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Preface

In 1982, Richard Feynman pointed out that a simulation of quantum systems on
classical computers is generally inefficient because the dimension of the state space
increases exponentially with the number of particles [1]. Instead, quantum systems
could be simulated efficiently by other quantum systems. David Deutsch put this
idea forward by formulating a quantum version of a Turing machine [2]. Quantum
computation enables us to solve certain kinds of problems that are thought to be
intractable with classical computers such as the prime factoring problem and an
approximation of the Jones polynomial. It has a great possibility to disprove the
extended (strong) Church–Turing thesis, i.e., that any computational process on
realistic devices can be simulated efficiently on a probabilistic Turing machine.

However, for this statement to make sense, we need to determine whether or not
quantum computation is a realistic model of computation. Rolf Landauer criticized
it (encouragingly) by suggesting to put a footnote: “This proposal, like all proposals
for quantum computation, relies on speculative technology, does not in its current
form take into account all possible sources of noise, unreliability and manufacturing
error, and probably will not work.” [3]. Actually, quantum coherence, which is
essential for quantum computation is quite fragile against noise. If we cannot handle
the effect of noise, quantum computation is of a limiting interest, like classical
analog computers, as a realistic model of computation. To solve this, many
researchers have investigated the fault-tolerance of quantum computation with
developing quantum error correction techniques. One of the greatest achievements
of this approach is topological fault-tolerant quantum computation using the surface
code proposed by R. Raussendorf et al. [4–6]. It says that nearest-neighbor
two-qubit gates and single-qubit operations on a two-dimensional array of qubits
can perform universal quantum computation fault-tolerantly as long as the error rate
per operation is less than ∼1 %.

In this book, I present a self-consistent review of topological fault-tolerant
quantum computation using the surface code. The book covers everything required
to understand topological fault-tolerant quantum computation, ranging from the
definition of the surface code to topological quantum error correction and
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topological operations on the surface code. The basic concepts and powerful tools
for understanding topological fault-tolerant quantum computation, such as universal
quantum computation, quantum algorithms, stabilizer formalism, and
measurement-based quantum computation, are also introduced in the first part
(Chaps. 1 and 2) of the book. In particular, in Chap. 1, I also mentioned a quantum
algorithm for approximating the Jones polynomials, which is also related to topo-
logical quantum computation with braiding non-Abelian anyons. In Chap. 3, the
definition of the surface code and topological quantum error correction on it is
explained. In Chap. 4, topological quantum computation on the surface code is
described in the circuit-based model, where topological diagrams are introduced to
understand the logical operations on the surface code diagrammatically. In Chap. 5,
I explained the same thing in the measurement-based model, as done in the original
proposal [4]. Hopefully, it would be easy to see how these two viewpoints are
related.

Throughout the book, I have tried to explain the quantum operations using
circuit and topological diagrams so that the readers can get a graphical under-
standing of the operations. The graphical understanding should be helpful to study
the subjects more efficiently. Topological quantum error correction codes are a nice
playground for studying the interdisciplinary connections between quantum infor-
mation and other fields of physics, such as condensed matter physics and statistical
physics. Actually, there is a nice correspondence between topological quantum
error correction codes and topologically ordered systems in condensed matter
physics. Furthermore, if we consider a decoding problem of a quantum error cor-
rection code, a partition function of a random statistical mechanical model is nat-
urally appeared as a posterior probability for the decoding. These interdisciplinary
topics are also included in Chap. 3.

Almost all topics, except for the basic concepts in the first part, are based on the
results achieved after the appearance of the standard textbook of quantum infor-
mation science entitled “Quantum Computation and Quantum Information”
(Cambridge University Press 2000) by M.A. Nielsen and I.L. Chuang. In this sense,
the present comprehensive review on these topics would be helpful to learn and
update the recent progress efficiently. In this book, I concentrated on the quantum
information aspect of topological quantum computation. Unfortunately, I cannot
cover the more physical and condensed matter aspects of topological quantum
computation, such as non-Abelian anyons and topological quantum field theory. In
this sense, this book is complemented by the book “Introduction to Topological
Quantum Computation” (Cambridge University Press 2012) written by J.K. Pachos.
Readers who are interested in the more physical aspects of topological quantum
computation are recommended to read it.

Hopefully, this review will encourage both theoretical and experimental
researchers to find a more feasible way of quantum computation. It will also bring
me great pleasure if this review provides an opportunity to reunify and refine
various subdivided fields of modern physics in terms of quantum information.

Kyoto, Japan Keisuke Fujii
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Chapter 1
Introduction to Quantum Computation

In this chapter, we introduce the basic concepts of quantum computation. We first
describe theminimum unit of quantum information, the qubit, and define several gate
operations for it. Then, we explain the Solovay–Kitaev algorithm, which provides a
way todecompose an arbitrary single-qubit unitary operation into an elementary set of
single-qubit gates. Using multi-qubit gates, we construct an arbitrary n-qubit unitary
operation from an elementary universal set of gates, which we call universal quantum
computation. Quantum algorithms, which run on a universal quantum computer, are
also presented. One example of this is Shor’s prime factoring algorithm based on the
phase estimation algorithm. Another is an approximation of the Jones polynomial.
Finally, we will introduce quantum noise and see how we can describe a quantum
system coupled with an environment.

1.1 Quantum Bit and Elementary Operations

In classical information science, the minimum unit of information is described by
a binary digit or bit, which takes the value 0 or 1. Its quantum counterpart is a
quantum bit, the so-called qubit. The qubit is defined as a linear superposition of two

orthogonal quantum states |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
,

|ψ〉 = α|0〉 + β|1〉, (1.1)

where α and β are arbitrary complex values satisfying |α|2 +|β|2 = 1. The complex
amplitudes can be expressed as

α = cos
θ

2
, β = eiφ sin

θ

2
, (1.2)

© The Author(s) 2015
K. Fujii, Quantum Computation with Topological Codes,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-287-996-7_1

1



2 1 Introduction to Quantum Computation

Fig. 1.1 The Bloch sphere
z

x
yφ

θ

|0

|1

|+
| + i

| − i

up to an unimportant global phase. By using the angles θ and φ, the qubit can be
mapped onto a point on a three-dimensional (3D) sphere, the so-called Bloch sphere,
as shown in Fig. 1.1.

The time evolution, which maps a quantum state into another, is given as a unitary
operator in quantummechanics. Themost important operators are the Pauli operators

I =
(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.3)

The computational basis states {|0〉, |1〉} are eigenstates of the Pauli Z operator. The
Pauli X operator flips the computational basis state:

|1〉 = X|0〉, |0〉 = X|1〉. (1.4)

We define the eigenstates of the Pauli X operator as

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

, (1.5)

which we call the X-basis states. Similarly, the eigenstates of the Pauli Y operator
are defined as

| + i〉 = |0〉 + i|1〉√
2

, | − i〉 = |0〉 − i|1〉√
2

, (1.6)

which we call the Y -basis states.
The second most important operators are the Hadamard H and phase S operators

H = 1√
2

(
1 1
1 −1

)
and S =

(
1 0
0 i

)
.

These gates transform between the different Pauli-basis states, i.e., H : {|0〉, |1〉} ↔
{|+〉, |−〉} and S : {|+〉, |−〉} ↔ {| + i〉, | − i〉}. Equivalently, we may say that
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these operators transform a Pauli operator into another Pauli operator under their
conjugations:

X = HZH, Y = SXS†. (1.7)

From this property, the H and S gates are called Clifford gates. These Clifford gates
are depicted as circuit diagrams as follows:

H S

If we measure the qubit |ψ〉 in the Z-basis {|0〉, |1〉}, we obtain the measurement
outcomes 0 and 1 with probabilities

p0 = |〈0|ψ〉|2 = Tr [|0〉〈0|ψ〉〈ψ |] , (1.8)

p1 = |〈1|ψ〉|2 = Tr [|1〉〈1|ψ〉〈ψ |] , (1.9)

respectively.More generally, wemay use themeasurement operators {Mi}, satisfying
thatEi ≡ M†

i Mi is positive semidefinite and that
∑

i Ei = I . (If an operator A satisfies
∀|u〉, 〈u|A|u〉 ≥ 0, it is said to be positive semidefinite.) The probability of obtaining
the measurement outcome i is given by

pi = 〈ψ |M†
i Mi|ψ〉 = Tr

[
M†

i Mi|ψ〉〈ψ |
]

= Tr [Ei|ψ〉〈ψ |] . (1.10)

Such a measurement and the set of positive operators {Ei = M†
i Mi}, are called

a positive-operator-valued measure (POVM) measurement and POVM elements,
respectively. The post-measurement state conditioned on the measurement outcome
i is

Mi|ψ〉√
Tr[M†

i Mi|ψ〉〈ψ |]
. (1.11)

Suppose we have quantum states |ψ〉 and |φ〉 with probability pψ and pφ , respec-
tively.We perform ameasurement with themeasurement operator {Mi}. If we assume
that the measurement outcome i is obtained with probability

pi = pψTr
[
M†

i Mi|ψ〉〈ψ |
]

+ pφTr
[
M†

i Mi|φ〉〈φ|
]
, (1.12)

we can express the classical mixture of |ψ〉 and |φ〉 as an operator

ρ = pψ |ψ〉〈ψ | + pφ|φ〉〈φ|, (1.13)

which is called the density matrix or density operator. More generally, if we have
pure quantum states {|ψk〉} with probability {pk}, the density matrix is given by
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ρ = ∑
k pk|ψ〉〈ψ |. A density matrix, which has information of a quantum state

including its statistical property, has to be a positive hermitian (self-adjoint) oper-
ator ρ satisfying Tr [ρ] = 1. Note that for a given density matrix ρ, the pure state
decomposition of it is not uniquely determined, and any decomposition has the same
statistical property.

A mixed state of a qubit ρ can be represented as a point inside the Bloch sphere
through the three coordinates calculated from the density matrix

(rx, ry, rz) = (Tr[Xρ],Tr[Yρ],Tr[Zρ]). (1.14)

If the state is a pure state |ψ〉 = cos θ
2 |0〉 + eiφ sin θ

2 |1〉, the coordinates can be
calculated to be

(rx, ry, rz) = (sin θ cosφ, sin θ sin φ, cos θ), (1.15)

which is consistent with the previous definition. The completely mixed state I/2
corresponds to the origin of the coordinate system.

1.2 The Solovay–Kitaev Algorithm

The Pauli operators {I, X, Y , Z} and single-qubit Clifford operators {H, S} form a
finite group, and hence cannot cover all unitary operations for a qubit. If a non-
Clifford operation exists, e.g., e−i(π/8)Z , we can generate an arbitrary single-qubit
unitary operation using the Solovay–Kitaev algorithm [16]. The underlying Solovay–
Kitaev theorem states that if a set of single-qubit operations generates a dense subset
of SU(2), then that set is guaranteed to fill SU(2) quickly.

Suppose we have a basic (0th order) approximation U0 of an arbitrary unitary
operator U, and that it approximates U with a certain constant error ε0:

‖U0 − U‖ ≤ ε0, (1.16)

where ‖...‖ indicates an operator norm. The Solovay–Kitaev algorithm takes the
(n − 1)th order approximation Un−1 with an error εn−1 and returns the nth order
approximation Un with an error εn as follows.

First, UU†
n−1 is decomposed in terms of the unitary operators V and W as a group

commutator:

UU†
n−1 = VWV †W†, (1.17)

where V and W are chosen such that

‖V − I‖ < c
√

εn−1, ‖W − I‖ < c
√

εn−1, (1.18)
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with a constant c. The above decomposition always exists from the following argu-
ment. Let V and W be rotations with an angle φ about the x- and y-axes, respectively.
Then VWV †W† is a rotation with an angle θ about some axis, where

sin(θ/2) = 2 sin2(φ/2)
√
1 − sin4(φ/2). (1.19)

We assume that φ, θ � 1, and hence θ � φ2. By inverting the above argument, if

‖I − VWV †W†‖ � θ/2 + O(θ3) (1.20)

we can find V and W such that

‖I − V‖, ‖I − W‖ � φ/2 + O(φ3). (1.21)

Because

‖I − UU†
n−1‖ = ‖I − VWV †W†‖ < εn−1, (1.22)

we can find V and W such that ‖I − V‖, ‖I − W‖ < c
√

εn−1.
Second, we calculate the (n −1)th order approximations Vn−1 and Wn−1 of V and

W , respectively. Then the Solovay–Kitaev algorithm returns the nth order approxi-
mation

Un = Vn−1Wn−1V †
n−1W†

n−1Un−1, (1.23)

which satisfies

‖Un − U‖ ≤ εn. (1.24)

Next, we will calculate εn as a function of εn−1. By using the property of the operator
norm, we obtain

‖Un − U‖ ≤ ‖Vn−1Wn−1V †
n−1W†

n−1 − UU†
n−1‖‖Un−1‖ (1.25)

≤ ‖Vn−1Wn−1V †
n−1W†

n−1 − VWV †W†‖‖Un−1‖ (1.26)

By denoting Vn−1 = V + ΔV , Wn−1 = W + ΔW , we obtain

‖Un − U‖ ≤ ‖Vn−1Wn−1V †
n−1W†

n−1 − VWV †W†‖ (1.27)

≤ ‖ΔV WV †W† + VWΔ
†
V W†‖ + ‖VΔW V †W†

+VWV †Δ
†
W‖ + O(Δ2). (1.28)
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Moreover, in terms of δV and δW defined byV = I+δV andW = W+δW respectively,
we obtain

‖Un − U‖ ≤ ‖ΔV V † + VΔ
†
V‖ + ‖ΔW W† + WΔ

†
W‖ (1.29)

+‖ΔVδW‖ + ‖Δ†
Vδ

†
W‖ + ‖δVΔW‖ + ‖δ†VΔ

†
W‖ + O(Δ2). (1.30)

≤ 4cε3/2n−1 + O(Δ2, δ2Δ). (1.31)

Here we have used that

ΔV V † + VΔ
†
V = ΔVΔ

†
V , (1.32)

which can be derived from the unitarity of V and Vn−1 = V + ΔV . To leading order,
the error is given by εn ≤ c′ε3/2n−1 with a certain constant c′ and is calculated to be

εn ≤ (2c′ε0)(3/2)
n
/(2c′). (1.33)

If ε0 < 1/(2c′), the error decreases super-exponentially in n. On the other hand, the
nth order approximation calls the (n − 1)th order approximation three times, i.e.,
through Un−1, Vn−1, and Wn−1. Including the resource RD required for the decompo-
sition (1.17), the overhead Rn for the nth order approximation is given by

Rn = 3Rn−1 + RD (1.34)

⇔ Rn = O(3n). (1.35)

Similarly, the number of unitary operations employed in the nth order approximation
is calculated to be Mn = O(5n). By using (1.33) and (1.35), the overhead Rε and the
number Mε of gates required to obtain an approximation of U with an error ε can be
estimated:

Rε = O(lnln 3/ ln(3/2)(1/ε)), (1.36)

Mε = O(lnln 5/ ln(3/2)(1/ε)). (1.37)

Thus, both Rε and Mε scale as polylogarithmic functions of 1/ε.

1.3 Multi-Qubit Gates

An n-qubit state is given by a superposition of tensor product states

|Ψ 〉 =
∑

i1,i2,...,in

Ci1i2...in |i1i2...in〉,
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where ik = 0, 1 and |i1i2...in〉 ≡ |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉. A single qubit gate A acting
on the kth qubit is denoted by

Ak =
k−1︷ ︸︸ ︷

I ⊗ · · · ⊗ I ⊗A ⊗
n−k−1︷ ︸︸ ︷

I ⊗ · · · I . (1.38)

An important two-qubit gate is the controlled-NOT (CNOT) gate,

Λc,t(X) = |0〉〈0|cIt + |1〉〈1|cXt .

For a computational basis input state |i〉c|j〉t , the CNOT gate acts as Λc,t(X)|i〉c|j〉t

= |i ⊕ j〉. In this sense, the CNOT gate is a quantum generalization of the XOR
operation in classical computation. If the input state is |+〉c|0〉t , the output of the
CNOT gate is a maximally entangled state:

Λc,t(X)|+〉c|0〉t = (|00〉 + |11〉)/√2. (1.39)

The CNOT gate is depicted by a circuit diagram as follows:

We may also define the controlled-Z (CZ) gate,

Λc,t(Z) = |0〉〈0|cIt + |1〉〈1|cZt .

The CZ operation is symmetric; Λc,t(Z) = Λt,c(Z), and is represented by the circuit
diagram

Because the Pauli Z operator is transformed into the Pauli X operator by the
Hadamard gate, we have the following relation between the CZ and CNOT gates:

H H

These CNOT and CZ gates are both Clifford gates, i.e., Λ(A) (A = X, Z) trans-
forms the two-qubit Pauli group onto itself under the conjugation Λ(A)[· · · ]Λ(A)†.
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For example, Λ(X)c,tXc ⊗ ItΛ(X)
†
c,t = Xc ⊗ Xt , Λ(X)c,t Ic ⊗ ZtΛ(X)

†
c,t = Zc ⊗ Zt ,

Λ(Z)c,tXc ⊗ ItΛ(Z)
†
c,t = Xc ⊗ Zt , etc.

For an arbitrary unitary operator U, the controlled-U gate is denoted by

Λc,t(U) = |0〉〈0|cIt + |1〉〈1|cUt, (1.40)

where the qubits c and t are called the control and target qubits, respectively. By
decomposing a single-qubit unitary gate into U = eiαAXBXC with the unitary oper-
ators A, B, C satisfying ABC = I , the controlled-U operation Λ(U) can be imple-
mented as follows:

U

1 0
0 eiα

C B A

(Note that we always have such a decomposition for an arbitrary single-qubit
gate [8, 9].)

For example, the controlled-Hadamard gate Λ(H) can be represented by

H ei π
8 Ye−i π

8 Y

Next, we will discuss one of the most important multi-qubit gates, the Toffoli
gate:

Λ2
c1,c2,t(X) = (Ic1Ic2 − |1〉〈1|c1 |1〉〈1|c2)It + |1〉〈1|c1 |1〉〈1|c2Xt, (1.41)

which is depicted as a circuit diagram:

For a computational basis input state |i1〉c1 |i2〉c2 |j〉t , the Toffoli gate acts as

Λ2
c1,c2,t(X)|i1〉c1 |i2〉c2 |j〉t = |i1〉c1 |i2〉c2 |j ⊕ (i1 · i2)〉t . (1.42)

The state of the third qubit is equivalent to the output of the NAND operation in clas-
sical computation. In this sense, the Toffoli operation can be regarded as a quantum
extension of the NAND operation. The NAND operations are known to be universal
in classical computation in the sense that any logic gate (boolean function) can be
constructed from them. This implies that quantum computation trivially includes
classical computation. More importantly, because unitary operations are reversible,
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quantum computation can simulate classical computation in a reversible way. Sup-
pose we want to calculate a boolean function f (x) for an input state x. Then, we can
construct a quantum circuit Uf consisting of Toffoli and Pauli X gates:

Uf |x〉input|0...0〉ancilla|0〉answer = |x〉input|g(x)〉ancilla|f (x)〉answer, (1.43)

where the qubits |·〉input, |·〉ancilla, and |·〉answer indicate the registers for the input state,
the ancillae for the Toffoli operations, and the answer of the calculation, respectively.
The output state of the ancilla register |g(x)〉ancilla is the garbage of the computation.
However, the garbage can be uncomputed as follows (see also the circuit diagram
below):

U†
f Λanswer,out(X)Uf |x〉input|0...0〉ancilla|0〉answer|0〉out
= U†

f |x〉input|g(x)〉ancilla|f (x)〉answer|f (x)〉out
= |x〉input|0...0〉ancilla|0〉answer|f (x)〉out. (1.44)

|xinput

ancillae

|0
|0

answer

output

Uf
U

†
f

|x

|0
|f(x)

|00...0 00...0

In this way, we can calculate an arbitrary boolean function in a reversible way.
Finally, we introduce the multi-controlled unitary gate

Λk(U) = (I⊗k − |1〉〈1|⊗k) ⊗ I + |1〉〈1|⊗k ⊗ U, (1.45)

where U is applied to the target qubit if all k control qubits are |1〉. The multi-
controlled gate can be implemented by using the Toffoli gates and k ancilla qubits
as follow:

U

U

{control qubits

|0
|0
|0

|0

an
ci

lla
 q

ub
its

target qubit
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The Λ2(U) gate can be decomposed into CNOT and single-qubit gates by using an
idea similar to the decomposition of the Λ(U) gate:

U U
√

U
√

U
† √

U

For example, the Toffoli gate can be constructed from the CNOT, Hadamard, and
π/8 operations as follows:

H T

T †

T † T T †

T †

T

H

T = e−(π/8)iZ

where we have used the fact that that the controlled-
√

X gate is decomposed into the
CNOT, Hadamard, and π/8 (T = e−i(π/8)Z ) gates as follows:

X T T †

T †

HH

It should be noted that a multi-controlled gateΛk(U) can also be constructed without
any ancilla qubit frommulti-controlled gatesΛ(k−1)(U)with lower controlled qubits
by using the trick employed for decomposing Λ2(U) into Λ(U) [8].

