teleportation-based way as follows:
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|+
X

m1

|+ X
m2

in 1

in 2

=

|+ X
m1

|+

X
m2

in 1

in 2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2

That is, instead of performing the Λ(Z) gate after one-bit teleportations, we can
prepare a special resource state, on which theΛ(Z) gate is pre-implemented, and the
Λ(Z) gate is then performed via teleportation. These quantum operations based on
quantum teleportation are called gate teleportation [68].

Nowweare ready to formulateMBQC.An arbitrary single-qubit unitary operation
U can be decomposed, up to an unimportant global phase, into

U = HeiφZ eiθXeiξZ (2.31)

= HeiφZ HeiθZ HeiξZ . (2.32)

This indicates that we can perform an arbitrary single-qubit unitary operation by
a sequence of one-bit teleportations. The resource state for the sequential one-bit
teleportations is a 1D cluster state:

where the stabilizer generator for the left-most qubit is removed and the input state
is encoded. We have to take care of the byproduct Pauli operators depending on the
measurement outcomes. Fortunately, we can propagate the Pauli byproduct operators
forward as follows:

U = Xmi+2Heiφ′ZXmi+1Heiθ ′ZXmi HeiξZ . (2.33)

= Xmi+2⊕mi Zmi+1Hei(−1)mi+1φ′Z Hei(−1)mi θ ′ZHeiξZ . (2.34)

X

|+

|ψ eiξZ mi

ei(−1)miθZ
X

mi+1

|+ Xei(−1)mi+1φZ

|+

mi+2

Xmi+2⊕miZmi+1HeiφZHeiθZHeiξZ |ψ
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Bychoosing θ ′ = (−1)miθ andφ′ = (−1)mi+1φ adaptively, dependingon theprevious
measurement outcomes, the random nature of the measurements can be managed.
This procedure is called feedforward. The Pauli byproduct is propagated and updated
throughout the computation. Note that the classical processing required to determine
the measurement angle has only XOR (addition modulo two) operations [65].

Next, we will investigate the measurement-based two-qubit gate operation. The
resource state for the gate teleportation is the following cluster state:

|+ X
m1

|+

X
m2

in1

in2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2
in1

X
out1

in2

X
out2

=
out1

out2

i i+1

To adjust the timing of the two-qubit operation, we can insert identity operations
depending on the even and odd lengths as follows:

in X X out in Y Y outY

Without loss of generality, we can assume that all input states of the quantum com-
putation are given by |+〉, which are automatically encoded by preparing the graph
state. At the end of the computation (on the right-most qubits), measurements are
performed to read out the result as follows:

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z
Z Z Z Z Z Z Z

Z
Z

Z Z Z Z
Z Z Z Z

Z Z
Z Z

Z
Z

X
X

X
X

X
X

X
X

X
X

X
X

X
X

re
ad

ou
t
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In this way, universal quantum computation is simulated solely by measurements on
a brickwork-like cluster state. This state can be generated from a cluster state on a
square lattice by using the Pauli basis measurements as shown above. Accordingly,
the square lattice cluster states are universal resources for MBQC.

The above circuit-based explanation of MBQC [69] is very intuitive and straight-
forward. However, for a complicated resource state, as will be shown, an operator-
based understanding of MBQC [65] is quite useful. Let us reformulate MBQC from
an operator viewpoint. Suppose again an MBQC on a 1D cluster state. The mea-
surements are executed up to the (i − 1)th qubits, and hence the operator Kl (l ≤ i)
is removed from the stabilizer generators. The logical degree of freedom on the
remaining resource state can be specified by the ith logical operators

L(i)
X = XiZi+1, (2.35)

L(i)
Y = YiZi+1, (2.36)

L(i)
Z = Zi. (2.37)

These logical operators commute with all remaining stabilizer generators Kl

(l ≥ i + 1). Moreover, they anticommute with each other, satisfying the commu-
tation relations for the Pauli operators. Thus, they specify the state encoded in the
graph state. As seen above, a Z-rotation e−i(θ/2)Zi is applied before the X-basis mea-
surement. Because Zi = L(i)

Z , this rotation induces a unitary transformation U of the
logical operator

L(i)
X → cos θL(i)

X + sin θL(i)
Y , (2.38)

L(i)
Y → cos θL(i)

Y − sin θL(i)
X . (2.39)

Because L(i)
X = XiL

(i+1)
Z , the logical X operator after the X-basis measurements is

given by (−1)mi L(i+1)
Z depending on the measurement outcome mi = 0, 1. On the

other hand, the logical operators L(i)
Y ,Z do not commutewith theX-basismeasurement;

they are not relevant logical operators after the measurement. If two operators are
equivalent up to multiplications of the stabilizer operators, their action on the stabi-
lizer state is also the same. By using this fact, we can replace the logical operators
in (2.39) with