1.4 Universal Quantum Computation

Here we will show that an arbitrary unitary operation can be decomposed into single-
qubit and CNOT gates. To this end, we will first show how to decompose an arbitrary
unitary operation into a product of two-level unitary gates. Second, the two-level
gates are decomposed into the multi-controlled gates, which can be constructed
from single-qubit and CNOT gates as seen in the previous section.

Let U be an arbitrary n-qubit unitary operator, represented by an m × m unitary
matrix with m ≡ 2n. Let Tij be a unitary operator such that (Tij)kl = δkl if k, l �= i, j,
which we call a two-level unitary gate. (The kl element of a matrix A is denoted
by (A)kl.) The ii, ij, ji, and jj elements define a unitary operation on the two-level



1.4 Universal Quantum Computation 11

subsystem spanned by |j〉 and |i〉. By choosing Tm m−1 appropriately, we have

UTm m−1 =

⎛
⎜⎜⎜⎝

u11 · · · u1 m−1 u1 m
...

. . .
...

...

um−1 1 · · · u′
m−1 m−1 u′

m−1 m
um 1 · · · 0 u′

m m

⎞
⎟⎟⎟⎠ , (1.46)

where (U)kl = ukl. By repeating this procedure, we obtain

UTm m−1Tm m−2 · · · Tm 1 =

⎛
⎜⎜⎜⎝

u′′
11 · · · u′′

1 m−1 u′′
1 m

...
. . .

...
...

u′′
m−1 1 · · · u′′

m−1 m−1 u′′
m−1 m

0 · · · 0 u′′
m m

⎞
⎟⎟⎟⎠ . (1.47)

Due to unitarity, u′′
1 m = · · · = u′′

m−1 m = 0 and |u′′
mm| = 1. Defining Rm ≡

Tm m−1Tm m−2 · · · Tm1, we can decompose U into a product of Rk and a diagonal
unitary operator D:

U = D(Rm · · · R1)
†. (1.48)

It is obvious thatD can be decomposed into two-level unitary gates. Thus, an arbitrary
unitary operator U can be decomposed into two-level unitary gates.

Next, we show that any two-level unitary operator Tij can be implemented by
using CNOT and single-qubit gates. Let us rewritte i and j (i, j = 0, . . . , m − 1) by
using the n-bit strings s = s1s2 . . . sn and t = t1t2 . . . tn, respectively. It is easy to find
a sequence of n-bit strings {gk}d

k=1 such that s = g1, t = gd , and gk and gk+1 differ by
only one bit. By using the Pauli X gate and the multi-controlled-NOT gate controlled
by the same n − 1 bits and targeting the one different bit, we can transform the basis
|gk〉 to |gk+1〉. In this way, the basis |i〉 = |s〉 = |g1〉 is transformed into |gd−1〉. After
this basis transformation, we now want to apply a two-level unitary gate between
|gd−1〉 and |j〉 = |t〉 = |gd〉. Because gd−1 and gd differ by only one bit, we can
perform such a two-level unitary gate by the multi-conditional gate, using the Pauli
X gate for bit flips. Finally, the basis |gd−1〉 is returned to |s〉 by applying the inverse
of the basis transformation.

For example, a two-level unitary operator acting on a subspace spanned by
{|000〉, |111〉} can be implemented as follows:

X

X

X

X

X

X

X

X

000 011 000 011

V



12 1 Introduction to Quantum Computation

As seen previously, the multi-conditional gate can be decomposed into CNOT
and single-qubit gates. Moreover, an arbitrary single-qubit unitary operation can be
approximated by using the Hadamard and π/8 operations by virtue of the Solovay–
Kitaev algorithm. Thus, the CNOT, Hadamard, and π/8 operations form a universal
set of operations for quantum computations. The Toffoli and Hadamard operations
also form a universal set as shown in [8–12].

1.5 Quantum Algorithms

In this section, we explain two representative quantum algorithms; Shor’s prime
factorization algorithm [13, 14] and the Aharonov-Jones-Landau algorithm for an
additive approximation of the Jones polynomial [15, 16]. We do not go deep into
the mathematically rigorous details, but we aim to understand how they work. The
readers who are interested in more details should read Refs. [9, 13–17].

1.5.1 Indirect Measurement and the Hadamard Test

An indirect measurement of an observable (hermitian) A with eigenvalues ±1 can
be performed by using Λ(A):

A

|+ X

By denoting the input state |ψ〉, the post-measurement state is given by

I + (−1)sA

2
|ψ〉/√Tr[(I + (−1)sA)/2|ψ〉〈ψ |], (1.49)

where s = 0, 1 is the measurement outcome. For example, a circuit measuring the
eigenvalue of the operator X1X2X3 is given by

|+ X

According to the measurement outcome s = 0, 1, the post-measurement state is
projected by I+(−1)sX1X2X3

2 . The indirect measurement will be employed frequently in
quantum error correction to measure the eigenvalues of the stabilizer operators.
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The Hadamard test of an arbitrary unitary operator U is defined by the following
circuit:

|+
X

|0

|0
|0

U

The probabilities of the measurement outcomes 0, 1 of the X-basis measurement are
calculated to be

p0 = 1

2

(
1 + Re〈0|⊗nU|0〉⊗n

)
, (1.50)

p1 = 1

2

(
1 − Re〈0|⊗nU|0〉⊗n

)
. (1.51)

Similarly, the Hadamard test for the imaginary part is defined:

X

0

0
0

U

S

Supposewe perform theHadamard testN times and obtain themeasurement outcome
0, N0 times. By using the Chernoff-Hoeffding bound,

Prob

(∣∣∣∣N0

N
− p0

∣∣∣∣ > ε

)
< 2e−2ε2N , (1.52)

we can estimate the matrix element 〈0|⊗nU|0〉⊗n with an error ε by repeating the
Hadamard test N = poly(1/ε) times. The Hadamard test is employed in various
quantum algorithms such as approximations of the Jones and Tutte polynomials [15,
16, 18] and the partition functions of statistical mechanical models [19–21].
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Specifically, if we choose the input state to be a completely mixed n-qubit state,

X

UI

2

⊗n

then, the Hadamard test provides the trace Tr[U]/2n of the unitary operator U.
Such a restricted type of quantum computation is called a deterministic quantum
computation with one clean qubit (DQC1) [22]. DQC1 seems to be less powerful
than universal quantum computation, because only one qubit is a pure state. However,
DQC1 can evaluate functions, which would be intractable on a classical computer,
such as the Jones and Homefly polynomials [23, 24], spectral density function [22],
and fidelity decay [25]. Recently, classical sampling of the output of DQC1 with a
few qubits measurements has been shown to be intractable unless the polynomial
hierarchy collapses to the third level [26, 27].

1.5.2 Phase Estimation, Quantum Fourier Transformation,
and Factorization

If we have an eigenstate |Ei〉 of a unitary operator U, for which Λ(U) is described
by a polynomial number of gates, we can estimate the eigenvalue λi of U with a
polynomial accuracy using the Hadamard test as follows:

U

|+ X

… …|Ei

When we do not have the eigenstate, the input state is projected onto one of the
eigenstates by the Hadamard test. Thus, by repeating the Hadamard test, we can
obtain one of the eigenvalues with polynomial accuracy.

Moreover, if a controlled-U2k
gate Λ(U2k

) can be described by a polynomial
number of gates, we can efficiently estimate the eigenvalue with exponential accu-
racy [28]. Suppose the eigenvalue is given by λi = eiφ = e2π i0.j1j2...jn , where we
employ a decimal of a binary number,
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0.j1j2...jn =
n∑

k=1

jk(1/2)
k . (1.53)

Then, the Kitaev’s phase estimation algorithm is given by

… UQFT†

| E i …
…

U 20 U 21

…
…

…

…
…

…

U 2n−1

Z

Z

Z

… λi}

where UQFT stands for the quantum Fourier transform. The controlled gate Λ(U2k
)

kicks back the phase e2
kφ = e2π ijk .jk+1...jn to the ancilla state |+〉. The phase information

is transformed into a computational basis state by using the inverse quantum Fourier
transformation:

U†
QFT(|0〉 + e2π i0.j1j2...jn |1〉)(|0〉 + e2π i0.j2...jn |1〉)...(|0〉 + e2π i0.jn |1〉)
= |j1j2...jn〉, (1.54)

and given by

|j1
|j2

|jn

…

H …

…
Z(e2πi/22) Z(e2πi/2n

)

…

H Z(e2πi/22) … Z(e2πi/2n−1
)

…

…

…
Z(e2πi/22)H

H

|0 + e2πi0.j1...jn |1
|0 + e2πi0.j2...jn |1

|0 + e2πi0.jn−1jn |1
|0 + e2πi0.jn |1

…

… …

UQFT

Then, we can obtain the phase φ = (2π i)0.j1j2 . . . jn through the Z-basis measure-
ments. Note that the accuracy of the estimate is improved exponentially compared to
the Hadamard test (provided that we have a polynomial size description of Λ(U2k

)).
Let N and x be co-prime integers. The order-finding problem is about finding an

order r such that xr = 1 mod N . This problem can be solved by using the phase
estimation against a unitary operator

Ux =
∑

y

|xy mod N〉〈y|, (1.55)

because we have
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Ux|us〉 = e2π i(s/r)|us〉, (1.56)

for a state

|us〉 = 1√
r

r−1∑
k=0

e−2π i(s/r)k |xkmod N〉. (1.57)

Note that we can prepare the initial state |us〉 randomly by using the fact that |1〉 =∑r−1
s=0 |us〉. After estimating the phase 2π i(s/r), the continued fraction provides r

with high probability. The modular exponentiation x2
k
mod N can be calculated

by using the square k times. Thus we can implement controlled-U2k

x , Λ(U2k

x ), by a
polynomial number of gates.

If we randomly choose s, we obtain an even order r with high probability. Thus,
we have (xr/2 − 1)(xr/2 + 1) = 0 mod N . Finally, the euclidean algorithm gives us
the greatest common divisor of xr/2 − 1 and N or xr/2 + 1 and N , and it is a factor
of N . This is the so-called Shor’s prime factoring algorithm. Kitaev, who formulated
the phase estimation algorithm, generalized this idea for the more general Abelian
stabilizer problem [17].

1.5.3 A Quantum Algorithm to Approximate Jones
Polynomial

Nextwewill explainAharonov-Jones-Landau algorithm for approximating the Jones
polynomial [15, 16], which is an algorithmic version of the original proposal based
on topological quantum field theory [29, 30].We will show that the approximation of
the Jones polynomial is BQP-complete; the approximation of the Jones polynomial
can be done efficiently by using a universal quantum computer, and inversely it is as
hard as any problems (BQP) solvable by a universal quantum computation. Below
we will introduce the braid diagram and the braid group, which are related to link
diagrams with an appropriate closure. A unitary representation of the braid group
is constructed by embedding the braid group to the Temperley-Lieb (TL) algebra.
Using the constructed representation, the Jones polynomial and quantum algorithm
are connected.

Let us first define the Jones polynomial. The Jones polynomial is an invariant of
a link, that is, closed loops in a 3D space, which are tangled in general [31]. It is
convenient to describe the link on a 2D projected space as shown in Fig. 1.2a, which
we call a link diagram. Specifically two links are equivalent if two link diagrams can
be transformed into each others under the Reidemeister moves:
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= = == =

(I) (II) (III)

which appropriately reflect the continuous deformations in the 3D space. The Jones
polynomial is calculated from a directed link diagram L as follows: (i) Smooth each
crossing ↗↖

�
in two ways { ∧) ∧

( , ∧ )∧ ( } . Let s be the resultant diagram consisting of
closed loops with no crossing, which we call a state. (ii) For each state s, we assign
a weight

W(s) = As+−s−
d|s|−1, (1.58)

where d = −(A2 + A−2) is a complex constant called a loop value, |s| is the number
of the crossing, and s+ and s− are the number of smoothings by ∧) ∧

( and ∧ )∧ ( ,
respectively. By taking the summation over all states, the Kauffman bracket 〈L〉 of
the link L is defined:

〈L〉 =
∑

s

W(s). (1.59)

The Jones polynomial is defined as a function of t = A−4 by multiplying a factor to
the Kauffman bracket:

VL(t) = (−A)3ω(L)〈L〉, (1.60)

where the writhe ω(L) of the link L is defined as the number of ↗↖
�

type crossings
minus that of ↖↗

�
type. It is easy and a good exercise to confirm that the Jones poly-

nomial is invariant under the Reidemeister moves based on the above definition [31].
Let Bn be a braid group consisting of the braid diagrams of n strands, where two

endpoints of each strand are tied at the top and bottom, respectively as shown in
Fig. 1.2b. The multiplication of two braids b1 and b2 are defined by connecting the

(b)(a) (c)

Fig. 1.2 a A link diagram. b A braid diagram. c A tangle diagram
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bottom and top endpoints of two braid diagrams as shown in Fig. 1.3a. The braid
group Bn is generated by n − 1 generators {σi} subject to

σiσj = σjσi for |i − j| ≥ 2 (1.61)

σiσi+1σi = σi+1σiσi+1. (1.62)

The generator σi corresponds to the braid diagram with only one crossing of ith
and i + 1th strands as shown in Fig. 1.3b. Then, the latter equality is nothing but
the Reidemeister move III. By introducing an appropriate closure, which closes the
endpoints of the strands, a braid diagram is related to a link diagram as we will see
later.

In order to construct a unitary representation of Bn, we embed it into the
Temperley-Lieb (TL) algebra TLn(d) [32] on tangle diagrams with no crossing as
shown in Fig. 1.2c. Similarly to the previous case, TLn(d) is generated by a set of
generators {E1, . . . , En−1} subject to

EiEj = EjEi for |i − j| ≥ 2, (1.63)

EiEi±1Ei = Ei, (1.64)

E2
i = dEi. (1.65)

The generator Ei corresponds to ∪ and ∩ for the ith and (i + 1)th strands as shown
in Fig. 1.3c. The braid group is embedded into the TL algebra by

σi = AEi + A−11, (1.66)

where 1 indicates the identity element.
In order to relate the braid diagramand the Jones polynomial, we employ aMarkov

trace closure on the tangle diagram as shown in Fig. 1.4a. TheMarkov trance closure
denoted by mtr has the following property:

mtr(1) = 1, (1.67)

mtr(AB) = mtr(BA) for A, B ∈ TLn(d), (1.68)

mtr(A) = dmtr(AEn−1) for A ∈ TLn−1(d). (1.69)

Fig. 1.3 a A multiplication
for two braid diagrams b1
and b2. b The generator σi of
the braid group. c The
generator Ei of the TL
algebra

b1

b2

b1

b2

b1 b2(a) (b)
… …

i i+1

(c)
… …

i i+1



1.5 Quantum Algorithms 19

Fig. 1.4 a The Markov trace
closure for the braid b. b The
plat closure for the braid b. c
The plat closure is deformed
into the Markov trace closure

(a)

b …

…

…

(b)

b

…

…

(c)

b

…

…
…

Now the representation of the braid group and the Jones polynomial are related.
Equation (1.66) corresponds to superposition of two smoothings { ∧) ∧

( , ∧ )∧ ( } of a
crossing ↗↖

�
. More precisely, let ρ and ρ̃ be a representation of the TL algebra and

an induced representation of the braid group, respectively. Then we have ρ̃(σi) ≡
Aρ(Ei) + A−1I . Moreover, the matrix trace has the same property as the Markov
trace closure. Thus, for a given braid diagram b, we have

Vbmtr (A−4) = ΔTr[ρ̃(b)], (1.70)

where bmtr is a link diagram generated from the braid diagram b with the Markov
trace closure, and Δmtr = (−A)3ω(bmtr)dn−1.

Let us construct a representation of the TL algebra, the so-called path-model
representation. Suppose G is a one-dimensional graph with k vertices labeled by
1, . . . , k from left to right and k − 1 edges. We consider an n step walk on G starting
from the left endpoint. Let p = (v1, . . . , vn) be a path of such an n step walk, where
v1 = 1 and vj = 0 and = 1 mean moving to the left and right neighboring vertices,
respectively. Then we define a Hilbert spaceHn,k spanned by all possible paths as a
basis {|p〉}. For each generator Ei, we define its representation Φi = ρ(Ei) on Hn,k

as follows:

Φi|...vi−100vi+1...〉 = 0, (1.71)

Φi|...vi−101vi+1...〉 = λzi−1

λzi

|...vi−101vi+1...〉 +
√

λzi+1λzi−1

λzi

|...vi−110vi+1...〉,
(1.72)
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Φi|...vi−110vi+1...〉 = λzi+1

λzi

|...vi−110vi+1...〉 +
√

λzi+1λzi−1

λzi

|...vi−101vi+1...〉,
(1.73)

Φi|...vi−111vi+1...〉 = 0, (1.74)

where zi ∈ {1, . . . , k} is the label of the vertex at the ith step and λj = sin(jθ) with
θ = π/k. The representation ρ̃(σi) = AΦi + A−1I for the braid group Bn is induced
by ρ. It is easy to confirm that, with A = ie−iθ/2 and d = 2 cos θ , the representation ρ

is hermitian for all Ei, and hence the induced representation ρ̃ is unitary. Since ρ(σi)

is a unitary operator acting on the neighboring two-qubit, a multiplication of such
unitary operators can be implemented by using universal quantum computer. Since,
by using the Hadamard test in Sect. 1.5.1, we can evaluate the Jones polynomial
Vbmtr (A−4) with an additive error Δ2nε taking poly(n, m, k, 1/ε) overhead, where m
is the number of the crossing.

The approximation scale is further improved by considering another closure, the
so-called plat closure as shown in Fig. 1.4b. We deform the link diagram obtained
by the plat closure to another link diagram obtained by the Markov trace closure as
shown in Fig. 1.4c, Then, we have ∪ and ∩ for all strands. In this case, the support
of ρ(b) is only on |10101...〉, which allows us to replace the matrix trace as follows:

Vbplt (A
−4) = Δplt〈10101...|ρ(b)|10101...〉, (1.75)

where bplt is a link generated from the braiding b with the plat closure and
Δplt = (−A)3ω(bplt)dn/2−1. (Note that for each ρ(Ei) of n/2 ∪s and ∩s, a factor
λ2/λ1 = d is substituted.) Again using the Hadamard test, we can estimate Vbplt (A−4)

with an additive error Δpltε taking poly(n, m, k, 1/ε) overhead.
Finally, we show that the approximation of the Jones polynomial with an addi-

tive error Δpltε is BQP-hard. Unfortunately, the computational basis defined by the
path p = (v1, . . . , vn) is inappropriate for this purpose, since the n-step walks can-
not span the whole 2n-dimensional Hilbert space. Instead, we employ the four-step
encoding [33], where the computational basis states are defined by the following two
four-steps:

|0̄〉 ≡ |1100〉, |1̄〉 ≡ |1010〉. (1.76)

The spaceH4n,k spanned by the 4n-step walks can support the whole 2n-dimensional
space for {|0̄〉, |1̄〉}⊗n. The dimensionof the space spannedby the 8-stepwalks starting
from vertex 1 ending at vertex 1 is 14. Thus the unitary representation ρ of the braid
group B8 results in unitary operators in SU(14). If they are dense in SU(14), we
can approximate an arbitrary unitary operator in SU(4) spanned by two four-step
encoded qubits by using the Solovay–Kitaev algorithm [16], which are enough to
implement universal quantum computation. The density is achieved by k > 4 and
k �= 6. For such a parameter, the approximation of the Jones polynomial with an
additive error Δpltε is enough to solve a BQP-complete problem.
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The approximation of the Jones polynomial can be done by universal quantum
computer and also is enough to solve the problems solvable by universal quantum
computer. Thus the approximation of the Jones polynomial is a BQP-complete prob-
lem [15, 16]. The AJL algorithm for approximation of the Jone polynomial was
extended for the Tutte polynomial in Ref. [18], where the Solovay–Kitaev algorithm
for non-unitary linear operators was developed.