L(i)
Z ∼ L(i)

Z Ki+1 = Xi+1Zi+2 ≡ L(i+1)
X , (2.40)

L(i)
Y ∼ Ki+1 = XiYi+1Zi+2 ≡ XiL

(i+1)
Y , (2.41)

where ∼ indicates that two operators are equivalent up to stabilizer operators. After
the X-basis measurement, Xi can be replaced by its eigenvalue (−1)mi . Then the
logical operator of the post-measurement state is given by
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L(i)
X → (−1)mi(cos θL(i+1)

Z + sin θL(i+1)
Y ) = UL(i+1)

X U†, (2.42)

L(i)
Y → (−1)mi(cos θL(i+1)

Y − sin θL(i+1)
Z ) = UL(i+1)

Y U†, (2.43)

L(i)
Z → L(i+1)

X = UL(i+1)
Z U†. (2.44)

We now realize that the logical operators for the ith step are transformed into those
for the (i + 1)th step rotated by U ≡ X̄mi H̄e−i(θ/2)Z̄ , where Ā indicates the operator
A represented in terms of the logical basis specified by the (i + 1)th logical Pauli
operators {L(i+1)

X , L(i+1)
Y , L(i+1)

Z }.
Similarly, a two-qubit gate in MBQC can also be regarded as a propagation of a

correlation by a projection on the stabilizer state. Consider the following graph state.

logical operators
before the measurement

z

logical operators
after the measurement

x z

z
z x z

z

in1

X
out1

in2

X
out2

i i+1
stabilizer

z zx z z

The logical operators for the ith step are given by {L(i)
X1, L(i)

Z1} and {L(i)
X2, L(i)

Z2}. By
multiplying the stabilizer operator, we obtain

L(i)
Z1 ∼ X1,i+1Z1,i+2Z2,i+1 = L(i+1)

X1 L(i+1)
Z2 , (2.45)

L(i)
Z2 ∼ X2,i+1Z2,i+2Z1,i+1 = L(i+1)

X2 L(i+1)
Z1 . (2.46)

The logical operators for the (i + 1)th step after the projections are calculated to be

{L(i)
X1, L(i)

Z1} → {(−1)m1L(i+1)
Z1 , L(i+1)

X1 L(i+1)
Z2 } = {VL(i+1)

X1 V †, VL(i+1)
Z1 V †}, (2.47)

{L(i)
X2, L(i)

Z2} → {(−1)m2L(i+1)
Z2 , L(i+1)

X2 L(i+1)
Z1 } = {VL(i+1)

X2 V †, VL(i+1)
Z2 V †}. (2.48)

Again, we realize that the logical operators for the ith step are transformed into those
for the (i + 1)th step with a two-qubit unitary operation

V ≡ (X̄1Z̄2)
m1(X̄2Z̄1)

m2Λ̄1,2(Z)H̄1H̄2. (2.49)

By combining single-qubit rotations XmHei(θ/2)Z and the two-qubit operation
(X1Z2)

m1(X2Z1)
m2Λ1,2(Z)H1H2 as seen above, we can perform a universal quantum

computation. In this way, MBQC can be understood in the Heisenberg picture.
Suppose the logical Pauli operators of the kth input and output qubits are related

by the measurements as follows:

{L(In)
X,k , L(In)

Z,k } → {UL(Out)
X,k U†, UL(Out)

Z,k U†}. (2.50)
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The unitary operator U is performed on the input qubits. Here a Pauli byproduct,
depending on the measurement outcomes, is also included in U. Moreover, if two
graph states, which perform U and V , are concatenated with the appropriate feed-
forwarding of the Pauli byproducts, then VU is performed:

input

…

output

U
input output

V

Let us consider the example shown in Fig. 2.4a. The logical operators on the inputs
are replaced by multiplying stabilizer generators so that they commute with the X-
basis measurements as shown in Fig. 2.4b. Then the X operators on the measured
qubits are replaced by ±1. The measurements transform the input logical operators
as follows:

{L(In)
X,1 , L(In)

Z,1 , L(In)
X,2 , L(In)

Z,2 }
→

{
(−1)m1⊕m5L(Out)

X,1 L(Out)
Z,2 , (−1)m3⊕m6L(Out)

Z,1 ,

(−1)m2⊕m6L(Out)
X,2 L(Out)

Z,1 , (−1)m4⊕m5L(Out)
Z,2

}
. (2.51)

Thus, the Λ1,2(Z) gate is implemented up to a Pauli byproduct.
Using this fact and concatenation of the input-output relations, we can construct

a measurement-based CNOT gate between the separated two-qubit as follows [65]:

in1

X

out1

in2 X

out2X X

X X

in1 X

out1in2

out2
X

X

Z

in1

out1in2

out2
X

Z

X

measurements

logical operators multiplied by 
stabilizer generators

(b)(a)