1.6 Quantum Noise

Quantum coherence, one of the essential properties of quantum systems, is quite
fragile against noise, due to interactions between the system and the environment.
Suppose that the system S of interest interacts via a unitary operation U with
the environment E, where the system and environment are initially uncorrelated.
The reduced density matrix ρ ′

S of the system after the interaction is calculated to be

ρ ′
S = TrE

[
U(ρS ⊗ ρE)U†

]
. (1.77)

Using a spectral decomposition of the initial state in the environment,
ρE = ∑

k pk|ek〉〈ek|, we obtain a map of the system S:

ρ ′
S =

∑
(k′,k)

K(k′,k)ρSK†
(k′,k), (1.78)

where

K(k,k′) = √
pk〈e′

k|U|ek〉. (1.79)

This map satisfies

∑
k

K†
(k′,k)K(k′,k) = pk〈ek|U†|e′

k〉〈e′
k|U†|ek〉

= IS, (1.80)

where IS is the identity operator in the system S.
In general, a map of a quantum state is given as a completely-positive-trace-

preserving (CPTP) map E , subject to

• Tr[E ρ] = 1 for any density matrix ρ (preservation of probability)
• E (

∑
i qiρi) = ∑

i qiE ρi (convex linear map)
• IA ⊗ ES(ρAS) ≥ 0 (complete positivity) for an arbitrary ancilla system A and
density matrix ρAS on the composite system AS.
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Such a CPTP map can always be written by Kraus operators {Kk} [9]:

E ρ =
M∑

k=1

KkρK†
k . (1.81)

Under the Born-Markov (with rotating-wave) approximation, the time evolution
of a two-level system coupled with an environment is given by a master equation of
the Lindblad form [34]:

ρ̇(t) = −γ+
2

[
σ−σ+ρ(t) + ρ(t)σ−σ+ − 2σ+ρ(t)σ−

]
−γ−

2

[
σ+σ−ρ(t) + ρ(t)σ+σ− − 2σ−ρ(t)σ+

]
−γ0

2

[
σzρ(t) + ρ(t)σz − 2σzρ(t)σz

] ≡ L ρ(t), (1.82)

where σ+ = |0〉〈1|, σ− = |1〉〈0| and γα (α = 0,+,−) are the decay rates of
the decay channels. One can easily find the eigenoperators of the Lindblad super-
operator. These eigenoperators form the damping basis [35]:

L σ1 = γ+ + γ− + 2γ0
2

σ1 ≡ λ1σ1, (1.83)

L σ2 = γ+ + γ− + 2γ0
2

σ2 ≡ λ2σ2, (1.84)

L σ3 = (γ+ + γ−)σ3 ≡ λ3σ3, (1.85)

L ρeq = 0, (1.86)

where ρeq = (γ+|0〉〈0| + γ−|1〉〈1|)/(γ+ + γ−) ≡ (σ0 + aσ3)/2 with a = (γ+ −
γ−)/(2γ+ + 2γ−). The solution of this master equation is given by the CPTP map
E (t):

E (t)ρ = p0(t)ρ +
∑

i=1,2,3

pi(t)σiρσi + f (t)(σ3ρ + ρσ3 − iσ1ρσ2 + iσ2ρσ1),

(1.87)

where

p0(t) = 1

4
(1 + e−λ1t + e−λ2t + e−λ3t), (1.88)

p1(t) = 1

4
(1 + e−λ1t − e−λ2t − e−λ3t), (1.89)

p2(t) = 1

4
(1 − e−λ1t + e−λ2t − e−λ3t), (1.90)

p3(t) = 1

4
(1 − e−λ1t − e−λ2t + e−λ3t), (1.91)

f (t) = a

4
(1 − e−λ3t). (1.92)
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If we consider a high temperature case (i.e., a → 0), Eq. (1.87) can be rewritten as

E (t)ρ = [
1 − p1(t) − p2(t) − p3(t)

]
ρ +

3∑
i=1

pi(t)σiρσi. (1.93)

Hence, the CPTP map can be viewed as a stochastic Pauli error with probabilities
pi(t). In general, noise cannot be written by a stochastic Pauli error. However, by
performing an appropriate operation, one can depolarize the CPTP map into a sto-
chastic Pauli error as a standard form, where the noiseless part of the evolution is not
altered [36]. Otherwise, the Pauli basis measurements can collapse the CPTP map
into a stochastic Pauli error, as we will see later. In the rest of this book, we assume
that the noise is given by a Markovian stochastic Pauli error, for simplicity.

1.7 Summary and Discussion

In this chapter, we have seen key ingredients behind quantum computation, such
as universal quantum computation, quantum algorithms, and quantum noise. More
detailed descriptions of universal quantum computation including foundations of
quantum mechanics and computer scientific concepts can be found in Chaps. 2–4 of
the book [9]. While I cannot mention, the quantum search algorithm [37] is one of
the most important quantum algorithms, which provides quantum speedup in quite
generic situations and hence has many applications (see for example [9]). More
physical aspects of the quantum algorithm for the Jones polynomials can be found
in the book [38]. In Ref. [18], the quantum algorithm for the Jones polynomials is
extended to the Tutte polynomials.

The stochastic Pauli noise substantially simplifies the argument for quantum error
correction and a fault-tolerant design. However, in actual experiments, the noise
would not be given by the stochastic Pauli noise. Even in such a case, we can analyze
fault-tolerance without changing the hardware design, while we have to take more
care to evaluate the amount of noise per gate. The fault-tolerance againstmore general
CPTP noise has been discussed in Refs. [39–43], where the noise is characterized by
a kind of distance, super-operator norm, from the ideal operation. Moreover, fault-
tolerance against the non-Markovian noise has been analyzed in Refs. [41, 44, 45],
where the noise was characterized by the operator norm of the system-environment
interaction Hamiltonian. If the decoherence is non-Markovian, wemight take a hard-
ware approach to suppress such an effect; the dynamical decoupling or quantumZeno
effect can also be used [46–51]. Besides, if the decoherence is spatially correlated,
one can utilize a passive error-prevention scheme, the so-called decoherence free
subspace (DFS), which is immune to collective noise [52–54].



Chapter 2
Stabilizer Formalism and Its Applications

In general, the description of quantum states is a difficult task because it requires
exponentially many parameters in the number of qubits as shown in Eq. (1.38). To
understand these complex quantum systems, it is essential to have efficient tools.
The stabilizer formalism is one such powerful tool to describe an important class of
entangled states. It also provides a diagrammatic understanding of quantum states
and operations. The stabilizer states, described by the stabilizer formalism, play
important roles in quantum computation, such as for quantum error correction codes
and resource states in MBQC. In this chapter, we introduce the stabilizer formal-
ism, especially focusing on its diagrammatic understanding. Based on the stabilizer
formalism,we explain quantum error correction,magic state distillation, andMBQC.

2.1 Stabilizer Formalism

We first define an n-qubit Pauli group Pn:

Pn := {±1,±i} × {I, X, Y , Z}⊗n. (2.1)

An element of the Pauli group is called a Pauli product. For example, the two-qubit
Pauli group is given by

P2 := {±1,±i}
× {II, IX, IY , IZ, XI, XX, XY , XZ, YI, YX, YY , YZ, ZI, ZX, ZY , ZZ}, (2.2)

where A ⊗ B is denoted by AB for simplicity. (We will frequently use this notation
when there is no possibility for confusion.) Next, we define an n-qubit stabilizer
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group S as an Abelian (commutative) subgroup of the n-qubit Pauli group:

S := {Si} s.t. −I /∈ S and ∀Si, Sj ∈ S , [Si, Sj] = 0. (2.3)

Because−I is not included in the stabilizer group, all elements are hermitian Si = S†
i ,

which guarantees that the eigenvalues = ±1. An element of the stabilizer group is
called a stabilizer operator. The maximum independent subset Sg of the stabilizer
group is called stabilizer generators. Here, independence means that any element
of Sg cannot be expressed as a product of other elements in Sg. Any element of
the stabilizer group can be generated as a product of the stabilizer generators. The
stabilizer group S generated by the generators Sg is denoted by S = 〈Sg〉.

Let us, for example, consider a two-qubit stabilizer group:

SBell = {II, XX, ZZ,−YY}. (2.4)

Because they contain two anticommuting Pauli operators, XX and ZZ commutes.
The stabilizer groupSBell is generated by {XX, ZZ}, because −YY can be expressed
as a product of XX and ZZ . Thus, we can writeSBell = 〈{XX, ZZ}〉.

For a given stabilizer group S , the stabilizer state is defined as a simultaneous
eigenstate of all stabilizer elements Si ∈ S with the eigenvalue +1:

∀Si ∈ S , Si|ψ〉 = |ψ〉. (2.5)

It is sufficient that the state is an eigenstate of all stabilizer generators:

∀Si ∈ Sg, Si|ψ〉 = |ψ〉. (2.6)

Let k be the number of elements in the stabilizer generator Sg. Each stabilizer
generator divides an n-qubit system (Hilbert space) into two orthogonal subspaces
associated with the eigenvalues ±1. Because all stabilizer operators commute with
each other, the k stabilizer generators divide the n-qubit system into 2k orthogonal
subspaces. Thus, the dimension of the space spanned by the stabilizer states, which
we call a stabilizer subspace, is 2d = 2n−k . When n = k, we can define the quantum
state uniquely.Thenumber of stabilizer generators is atmostn for ann-qubit stabilizer
group. In the case of k < n, the degrees of freedom in the stabilizer subspace can be
addressed by using logical operators, which commute with all stabilizer generators
and also are independent of them.

Let us consider the stabilizer group SBell again. The stabilizer state is the
eigenstate of XX and ZZ with eigenvalue +1, and hence given by the Bell state
(|00〉 + |11〉)/√2 [55]. If XX is removed from the generators, the two-dimensional
subspace spanned by |00〉 and |11〉 is stabilized. By choosing logical operators
LX = XX and LZ = ZI , we can specify the state in the subspace. For example,
the eigenstate of LX with the eigenvalue +1 is the Bell state. The eigenstate of LZ
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with the eigenvalue+1 is |00〉. Another representative example of the stabilizer states
is an n-qubit cat state,

|cat〉 = 1√
n
(|00 . . . 0〉 + |11 . . . 1〉), (2.7)

whose stabilizer group is given by

〈
Z1Z2, . . . , Zn−1Zn,

n∏
i=1

Xi

〉
. (2.8)

The cat state is a representative example of a macroscopically entangled state. If it is
determined whether a particle is |0〉 or |1〉, the superposition is completely destroyed.
If an element

∏n
i=1 Xi is removed from the stabilizer generator, it defines a stabilizer

subspace spanned by |00 . . . 0〉 and |11 . . . 1〉. We can choose LX = ∏n
i=1 Xi and

LZ = Zi as logical operators, which anti-commute with each other and behave as
logical Pauli operators.

2.2 Clifford Operations

In the stabilizer formalism, we can describe a restricted class of unitary operations,
the so-called Clifford operations, acting on the stabilizer states quite efficiently. The
Clifford operation is defined as an operation U that transforms a Pauli product into
another Pauli product under its conjugation, [. . .] → U[. . .]U†. Let us consider the
action of a Clifford operation U on the stabilizer state |ψ〉 defined by a stabilizer
group S = 〈{Si}〉:

U|ψ〉 = USi|ψ〉 = USiU
†U|ψ〉 = S′

iU|ψ〉, (2.9)

where we define S′
i ≡ USiU†. The above equality indicates that the state U|ψ〉 is

an eigenstate of the operator S′
i with an eigenvalue +1 for all S′

i . Because U is a
Clifford (unitary) operation, the group {S′

i} is also an Abelian subgroup of the Pauli
group. Accordingly, the state U|ψ〉 is a stabilizer state with respect to the stabilizer
group {S′

i}. In this way, the action of U on the stabilizer state can be represented
as a transformation of the stabilizer groups under the conjugation of U as shown in
Fig. 2.1. For example, the stabilizer state stabilized by 〈X1I2, I1Z2〉 is |+〉1|0〉2. The
stabilizer group is transformed by Λ(X)1,2 into 〈X1X2, Z1Z2〉, whose stabilizer state
is (|00〉 + |11〉)/√2.

The stabilizer formalism corresponds to the Heisenberg picture of quantum com-
putation, where aminimumnumber of operators are employed to describe a restricted
type of quantum states and operations [56, 57]. This representation is powerful
because it requires us to keep a time evolution of at most n operators, while a
straightforward state-based approach needs exponentially many states. For exam-
ple, let us consider the following quantum circuit:
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Si|Ψ = |ΨSi

Si

Si|Ψ = |Ψ

U

Schrödinger pictureHeisenberg picture

U

|Ψ

|Ψ = U |ΨSi = USiU
†

Fig. 2.1 The stabilizer formalism: a Heisenberg picture of quantum computation. A Clifford oper-
ation is represented as a transformation of the stabilizer group by the conjugation of U
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A straightforward calculation yields the output state |ψ〉,

|ψ〉 = (|0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+ |0001111〉 + |1011010〉 + |0111100〉 + |1101001〉
+ |1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+ |1110000〉 + |0100101〉 + |1000011〉 + |0010110〉)/4. (2.10)

It is rather cumbersome to write down the above state. Instead, we can understand
the output state as a stabilizer state whose stabilizer generators are

{ZIZIZIZ, IZZIIZZ, IIIZZZZ, XXXIIII,

XXIXXII, IXIXIXI, XIIXIIX}. (2.11)

Equivalently, we may also choose the following stabilizer generators because they
generate the same stabilizer group:

{ZIZIZIZ, IZZIIZZ, IIIZZZZ, XXXXXXX,

IIIXXXX, XIXIXIX, IXXIXXI}. (2.12)

Actually, these stabilizer generators are enough to understand the properties of the
quantum state |ψ〉. If an explicit description of the state is required, we can system-
atically write it down as follows:
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|ψ〉 = 4
I + S4

2

I + S3
2

I + S2
2

I + S1
2

|0000000〉, (2.13)

where S1 = XIXIXIX, S2 = IXXIIXX, S3 = IIIXXXX, and S4 = XXXXXX. The above
equation means that |0000000〉 is an eigenstate for all Z’s stabilizer operators. By
projecting it into the +1 eigenstate of the stabilizer generator Si by the projection
I+Si
2 , we obtain the stabilizer state |ψ〉.
In order for the above calculation to work, we have to obtain the stabilizer gener-

ators of the output state. This can easily be done graphically. We introduce commu-
tation rules between the Pauli operators and Clifford operations below. In the case
of the Hadamard operation, HX = ZH and ZH = HX, and hence we have

H

X Z

XZ

meaning that the PauliX operator acting before the Hadamard operation is equivalent
to the Pauli Z operator acting after the Hadamard operation and so on. Similarly, for
the phase operation X, we have

X

Z

S

Z

Y

The CNOT operation transforms the Pauli operators under its conjugation as
follows:

Λc,t(X)XcΛc,t(X) = XcXt, (2.14)

Λc,t(X)XtΛc,t(X) = Xt, (2.15)

Λc,t(X)ZcΛc,t(X) = Zc, (2.16)

Λc,t(X)ZtΛc,t(X) = ZcZt . (2.17)

The commutation relation between the CNOT operation and the Pauli operators is
understood as follows:

X X

X X X

correlate

commute

correlate commute

Z Z

Z Z Z

In the above circuit diagram, the solid circle commutes with the Pauli Z operator,
while the Pauli X operator is propagated as the Pauli X operator on the target qubit,
making a correlation. Similarly, the open circle commutes with the Pauli X operator,
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while the Pauli Z operator is propagated as the Pauli Z operator on the control qubit,
making a correlation.By recalling that theCNOToperation is transformed into theCZ
operation by the Hadamard operations on the target qubit, the commutation relation
between the CZ operation and the Pauli operators are obtained straightforwardly.
This is described graphically as follows:

X X

correlate

commute

correlate
commute

Z Z Z

ZZ

X X

Z

In this case, note that the Pauli X operation is propagated as the Pauli Z operation.
This graphical understanding allows us to calculate the stabilizer generators of

the output of the Clifford circuits. For example, in the following circuit diagram, the
first qubit is stabilized by X before the Clifford operation. The Pauli X operator is
propagated toward the right, and we obtain the stabilizer operator ZIZIZIZ for the
output:

|+
|+

|+
|0

|0
|0
|0

H

H

H

H

H

H

H

|+
|+

|+
|0

|0
|0
|0

H

H

H

H

H

H

H

ZX X

X
Z

X
Z

X
Z

The reader should use this graphical technique to calculate the other stabilizer gen-
erators and verify Eq. (2.11).

2.3 Pauli Basis Measurements

Next, we will see how the Pauli-basis measurements on the stabilizer states are
described in the stabilizer formalism. Suppose the A-basis (A = X, Y , Z) measure-
ment is performed on a stabilizer state |ψ〉, whose stabilizer group is given by 〈Si〉.
(We assume that the number of stabilizer generators is equal to the number of qubits,
and hence that the stabilizer state is uniquely defined.) Depending on the stabilizer
group 〈{Si}〉 and A, there are two possibilities:
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(i) The Pauli operator A commutes with all stabilizer generators. In that case, either
A or −A is an element of the stabilizer group. If A (−A) is an element, the
eigenvalue +1 (−1) is obtained with probability 1. The post-measurement state
is the same as the stabilizer state before measurement.

(ii) At least one stabilizer operator does not commute with A. In this case, we can
choose another set of generators {S′

i} such that S′
1 anti-commutes with A but all

other generators commute with A. The measurement outcomes +1 and −1 are
obtained with an equal probability of 1/2. The post-measurement state is given
by 〈(−1)mA, S′

2, . . . , S′
k〉 depending on the measurement outcomes m = 0, 1

corresponding to the eigenvalues (−1)m.

For example, supposewe perform theY -basismeasurement on the first qubit of the
Bell state stabilized by SBell = 〈XX, ZZ〉. We can redefine the stabilizer generators
by {XX,−YY}. The measurement outcome m is randomly given. Then the stabilizer
group after themeasurement is given by 〈(−1)mYI,−YY〉 = 〈YI, (−1)m+1IY〉. Thus,
we obtain | − i〉 as the post-measurement state on the second qubit.

2.4 Gottesman–Knill Theorem

Because the stabilizer states and Clifford operations are described efficiently in the
stabilizer formalism, it implies that such a restricted type of quantum computation
can be simulated efficiently on a classical computer. This is stated by the Gottesman–
Knill theorem [9, 56, 57].

Theorem 2.1 Any Clifford operations, applied to the input state |0〉⊗n followed by
the Z measurements, can be simulated efficiently in the strong sense.

Here, an efficient strong classical simulation of a quantum circuit C is a classical
polynomial-time computation that calculates the probabilityPC(x) for a given output
x of the circuit C, including an arbitrary marginal distribution

∑
x′ PC(x). (See, for

example, Ref. [58] for the definition of a strong simulation.) Note that this theorem
holds true even when the initial state is generalized to an arbitrary stabilizer state,
and also any Pauli products are measured, because they are done in the above setup
by modifying the Clifford operations appropriately.

Proof The stabilizer group of the input state is 〈{Zi}〉 (i = 0, 1, . . . , n − 1). By
applying the Clifford operations as mentioned, we obtain the stabilizer generators
〈{Si}〉 of the quantum output before the measurements. Suppose the measurement
outcome, the classical output, is given by {mi = 0, 1}. Then the probability of
obtaining the measurement outcome {mi} can be calculated as follows:

(i) Set the stabilizer generators S (0) = 〈{Si}〉 and the initial probability p(0) = 1.
(ii) For k = 0, 1, . . . , n − 1, repeat the following procedures.

(1) If (−1)mk Zk ∈ S (k), update the probability p(k+1) = p(k), because the mea-
surement outcome mk is obtained with probability 1. The stabilizer group
after the measurement is also updated toS (k+1) = S (k).
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(2) Else, if (−1)mk⊕1Zk ∈ S (k), update the probability p(k+1) = 0, because such
a measurement outcome does not appear. (You may stop the calculation at
this stage, and return the probability 0.)

(3) Else,S (k) is updated intoS (k+1) by removing an anticommuting generator
and adding (−1)mk Zk as a new generator. Because themeasurement outcome
is obtained randomlywith probability 1/2, the probability is taken asp(k+1) =
p(k)/2.

(iii) Return p(n) as the probability of obtaining the measurement outcome {mi}.
Note that, in step (ii), we can efficiently decide which of the three is the case for any
k by checking the commutability of Zk with the stabilizer generators of S (k). �

The statement of Theorem 2.1 can be extended by weakening the notion of the
classical simulation.

Theorem 2.2 Any Clifford operations, applied to any product states of convex mix-
tures of the Pauli basis states, followed by Z measurements can be efficiently simu-
lated in the weak sense.

Here, an efficient weak classical simulation of a quantum circuit C is a classical
polynomial-time randomized computation that samples the output x according to
the probability distribution PC(x) of the output of the circuit C. (See, for example,
Ref. [58] for the definition of weak simulation.) Apparently, a strong simulation
includes a weak simulation, because we sample the output by using the marginal
distributions [59].

Proof Suppose that the ith input qubit is given by

ρi = p(i)
x,+|+〉〈+| + p(i)

x,−|−〉〈−| + p(i)
y,+| + i〉〈+i| + p(i)

y,−| − i〉〈−i|
+ p(i)

z,+|0〉〈0| + p(i)
z,−|1〉〈1|, (2.18)

where
∑

α=x,y,z

∑
ν=+,− p(i)

α,ν = 1. By using the probability distribution {p(i)
α,ν}, the

input state of each qubit is randomly sampled. Conditioned by the sampling result,
the input state is a product of the Pauli basis states, and hence the output probability
distribution can be calculated as shown in Theorem 2.1. Combined with the random
sampling of the input state, this provides an efficient weak simulation of the Clifford
circuit with noisy input states (convex mixture of the Pauli basis states). �

The input state can be generalized into a classical mixture of stabilizer states, when
its polynomial size description of the probability distribution is provided. Similarly,
the Clifford operations can be extended to stochastic Clifford operations such as the
stochastic Pauli error.