Z

m1

m2

m3

m4

m5

m6

Fig. 2.4 aAgraph state and ameasurement pattern.bThe logicalX operator of input 1 ismultiplied
by the stabilizer generators and we obtain a correlated operator on outputs 1 and 2 (left). The logical
Z operator of input 1 is multiplied by the stabilizer generators and we obtain the logical Z operator
of output 1. The gray colored X operators are replaced by ±1 depending on the measurement
outcomes
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intarget

outtarget

incontrol

outcontrol

The input-output relation of the above graph state is equivalent to that for the fol-
lowing circuit:

intarget

outtarget

incontrol

outcontrol

=

In this way, a CNOT gate between two arbitrary separated qubits can be implemented
using a constant depth (constant width) resource state.

To conclude, we summarize the properties of MBQC and recent progress in this
area. A unique feature of MBQC is that the resource state for universal quantum
computation is prepared offline. Entangling operations, which would be one of the
most difficult tasks in experiments, are employed only in this stage. Quantum com-
putation is executed solely by adaptive measurements. This property is useful for
experimental realization in certain physical systems. For example, a deterministic
entangling operation is difficult to achieve in an optical quantum computation. In
such a case, we can utilize linear optics and measurement-induced nonlinearity to
generate a cluster state [70–72]. Importantly, the entangling operation can be non-
deterministic, as long as the successful or non-successful outcome is heralded. By
using such a probabilistic entangling operation, we can gradually expand the cluster
state. After successful cluster state generation, we can start the measurements for
quantum computation. Note that the probability of successful cluster state generation
is not exponentially small by using a divide and conquer approach [71–76].

The clear separation between the quantum stage requiring entangling operations
and the measurement stage is useful, not only for the physical implementation, but
also in a quantum cryptographic scenario. Suppose that Bob (server) possesses a fully
fledged quantum computer and that Alice (client), who has a less advanced quantum
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device, such as a single-qubit state generator, wants to delegate quantum computation
to Bob. By using the idea of MBQC, such a delegated quantum computation can be
made unconditionally secure. This is called a blind quantum computation and was
proposed by Broadbent, Fitzsimons, and Kashefi (BFK) [77] (see also the related
earlier works [78, 79]). In the BFK protocol, Alice sends randomly rotated qubits
{e−i(θj/2)Z |+〉} to Bob, where the angle is chosen to be θj = kjπ/4 (kj = 0, 1, . . . , 7).
Bob generates a cluster state by using the randomly rotated qubits. In the compu-
tation phase, Alice sends a classical message δj = φj + θj + rjπ . Here, φj is the
measurement angle with which Alice want to perform a measurement. The angle θj

is for the randomly rotated state (which is secret to Bob). The random bit r ∈ {0, 1}
makes the measurement angle completely random for Bob. Then Bob performs the
measurement in the {e−i(δj/2)Z |±〉} basis. Because the initial state is pre-rotated by θj

(from Alice’s viewpoint), Bob performs the measurement in the {e−i(φj/2+rjπ/2)Z |±〉}
basis, which is what Alice wants to do. However, from Bob’s viewpoint, the state
is a completely mixed state with no information about {φj}. Thus, Bob is blind to
any information about the input, the algorithm, and the output. Instead of the state
generation, Alice, who has a measurement device, can also perform a blind quan-
tum computation, whose security is guaranteed by the no-signaling principle [80]. A
fault-tolerant blind quantum computation has been proposed, based on topologically
protected MBQC [81].

2.7 Quantum Error Correction Codes

In this section, we introduce stabilizer codes, which are a class of quantum error
correction (QEC) codes.

Three-Qubit Bit-Flip Code

The QEC codes can be described elegantly in the stabilizer formalism. Let us first
consider the simplest one, the three-qubit bit flip code, whose stabilizer generators
are given by

S1 = Z1Z2, S2 = Z2Z3. (2.52)

The stabilizer subspace is spanned by the following two logical states:

|0L〉 = |000〉, |1L〉 = |111〉. (2.53)

The logical Pauli-X operator is given by LX ≡ X1X2X3. The logical Pauli-Z operator
is defined as LZ ≡ Z1. We may, equivalently, choose the logical Pauli Z operator to
be Z2 or Z3, because their actions on the code space are equivalent. The present code
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is a quantum analogue of the classical three-bit repetition code. Consider a bit flip
error with an error probability p:

Eiρ = (1 − p)ρ + pXiρXi. (2.54)

If the initial state |ψL〉 = α|0L〉 + β|1L〉 undergoes the bit flip error independently,
the output state is transformed in leading order as

E1 ◦ E2 ◦ E3|ψL〉〈ψL| = (1 − p)3|ψL〉〈ψL| + p(1 − p)2
∑

i

Xi|ψL〉〈ψL|Xi + O(p2).