The convex mixture of the Pauli basis state lies inside the octahedron of the Bloch
sphere as shown in Fig. 2.2. It is natural to ask whether or not the Clifford circuit
allows universal quantum computation if the input state lies outside the octahedron.
If the input state is a pure non-stabilizer state such as e−i(π/8)Z |+〉, we can implement
a non-Clifford gate e−i(π/8)Z by using gate teleportation, explained in Sect. 2.6. Even
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Fig. 2.2 A convex mixture
of the Pauli basis states lies
inside the octahedron of the
Bloch sphere

z

x
yφ

θ

|0

|1

|+
| + i

| − i

φφφ

θ

some mixed states can be converted into a pure non-stabilizer state, the so-called
magic state, by using only Clifford operations. Such a protocol is called magic state
distillation [60] and will be explained in Sect. 2.8.

2.5 Graph States

In this section,we introduce an important class of stabilizer states, the so-called graph
states [61], whose stabilizer generators are defined on graphs. The graph states are
employed as resource states for MBQC as explained in the next section.

A graph state is defined by a graph G = (V , E). Here, V and E are the sets of the
vertices and edges, respectively. A qubit is located on each vertex of the graph. The
stabilizer generator of the graph state |G〉 is defined as

Ki = Xi

∏
j∈Vi

Zj for all i ∈ V , (2.19)

where we define a set of vertices Vi := {j|(i, j) ∈ E}, which are connected to the
vertex i by an edge on the graph G (see Fig. 2.3). The graph state |G〉 is generated
from a product state |+〉⊗|V | by applying the CZ gate on each of the graphs:

|G〉 =
∏

(i,j)∈E

Λ(Z)i,j|+〉⊗|V |, (2.20)

where |V | indicates the number of vertices of the graph G = (V , E). This can be
understood that the stabilizer generator Xi for the state |+〉 is transformed into Ki

by the CZ operations U ≡ ∏
(i,j)∈E Λ(Z)i,j. Especially, when the graphs are regular

lattices such as one-dimensional (1D), square, hexagonal, and cubic lattices, the
corresponding graph states tend to be referred to as cluster states [62]. Any stabilizer
state is equivalent to a certain graph state up to local Clifford operations [61, 63].
For example, the cat state is equivalent to the following graph state by applying the
Hadamard operation on the kth qubit:
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Fig. 2.3 The graph state |G〉
associated with a graph
G = (V , E). A stabilizer
generator Ki is also shown

X

Z Z

ZZ
G=(V,E)

Ki = i

k

Unfortunately, the graph associated with a stabilizer state is not uniquely defined,
because there are local Clifford operations that change the underlying graph. This
property is called the local complementarity of the graph states [61, 63].

Next, we will see how the Pauli basis measurements transform the graph states.
For simplicity, we assume that the state is projected into an eigenstatewith eigenvalue
+1. Let us consider a 1D graph state as follows:

i-1 i i+1

whose stabilizer generator is given by

Ki = Zi−1XiZi+1. (2.21)

We first consider the Z basis measurement (projective measurement of the observ-
able Z) on the ith qubit. Following the procedure seen in Sect. 2.3, Ki is removed
from the stabilizer generator. By adding Zi instead, we obtain the stabilizer group for
the post-measurement state

〈. . . , Ki−1, Zi, Ki+1, . . .〉. (2.22)

After the projection, the ith qubit is |0〉 and hence decoupled from the other qubits.
By rewriting the stabilizer generators, we obtain three decoupled stabilizer groups

〈. . . , Zi−2Xi−1〉, 〈Zi〉, 〈Xi+1Zi+2, . . .〉. (2.23)

This means that the graph is divided into two parts as follows:

Z
i-1 i i+1 i-1 i+1

For any graph, this property of theZ-basismeasurement holds; the post-measurement
state is defined by a modified graph, where the vertex corresponding to the measured
qubit and the edges incident to it are removed from the original graph.
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Next, we consider theX-basis measurement. The observableXi does not commute
withKi−1 andKi+1, but does commutewithKi−1Ki+1 = Zi−2Xi−1Xi+1Zi+2. Following
the procedure in Sect. 2.3, the stabilizer group for the post-measurement state is
calculated to be

〈. . . , Zi−2Xi−1Xi+1Zi+2, Zi−1Zi+1, . . .〉, 〈Xi〉. (2.24)

By performing the Hadamard operation H on the (i − 1)th qubit, we obtain a new
stabilizer group

〈. . . , Zi−2Zi−1Xi+1Zi+2, Xi−1Zi+1, . . .〉, 〈Xi〉, (2.25)

which indicates that the graph is transformed into the following graph with the
Hadamard operation:

X
i-1 i i+1 i+1

i-1
H

i+1

i-1

H

Instead of the (i − 1)th qubit, we can obtain a similar result by performing the
Hadamard operation on the (i + 1)th qubit as shown above.

Suppose the ith and (i+1)th qubits aremeasured in theX-basis on a 1Dgraph state.
This is equivalent to measuring the (i + 1)th qubit of the above post-measurement
graph state in the Z basis, because the Hadamard operation is applied on it as a
byproduct. From the previous argument, the Z-basis measurement remove the mea-
sured qubit from the graph. Thus, two neighboring X-basis measurements remove
the measured qubits and connect the left and right hand sides directly:

X X

which we call a contraction.
Finally, we consider the Y -basis measurement. The observable Yi does not com-

mute with either Ki−1, Ki, or Ki+1, but does commute with Ki−1Ki = Zi−2Yi−1YiZi+1

and KiKi+1 = Zi−1YiYi+1Zi+2. The stabilizer group for the post-measurement state
is calculated to be

〈. . . , Zi−2Yi−1Zi+1, Zi−1Yi+1Zi+2, . . .〉, 〈Yi〉. (2.26)

By performing the phase gates S on the (i − 1)th and (i + 1)th qubits, we obtain a
new stabilizer group

〈. . . , Zi−2Xi−1Zi+1, Zi−1Xi+1Zi+2, . . .〉, 〈Yi〉. (2.27)

This indicates that the graph is directly connected up to the phase operation S as a
byproduct:

Y
i-1 i i+1 i-1 i+1

S S
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Suppose three neighboring qubits (i−1), i, and (i+1) aremeasured in the Y -basis.
This is equivalent to measuring the ith qubit in the Y -basis, and then measuring the
(i − 1)th and (i + 1)th qubits of the post-measurement graph state in the X-basis,
because there is a phase operation S acting on them as a product. As seen previously,
the X-basis measurements on two neighboring qubits result in a contraction of the
two qubits on the graph. Thus, the Y -basis measurements on three neighboring qubits
contract them from the 1D graph state.

Y YY

This property is useful to change even and odd of the length of the 1D graph state.
While we have considered the Pauli-basis measurements only on the 1D graph

state, we can generalize these arguments into graph states of general structures. A
graph state is still mapped into another graph state up to some single-qubit Clifford
operations as byproducts.

2.6 Measurement-Based Quantum Computation

Measurement-based quantum computation (MBQC) is a model of quantum compu-
tation, where quantum gates are implemented by adoptive measurements on a highly
entangled resource state [64–66]. Specifically, certain graph states, the so-called clus-
ter states, are employed as resource states inMBQC. Belowwewill first demonstrate
quantum teleportation, a building block of MBQC. Then, we explain how adoptive
measurements on a graph state enable us to emulate universal quantum computation
via quantum teleportation.

Quantum teleportation is a quantum communication protocol, in which Alice
sends a quantum state to Bob by using a shared entangled state and classical com-
munication [67]. Suppose Alice and Bob share a maximally entangled state, the Bell
state,

|0〉a|0〉b + |1〉a|1〉b√
2

. (2.28)

For an unknown input state |ψ〉i and the half of the Bell state, Alice performs a Bell
measurement, which is a projection onto the Bell basis states

|Ψ (m1, m2)〉i,a = Xm1
i Zm2

i

|0〉i|0〉a + |1〉i|1〉a√
2

, (2.29)

where m1, m2 = 0, 1 correspond to the measurement outcomes. A straightforward
calculation provides

〈Ψ (m1, m2)|i,a
(

|ψ〉i
|0〉a|0〉b + |1〉a|1〉b√

2

)
= Zm2

b Xm1
b |ψ〉b/2. (2.30)
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Hence, the unknown input state is teleported to Bob with a byproduct operator
Xm1Zm2 . If Bob does not know the measurement outcomes (m1, m2), the teleported
state is a completely mixed state for Bob. However, if Alice sends the measurement
outcome as a classical message, Bob can undo the byproduct and obtain the unknown
quantum state at Bob’s side. The circuit diagram of quantum teleportation is:

|+

|0

|ψ

maximally entangled state

Bell measurement

Alice

Bob

X

Z
m1

m2

Zm2Xm1 |ψ

By using the following circuit equivalence, we can decompose the teleportation
circuit into two elementary teleportations, the so-called one-bit teleportations:

|+
|0

|ψ

X

Z
m1

m2

|+
|0

|ψ

X

Z
m1

m2

H H

H H

|+ X

m1

m2

|+

X
|ψ

Xm2Zm1 |ψ

Zm2Xm1 |ψ

Zm2Xm1 |ψ

X

one-bit teleportation

|ψ
|+

m1

Xm1H|ψ

One-bit teleportation is useful as a building block of the teleportation-based gates
employed in MBQC. A single-qubit Z rotation eiθZ can be implemented in a
teleportation-based way. Its action can be understood from the following circuit
equivalence:

X

|+

m1|ψ eiθZ

X

|+

m1|ψ eiθZ

Xm1HeiθZ |ψ

Xm1HeiθZ |ψ

where we utilized the fact that eiθZ and Λ(Z) commute. The controlled-Z operation
is also implemented in a teleportation-based way as follows:
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|+
X

m1

|+ X
m2

in 1

in 2

=

|+ X
m1

|+

X
m2

in 1

in 2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2

That is, instead of performing the Λ(Z) gate after one-bit teleportations, we can
prepare a special resource state, on which theΛ(Z) gate is pre-implemented, and the
Λ(Z) gate is then performed via teleportation. These quantum operations based on
quantum teleportation are called gate teleportation [68].

Nowweare ready to formulateMBQC.An arbitrary single-qubit unitary operation
U can be decomposed, up to an unimportant global phase, into

U = HeiφZ eiθXeiξZ (2.31)

= HeiφZ HeiθZ HeiξZ . (2.32)

This indicates that we can perform an arbitrary single-qubit unitary operation by
a sequence of one-bit teleportations. The resource state for the sequential one-bit
teleportations is a 1D cluster state:

where the stabilizer generator for the left-most qubit is removed and the input state
is encoded. We have to take care of the byproduct Pauli operators depending on the
measurement outcomes. Fortunately, we can propagate the Pauli byproduct operators
forward as follows:

U = Xmi+2Heiφ′ZXmi+1Heiθ ′ZXmi HeiξZ . (2.33)

= Xmi+2⊕mi Zmi+1Hei(−1)mi+1φ′Z Hei(−1)mi θ ′ZHeiξZ . (2.34)

X

|+

|ψ eiξZ mi

ei(−1)miθZ
X

mi+1

|+ Xei(−1)mi+1φZ

|+

mi+2

Xmi+2⊕miZmi+1HeiφZHeiθZHeiξZ |ψ
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Bychoosing θ ′ = (−1)miθ andφ′ = (−1)mi+1φ adaptively, dependingon theprevious
measurement outcomes, the random nature of the measurements can be managed.
This procedure is called feedforward. The Pauli byproduct is propagated and updated
throughout the computation. Note that the classical processing required to determine
the measurement angle has only XOR (addition modulo two) operations [65].

Next, we will investigate the measurement-based two-qubit gate operation. The
resource state for the gate teleportation is the following cluster state:

|+ X
m1

|+

X
m2

in1

in2

(X2Z1)m2(X1Z2)m1Λ1,2(Z)H1H2|ψ 1,2
in1

X
out1

in2

X
out2

=
out1

out2

i i+1

To adjust the timing of the two-qubit operation, we can insert identity operations
depending on the even and odd lengths as follows:

in X X out in Y Y outY

Without loss of generality, we can assume that all input states of the quantum com-
putation are given by |+〉, which are automatically encoded by preparing the graph
state. At the end of the computation (on the right-most qubits), measurements are
performed to read out the result as follows:

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z
Z Z Z Z Z Z Z

Z
Z

Z Z Z Z
Z Z Z Z

Z Z
Z Z

Z
Z

X
X

X
X

X
X

X
X

X
X

X
X

X
X

re
ad

ou
t
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In this way, universal quantum computation is simulated solely by measurements on
a brickwork-like cluster state. This state can be generated from a cluster state on a
square lattice by using the Pauli basis measurements as shown above. Accordingly,
the square lattice cluster states are universal resources for MBQC.

The above circuit-based explanation of MBQC [69] is very intuitive and straight-
forward. However, for a complicated resource state, as will be shown, an operator-
based understanding of MBQC [65] is quite useful. Let us reformulate MBQC from
an operator viewpoint. Suppose again an MBQC on a 1D cluster state. The mea-
surements are executed up to the (i − 1)th qubits, and hence the operator Kl (l ≤ i)
is removed from the stabilizer generators. The logical degree of freedom on the
remaining resource state can be specified by the ith logical operators

L(i)
X = XiZi+1, (2.35)

L(i)
Y = YiZi+1, (2.36)

L(i)
Z = Zi. (2.37)

These logical operators commute with all remaining stabilizer generators Kl

(l ≥ i + 1). Moreover, they anticommute with each other, satisfying the commu-
tation relations for the Pauli operators. Thus, they specify the state encoded in the
graph state. As seen above, a Z-rotation e−i(θ/2)Zi is applied before the X-basis mea-
surement. Because Zi = L(i)

Z , this rotation induces a unitary transformation U of the
logical operator

L(i)
X → cos θL(i)

X + sin θL(i)
Y , (2.38)

L(i)
Y → cos θL(i)

Y − sin θL(i)
X . (2.39)

Because L(i)
X = XiL

(i+1)
Z , the logical X operator after the X-basis measurements is

given by (−1)mi L(i+1)
Z depending on the measurement outcome mi = 0, 1. On the

other hand, the logical operators L(i)
Y ,Z do not commutewith theX-basismeasurement;

they are not relevant logical operators after the measurement. If two operators are
equivalent up to multiplications of the stabilizer operators, their action on the stabi-
lizer state is also the same. By using this fact, we can replace the logical operators
in (2.39) with

L(i)
Z ∼ L(i)

Z Ki+1 = Xi+1Zi+2 ≡ L(i+1)
X , (2.40)

L(i)
Y ∼ Ki+1 = XiYi+1Zi+2 ≡ XiL

(i+1)
Y , (2.41)

where ∼ indicates that two operators are equivalent up to stabilizer operators. After
the X-basis measurement, Xi can be replaced by its eigenvalue (−1)mi . Then the
logical operator of the post-measurement state is given by
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L(i)
X → (−1)mi(cos θL(i+1)

Z + sin θL(i+1)
Y ) = UL(i+1)

X U†, (2.42)

L(i)
Y → (−1)mi(cos θL(i+1)

Y − sin θL(i+1)
Z ) = UL(i+1)

Y U†, (2.43)

L(i)
Z → L(i+1)

X = UL(i+1)
Z U†. (2.44)

We now realize that the logical operators for the ith step are transformed into those
for the (i + 1)th step rotated by U ≡ X̄mi H̄e−i(θ/2)Z̄ , where Ā indicates the operator
A represented in terms of the logical basis specified by the (i + 1)th logical Pauli
operators {L(i+1)

X , L(i+1)
Y , L(i+1)

Z }.
Similarly, a two-qubit gate in MBQC can also be regarded as a propagation of a

correlation by a projection on the stabilizer state. Consider the following graph state.

logical operators
before the measurement

z

logical operators
after the measurement

x z

z
z x z

z

in1

X
out1

in2

X
out2

i i+1
stabilizer

z zx z z

The logical operators for the ith step are given by {L(i)
X1, L(i)

Z1} and {L(i)
X2, L(i)

Z2}. By
multiplying the stabilizer operator, we obtain

L(i)
Z1 ∼ X1,i+1Z1,i+2Z2,i+1 = L(i+1)

X1 L(i+1)
Z2 , (2.45)

L(i)
Z2 ∼ X2,i+1Z2,i+2Z1,i+1 = L(i+1)

X2 L(i+1)
Z1 . (2.46)

The logical operators for the (i + 1)th step after the projections are calculated to be

{L(i)
X1, L(i)

Z1} → {(−1)m1L(i+1)
Z1 , L(i+1)

X1 L(i+1)
Z2 } = {VL(i+1)

X1 V †, VL(i+1)
Z1 V †}, (2.47)

{L(i)
X2, L(i)

Z2} → {(−1)m2L(i+1)
Z2 , L(i+1)

X2 L(i+1)
Z1 } = {VL(i+1)

X2 V †, VL(i+1)
Z2 V †}. (2.48)

Again, we realize that the logical operators for the ith step are transformed into those
for the (i + 1)th step with a two-qubit unitary operation

V ≡ (X̄1Z̄2)
m1(X̄2Z̄1)

m2Λ̄1,2(Z)H̄1H̄2. (2.49)

By combining single-qubit rotations XmHei(θ/2)Z and the two-qubit operation
(X1Z2)

m1(X2Z1)
m2Λ1,2(Z)H1H2 as seen above, we can perform a universal quantum

computation. In this way, MBQC can be understood in the Heisenberg picture.
Suppose the logical Pauli operators of the kth input and output qubits are related

by the measurements as follows:

{L(In)
X,k , L(In)

Z,k } → {UL(Out)
X,k U†, UL(Out)

Z,k U†}. (2.50)
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The unitary operator U is performed on the input qubits. Here a Pauli byproduct,
depending on the measurement outcomes, is also included in U. Moreover, if two
graph states, which perform U and V , are concatenated with the appropriate feed-
forwarding of the Pauli byproducts, then VU is performed:

input

…

output

U
input output

V

Let us consider the example shown in Fig. 2.4a. The logical operators on the inputs
are replaced by multiplying stabilizer generators so that they commute with the X-
basis measurements as shown in Fig. 2.4b. Then the X operators on the measured
qubits are replaced by ±1. The measurements transform the input logical operators
as follows:

{L(In)
X,1 , L(In)

Z,1 , L(In)
X,2 , L(In)

Z,2 }
→

{
(−1)m1⊕m5L(Out)

X,1 L(Out)
Z,2 , (−1)m3⊕m6L(Out)

Z,1 ,

(−1)m2⊕m6L(Out)
X,2 L(Out)

Z,1 , (−1)m4⊕m5L(Out)
Z,2

}
. (2.51)

Thus, the Λ1,2(Z) gate is implemented up to a Pauli byproduct.
Using this fact and concatenation of the input-output relations, we can construct

a measurement-based CNOT gate between the separated two-qubit as follows [65]:

in1

X

out1

in2 X

out2X X

X X

in1 X

out1in2

out2
X

X

Z

in1

out1in2

out2
X

Z

X

measurements

logical operators multiplied by 
stabilizer generators

(b)(a)

Z

m1

m2

m3

m4

m5

m6

Fig. 2.4 aAgraph state and ameasurement pattern.bThe logicalX operator of input 1 ismultiplied
by the stabilizer generators and we obtain a correlated operator on outputs 1 and 2 (left). The logical
Z operator of input 1 is multiplied by the stabilizer generators and we obtain the logical Z operator
of output 1. The gray colored X operators are replaced by ±1 depending on the measurement
outcomes
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intarget

outtarget

incontrol

outcontrol

The input-output relation of the above graph state is equivalent to that for the fol-
lowing circuit:

intarget

outtarget

incontrol

outcontrol

=

In this way, a CNOT gate between two arbitrary separated qubits can be implemented
using a constant depth (constant width) resource state.

To conclude, we summarize the properties of MBQC and recent progress in this
area. A unique feature of MBQC is that the resource state for universal quantum
computation is prepared offline. Entangling operations, which would be one of the
most difficult tasks in experiments, are employed only in this stage. Quantum com-
putation is executed solely by adaptive measurements. This property is useful for
experimental realization in certain physical systems. For example, a deterministic
entangling operation is difficult to achieve in an optical quantum computation. In
such a case, we can utilize linear optics and measurement-induced nonlinearity to
generate a cluster state [70–72]. Importantly, the entangling operation can be non-
deterministic, as long as the successful or non-successful outcome is heralded. By
using such a probabilistic entangling operation, we can gradually expand the cluster
state. After successful cluster state generation, we can start the measurements for
quantum computation. Note that the probability of successful cluster state generation
is not exponentially small by using a divide and conquer approach [71–76].

The clear separation between the quantum stage requiring entangling operations
and the measurement stage is useful, not only for the physical implementation, but
also in a quantum cryptographic scenario. Suppose that Bob (server) possesses a fully
fledged quantum computer and that Alice (client), who has a less advanced quantum
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device, such as a single-qubit state generator, wants to delegate quantum computation
to Bob. By using the idea of MBQC, such a delegated quantum computation can be
made unconditionally secure. This is called a blind quantum computation and was
proposed by Broadbent, Fitzsimons, and Kashefi (BFK) [77] (see also the related
earlier works [78, 79]). In the BFK protocol, Alice sends randomly rotated qubits
{e−i(θj/2)Z |+〉} to Bob, where the angle is chosen to be θj = kjπ/4 (kj = 0, 1, . . . , 7).
Bob generates a cluster state by using the randomly rotated qubits. In the compu-
tation phase, Alice sends a classical message δj = φj + θj + rjπ . Here, φj is the
measurement angle with which Alice want to perform a measurement. The angle θj

is for the randomly rotated state (which is secret to Bob). The random bit r ∈ {0, 1}
makes the measurement angle completely random for Bob. Then Bob performs the
measurement in the {e−i(δj/2)Z |±〉} basis. Because the initial state is pre-rotated by θj

(from Alice’s viewpoint), Bob performs the measurement in the {e−i(φj/2+rjπ/2)Z |±〉}
basis, which is what Alice wants to do. However, from Bob’s viewpoint, the state
is a completely mixed state with no information about {φj}. Thus, Bob is blind to
any information about the input, the algorithm, and the output. Instead of the state
generation, Alice, who has a measurement device, can also perform a blind quan-
tum computation, whose security is guaranteed by the no-signaling principle [80]. A
fault-tolerant blind quantum computation has been proposed, based on topologically
protected MBQC [81].

2.7 Quantum Error Correction Codes

In this section, we introduce stabilizer codes, which are a class of quantum error
correction (QEC) codes.

Three-Qubit Bit-Flip Code

The QEC codes can be described elegantly in the stabilizer formalism. Let us first
consider the simplest one, the three-qubit bit flip code, whose stabilizer generators
are given by

S1 = Z1Z2, S2 = Z2Z3. (2.52)

The stabilizer subspace is spanned by the following two logical states:

|0L〉 = |000〉, |1L〉 = |111〉. (2.53)

The logical Pauli-X operator is given by LX ≡ X1X2X3. The logical Pauli-Z operator
is defined as LZ ≡ Z1. We may, equivalently, choose the logical Pauli Z operator to
be Z2 or Z3, because their actions on the code space are equivalent. The present code
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is a quantum analogue of the classical three-bit repetition code. Consider a bit flip
error with an error probability p:

Eiρ = (1 − p)ρ + pXiρXi. (2.54)

If the initial state |ψL〉 = α|0L〉 + β|1L〉 undergoes the bit flip error independently,
the output state is transformed in leading order as

E1 ◦ E2 ◦ E3|ψL〉〈ψL| = (1 − p)3|ψL〉〈ψL| + p(1 − p)2
∑

i

Xi|ψL〉〈ψL|Xi + O(p2).

(2.55)

The error Xi maps the code space to an orthogonal space. We perform a projec-
tive measurement onto the orthogonal subspaces, P±

k = (I ± Sk)/2, which we call
a syndrome measurement, to know in which orthogonal space the state lies. Note
that the encoded quantum information is not destroyed by the syndrome measure-
ment, because it commutes with the logical operators. According to themeasurement
outcomes, the logical state can recover from the error as follows:

R ◦ E1 ◦ E2 ◦ E3|ψL〉〈ψL| = [(1 − p)3 + 3p(1 − p)2]|ψL〉〈ψL| + O(p2),

(2.56)

where the recovery operator is given by

Rρ = P+
1 P+

2 ρP+
2 P+

1 + X1P−
1 P+

2 ρP+
2 P−

1 X1 + X2P−
1 P−

2 ρP−
2 P−

1 X2

+ X3P+
1 P−

2 ρP−
2 P+

1 X3. (2.57)

The four terms in Rρ correspond to the measurement outcomes (eigenvalues)
(+1,+1), (−1,+1), (−1,−1), and (+1,−1) of the stabilizer generators, respec-
tively. By comparingEqs. (2.55) and (2.56), one can understand that if p is sufficiently
small, the fidelity of the logical state is improved.

Similarly, we can construct a three-qubit phase flip code, which can correct a
phase flip error, by changing the basis with the Hadamard transformation:

〈Z1Z2, Z2Z3〉 → 〈X1X2, X2X3〉. (2.58)

9-Qubit Shor Code

The three-qubit bit-flip code cannot correct Z errors, which commute with the stabi-
lizer generators. A QEC code that can correct all X, Y , and Z errors was developed
by Shor based on a concatenation of three-qubit bit-flip and phase-flip codes [82].
The stabilizer generators of the 9-qubit Shor code are given as follows:
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X X X X X X I I I
I I I X X X X X X
Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z

(2.59)

The code space is spanned by

|0L〉 + |1L〉√
2

= (|000〉 + |111〉) (|000〉 + |111〉) (|000〉 + |111〉)
2
√
2

, (2.60)

|0L〉 − |1L〉√
2

= (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)
2
√
2

. (2.61)

The logical Pauli operators are given by XL = X⊗9 and ZL = Z⊗9, which are bitwise
tensor products of physical Pauli operators. If the logical A operator is given by a
bitwise tensor product of the physical A operators on the QEC code, we say that the
operation A has transversality. The 9-qubit code is capable of correcting all X, Y ,
and Z errors for each qubit, which can be understood because the three-qubit phase
flip code {| + ++〉, | − −−〉} is constructed by using the three logical qubits of the
three-qubit bit flip codes {|000〉, |111〉}.

Note that any single-qubit noise E can be described by using the Kraus opera-
tors {Kj}:

E ρ =
∑

j

KjρK†
j . (2.62)

Any operatorKj can be decomposed into the Pauli operators σ0 = I , σ1 = X, σ2 = Y ,
and σ3 = Z:

Kj =
∑

l

cjlσl. (2.63)

Thus, if the X and Z errors on a single qubit are both corrected appropriately, we can
correct any single-qubit noise automatically. Specifically, because noise contains a
superposition of the Pauli errors, it can be collapsed by the syndrome measurements.

Stabilizer Codes

To summarize the above examples, let us formalize the stabilizer quantum error cor-
rection codes and their properties. The code space of a stabilizer QEC code is defined
by a stabilizer group 〈{Si}〉. The encoded degree of freedom is specified by the mutu-
ally independent logical operators {LZ

j }, which commutewith all stabilizer generators
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and are independent of the stabilizer generators. The computational basis state of the
code state is completely determined by the stabilizer group 〈{Si}, {(−1)mj LZ

j }〉. We
can always find another set of the logical operators {LX

j } being subject to

LX
j LZ

i = (−1)δij LZ
i LX

j , (2.64)

where δij is the Kronecker delta. Hence, the pair of logical operators LZ
i and LX

i
represents the ith logical qubit. In terms of the numbers n and (n − k) of qubits and
stabilizer generators, respectively, the number of pairs of logical operators is k.

Let us define the weight wt(Si) of a Pauli product Si as the number of qubits on
which a Pauli operator (except for the identity I) is acting. The minimum weight of
the logical operator over all possible logical operators is called the code distance d.
This implies that all Pauli products whose weights are smaller than d are elements
of the stabilizer group or anticommute with the stabilizer generators. Thus, they act
trivially on the code state or map the code state into an orthogonal subspace. If the
weight of a Pauli product as an error is less than (d − 1)/2, we can find a unique
recovery operator that returns the erroneous state into the code space. Thus, we can
correct weight-�(d − 1)/2� errors. Such a stabilizer QEC code is called a [[n, k, d]]
stabilizer code. For example, the code distance of the 9-qubit code is a [[9, 1, 3]]
stabilizer code correcting weight-one errors.

The nine-qubit code is not the smallest QEC code that can correct all weight-one
X, Y , and Z errors. The smallest code is the five-qubit code, found independently by
Laflamme et al. [83] and Bennett et al. [84]. The stabilizer generators and the logical
Pauli operators are given as follows:

S1 = X Z Z X I
S2 = I X Z Z X
S3 = X I X Z Z
S4 = Z X I X Z
XL = X X X X X
ZL = Z Z Z Z Z

(2.65)

We see that the code distance is three, and hence an arbitrary single-qubit error can
be corrected.

Calderbank-Shor-Steane Codes

The readers who are familiar with classical coding theory might already be aware
of the correspondence between stabilizer codes and classical linear codes. Let us
recall the 9-qubit code. The X and Z errors are detected independently through the
Z-type and X-type stabilizer generators, respectively. This implies that X and Z
error corrections are described by classical coding theory, where two classical error
corrections are subject to a certain constraint to appropriately form a stabilizer group.
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To formulate this, we briefly review classical linear codes. A [[n, k]] classical
linear code C is defined as a k-dimensional space VC of n-dimensional vector space
over GF(2) by using an n × k generator matrix

G = (b1, . . . , bk), (2.66)

where the column vectors {bi} are the basis vectors of VC . A k-bit classical informa-
tion y is encoded into the code c as

a = Gc. (2.67)

To detect and analyze the errors, we define an (n − k) × n parity check matrix H
such that Hbk = 0 for all basis vectors {bk}. Suppose an error e occurs on the code
state, a′ = a ⊕ e, where ⊕ indicates a bitwise addition modulo two. By using the
parity check matrix H, we can detect the error

Ha′ = H(a ⊕ e) = He ≡ s, (2.68)

where s is called an error syndrome.
For example, the three-bit repetition code is defined by the generator

G =
⎛
⎝1
1
1

⎞
⎠ . (2.69)

A classical bit 0 and 1 is encoded into (0, 0, 0)T and (1, 1, 1)T, respectively. The
parity check matrix is defined to be

H =
(
1 1 0
0 1 1

)
. (2.70)

Now, we realize that the positions of the 1 s of the parity check matrix are exactly
the same as those of the Zs in the stabilizer generators of the three-qubit bit flip code.
This suggests to use the parity check matrices Hx and Hz of the two classical linear
codes Cx and Cz, respectively, in the definition of the X-type and Z-type stabilizer
generators:

S(i)
X =

∏
j

X
(Hx)ij

j , S(i)
Z =

∏
j

Z
(Hz)ij

j . (2.71)

For these operators to commute with each other, the two parity check matrices have
to satisfy

HxHT
z = 0, (2.72)
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where 0 indicates a matrix with all elements = 0. To define the logical Z operators,
we define a quotient space Ker(Hx)/Img(HT

z ). Denoting the basis vectors of the
quotient space Ker(Hx)/Img(HT

z ) by {[bz
k]}, we define the logical Z operators

L(k)
Z =

∏
i

Z
(bz

k)i

i . (2.73)

Similarly, we can define the logical X operators

L(k)
X =

∏
i

X
(bx

k)i

i , (2.74)

using the basis vectors {[bx
k]} of a quotient space Ker(Hz)/Img(Hx

T), where bx
k is

chosen such that L(i)
Z L(j)

X = (−1)δij L(j)
X L(i)

Z . Note that dimensions of these kernel
subspaces are the same, and we can easily find such pairs of anticommuting logical
operators. The above stabilizer code constructed from two classical linear codes is
called a Calderbank-Shor-Steane (CSS) code.

Let us see an important example of CSS codes, the 7-qubit code introduced by
Steane [85]. Specifically, we utilize a classical linear code, the [[7, 4, 3]] Hamming
code, whose generator and parity check matrices are given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H =
⎛
⎝ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠ . (2.75)

Because HHT = 0, we can employ the Hamming code to define both X- and Z-type
stabilizer generators:

S1 = I I I X X X X
S2 = I X X I I X X
S3 = X I X I X I X
S4 = I I I Z Z Z Z
S5 = I Z Z I I Z Z
S6 = Z I Z I Z I Z

(2.76)

There is an element (1, 1, 1, 1, 1, 1, 1)T in the quotient spaceKer(H)/VH . The logical
operators are given by

LX = X X X X X X X,

LZ = Z Z Z Z Z Z Z.
(2.77)
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The 7-qubit code is quite useful for fault-tolerant quantum computation. Both the
X- and Z-type stabilizer generators are defined from the Hamming code, and the
stabilizer group is invariant under the transversal Hadamard operation H̄ ≡ H⊗7.
Moreover, the logical X operator is mapped into the logical Z operator, H̄LXH̄ = LZ .
Thus, the transversal Hadamard operation acts as the logical Hadamard operation for
the encoded degree of freedom. Similarly, a transversal phase operation S̄ ≡ (ZS)⊗7

acts as a logical phase operation, S̄LX S̄† = LY . Furthermore, a transversal CNOT
operation Λ̄(X) = Λ(X)⊗7 keeps the stabilizer group of two logical qubits invariant:

〈{S(i)
X ⊗ I⊗7}, {S(i)

Z ⊗ I⊗7}, {I⊗7 ⊗ S(i)
X }, {I⊗7 ⊗ S(i)

Z }〉 (2.78)

= 〈{S(i)
X ⊗ S(i)

X }, {S(i)
Z ⊗ I⊗7}, {I⊗7 ⊗ S(i)

X }, {S(i)
Z ⊗ S(i)

Z }〉. (2.79)

The logical Pauli operators are subject to the transformation rule of the CNOT gate.
Accordingly, the transversal CNOT operation Λ̄(X) acts as a logical CNOT opera-
tion for the encoded degree of freedom. Because the Hadamard, phase, and CNOT
operations are implemented transversally, whole Clifford group elements can be
implemented by transversal operations.

The transversal implementation is fault-tolerant because the operations apparently
donot increase the number of errors on a codeblock and there is no internal interaction
between the qubits in the same code block. Combined with a fault-tolerant gadget
for measuring the error syndrome as explained in Appendix A.1, we can implement
Clifford operations fault-tolerantly.

Unfortunately, the non-Clifford operation does not transform a Pauli operator into
another Pauli operator. For example, the π/8 operation e−i(π/8)Z transforms the Pauli
X operator into a Clifford operator:

e−i(π/8)Z Xei(π/8)Z = (X + Y)/
√
2. (2.80)

This implies that a transversal non-Clifford operation hardly results in a logical
non-Clifford operation. Thus, a fault-tolerant non-Clifford gate operation is not so
straightforward. To settle this, we can utilize magic state distillation, consisting of
noisy non-Clifford resource states and ideal (fault-tolerant) Clifford operations, as
explained in the next section.

2.8 Magic State Distillation

2.8.1 Knill-Laflamme-Zurek Protocol

A fault-tolerant implementation of a non-Clifford gate was first proposed in an earlier
paper by Knill, Laflamme, and Zurek [86, 87]. Instead of implementing the non-
Clifford gate directly, we consider a fault-tolerant preparation of the non-stabilizer
state, the so-called magic state,
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|A〉 ≡ ei(π/8)Y |+〉. (2.81)

Themagic state can be utilized to implement a non-Clifford gateA ≡ ei(π/8)Y by using
one-bit teleportation consisting of Clifford gates and the Pauli basis state preparations
and measurements. Thus, if we can prepare a clean magic state, we can create a fault-
tolerant non-Clifford gate by using fault-tolerant Clifford gates.

The Knill-Laflamme-Zurek construction of the fault-tolerant preparation of the
magic state was based on the fact that |A〉 is an eigenstate of H. The Hadamard oper-
ation has transversality, e.g., on the 7-qubit code. Hence, if we perform a projective
measurement of H⊗7, we obtain a clean magic state. The circuit is given as follow

|+
|+

|0

|0
|0

|+

A|+
|+

encoding

A†

A†

A†

A†

A†

A†

A† A

A

A

A

A

A

A

|+
X

indirect measurement 

Z

Z

Z

Z

Z

Z

Z

decoding (2.82)

where A = ei(π/8)Y and we used the fact that AtΛc,t(X)A†
t = Λc,t(H). The above

circuit consists of three parts, encoding of the logical magic state into the 7-qubit
code, indirect measurement of H⊗7, and decoding by one-bit teleportation. Note
that all Clifford operations are assumed to be ideal, because they are easily made
fault-tolerant by using a stabilizer code.With an appropriate randomization operation
made up byClifford operations, a noisymagic state can be transformed into amixture
of |A〉 and |A⊥〉 = Y |A〉:

ρA = (1 − p)|A〉〈A| + p|A⊥〉〈A⊥| (2.83)

Hence, the noise on the magic state can be expressed as a Y error. The Y error can
be detected by transversal Z measurements for the decoding (see also Knill’s gadget
for a fault-tolerant syndrome measurement in Appendix A.1). Assuming an ideal
Clifford operation, the error probability p decreases as O(p3), when we employ the
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7-qubit code with distance 3. Including the A gate for the initial encoding, we need
15 noisy magic states |A〉 to obtain a clean magic state. This distillation protocol
works for all self-dual CSS codes, which are symmetric between the X- and Z-
type stabilizer generators and has transversality for the Hadamard gate. Recently,
improved protocols have been proposed based on this approach [88, 89].

2.8.2 Bravyi-Kitaev Protocol

Bravyi and Kitaev proposed another magic state distillation protocol based on a 15-
qubit code [60]. While their and the Knill-Laflamme-Zurek protocols seem quite
different, they are, interestingly, known to be equivalent [90]. In the Bravyi-Kitaev
protocol, a [[15,1,3]] quantum code is defined by the [[15,7,3]] classical Reed-Muller
code, whose parity check matrix is given by

Hx =

⎛
⎜⎜⎝
1 0 0 0 0 1 1 0 0 1 1 1 1 0 1
0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
0 0 1 1 0 0 1 0 1 1 0 0 1 1 1
0 0 1 0 1 1 0 1 0 0 1 0 1 1 1

⎞
⎟⎟⎠ (2.84)

The X-type stabilizer generators are defined by S(i)
X = ∏

j X
(H)ij

j . Then, we choose a
parity check matrix of another classical code

Hz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.85)

so that HxHT
z = 0 and the Z-type stabilizer generators are defined similarly. The

logical operators are given by LX = X⊗15 and LZ = Z⊗15. The logical states are
written down explicitly as

|0L〉 =
4∏

i=1

(I + S(i)
X )|00 . . . 0〉, (2.86)

|1L〉 =
4∏

i=1

(I + S(i)
X )|11 . . . 1〉. (2.87)
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The number of 1 s in each term of |0L〉 and |1L〉 is 8 and 7, respectively. By applying
the T = e−i(π/8)Z gate transversally, we obtain

T⊗15|0L〉 = eiπ/8|0L〉, (2.88)

T⊗15|1L〉 = e−iπ/8|0L〉. (2.89)

Thus, the transversal T gate acts as a logical T † gate. Note that this transversality does
not hold in the orthogonal (erroneous) subspace, e.g., spanned by {Xk|0L〉, Xk|1L〉}.
However, we can show that this is enough to perform a fault-tolerant logical T gate.

Instead of applying the T gate directly, we implement it using a one-bit telepor-
tation:

|ψ
Z

m

T
|T (XS)m

(2.90)

The Z-basis measurement and CNOT operation are both implemented transversally
on a CSS code. Thus, if the preparation of the non-Clifford ancilla state |T〉 =
(|0L〉+ e−iπ/4|1L〉)/√2, called a magic state, is done fault-tolerantly, one can ensure
fault-tolerance of the logical T gate.

By using an appropriate randomization process, we can prepare a noisy magic
state as follows:

ρT = (1 − p)|T〉〈T | + pZ|T〉〈T |Z. (2.91)

Thus, a phase error Z is located on the ideal magic state with probability p. This
phase error causes a Z error after the T gate by one-bit teleportation. Because the
code space is invariant under the transversal T gate, we can detect such a Z error by
the following circuit.
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X

X

X
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The first part of the above circuit consisting of CNOT operations is an encoding
circuit for the quantum Reed-Muller code. The transversal T gate is applied by using
one-bit teleportation. The logical |T〉 state is measured in the X-basis transversally,
which detects Z errors on the code state, projecting the code state on the local
X-basis. The input state in the second lowest wire is entangled with the ancilla
qubit in the lowest wire, where the distilled magic state is teleported.