(2.55)

The error Xi maps the code space to an orthogonal space. We perform a projec-
tive measurement onto the orthogonal subspaces, P±

k = (I ± Sk)/2, which we call
a syndrome measurement, to know in which orthogonal space the state lies. Note
that the encoded quantum information is not destroyed by the syndrome measure-
ment, because it commutes with the logical operators. According to themeasurement
outcomes, the logical state can recover from the error as follows:

R ◦ E1 ◦ E2 ◦ E3|ψL〉〈ψL| = [(1 − p)3 + 3p(1 − p)2]|ψL〉〈ψL| + O(p2),

(2.56)

where the recovery operator is given by

Rρ = P+
1 P+

2 ρP+
2 P+

1 + X1P−
1 P+

2 ρP+
2 P−

1 X1 + X2P−
1 P−

2 ρP−
2 P−

1 X2

+ X3P+
1 P−

2 ρP−
2 P+

1 X3. (2.57)

The four terms in Rρ correspond to the measurement outcomes (eigenvalues)
(+1,+1), (−1,+1), (−1,−1), and (+1,−1) of the stabilizer generators, respec-
tively. By comparingEqs. (2.55) and (2.56), one can understand that if p is sufficiently
small, the fidelity of the logical state is improved.

Similarly, we can construct a three-qubit phase flip code, which can correct a
phase flip error, by changing the basis with the Hadamard transformation:

〈Z1Z2, Z2Z3〉 → 〈X1X2, X2X3〉. (2.58)

9-Qubit Shor Code

The three-qubit bit-flip code cannot correct Z errors, which commute with the stabi-
lizer generators. A QEC code that can correct all X, Y , and Z errors was developed
by Shor based on a concatenation of three-qubit bit-flip and phase-flip codes [82].
The stabilizer generators of the 9-qubit Shor code are given as follows:
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X X X X X X I I I
I I I X X X X X X
Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z

(2.59)

The code space is spanned by

|0L〉 + |1L〉√
2

= (|000〉 + |111〉) (|000〉 + |111〉) (|000〉 + |111〉)
2
√
2

, (2.60)

|0L〉 − |1L〉√
2

= (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)
2
√
2

. (2.61)

The logical Pauli operators are given by XL = X⊗9 and ZL = Z⊗9, which are bitwise
tensor products of physical Pauli operators. If the logical A operator is given by a
bitwise tensor product of the physical A operators on the QEC code, we say that the
operation A has transversality. The 9-qubit code is capable of correcting all X, Y ,
and Z errors for each qubit, which can be understood because the three-qubit phase
flip code {| + ++〉, | − −−〉} is constructed by using the three logical qubits of the
three-qubit bit flip codes {|000〉, |111〉}.

Note that any single-qubit noise E can be described by using the Kraus opera-
tors {Kj}:

E ρ =
∑

j

KjρK†
j . (2.62)

Any operatorKj can be decomposed into the Pauli operators σ0 = I , σ1 = X, σ2 = Y ,
and σ3 = Z:

Kj =
∑

l

cjlσl. (2.63)

Thus, if the X and Z errors on a single qubit are both corrected appropriately, we can
correct any single-qubit noise automatically. Specifically, because noise contains a
superposition of the Pauli errors, it can be collapsed by the syndrome measurements.

Stabilizer Codes

To summarize the above examples, let us formalize the stabilizer quantum error cor-
rection codes and their properties. The code space of a stabilizer QEC code is defined
by a stabilizer group 〈{Si}〉. The encoded degree of freedom is specified by the mutu-
ally independent logical operators {LZ

j }, which commutewith all stabilizer generators
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and are independent of the stabilizer generators. The computational basis state of the
code state is completely determined by the stabilizer group 〈{Si}, {(−1)mj LZ

j }〉. We
can always find another set of the logical operators {LX

j } being subject to

LX
j LZ

i = (−1)δij LZ
i LX

j , (2.64)

where δij is the Kronecker delta. Hence, the pair of logical operators LZ
i and LX

i
represents the ith logical qubit. In terms of the numbers n and (n − k) of qubits and
stabilizer generators, respectively, the number of pairs of logical operators is k.

Let us define the weight wt(Si) of a Pauli product Si as the number of qubits on
which a Pauli operator (except for the identity I) is acting. The minimum weight of
the logical operator over all possible logical operators is called the code distance d.
This implies that all Pauli products whose weights are smaller than d are elements
of the stabilizer group or anticommute with the stabilizer generators. Thus, they act
trivially on the code state or map the code state into an orthogonal subspace. If the
weight of a Pauli product as an error is less than (d − 1)/2, we can find a unique
recovery operator that returns the erroneous state into the code space. Thus, we can
correct weight-�(d − 1)/2� errors. Such a stabilizer QEC code is called a [[n, k, d]]
stabilizer code. For example, the code distance of the 9-qubit code is a [[9, 1, 3]]
stabilizer code correcting weight-one errors.

The nine-qubit code is not the smallest QEC code that can correct all weight-one
X, Y , and Z errors. The smallest code is the five-qubit code, found independently by
Laflamme et al. [83] and Bennett et al. [84]. The stabilizer generators and the logical
Pauli operators are given as follows:

S1 = X Z Z X I
S2 = I X Z Z X
S3 = X I X Z Z
S4 = Z X I X Z
XL = X X X X X
ZL = Z Z Z Z Z

(2.65)

We see that the code distance is three, and hence an arbitrary single-qubit error can
be corrected.

Calderbank-Shor-Steane Codes

The readers who are familiar with classical coding theory might already be aware
of the correspondence between stabilizer codes and classical linear codes. Let us
recall the 9-qubit code. The X and Z errors are detected independently through the
Z-type and X-type stabilizer generators, respectively. This implies that X and Z
error corrections are described by classical coding theory, where two classical error
corrections are subject to a certain constraint to appropriately form a stabilizer group.
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To formulate this, we briefly review classical linear codes. A [[n, k]] classical
linear code C is defined as a k-dimensional space VC of n-dimensional vector space
over GF(2) by using an n × k generator matrix

G = (b1, . . . , bk), (2.66)

where the column vectors {bi} are the basis vectors of VC . A k-bit classical informa-
tion y is encoded into the code c as

a = Gc. (2.67)

To detect and analyze the errors, we define an (n − k) × n parity check matrix H
such that Hbk = 0 for all basis vectors {bk}. Suppose an error e occurs on the code
state, a′ = a ⊕ e, where ⊕ indicates a bitwise addition modulo two. By using the
parity check matrix H, we can detect the error

Ha′ = H(a ⊕ e) = He ≡ s, (2.68)

where s is called an error syndrome.
For example, the three-bit repetition code is defined by the generator

G =
⎛
⎝1
1
1

⎞
⎠ . (2.69)

A classical bit 0 and 1 is encoded into (0, 0, 0)T and (1, 1, 1)T, respectively. The
parity check matrix is defined to be

H =
(
1 1 0
0 1 1

)
. (2.70)

Now, we realize that the positions of the 1 s of the parity check matrix are exactly
the same as those of the Zs in the stabilizer generators of the three-qubit bit flip code.
This suggests to use the parity check matrices Hx and Hz of the two classical linear
codes Cx and Cz, respectively, in the definition of the X-type and Z-type stabilizer
generators:

S(i)
X =

∏
j

X
(Hx)ij

j , S(i)
Z =

∏
j

Z
(Hz)ij

j . (2.71)

For these operators to commute with each other, the two parity check matrices have
to satisfy

HxHT
z = 0, (2.72)
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where 0 indicates a matrix with all elements = 0. To define the logical Z operators,
we define a quotient space Ker(Hx)/Img(HT

z ). Denoting the basis vectors of the
quotient space Ker(Hx)/Img(HT

z ) by {[bz
k]}, we define the logical Z operators

L(k)
Z =

∏
i

Z
(bz

k)i

i . (2.73)

Similarly, we can define the logical X operators

L(k)
X =

∏
i

X
(bx

k)i

i , (2.74)

using the basis vectors {[bx
k]} of a quotient space Ker(Hz)/Img(Hx

T), where bx
k is

chosen such that L(i)
Z L(j)

X = (−1)δij L(j)
X L(i)

Z . Note that dimensions of these kernel
subspaces are the same, and we can easily find such pairs of anticommuting logical
operators. The above stabilizer code constructed from two classical linear codes is
called a Calderbank-Shor-Steane (CSS) code.

Let us see an important example of CSS codes, the 7-qubit code introduced by
Steane [85]. Specifically, we utilize a classical linear code, the [[7, 4, 3]] Hamming
code, whose generator and parity check matrices are given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H =
⎛
⎝ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠ . (2.75)

Because HHT = 0, we can employ the Hamming code to define both X- and Z-type
stabilizer generators:

S1 = I I I X X X X
S2 = I X X I I X X
S3 = X I X I X I X
S4 = I I I Z Z Z Z
S5 = I Z Z I I Z Z
S6 = Z I Z I Z I Z

(2.76)

There is an element (1, 1, 1, 1, 1, 1, 1)T in the quotient spaceKer(H)/VH . The logical
operators are given by