Let c be a 15-bit string specifying the location of the Z errors, E(c) ≡ ∏
i Z (c)i

i .
If E(c) commutes with the X-type stabilizer generators, the state passes through the
distillation circuit. To calculate this probability, we define a weight enumerator of a
subspace V ∈ GF(2n),

WV (x, y) =
∑
c∈V

xn−wt(c)ywt(c). (2.92)

The probability of passing the distillation circuit is calculated to be

ppass = WV⊥
Hx

(1 − p, p) = 1

|Vx|WVHx
(1, 1 − 2p) = 1 + 15(1 − 2p)8

16
, (2.93)

where the orthogonal subspace V⊥
Hx

is equivalent to the kernel of Hx, Ker(Hx). We
also used the MacWilliams identity [91]:

WV (x, y) = 1

|V |WV⊥(x + y, x − y). (2.94)

Similarly, the error probability of the output can be calculated to be

WVHz
(p, 1 − p) = 1

|V⊥
Hz

|WV⊥
Hz

(1, 2p − 1) (2.95)

= 1 + 15(2p − 1)8 + 15(2p − 1)7 + (2p − 1)15

32
. (2.96)

Accordingly, the error probability, under the condition of passing the distillation
circuit, is given by

p′ = 1 + 15(2p − 1)8 + 15(2p − 1)7 + (2p − 1)15

2[1 + 15(1 − 2p)8] = 35p3 + O(p4). (2.97)

Ifp′ > 0.141,we can reduce the error probability on themagic state via the distillation
circuit.After l rounds of distillation, the error probability decreases to (

√
35p)3

l
/
√
35.

At each round,we need 15 noisymagic states. Because the probability of successfully
passing the distillation circuit converges rapidly to 1, the average number of noisy
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magic states consumed after l rounds becomes 15l. Accordingly, the average number
of noisy magic states required to achieve an error probability ε of the magic state
scales like

[log(√35ε)/ log(
√
35p)]log(15)/ log(3) = O(log2.5 ε). (2.98)

In Sect. 2.4,we saw that if an input state is a convexmixture of the Pauli basis states
followed by Clifford operations and Pauli basis measurements, the measurement
outcomes can be simulated classically in the weak sense. The noisy magic state
ρT = (1− p)|T〉〈T | + p|T〉〈T | lies on a line in the x–y plane, as shown in Fig. 2.5. If
p > (1−√

2/2)/2 = 0.146,ρπ/8 lies inside the octahedron, and theGottesman–Knill
theorem is applicable. On the other hand, if p < 0.141, magic state distillation allows
us to implement universal quantum computation with an arbitrary accuracy as seen
above. Unfortunately, magic state distillation based on the Reed-Muller code does
not provide a tight distillation threshold against the classically simulatable region. In
Ref. [90], a distillation protocol using the 7-qubit code was proposed and achieved
a tight threshold p = (1 − √

2/2)/2. In this sense, the classically simulatable and
quantum universal regions are divided sharply on the x–y plane.

By combining the magic state distillation and fault-tolerant Clifford operations
on the CSS code, we can perform universal quantum computation fault-tolerantly.
In order to make the error probability arbitrarily small, we can employ concatenated
quantum computation, in which logical qubits of a lower concatenation level are
utilized as the physical qubits at a higher level. At the higher level, all operations,
including logical qubit preparations and syndromemeasurements forQEC, have to be
done fault-tolerantly. If the error probability is smaller than a certain constant value,
which we call the noise threshold, the logical error probability at the highest concate-
nation level decreases super-exponentially. On the other hand, the overhead increases
exponentially. Thus, we canmake the logical error probability small enough to main-
tain a quantum computation of size N with a polylogarithmic overhead polylog(N).
This implies that we can obtain a quantum benefit even for a quantum algorithmwith
a quadratic speedup, such as the Grover algorithm [37]. In Appendix A.1, we briefly

y

x

z

x
yφ

θ

φφφ

θ

p = (1 −
√

2/2)/2

Fig. 2.5 The noisy magic state in the Bloch sphere
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review fault-tolerant syndrome measurements, concatenated quantum computation,
and the threshold theorem.

While the resource increment for protecting quantum computation scales poly-
logarithmically, its constant factor is quite huge. Almost all overheads for the fault-
tolerant quantum computation are employed for the magic state distillation [92, 93].
Thus, much effort has been spent recently on developing resource-efficient magic
state distillation [88, 94–96].

2.9 Summary and Discussion

In this chapter, we have introduced the stabilizer formalism and have learned how
to utilized it to describe the quantum states and the operations of the restricted class
efficiently. As examples, we have seen MBQC, quantum error correction codes, and
magic state distillation, all of which take important roles in quantum computation.

WhileMBQCcan be understood as sequential quantum teleportation circuits [69],
the operator-based explanation, as employed in the original paper [64, 65], would be
also useful. Indeed, topologically protected quantum computation was first formal-
ized elegantly in terms ofMBQC on a 3D cluster state [4, 5] as wewill see in Chap.5.
It was further translated into the circuit-based model in two dimensions (2D) [6, 97],
which will be explained in detail in Chap.4. Specifically, the operator-based formu-
lation is quite useful for describing how correlation is propagated in a topologically
protected way.

Recently, quantum stabilizer codes have been employed not only for quantum
error correction but also as exactly solvable toy models for topologically ordered
condensed matter systems as will be seen in the next chapter. Specifically, the simple
but rich structure of the stabilizer formalism allows us to obtain a lot of insights from
the toy models, such as scaling laws of entanglement entropy, stability of quantum
phases at finite temperature, and statistics of excitations.Besides, a quantumstabilizer
code has found its application even to high energy physics recently [98, 99].

The magic state is necessary ingredient for universal quantum computation and
hence might be a clew to find the origin of quantum speedup. In Ref. [100], it has
been shown that violation of non-contextuality, which is a kind of non-locality of
quantum mechanics and prohibits pre-existing hidden valuables for quantum states
before measurements, is necessary for distillability of magic states. Moreover, in
Ref. [101], a quantum-classical boundary of noisy quantum commuting circuits is
derived from the viewpoint of classical (not) simulatability of the output distributions.
The boundary, which sharply divides the classical simulatable and not simulatable
regions, has its origin in distillability of a magic state.

http://dx.doi.org/10.1007/978-981-287-996-7_5
http://dx.doi.org/10.1007/978-981-287-996-7_4


Chapter 3
Topological Stabilizer Codes

Protecting quantum information from decoherence is of prime importance to realize
quantum information processing. Several approaches have been proposed toward
reliable quantum information processing, ranging from passive to active protections,
such as decoherence-free subspaces [102], dynamical decoupling [103], and quan-
tum error correction [82]. Among these, the most comprehensive approach is fault-
tolerant quantum computation based on quantum error correction [104]. Quantum
fault-tolerance theory ensures scalable quantum computation with noisy quantum
devices as long as the error probability of such devices is smaller than a threshold
value (see Appendix A.1). The first threshold values were obtained, at almost the
same time (1996), independently by Aharonov et al., who used a polynomial code
of distance five [39, 40]; Knill et al., who used the Steane seven-qubit code [86, 87];
and Kitaev, who used toric (surface) codes [105]. All of these studies were based on
a concatenated quantum computation and achieved similar threshold values ∼10−6.
Since then, fault-tolerant quantum computing has been studied as one of the most
important issues in quantum information science. In 2005, Knill proposed a novel
scheme based on the C4/C6 error-detecting code, namely the Fibonacci scheme [106],
and achieved a considerably higher threshold, a few %. Recently, Fujii et al. have
further improved this approach by making use of measurement-based quantum com-
putation (MBQC) [4, 5] on logical cluster states, which gives the highest threshold
value so far, ∼5 % [107, 108].

All these approaches rely on the availability of two-qubit gates between arbitrarily
separated qubits. However, all physically available interactions are local in space.
Moreover, if we consider manufacturing convenience and the selective addressability
of individual qubits, 2D nearest-neighbor architectures are necessary. It was thought
that, if we restrict the two-qubit gates to nearest-neighbor ones in 2D, then the
threshold value would decrease significantly [109]. The situation changed completely
by the proposal made by Raussendorf et al., i.e., topologically protected quantum
computation [4, 5, 6]. They utilized a surface code, a kind of topological quantum
code, originally proposed by Kitaev as a toric code on a torus [110] and investigated

© The Author(s) 2015
K. Fujii, Quantum Computation with Topological Codes,
SpringerBriefs in Mathematical Physics, DOI 10.1007/978-981-287-996-7_3
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by Dennis et al. in detail [111]. All the stabilizer generators of the surface code are
spatially local, as will be seen later, and hence syndrome measurements are done
by using nearest-neighbor two-qubit gates. More importantly, Raussendorf et al.
developed a novel way to implement a fault-tolerant logical gate operation by braiding
defects on the surface, which can be done by using only single-qubit measurements
and nearest-neighbor two-qubit gates. Nevertheless, its threshold value is very high
∼1 % [4, 5, 6, 112]. Based on these analyses, physical implementations and quantum
architecture designs have recently been suggested [75, 76, 92, 93, 113, 114, 115,
116, 117], which clarifies the experimental requirements for building a fault-tolerant
quantum computer. On the other side, extensive experimental resources have been
used to achieve these requirements, and very encouraging results have already been
obtained in several experiments in superconducting systems [118, 119, 120, 121].

Another important motivation for studying topological quantum codes are their
connection with topologically ordered systems in condensed matter physics [110].
Topological stabilizer codes, whose stabilizer generators are local and translation
invariant, provide toy models for topologically ordered systems. Using quantum cod-
ing theory with a geometrical constraint such as locality and translation invariance,
we can understand the nature of topologically ordered condensed matter systems.
One of the most important issues in this direction is to answer whether or not ther-
mally stable topological order exists in three or lower dimensions [122, 123].

When we consider the decoding problems of topological quantum codes, we
encounter classical statistical physics [111]. Specifically, the posterior probabilities
for the error correction correspond to partition functions of classical spin glass mod-
els [111], such as the random-bond Ising model. If the corresponding random-bond
Ising model lies inside a ferromagnetic phase, the error correction on a surface code
succeeds, and the logical error probability decreases exponentially.

In this chapter, we introduce a representative example of the topological stabilizer
codes, the surface codes. Before that, we also briefly review the Z2 chain complex,
which is a useful tool to define the surface codes. We also apply it to a classi-
cal repetition code as an exercise. After introducing the surface codes, we explain
how topological error correction is performed. We also mention the relation between
topological error correction and the classical spin glass model. Another example of
topological stabilizer codes, the topological color codes, is also presented. Finally,
we explain the connection between topological stabilizer codes and topologically
ordered systems studied in condensed matter physics.

3.1 Z2 Chain Complex

Before defining the surface codes, we introduce a mathematical tool, the Z2 chain
complex, which is useful for describing the surface codes.

Consider a surface G = (V, E, F) that consists of the vertices V = {vk}, edges
E = {el}, and faces F = { fm}. (Here we consider a graph G = (V, E) embedded on
a 2D manifold, the surface, on which the faces F are defined.) We define a vector
space C0 over Z2, using each vertex vk ∈ V as a basis B(C0) = {vk}. A vector in C0
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c0 =
∑

k

zkvk, (3.1)

where zk = {0, 1}, is referred to as a 0-chain. The vector space C0 is an Abelian group
under component-wise addition modulo 2. Similarly, we can define the Abelian
groups C1 and C2 using the edges E = {el} and faces F = { fm} as base vectors
B(C1) = {el} and B(C2) = { fm}, respectively. The elements

c1 =
∑

l

zlel, (3.2)

c2 =
∑

m

zm fm, (3.3)

where zl, zm = {0, 1}, are called the 1-chain and 2-chain, respectively. With a mild
abuse of the notation, a set of i-dimensional elements (i.e., vertices, edges, and faces)
is also specified by a i-chain ci ∈ Ci as a set of elements having zj = 1.

We can define a homomorphism ∂i : Ci → Ci−1 such that

∂i ◦ ∂i−1 = 0. (3.4)

Specifically, ∂ici is defined as an (i−1)-chain that is the boundary of ci. For example,
∂el is a 1-chain for which zk = 1 if and only if (iff) vk is an endpoint of el. Thus, the
homomorphism ∂i is called a boundary operator. When there is no risk for confusion,
we will denote ∂i simply by ∂ . A chain ci is called a cycle, if it is in a kernel of the
boundary operator ∂i, i.e., ∂ci = 0. For example, the boundary ∂2 fm of a face fm

is a cycle, because ∂2 ◦ ∂1 = 0. Such a sequence of Abelian groups Ci, connected
by the boundary operators ∂i with ∂i ◦ ∂i−1 = 0, is called a Z2 chain complex.
We define a trivial i-cycle ci if there exists an (i + 1)-chain such that ci = ∂ci+1,
i.e., ci ∈ Img(∂i+1). By regarding the trivial cycles as generators of the continuous
deformation, we may define an equivalent class having the same topology. More
precisely, a homology group Hi is defined as a quotient group formed by the cycles
and the trivial cycles:

Hi = ker(∂i)/Img(∂i+1). (3.5)

An element of the quotient group, h ∈ Hi, is called a homology class. If two
i-chains ci and c′

i belong to the same homology class, there exists an (i+1)-chain ci+1

such that ci = c′
i + ∂ci+1. Two such i-chains ci and c′

i are said to be homologically
equivalent.

We also define the dual surface Ḡ = (V̄ , Ē, F̄), where we identify the elements
of the dual and original (primal) lattices such that V̄ = F, Ē = E and F̄ = V .
Specifically, the dual lattice is constructed such that the two vertices v̄, v̄′ ∈ V̄ are
connected by an edge ē, if the corresponding two faces f and f ′ share the same
edge e. We can also define a Z2 chain complex on Ḡ using the dual bases B̄(Ci), a
dual i-chain c̄i ∈ C̄i and a boundary operator ∂̄i : C̄i → C̄i−1. When there is no risk
of confusion, ∂̄i will be denoted by ∂ .
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In the construction of the surface codes, a qubit is defined on each edge el ∈ E
of the surface G (or equivalently each dual edge ēl of the dual surface Ḡ). The Pauli
product is defined using a 1-chain c1 = ∑

l zlel (or dual 1-chain c̄1) such that

W (c1) =
∏

l

W zl
l , (3.6)

where Wl ∈ {Xl, Yl, Zl} is a Pauli operator acting on the qubit on edge el. Specifically,
we have

W (c1)W (c′
1) = W (c1 + c′

1). (3.7)

Consider the two operators X(c1) and Z(c′
1), defined by the two 1-chains c1 and c′

1,
respectively. The commutability of these two operators is determined by the inner
product of the two chains (vectors) c1 · c′

1 ≡ ∑
l zlz′

l, where the addition is taken
modulo 2:

c1 · c′
1 = 0, iff X(c1)Z(c′

1) = Z(c′
1)X(c1) (commute), (3.8)

c1 · c′
1 = 1, iff X(c1)Z(c′

1) = −Z(c′
1)X(c1) (anticommute). (3.9)

Let M(∂i) be a matrix representation of ∂i with respect to the basis vectors B(Ci)

and B(Ci−1). We have

(
M(∂i)ci

) · ci−1 = ci · (
M(∂i)

T ci−1
)
. (3.10)

By identifying the primal and dual bases B(C0) = B̄(C2), B(C1) = B̄(C1), and
B(C2) = B̄(C0), the duality relation between primal and dual lattices can be expressed
by

M(∂1) = M(∂̄2)
T , M(∂2) = M(∂̄1)

T , (3.11)

where [·]T indicates the matrix transpose.
Using Eq. (3.4) ∂1 ◦ ∂2 = 0, we obtain M(∂̄2)

T M(∂2) = 0. Thus, for any primal
and dual 2-chains, c2 and c̄2, we have

∂̄ c̄2 · ∂c2 = 0, (3.12)

i.e., X(∂c2) and Z(∂̄ c̄2) always commute. This property is useful to construct a
stabilizer group, because stabilizer generators have to commute with each other.
Using Eqs. (3.10) and (3.11), we also have

c1 · ∂̄2c̄2 = ∂c1 · c̄2. (3.13)
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(a) (b)

Fig. 3.1 a A regular polygon embedded on a sphere. b A stabilizer operator defined as Ak =
Z(∂ f̄k) = ∏

δvk
Zk . The logical X operator is given by LX = X(∂ f1). Because primal and dual

1-chains share an even number of qubits, LX and Ak commute with each other

3.2 A Bit-Flip Code: Exercise

As an exercise, we define a bit-flip code (classical repetition code) using the Z2 chain
complex. (Readers who are familiar with this topic may skip this section.) Consider
a regular polygon G(V, E, F) on a sphere consisting of n = |E| edges and two faces
F = { f1, f2} (corresponding to the top and bottom hemispheres) as shown in Fig. 3.1.
The number of qubits is n.

We define a stabilizer generator for each dual face f̄k = vk as follows:

Ak = Z(∂ f̄k) =
∏

el∈δvk

Zl, (3.14)

where, for convenience, δvk ≡ ∂ f̄ is defined as a set of edges that are incident to the
vertex vk . (Note that both the dual and primal objects are identified.)

Because
∏

vk∈V Ak = I , there are n − 1 independent stabilizer generators. The
dimension of the stabilizer subspace is two. The code subspace is described by a
one-cycle c1 = ∂ f1 = ∂ f2 surrounding the sphere. We define the logical X operator

LX = X(∂ f1) = X(c1). (3.15)

Note that LX = X(∂ f1) and Ak = Z(∂ f̄k) commute, due to Eq. (3.12). The logical
Pauli Z operator, which commutes with {Ak} and anticommutes with LX , is defined as
LZ = Zl. (We may choose any of the Zls on the edge el, because they act equivalently
on the code space.) The code is a bit-flip code, which protects quantum information
against bit flip errors.

A string of bit errors X(c1) is defined using a 1-chain c1, which we call an error
chain (see Fig. 3.2). The error is detected by measuring the eigenvalues of the stabi-
lizer generators Ak = Z(δvk), i.e., through syndrome measurements. From Eq. (3.13),
we have c1 · δvk = ∂c1 · vk . Thus, X(c1) anticommutes with the stabilizer generator
Ak if ∂c1 · vk = 1. Hence, X(c1) anticommutes with Ak on the vertex vk that is a
boundary vk ∈ ∂c1 of the error chain c1. The eigenvalue of the stabilizer generator
becomes −1. Error correction is the task of finding a recovery chain c′

1 such that
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Fig. 3.2 An X error chain
X(c1) and the corresponding
error syndrome ∂c1. The
eigenvalue of the stabilizer
generator becomes −1 on
vertices in ∂c1

∂(c1 + c′
1) = 0. In the case of the bit-flip code, there are only two possibilities

c1 + c′
1 = 0 or c1 + c′

1 = ∂ f1. In the former case, error correction succeeds, while
the latter case results in a logical error LX .

The bit-flip code cannot protect quantum information against phase errors. A
natural extension of the classical repetition code to handle both bit and phase errors
is the surface codes introduced in the next section.

3.3 Definition of Surface Codes

3.3.1 Surface Code on a Torus: Toric Code

Now we are ready to define the surface code. Let us consider a square lattice G =
(V, E, F) on a torus with a periodic boundary condition as shown in Fig. 3.3. A
dual square lattice Ḡ = (V̄ , Ē, F̄) is also defined on the torus. We define stabilizer
generators of the Z- and X-types for each face fm and vertex vk as follows:

Am = Z(∂ fm), Bk = X(δvk) = X(∂ f̄k). (3.16)

Because ∂ fm ·∂ f̄k = 0 from Eq. (3.12), Am and Bk commute. The stabilizer generators
Am and Bk are called plaquette and star operators, respectively. By the definition of
the stabilizer code, the code state |Ψ 〉 satisfies

Fig. 3.3 A square lattice on
a torus with a periodic
boundary condition. The Z
and X stabilizer generators
are defined by being
associated with each face
and vertex (dual face). The
logical Z and X operators are
defined by non-trivial cycles
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Am|Ψ 〉 = |Ψ 〉, Bk|Ψ 〉 = |Ψ 〉, (3.17)

for all fm ∈ F and vk ∈ V .
If two 1-chains, c1 and c′

1, are homologically equivalent, the actions of Z(c1) and
Z(c′

1) on the code state are the same, because there exists a 2-chain c2 such that

Z(c′
1) = Z(c1)Z(∂c2) = Z(c1)

⎛
⎝ ∏

fm∈c2

Am

⎞
⎠ . (3.18)

We will denote this simply by Z(c′
1) ∼ Z(c1). This is also the case for homologically

equivalent dual 1-chains, c̄1 and c̄′
1, and the actions of X(c̄1) and X(c̄′

1) on the code
state. Hence, the homology classes, which are equivalent classes over trivial cycles,
of the primal and dual 1-chains correspond to the actions of Z- and X-type operators
on the code state, because their actions are equal up to stabilizer operators.

Let us define the logical operators Z(c1) and X(c̄1). The logical operators have to
commute with all stabilizer generators and also be independent of them. The former
condition implies that ∂c1 = 0 and ∂ c̄1 = 0 from Eq. (3.13). This is because the
commutability imposes that c1 · δvk = ∂c1 · vk = 0 for all vertices k and c̄1 · ∂ fm =
∂ c̄1 · v̄m = 0 for all faces (dual vertices) m. The latter condition implies that c1 and
c̄1 are nontrivial cycles, because for two homologically equivalent cycles c1 and c′

1,
the actions of Z(c1) and Z(c′

1) on the code state are the same as seen in Eq. (3.18).
We can find two non-trivial cycles, which belong to different homology classes, for
each primal and dual 1-chain, as shown in Fig. 3.3. (This is a natural consequence,
because the homology group h1 on the torus is Z2 × Z2.) Then, we define two pairs
of logical Pauli operators

{
L(1)

Z = Z
(

c(1)
1

)
, L(1)

X = X
(

c̄(1)
1

)}
and

{
L(2)

Z = Z
(

c(2)
1

)
, L(2)

X = X
(

c̄(2)
1

)}
.