LX = X X X X X X X,

LZ = Z Z Z Z Z Z Z.
(2.77)
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The 7-qubit code is quite useful for fault-tolerant quantum computation. Both the
X- and Z-type stabilizer generators are defined from the Hamming code, and the
stabilizer group is invariant under the transversal Hadamard operation H̄ ≡ H⊗7.
Moreover, the logical X operator is mapped into the logical Z operator, H̄LXH̄ = LZ .
Thus, the transversal Hadamard operation acts as the logical Hadamard operation for
the encoded degree of freedom. Similarly, a transversal phase operation S̄ ≡ (ZS)⊗7

acts as a logical phase operation, S̄LX S̄† = LY . Furthermore, a transversal CNOT
operation Λ̄(X) = Λ(X)⊗7 keeps the stabilizer group of two logical qubits invariant:

〈{S(i)
X ⊗ I⊗7}, {S(i)

Z ⊗ I⊗7}, {I⊗7 ⊗ S(i)
X }, {I⊗7 ⊗ S(i)

Z }〉 (2.78)

= 〈{S(i)
X ⊗ S(i)

X }, {S(i)
Z ⊗ I⊗7}, {I⊗7 ⊗ S(i)

X }, {S(i)
Z ⊗ S(i)

Z }〉. (2.79)

The logical Pauli operators are subject to the transformation rule of the CNOT gate.
Accordingly, the transversal CNOT operation Λ̄(X) acts as a logical CNOT opera-
tion for the encoded degree of freedom. Because the Hadamard, phase, and CNOT
operations are implemented transversally, whole Clifford group elements can be
implemented by transversal operations.

The transversal implementation is fault-tolerant because the operations apparently
donot increase the number of errors on a codeblock and there is no internal interaction
between the qubits in the same code block. Combined with a fault-tolerant gadget
for measuring the error syndrome as explained in Appendix A.1, we can implement
Clifford operations fault-tolerantly.

Unfortunately, the non-Clifford operation does not transform a Pauli operator into
another Pauli operator. For example, the π/8 operation e−i(π/8)Z transforms the Pauli
X operator into a Clifford operator:

e−i(π/8)Z Xei(π/8)Z = (X + Y)/
√
2. (2.80)

This implies that a transversal non-Clifford operation hardly results in a logical
non-Clifford operation. Thus, a fault-tolerant non-Clifford gate operation is not so
straightforward. To settle this, we can utilize magic state distillation, consisting of
noisy non-Clifford resource states and ideal (fault-tolerant) Clifford operations, as
explained in the next section.

2.8 Magic State Distillation

2.8.1 Knill-Laflamme-Zurek Protocol

A fault-tolerant implementation of a non-Clifford gate was first proposed in an earlier
paper by Knill, Laflamme, and Zurek [86, 87]. Instead of implementing the non-
Clifford gate directly, we consider a fault-tolerant preparation of the non-stabilizer
state, the so-called magic state,
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|A〉 ≡ ei(π/8)Y |+〉. (2.81)

Themagic state can be utilized to implement a non-Clifford gateA ≡ ei(π/8)Y by using
one-bit teleportation consisting of Clifford gates and the Pauli basis state preparations
and measurements. Thus, if we can prepare a clean magic state, we can create a fault-
tolerant non-Clifford gate by using fault-tolerant Clifford gates.

The Knill-Laflamme-Zurek construction of the fault-tolerant preparation of the
magic state was based on the fact that |A〉 is an eigenstate of H. The Hadamard oper-
ation has transversality, e.g., on the 7-qubit code. Hence, if we perform a projective
measurement of H⊗7, we obtain a clean magic state. The circuit is given as follow

|+
|+

|0

|0
|0

|+

A|+
|+

encoding

A†

A†

A†

A†

A†

A†

A† A

A

A

A

A

A

A

|+
X

indirect measurement 

Z

Z

Z

Z

Z

Z

Z

decoding (2.82)

where A = ei(π/8)Y and we used the fact that AtΛc,t(X)A†
t = Λc,t(H). The above

circuit consists of three parts, encoding of the logical magic state into the 7-qubit
code, indirect measurement of H⊗7, and decoding by one-bit teleportation. Note
that all Clifford operations are assumed to be ideal, because they are easily made
fault-tolerant by using a stabilizer code.With an appropriate randomization operation
made up byClifford operations, a noisymagic state can be transformed into amixture
of |A〉 and |A⊥〉 = Y |A〉:

ρA = (1 − p)|A〉〈A| + p|A⊥〉〈A⊥| (2.83)

Hence, the noise on the magic state can be expressed as a Y error. The Y error can
be detected by transversal Z measurements for the decoding (see also Knill’s gadget
for a fault-tolerant syndrome measurement in Appendix A.1). Assuming an ideal
Clifford operation, the error probability p decreases as O(p3), when we employ the
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7-qubit code with distance 3. Including the A gate for the initial encoding, we need
15 noisy magic states |A〉 to obtain a clean magic state. This distillation protocol
works for all self-dual CSS codes, which are symmetric between the X- and Z-
type stabilizer generators and has transversality for the Hadamard gate. Recently,
improved protocols have been proposed based on this approach [88, 89].

2.8.2 Bravyi-Kitaev Protocol

Bravyi and Kitaev proposed another magic state distillation protocol based on a 15-
qubit code [60]. While their and the Knill-Laflamme-Zurek protocols seem quite
different, they are, interestingly, known to be equivalent [90]. In the Bravyi-Kitaev
protocol, a [[15,1,3]] quantum code is defined by the [[15,7,3]] classical Reed-Muller
code, whose parity check matrix is given by

Hx =

⎛
⎜⎜⎝
1 0 0 0 0 1 1 0 0 1 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
0 0 1 1 0 0 1 0 1 1 0 0 1 1 1
0 0 1 0 1 1 0 1 0 0 1 0 1 1 1

⎞
⎟⎟⎠ (2.84)

The X-type stabilizer generators are defined by S(i)
X = ∏

j X
(H)ij

j . Then, we choose a
parity check matrix of another classical code

Hz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.85)

so that HxHT
z = 0 and the Z-type stabilizer generators are defined similarly. The

logical operators are given by LX = X⊗15 and LZ = Z⊗15. The logical states are
written down explicitly as

|0L〉 =
4∏

i=1

(I + S(i)
X )|00 . . . 0〉, (2.86)

|1L〉 =
4∏

i=1

(I + S(i)
X )|11 . . . 1〉. (2.87)
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The number of 1 s in each term of |0L〉 and |1L〉 is 8 and 7, respectively. By applying
the T = e−i(π/8)Z gate transversally, we obtain

T⊗15|0L〉 = eiπ/8|0L〉, (2.88)

T⊗15|1L〉 = e−iπ/8|0L〉. (2.89)

Thus, the transversal T gate acts as a logical T † gate. Note that this transversality does
not hold in the orthogonal (erroneous) subspace, e.g., spanned by {Xk|0L〉, Xk|1L〉}.
However, we can show that this is enough to perform a fault-tolerant logical T gate.

Instead of applying the T gate directly, we implement it using a one-bit telepor-
tation:

|ψ
Z

m

T
|T (XS)m

(2.90)

The Z-basis measurement and CNOT operation are both implemented transversally
on a CSS code. Thus, if the preparation of the non-Clifford ancilla state |T〉 =
(|0L〉+ e−iπ/4|1L〉)/√2, called a magic state, is done fault-tolerantly, one can ensure
fault-tolerance of the logical T gate.

By using an appropriate randomization process, we can prepare a noisy magic
state as follows:

ρT = (1 − p)|T〉〈T | + pZ|T〉〈T |Z. (2.91)

Thus, a phase error Z is located on the ideal magic state with probability p. This
phase error causes a Z error after the T gate by one-bit teleportation. Because the
code space is invariant under the transversal T gate, we can detect such a Z error by
the following circuit.
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The first part of the above circuit consisting of CNOT operations is an encoding
circuit for the quantum Reed-Muller code. The transversal T gate is applied by using
one-bit teleportation. The logical |T〉 state is measured in the X-basis transversally,
which detects Z errors on the code state, projecting the code state on the local
X-basis. The input state in the second lowest wire is entangled with the ancilla
qubit in the lowest wire, where the distilled magic state is teleported.

Let c be a 15-bit string specifying the location of the Z errors, E(c) ≡ ∏
i Z (c)i

i .
If E(c) commutes with the X-type stabilizer generators, the state passes through the
distillation circuit. To calculate this probability, we define a weight enumerator of a
subspace V ∈ GF(2n),

WV (x, y) =
∑
c∈V

xn−wt(c)ywt(c). (2.92)

The probability of passing the distillation circuit is calculated to be

ppass = WV⊥
Hx

(1 − p, p) = 1

|Vx|WVHx
(1, 1 − 2p) = 1 + 15(1 − 2p)8

16
, (2.93)

where the orthogonal subspace V⊥
Hx

is equivalent to the kernel of Hx, Ker(Hx). We
also used the MacWilliams identity [91]:

WV (x, y) = 1

|V |WV⊥(x + y, x − y). (2.94)

Similarly, the error probability of the output can be calculated to be

WVHz
(p, 1 − p) = 1

|V⊥
Hz

|WV⊥
Hz

(1, 2p − 1) (2.95)

= 1 + 15(2p − 1)8 + 15(2p − 1)7 + (2p − 1)15

32
. (2.96)

Accordingly, the error probability, under the condition of passing the distillation
circuit, is given by

p′ = 1 + 15(2p − 1)8 + 15(2p − 1)7 + (2p − 1)15

2[1 + 15(1 − 2p)8] = 35p3 + O(p4). (2.97)

Ifp′ > 0.141,we can reduce the error probability on themagic state via the distillation
circuit.After l rounds of distillation, the error probability decreases to (

√
35p)3

l
/
√
35.