(3.19)

Note that L(i)
Z and L(j)

X anticommute with each other if i = j. Otherwise, they
commute:

L(i)
Z L(j)

X = (−1)δij L(j)
X L(i)

Z . (3.20)

That is, they satisfy a commutation relation equivalent to that of the Pauli operators
for two qubits. The logical Pauli basis states are defined as follows:

L(i)
Z |ΨZ(s1, s2)〉 = (−1)si |ΨZ(s1, s2)〉, (3.21)

L(i)
X |ΨX(s1, s2)〉 = (−1)si |ΨX(s1, s2)〉. (3.22)

The number of stabilizer generators of the n×n square lattice on the torus is given by

|F| + |F̄| − 2 = |F| + |V | − 2 = 2n2 − 2, (3.23)
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Table 3.1 The correspondence between Z2 chain complex and stabilizer codes

Stabilizer code Chain complex

Z-type stabilizer generator Face fm

X-type stabilizer generator Vertex vk (dual face f̄k)

Z- and X-type stabilizer operators Boundaries of 2-chains, Img(∂2) and Img(∂̄2)

Commutability Cycle conditions: ∂c1 = 0 and ∂ c̄1 = 0

The operators commuting with stabilizer
generators

ker(∂1) and ker(∂̄1)

The logical Z and X operators Nontrivial cycles c1 and c̄1 (homology classes
[c1] ∈ ker(∂1)/Img(∂2) and
[c̄1] ∈ ker(∂̄1)/Img(∂̄2))

Z and X errors 1-chains c1 and c̄1

Z and X error syndromes ∂c1 and ∂ c̄1

where −2 comes from the fact that
∏

fm∈F Am = I and
∏

vk∈V Bk = I , and hence
there are two non-independent operators. On the other hand, the number of qubits is
given by

|E| = 2n2. (3.24)

Thus, we have a 2|E|−(|F|+|V |−2) = 22-dimensional stabilizer subspace. The above two
pairs of logical operators appropriately describe the degrees of freedom in the code
space. The code distance, the minimum weight of the logical operators, is determined
by the linear length of the square lattice. Thus, the surface code on the torus is an
[[n2, 2, n]] stabilizer code.

In short, an operator that commutes with the stabilizer generators corresponds to
a cycle, i.e., ker(∂1). The stabilizer operators correspond to the boundaries of the
2-chains c2 ∈ C2. A logical operator, which commutes with and is independent of
the stabilizer generators, correspond to a homology class hi ∈ ker(∂1)/Img(∂2). We
summarize the correspondence between the surface code and the Z2 chain complex
in Table 3.1.

All properties so far hold for a general tilling G = (V, E, F), and hence we can
define a surface code on general, e.g., triangular and hexagonal, lattices [124]. More-
over, the numbers of edges, faces, and vertices are subject to the Euler characteristic
formula

|F| + |V | − |E| = 2 − 2g, (3.25)

where g is the genus, the number of “handles” of the surface. Thus, the dimension
of the stabilizer subspace is calculated to be 2|E|−(|F|+|V |−2) = 22g. These are the
degrees of freedom equivalent to 2g qubits in the stabilizer subspace.

Because almost all arguments are made from the operator viewpoint (Heisenberg
picture), there is no need to write down |ΨA(s1, s2)〉 explicitly. However, for the
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readers who worry about such things, we will give an explicit description from the
state viewpoint:

|ΨZ(s1, s2)〉 = N Z
(

c(1)
1

)s1

Z
(

c(2)
1

)s2

⎛
⎝∏

vk∈V

I + Bk

2

⎞
⎠ |0〉⊗n2

(3.26)

|ΨX(s1, s2)〉 = N X
(

c̄(1)
1

)s1

X
(

c̄(2)
1

)s2

⎛
⎝ ∏

fm∈F

I + Am

2

⎞
⎠ |+〉⊗n2

(3.27)

where N is a normalization factor. The code state can be viewed as an equal weight
superposition of all cycles belonging to the same homology class.

3.3.2 Planar Surface Code

The periodic boundary condition might be hard to implement in experiments. We can
also define a surface code on a planar n × (n − 1) square lattice with an appropriate
boundary condition as shown in Fig. 3.4 [125]. The top and bottom boundaries consist
of three-qubit star operators, which we call smooth boundaries, because they are
complete plaquette operators. On the other hand, the left and right boundaries consist
of three-qubit plaquette operators, which we call rough boundaries. The X operators
on a dual 1-chain can terminate at the smooth boundary, while the Z operators
on a 1-chain can terminate at the rough boundary. Thus, we should use a relative
homology to define logical operators, where two chains ci and c′

i are said to be
(relative) homologically equivalent iff c′

i = ci + ∂ci+1 +γi with γi ∈ Γi ⊂ Ci. In this
case, Γ1 is chosen, specifically, to be the vector space spanned by the set of 1-chains
each of which consists of three edges corresponding to the three-qubit plaquette
operator at the top and bottom smooth boundaries. Similarly, we also define Γ̄1 at
the left and right rough boundaries of the dual lattice. Because Z(γ1) and X(γ̄1) are
both stabilizer operators, if the shapes of two logical operators are homologically
equivalent, their actions on the code state are the same. The number of edges, faces,
and vertices are now |E| = 2n2 − 2n + 1, |V | = n2 − n, and |F| = n2 − n. Thus, the
stabilizer subspace is a 2D subspace. We can define the logical operators LZ = Z(c1)

and LX = X(c̄1) using horizontal and vertical 1-chains c1 and c̄1, as shown in Fig. 3.4.
If one chooses all boundaries smooth, the stabilizer state is uniquely defined, and

hence there is no logical degree of freedom. By punching a hole, we can introduce
a defect on the surface, whereby we can define a nontrivial cycle for a logical Z
operator, as shown in Fig. 3.5. The logical X operator can be chosen as a dual 1-chain
that connects the defect and the smooth boundary, as shown in Fig. 3.5. As mentioned
previously, the properties of the logical operators are the same if the corresponding
1-chains are homologically equivalent.
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Fig. 3.4 A planar surface code. Top and bottom are smooth boundaries consisting of three-qubit
star operators. Left and right are rough boundaries consisting of three-qubit plaquette operators. At
the boundary, we can define sets of 1-chains Γ1 = {γ1} ∈ C1 and Γ̄1 = {γ̄1} ∈ C̄1 for the primal
and dual lattices, respectively, by which the relative homology is defined

Fig. 3.5 A planar surface
code with a defect. The
stabilizer generators are not
defined inside a defect,
which provides a nontrivial
cycle wrapping around it

3.4 Topological Quantum Error Correction

Let us return to the surface code on the torus to explain how errors are corrected.
There are 22n2−2 orthogonal subspaces, the so-called syndrome subspaces, each of
which is an eigenspace of the stabilizer generators and has the same structure as
the code space. These orthogonal subspaces are utilized to identify the location of
errors and to infer a recovery operation. Suppose the X and Z errors X(c̄e

1) and Z(ce
1),

defined by error 1-chains c̄e
1 and ce

1, respectively, occur on the surface code, as shown
in Fig. 3.6. The code state is now mapped into one of the orthogonal subspaces. From
Eq. (3.13), X(c̄e

1) and Z(ce
1) anticommute with Am and Bk on the face fm ∈ ∂ c̄e

1 and
vertex vk ∈ ∂ce

1. Thus, the orthogonal subspace is specified by error syndromes

∂ c̄e
1 ≡ cs

2, ∂ce
1 ≡ cs

0. (3.28)

More precisely, the eigenvalues with respect to the stabilizer generators Am and Bk are
given by (−1)zs

m and (−1)zs
k , where cs

2 = ∑
m zs

m fm and cs
0 = ∑

k zs
kvk (see Fig. 3.6),

respectively. Error correction is the task of finding recovery 1-chains c̄r
1 and cr

1 such
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Fig. 3.6 a A Z error chain
Z(c1) is detected at the
boundary ∂c1. The
eigenvalue of the stabilizer
generator Bk on the face
f̄k ∈ c̄2 = ∂c1 becomes −1.
b An X error chain X(c̄1) is
detected at the boundary ∂ c̄1.
The eigenvalue of the
stabilizer generator Am on
the face fm ∈ c2 = ∂ c̄1
becomes −1

(a)

(b)

that ∂(c̄e
1 + c̄r

1) = 0 and ∂(ce
1 + cr

1) = 0, meaning that the state is returned into
the code space by applying X(c̄r

1) and Z(cr
1), respectively. Below we will, for sim-

plicity, explain only how to correct the Z errors, but the extension to the X errors is
straightforward.

Suppose each Z error occurs with an independent and identical probability p.
Conditioned on the error syndrome cs

0 = ∂ce
1, the posterior probability of an error

Z(c1) occurring with c1 = ∑
l zlel is written as

P(c1|cs
0) = N

∏
l

(
p

1 − p

)zl ∣∣
∂c1=cs

0
(3.29)

whereN is a normalization factor. One way to find a recovery chain is by maximizing
the posterior probability

cr
1 ≡ arg max

c1

P(c1|cs
0) = arg min

c1

(∑
l

zl

)
|∂c1=cs

0
, (3.30)

where c1 = ∑
l zlel. As seen in the l.h.s., this corresponds to minimizing the number

of errors
∑

l zr
l such that ∂cr

1 = cs
0. Hence, this is called minimum distance decoding.

If cr
1 + ce

1 is a trivial cycle, the error correction succeeds, because the net action
Z(cr

1 + ce
1) after the recovery operation is identity on the code state as shown in

Fig. 3.7. If cr
1 + ce

1 is a nontrivial cycle, the recovery operation results in the logical
operation Z(cr

1 + ce
1) ∼ LZ , i.e., a logical error.

Minimum distance decoding is hard in general, because it can be mapped into
an integer programing problem, which is NP-hard [126, 127, 128]. However, in the
present case, there is a nice geometrical property that makes the decoding problem
feasible. The condition ∂c1 = cs

0 and minc1 read that it is sufficient to find a 1-chain
that connects pairs of two vertices in cs

0 with a minimum Manhattan length. There is a
classical polynomial time algorithm to do such a task, the so-called minimum-weight
perfect matching (MWPM) algorithm of Edmonds [129, 130, 131]. The algorithm
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Fig. 3.7 From left to right, error chain Z(ce
1), recovery chain Z(cr

1) with cr
1 = cs

0, and net actions
Z(cr

1 + ce
1). If cr

1 + ce
1 is a trivial cycle (top), error correction succeeds. If cr

1 + ce
1 is a non-trivial

cycle (bottom), the error correction results in a logical error

scales like O(n6), with n being the linear length of the lattice and with the fixed error
probability p. Typical examples of the error chain ce

1 and the error plus recovery chain
ce

1 + er
1 are shown in Fig. 3.8 for each p = 0.05 (b), p = 0.10 (c), and p = 0.15 (d).

Here, we employ an implementation of MWPM, blossom V [132]. The higher the
physical error probability is, the longer the error plus recovery chain becomes. For
a high physical error probability p = 0.15, the error plus recovery chain becomes a
large cycle, and unfortunately results in a logical error. Such a logical error probability
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Fig. 3.8 a The logical error probability is plotted as a function of the physical error probability
p. Error chains ce

1 and error plus recovery chains ce
1 + cr

1 for p = 0.05 (b), p = 0.10 (c), and
p = 0.15 (d)
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Fig. 3.9 Suppose the top and bottom boundaries are connected by a periodic boundary condition.
The minimum-weight error is shown in the left panel. The error shown in the right panel is not
minimum-weight but has a fourfold degeneracy. The recovery chain should be chosen by comparing
the total error probabilities p3 and 4 × p4

is plotted as a function of the physical error probability p in Fig. 3.8a for each n = 10
(solid line), n = 20 (dashed line), and n = 30 (dotted line). If the error probability is
sufficiently smaller than a threshold value, the logical error probability decreases for
increasing n. The threshold value for decoding by the MWPM algorithm has been
estimated to be 10.3 % (MWPM) [111, 133].

The minimum distance decoding with MWPM is not optimal for our purpose, i.e.,
making the logical error probability as small as possible. An error correction with
another recovery chain cr′

1 , for which ce
1 + cr′

1 belongs to the same homology class as
ce

1 + cr
1, provides exactly the same result. We may use such a recovery chain cr′

1 to
correct the error. Thus, we should maximize, not each posterior probability p(cr

1|cs
0),

but a summation of it over the same homology class. This problem originated from
the degeneracy of the surface code, where each syndrome is assigned not uniquely,
but for many error instances. A prototypical example of an error syndrome, for which
we should consider not only the weight of errors, but also combinatorics (an entropic
effect) of the error configurations, is shown in Fig. 3.9.

Denoting the homology class by hi, the posterior probability for a homology class
hi is given by

pi =
∑

cr′
1 |cr

1+cr′
1 ∈hi

P
(

cr′
1 |cs

0

)
, (3.31)

where cr
1 is a recovery chain satisfying ∂cr

1 = cs
0 and chosen arbitrarily as a reference

frame, and the summation is taken over all 1-chains cr′
1 such that cr

1 + cr′
1 belongs to

the homology class hi.
The posterior probability may be rephrased by using the stabilizer language as

follows (see also Appendix B). Let G and L be the stabilizer and logical operator
groups, respectively. For a given error syndrome cs

0, we define the recovery operator
Z(cr

1) a priori, such that the erroneous state is returned into the code space. We can
decompose an arbitrary error operator Z(ce

1), providing the syndrome cs
0, into

Z(ce
1) = Z

(
cr

1

)
GLi, (3.32)
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where G ∈ G and Li ∈ L are a stabilizer and logical operator, respectively. The
posterior probability of the logical operator Li is calculated by summing over all
stabilizer operators G ∈ G

pi = P(Li|cs
0) = 1

N

∑
G∈G

P
[
Z

(
cr

1

)
GLi

]
. (3.33)

We choose the most likely homology class hi or, equivalently, the most likely logical
operator Li that maximizes the probability pi = P(Li):

Lī ≡ arg max
Li

P
(
Li|cs

0

)
. (3.34)

The error correction is completed by applying LīZ(cr
1), and the logical error proba-

bility is given by 1 − pī.
In the next section, we relate the posterior probability summed over the same

homology class to a partition function of the random-bond Ising model. The partition
function of the Ising model on a planar graph with general coupling strengths (without
magnetic fields) can be calculated in polynomial time using the Kasteleyn-Barahona
algorithm with the Pfaffian method [130, 134, 135]. Thus, the optimal decoding is
also implemented by a polynomial time classical processing, though it takes more
overhead than MWPM. The threshold value for optimal decoding is also discussed
in the next section.

Efficient decoding has been one of the most important issues for the realization of
fault-tolerant quantum computing, because the coherence time of quantum informa-
tion would be very short; a fast classical processing is essential. Fowler et al. proposed
an efficient decoding method based on MWPM [136]. Because a long error chain
is exponentially suppressed, we can assign weights between each pairs of vertices
having −1 eigenvalues according to their Manhattan length. This allows us to reduce
the number of edges from O(n4) to O(n2). Moreover, the exponential suppression of
longer error chains allows us to search the pairs within a local small region; match-
ing a long-distance pair is exponentially rare. Because the matching process employs
almost exclusively local information, this algorithm can be parallelized to an O(1)
average time per round.

Another decoding method is using a renormalization technique [137, 138]. As
explained in Appendix B, we can efficiently execute an optimal decoding on a con-
catenated quantum code by using a brief-propagation on a tree factor graph [139].
Although the surface code itself does not have such a hierarchal structure, a renor-
malization technique is employed to introduce a hierarchal structure on the surface
code [137, 138].

Using 12 qubits as a unit cell, we define a couple of level-1 logical qubits, as
shown in Fig. 3.10a, which include 2 pairs of logical operators L (1), 6 stabilizer
generators G (1). We define 6 pure error operators Ḡ (1) each of which anticommutes
with a stabilizer generator as shown in Fig. 3.10a (middle). Moreover, we define 4
pairs of anticommuting operators as shown in Fig. 3.10a (bottom), which we call
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(a)

logical operators

stabilizer operators and pure errors

edge operators

(b)

(c)

(c)

Fig. 3.10 a A unit cell of the level-1 logical qubit. Two pairs of logical Pauli operators (top). The
6 stabilizer operators and the pure error operators, each of which anticommutes with an stabilizer
operator (middle). The 4 pairs of edge operators. These 12 pairs of mutually anti-commuting oper-
ators generate the Pauli group of the 12 qubits. b Using the level-1 logical operators, the level-2
stabilizer generators are defined. c Using 12 level-1 logical qubits, a unit cell of the level-2 logical
qubit is defined

edge operators E (1), to generate the Pauli group of the 12 qubits. Any Pauli operator
A on the unit cell can be decomposed in terms of these operator,

A = L(1)G(1)Ḡ(1)E(1), (3.35)

where B(1) ∈ B(1) for B = L, G, Ḡ, E. The pure error operator Ḡ(1) is chosen
uniquely according to the error syndrome S(1) to return the state into the code space.
(If a stabilizer generator G1 has an eigenvalue −1, then we employ Ḡ1, which anti-
commutes with G1.) From the error distribution P(A), the posterior probability of
the level-1 logical operator is calculated by taking a marginal over G (1) and E (1),

P(L(1)|S(1)) =
∑

G(1)∈G (1),E(1)∈E (1)

P(A = L(1)G(1)Ḡ(1)E(1)|S(1)), (3.36)

which are utilized to model the error distribution at the level 2.
Similarly, a level-k unit cell is defined by using 8 level-(k − 1) unit cells and the

12 pairs of the level-(k − 1) logical operators on them. Similarly to the level-1 case,
we define the level-k logical, stabilizer, pure error, edge operators. At the highest
level k = l, we obtain the logical operators of the surface code. For example, the
level-2 stabilizer generators are shown in Fig. 3.10b. A unit cell of the level-2 logical
qubit is shown in Fig. 3.10c.

The posterior probability of the level-k logical operator P(L(k)|S(k)) is calculated
using the posterior probabilities at the level (k − 1) by assuming that they are inde-
pendent for each level-(k − 1) unit cell. Under this assumption, we can calculate the
posterior probability P(L(l)|S(l)) conditioned on all error syndrome S(l) by using the
belief propagation [137, 138, 139] (see Appendix B for decoding the concatenated
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codes by using the belief propagation). Then the maximization procedure over all
logical operators provide us a most likely logical operator,

L∗ = arg max
L(l)

P(L(l)|S(l)). (3.37)

The level-(k − 1) unit cells share physical qubits with each other, and hence the
conditional logical error probability is not independent for level-(k − 1) unit cells.
If we employ a message passing in order to reweigh the level-(k − 1) logical error
probability as the error model for the level-k unit cell, we can further improve the
approximation of P(L(l)|S(l)). If the decoding process is done in parallel, the belief
propagation takes O(log2(n)) time, similar to the case of the concatenated code as
explained in Appendix B. Because the posterior probability is approximated, the
decoding based on the renormalization is not optimal, but results in a reasonable
threshold value, ∼9 % for the independent X and Z error and ∼15.2 % for the depo-
larizing error (against 10.3 and 15.5 % obtained by MWPM, respectively) [137,
138]. The renormalization decoder can also be applied for an arbitrary topological
code [140].

3.5 Error Correction and Spin Glass Model

The behavior of the logical error probability in Fig. 3.8 suggests the existence of a
critical phenomenon behind the error correction problem. Indeed, there is a beautiful
correspondence between quantum error correction on the surface code and a spin
glass model, the so-called random-bond Ising model (RBIM) [111]. More precisely,
the posterior probability Eq. (3.31) of the logical operator is mapped into a partition
function of the RBIM as seen below.