At each round,we need 15 noisymagic states. Because the probability of successfully
passing the distillation circuit converges rapidly to 1, the average number of noisy
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magic states consumed after l rounds becomes 15l. Accordingly, the average number
of noisy magic states required to achieve an error probability ε of the magic state
scales like

[log(√35ε)/ log(
√
35p)]log(15)/ log(3) = O(log2.5 ε). (2.98)

In Sect. 2.4,we saw that if an input state is a convexmixture of the Pauli basis states
followed by Clifford operations and Pauli basis measurements, the measurement
outcomes can be simulated classically in the weak sense. The noisy magic state
ρT = (1− p)|T〉〈T | + p|T〉〈T | lies on a line in the x–y plane, as shown in Fig. 2.5. If
p > (1−√

2/2)/2 = 0.146,ρπ/8 lies inside the octahedron, and theGottesman–Knill
theorem is applicable. On the other hand, if p < 0.141, magic state distillation allows
us to implement universal quantum computation with an arbitrary accuracy as seen
above. Unfortunately, magic state distillation based on the Reed-Muller code does
not provide a tight distillation threshold against the classically simulatable region. In
Ref. [90], a distillation protocol using the 7-qubit code was proposed and achieved
a tight threshold p = (1 − √

2/2)/2. In this sense, the classically simulatable and
quantum universal regions are divided sharply on the x–y plane.

By combining the magic state distillation and fault-tolerant Clifford operations
on the CSS code, we can perform universal quantum computation fault-tolerantly.
In order to make the error probability arbitrarily small, we can employ concatenated
quantum computation, in which logical qubits of a lower concatenation level are
utilized as the physical qubits at a higher level. At the higher level, all operations,
including logical qubit preparations and syndromemeasurements forQEC, have to be
done fault-tolerantly. If the error probability is smaller than a certain constant value,
which we call the noise threshold, the logical error probability at the highest concate-
nation level decreases super-exponentially. On the other hand, the overhead increases
exponentially. Thus, we canmake the logical error probability small enough to main-
tain a quantum computation of size N with a polylogarithmic overhead polylog(N).
This implies that we can obtain a quantum benefit even for a quantum algorithmwith
a quadratic speedup, such as the Grover algorithm [37]. In Appendix A.1, we briefly

y

x

z

x
yφ

θ

φφφ

θ

p = (1 −
√

2/2)/2

Fig. 2.5 The noisy magic state in the Bloch sphere
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review fault-tolerant syndrome measurements, concatenated quantum computation,
and the threshold theorem.

While the resource increment for protecting quantum computation scales poly-
logarithmically, its constant factor is quite huge. Almost all overheads for the fault-
tolerant quantum computation are employed for the magic state distillation [92, 93].
Thus, much effort has been spent recently on developing resource-efficient magic
state distillation [88, 94–96].

2.9 Summary and Discussion

In this chapter, we have introduced the stabilizer formalism and have learned how
to utilized it to describe the quantum states and the operations of the restricted class
efficiently. As examples, we have seen MBQC, quantum error correction codes, and
magic state distillation, all of which take important roles in quantum computation.

WhileMBQCcan be understood as sequential quantum teleportation circuits [69],
the operator-based explanation, as employed in the original paper [64, 65], would be
also useful. Indeed, topologically protected quantum computation was first formal-
ized elegantly in terms ofMBQC on a 3D cluster state [4, 5] as wewill see in Chap.5.
It was further translated into the circuit-based model in two dimensions (2D) [6, 97],
which will be explained in detail in Chap.4. Specifically, the operator-based formu-
lation is quite useful for describing how correlation is propagated in a topologically
protected way.

Recently, quantum stabilizer codes have been employed not only for quantum
error correction but also as exactly solvable toy models for topologically ordered
condensed matter systems as will be seen in the next chapter. Specifically, the simple
but rich structure of the stabilizer formalism allows us to obtain a lot of insights from
the toy models, such as scaling laws of entanglement entropy, stability of quantum
phases at finite temperature, and statistics of excitations.Besides, a quantumstabilizer
code has found its application even to high energy physics recently [98, 99].

The magic state is necessary ingredient for universal quantum computation and
hence might be a clew to find the origin of quantum speedup. In Ref. [100], it has
been shown that violation of non-contextuality, which is a kind of non-locality of
quantum mechanics and prohibits pre-existing hidden valuables for quantum states
before measurements, is necessary for distillability of magic states. Moreover, in
Ref. [101], a quantum-classical boundary of noisy quantum commuting circuits is
derived from the viewpoint of classical (not) simulatability of the output distributions.
The boundary, which sharply divides the classical simulatable and not simulatable
regions, has its origin in distillability of a magic state.

http://dx.doi.org/10.1007/978-981-287-996-7_5
http://dx.doi.org/10.1007/978-981-287-996-7_4
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