To solve the condition ∂c1 = cs
0 in Eq. (3.29), we rewrite the recovery chain as

c1 = crk
1 + ct

1, where ct
1 ∈ Img(∂2) is a trivial cycle. crk

1 is further decomposed
into crk

1 = ce
1 + c(k)

1 , where ce
1 determines the actual location of errors, and c(k)

1 is a
(nontrivial) cycle belonging to the homology class hk . Note that this decomposition
corresponds to Eq. (3.32). The posterior probability is rewritten as

P
(
c1|cs

0

) = N
∏

l

(
p

1 − p

)zt
l⊕z

rk
l ∣∣∣

ct
1∈Img(∂2)

, (3.38)

where cα
1 = zα

l el, with zα
l ∈ {0, 1}. In order to take the condition ct

1 ∈ Img(∂2)

automatically, we introduce a gauge valuable zg
m ∈ {0, 1} on each dual vertex v̄m and

a dual 0-chain c̄g
0 = ∑

m zg
mv̄m. Any trivial cycle ct

1 is replaced by the gauge valuables
using the following relation

zt
l =

⊕
v̄m∈∂ ēl

zg
m. (3.39)
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For example, if we choose c̄g
0 = v̄m, we obtain ct

1 = ∂ fm. (This corresponds to
a multiplication of the face stabilizer generator defined on the face fm.) There
is a one-to-one correspondence between a trivial cycle and a gauge dual 0-chain.
Using cg

0 we can formally solve the condition ct
1 ∈ Img(∂2) in Eq. (3.29),

P
(
c1|cs

0

) = N
∏

l

(
p

1 − p

)z
rk
l

⊕
v̄m∈∂ ēl

zg
m

. (3.40)

The binary valuables zi ∈ {0, 1} are transformed into spin variables σi ∈ {+1,−1}
by σi = (−1)zi . Moreover, we define a coupling constant e−J = √

p/(1 − p). Then
Eq. (3.40) is rewritten as

P
(
c1|cs

0

) = N ′eJ
∑

l σ
rk
l σ

g
m(l)σ

g
m′(l) , (3.41)

where N ′ is a normalization factor and m(l) and m′(l) are end points of the edge el.
By changing the notation l → ij and m(l), m′(l) → i, j, the posterior probability is
reformulated as a Boltzmann factor of the ±J RBIM:

P(c1|cs
0) = N ′e

∑
ij J(k)

ij σ
g
i σ

g
j , (3.42)

where J(k)
ij = Jσ

rk
ij . On the edges where the errors are located, anti-ferromagnetic

interactions are assigned. The posterior probability of the logical operator Eq. (3.31)
is calculated by taking summation over all gauge spin configurations (this corre-
sponds to the summation over all stabilizer operators in Eq. (3.31)):

pk =
∑

cr′
1 |crk

1 +cr′
1 ∈hk

P
(

cr′
1 |cs

0

)
(3.43)

=
∑

ct
1|ct

1∈Img(∂2)

P
(
crk

1 + ct
1|cs

0

)
(3.44)

=
∑
{σ g

i }
N ′e

∑
ij J(k)

ij σ
g
i σ

g
j . (3.45)

= N ′Z
({

J(k)
ij

})
, (3.46)

where Z ({J(k)
ij }) is the partition function of the ±J RBIM.

Let us consider the performance under this decoding by taking an average of the
logarithm of pk over the error distribution, which corresponds to a sample average
with respect to quenched randomness:

p̄ln
k ≡ [ln(pk)] =

∑
ce

1

P(ce
1)pk (3.47)
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Table 3.2 The correspondence among random-bond Ising model, Z2 chain complex and stabilizer
codes

RBIM Stabilizer code Chain complex

Dual lattice Z error correction Primal lattice

Primal lattice X error correction Dual lattice

Ising interactions Qubits Edge el

Gauge spin Z-type stabilizer generators Face fm

Gauge spin X-type stabilizer generators Vertex vk (dual face f̄k)

Domain wall Logical X and Z operators Nontrivial cycles c1 and c̄1

Anti-ferromagnetic
interactions

X and Z errors 1-chains c1 and c̄1

Frustration X and Z error syndromes ∂c1 and ∂ c̄1

=
∑
{Jij}

P({Je
ij}) lnZ ({J(k)

ij }) + lnN ′ (3.48)

≡ −Fk + lnN ′, (3.49)

where [·] indicates the sample average and p̄ln
k is the sample average of the logarithm

of the logical error probability pk . The quenched randomness is determined by the
error distribution

P(Je
ij) = (1 − p′)δ(Je

ij − J) + p′δ(Je
ij + J), (3.50)

where e−J = √
p/(1 − p). Note that p is a parameter in the posterior probability

and could be different from the actual error probability p′. Of course, an optimal
decoding, in the sense of Bayesian inference, is achieved by maximizing the posterior
probability with a true error probability p = p′. F0 = −[lnZ ({J(0)

ij })] is the free-

energy of the RBIM, while Fk = −[lnZ ({J(k)
ij })] (k = 1, 2, 3) is the free-energy

with respect to the interactions {J(k)
ij }, where a domain wall of anti-ferromagnetic

interactions corresponding to a cycle c(k)
1 of a homology class hk is inserted.

From Eqs. (3.46) and (3.49), the relation between quantum error correction and a
spin glass model becomes apparent; the posterior probability of the logical operator
is proportional to the partition function of RBIM, whose Hamiltonian is given by
H = −∑

ij J(k)
ij σ

g
i σ

g
j . The location of the Z errors, represented by J(k)

ij = −J ,
corresponds to the anti-ferromagnetic interaction due to disorder as shown in Fig. 3.11
(see also Table 3.2). The error syndrome cs

0 = ∂ce
1 corresponds to the distribution

of frustrations of the Ising interactions and also the end points (Ising vortex) of the
excited domain walls. The probability of the homology class is expressed by the
domain-wall free energy: (Fig. 3.12)

− (p̄ln
k − p̄ln

0 ) = Fk − F0. (3.51)

If the physical error probability p is smaller than the threshold value, −p̄ln
k

(k = 1, 2, 3) diverges in the large n limit. On the other hand, if p is higher than the
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spin

Z error = antiferromagnetic interaction

syndrome = frustration
(Ising vortex)

F

F

F

AF

gauge transformation 
= application of stabilizer generator

Fig. 3.11 A gauge spin σ
g
f located at the face-center of a plaquette. The distribution of anti-

ferromagnetic interactions corresponds to the error chain ce
1. The error syndrome cs

0 = ∂ce
1 cor-

responds to the distribution of frustrations. The ground state configuration is determined by a
domain-wall consisting of excited domain-wall and anti-ferromagnetic bonds, both of which have
frustrations at their end points

AF

AF
AF

ex
ex

ex AF

AF
AF

ex
ex

AF = excited domain wall

F0 F1<

Fig. 3.12 Examples of ground states in a ferromagnetic phase are shown for {J(k)
ij } with k = 0, 1. In

the ferromagnetic case, the insertion of the anti-ferromagnetic bonds results in an excited domain-
wall and hence increases the free energy (ground state energy at zero temperature)

threshold value, −p̄ln
k (k = 0, 1, 2, 3) converges to 2 ln 2 meaning the stored informa-

tion becomes completely destroyed. This non-analytical behavior also appeared in
the r.h.s. of Eq. (3.49), i.e., the free-energy of RBIM. Indeed, the difference between
the free energies 	 = Fk − F0 is an order parameter, the so-called domain-wall
free energy [141], for a ferromagnetic ordered phase. The phase diagram of RBIM
with respect to J = (1/2) ln[p/(1 − p)]) and p′ is shown in Fig. 3.13. As mentioned
before, optimal decoding is achieved with p = p′, i.e., e−J = √

p′/(1 − p′), which
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Fig. 3.13 A phase diagram
of RBIM with respect to the
coupling strength
J = (1/2) ln[p/(1 − p)] and
the probability of
anti-ferromagnetic
interaction p′. The
probability p in j
corresponds to the parameter
in the posterior probability.
When p = p′, called the
Nishimori line, an optimal
decoding is achieved

p
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is called the Nishimori line [142]. The critical point on the Nishimori line, which is
called a multi-critical point, has been numerically calculated to be 10.94 ± 0.02 %
by Honecker et al. and Merz et al. [143, 144, 145]. The optimal threshold value of
the surface code is good in the following sense: The existence of CSS codes with
asymptotic rate R ≡ k/n is guaranteed if

R = 1 − 2H2(p), (3.52)

by the quantum Gilbert-Varshamov bound under independent X and Z errors with
probability p [146]. The rate becomes zero with p = 11.00 %. The optimal threshold
of the surface code, which consists only of local stabilizer generators, achieves a
value very close to this. Indeed, Nishimori conjectured that the multi-critical point
of the RBIM is determined by

H2(p) = 1/2, (3.53)

arguing from the self-duality in RBIM with a replica method [147, 148, 149] (if
the reader is interested this derivation, please see a review in Ref. [150]). Ohzeki
has evaluated the multi-critical point precisely to be p = 0.109187 % by using a
real-space renormalization [151], which is in a good agreement with the numerical
result p = 0.10917(3) [152, 153].

The minimum distance decoding with MWPM is achieved in the limit p → 0,
which is the low temperature limit J → ∞ where the entropic effect is sup-
pressed. The threshold of MWPM corresponds to the critical point at zero tempera-
ture [130], which has been investigated numerically and determined to be 10.4 ± 0.1
by Kawashima et al. [111, 133, 154].
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3.6 Other Topological Codes

The surface codes have been also studied on general lattice tillings, such as, triangle,
hexagonal, and random lattices [124, 151, 155, 156, 157, 158]. Suppose a surface
code is defined on a lattice G = (V, E, F). As seen in the previous section, the X error
correction is mapped into a RBIM on a lattice G = (V, E). On the other hand, the Z
error correction is mapped into a RBIM on its dual lattice Ḡ = (V̄ , Ē). The mutual
duality relation [147] between G and Ḡ allows us to predict the relation between the
optimal threshold values for X and Z errors:

H(px) + H(pz) = 1, (3.54)

where px and pz are the X and Z error probabilities, respectively. This equality is
the same as the quantum Gilbert-Varshamov bound evaluated for the independent X
and Z errors with probabilities px and pz, respectively. The precise locations of the
optimal thresholds for regular lattices have been investigated by Ohzeki using a real-
space renormalization technique [151]. The thresholds have been investigated using
the MWPM algorithm by Fujii et al. [124]. The thresholds with MWPM (i.e., the
critical points of RBIMs at zero temperature) even approaches Eq. (3.54), as shown
in Fig. 3.14. These codes with an asymmetry between the X and Z error tolerances
would be useful to correct a biased error [159]. In Refs [155, 156], the asymmetry
is continuously controlled by changing a lattice parameter.

A leakage process or qubit loss is an important source of noise. Unlike the X
and Z errors discussed so far, the qubit loss is detectable (heralded), and hence we
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Fig. 3.14 a The thresholds (px, pz)of the surface codes on square, Kagome, hexagonal, and triangle-
hexagonal lattices, as well as their duals. The curve is the quantum Gilbert-Varshamov bound hitting
zero asymptotic rate under a bit and phase flip channel with probabilities px and pz , respectively. b
The trade-off curves between qubit loss rate ploss and unheralded error rates px and pz are shown for
square, Kagome, hexagonal, and triangle-hexagonal lattices. If the loss and error rates are below
these curves, the logical information is protected
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(a)

qubit loss

AmAm

super-plaquette
operator

(b)

LZ

Fig. 3.15 a A super-plaquette defined as a product of two plaquette operators. The lost qubit is
not contained in the super-plaquette operator. b The logical operator is chosen appropriately by
avoiding the lost qubits. The lost qubits (bonds) are not percolated, so we can find such a logical
operator

can tolerate much more loss rate than for the (undetectable) error rate. Stace et al.
proposed to cope with the qubit loss on the surface code [160, 161]. Suppose a qubit is
lost on the surface as shown in Fig. 3.15a. The plaquette operators containing the lost
qubit are undetermined. However, we can construct a super-plaquette multiplying
two neighboring plaquette so that the super-plaquette does not have the lost qubit.
By using the super-plaquette as a stabilizer generator, we can perform MWPM. If
two super-plaquettes are neighbors, the weight between these super-plaquettes has
to be modified appropriately in MWPM, because the plaquettes share two physical
qubits and the error probability is effectively doubled. The logical operator is defined
by avoiding the lost qubits. Unless the lost qubits, which are located on edges, are
percolated throughout the lattice, we can find such a logical operator. Thus, the
threshold for qubit loss in the large lattice limit without any (undetected) error is
determined by the bond percolation threshold. The trade-off curves between qubit
loss and (unheralded) error rates with MWPM for various lattice tillings are shown
in Fig. 3.14b. The leakage error in a more realistic situaltion has been investigated
and counteracted in the superconducting systems [162, 163].

On the other hand, when the error correction problem is mapped into the RBIM,
the qubit loss corresponds to a bond-dilution. The duality relation in the presence of
the bond-dilution on the square lattice is given by [164]

(1 − q)h(p) + q = 1/2. (3.55)

From the numerical data in Ref. [124], we could expect a more general equality,

(1 − qx)h(px) + (1 − qz)h(pz) + qx + qz = 1, (3.56)
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Fig. 3.16 a, b Trivalent
lattices that can be colored
with three distinct colors. c
Color codes defined on
(4.8.8) lattices with a triangle
open boundary condition.
The logical operators are
shown by solid lines. Any
string at the boundaries can
be employed as a logical
operator

distance 7

distance 3

(a) (b)

(c)

where qx and qz are the probabilities of the heralded X and Z errors, respectively.
With px = pz = 0, this is reduced to qx + qz = 1, which corresponds to Kesten’s
duality relation of the bond percolation thresholds between mutually dual lattices.
With qx = qz = 0, Eq. (3.56) is reduced to Eq. (3.54). With qx = qz = q and
pz = px = p, Eq. (3.56) is reduced to Eq. (3.55).

Another important class of local stabilizer codes is the topological color code
proposed by Bombin and Martin-Delgado [165, 166]. The topological color codes
are defined on trivalent graphs with faces that can be colored with three colors, such
as hexagonal (6.6.6) and (4.8.8) lattices, as shown in Fig. 3.17a and b, respectively. A
qubit is defined on each vertex v and stabilizer generators are defined on each face f :

Bx =
∏
v∈ f

Xv, Bz =
∏
v∈ f

Zv. (3.57)

Specifically, the color code on a (4.8.8) lattice, shown in Fig. 3.16c, allows all single-
qubit Clifford gates transversally. The distance-3 topological color code on the (4.8.8)
lattice is equivalent to Steane’s 7-qubit code [85]. The extension to a 3D lattice also
enables a transversal non-Clifford gate on the code space [166], whose distance-3
version corresponds to the Reed-Mullar 15-qubit code [60].

The topological color codes are also described by a Z2 chain complex on hyper-
graphs [167]. Consider a trivalent graph G = (V, E), on which a topological color
code is defined. We define a hyper-graph G = (V ,E ,F ) consisting of the sets of
hyper-vertices V , hyper-edges E , and hyper-faces F as follows (see Fig. 3.17): The
hyper-vertices V are vertices V̄ of the dual graph Ḡ. A hyper-edge ẽ ∈ E is defined
as a triplet of (hyper-)vertices v̄ ∈ V̄ on a face f̄ of the dual graph Ḡ. A hyper-face
f̃ ∈ F is defined as a set of hyper-edges ẽ that are incident to the vertex v̄ of the
dual graph Ḡ. As defined in Sect. 3.1, we can define both Z2 valued vector spaces
and Abelian groups C1,2,3 with the hyper-graph elements as their bases. Because
the hyper-edge and hyper-face are defined as sets of hyper-vertices and hyper-edges,
respectively, we can define boundary maps ∂i : Ci → Ci−1 naturally by such sets.
The plaquette and star stabilizer generators of the surface code defined on such a
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dual

hyper-edge
qubit hyper-face

Fig. 3.17 (Left) A hexagonal lattice with three-coloring. (Right) A triangular lattice, the dual of the
hexagonal lattice. A hyper-graph is defined on a triangular lattice. The color code on the hexagonal
lattice corresponds to a surface code defined on the hyper-graph

hyper-graph are as follows:

Am =
∏

ẽ∈∂ f̃

Zẽ, Bk =
∏
ẽ∈δṽ

Xẽ. (3.58)

This definition is equivalent to the previous definition, Eq. (3.57). In Ref. [167],
the authors defined the projections from the Z2 chain complex on the hyper-graph
into chain complexes on a dual graph Ḡ. Specifically, a certain subset of vertices is
removed in each projection. This procedure corresponds to the removal of stabilizer
generators colored by one of the three colors. This allows us to utilize MWPM to
decode the topological color codes efficiently on the projected surface codes [167].

The decoding problem of topological color codes is mapped into random three-
body Ising models using the mapping between quantum error correction and spin
glass models [168]. This can be understood as follows: for each face center a gauge
spin valuable is located associated with each stabilizer generator, and three gauge
spin valuables (stabilizer generators) that share the same qubit (vertex) interact with
each other. The locations of the optimal thresholds have also been investigated via
the spin glass theory and Monte Carlo simulations [169, 170, 171].

3.7 Connection to Topological Order in Condensed Matter
Physics

Topological order is an exotic quantum phase of matter, which cannot be charac-
terized by the Landau–Ginzburg theory of symmetry breaking, in which an ordered
phase can be characterized by local order parameters. The ground state of a topolog-
ically ordered system is degenerate, but its degeneracy cannot be destroyed by any
local perturbation. Thus, no local order parameter can succeed to capture the topo-
logically ordered phase. Understanding the nature of topological order is one of the
most important goals of modern condensed matter physics. Moreover, the ground
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state of a topologically ordered system is, by definition, robust against any local
perturbations, and hence it is also useful for storing quantum information. There is
a beautiful correspondence between topological quantum codes and topologically
ordered systems, which provides a promising way to understand condensed matter
physics via quantum information.

Let us first consider the bit-flip code defined in Sect. 3.2. The Hamiltonian, which
we call a stabilizer Hamiltonian, is defined as follows:

HIsing = −J
∑

k

Ak = −J
n−1∑
i=1

ZiZi+1. (3.59)

Here, the summation is taken over all stabilizer generators, but one stabilizer operator,
which is not independent, is removed. The Hamiltonian Eq. (3.59) corresponds to
the Ising model in 1D with an open boundary condition. By its construction, the
Hamiltonian is diagonalizable, and the stabilizer state becomes the ground state.
The bit-flip code has a 2D stabilizer subspace spanned by {|00...0〉, |11...1〉}. This
means that the ground state is degenerate. The bit-flip errors occurring on the code
space excite the ground state to an excited state. Thus, the states in the orthogonal
subspaces of the bit-flip code correspond to excited states.

To address topological order, let us consider the robustness of the ground state
against perturbations from transversal fields hx

∑
i Xi. By using standard perturbation

theory [172], we can show that the degeneracy of the ground states is not lifted up to
the (n − 1)th order of perturbation. This happens because the code distance of the
n-qubit bit flip code against X errors is n, and any X errors of weight up to n − 1 map
the code state into an orthogonal space. Accordingly, the ground state degeneracy is
robust against the transversal fields.

On the other hand, longitudinal fields hz
∑

i Zi spoil the ground state degeneracy
in the large n limit, even if hz is small. More precisely, the energy between |00..0〉
and |11..1〉 is shifted by nhz. Thus, a superposition α|00..0〉+β|11..1〉 in the ground
subspace is easily destroyed by the longitudinal fields. In this sense, the stabilizer
Hamiltonian constructed by the bit-flip code is not topologically ordered. However,
if any perturbation with respect to the longitudinal fields is prohibited due to some
symmetry of nature, the ground state degeneracy is robust under that symmetry.
This type of robustness of ground-state degeneracies is called symmetry protected
topological order [173, 174]. (Note that in this case the ground-state degeneracy is
not related to the geometrical property of the underlying manifold in contrast to the
genuine topological order in 2D.)

The symmetry prohibiting the longitudinal fields seems to be somewhat artificial.
We can, however, impose the symmetry by transforming the Ising Hamiltonian to a
free-fermion model using the following Jordan-Wigner transformation [175]:

a2i−1 =
i−1∏
k=1

XkZi, (3.60)
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a2i =
i−1∏
k=1

XkYi. (3.61)

The operators, called Majorana fermion operators, are hermitian ak = a†
k and

satisfy the fermion commutation relation {ak, ak′ } = 2δk,k′ I . The Ising stabilizer
Hamiltonian is reformulated in terms of ak:

HIsng = −J
n−1∑
i=1

(−i)a2ia2i+1. (3.62)

The logical operators acting on the degenerated ground states are given by

LZ = a1 = Z1, LX = a1a2n = Y1

(
n−1∏
k=2

Xk

)
Yn. (3.63)

The degree of freedom in the degenerated ground states is called the Majorana zero
mode or the unpaired Majorana fermion [176]. If the parity of the number of fermions
is preserved, the fermion operators would appear with a quadratic form aka′

k . Under
such a symmetry, there is no perturbation that lifts the ground state degeneracy. Thus,
the ground state of the unpaired Majorana fermion is symmetry protected.

Next, we will provide a genuine topologically ordered system based on the surface
code (Kitaev’s toric code). The stabilizer Hamiltonian, the so-called Kitaev’s toric
code Hamiltonian [105], is given as a summation of all plaquette and star operators:

HKitaev = −J
∑

m

Am − J
∑

k

Bk . (3.64)

The ground state has a fourfold degeneracy corresponding to the code space. Errors
on the code state correspond to excitations. Specifically, there are two types of
excitations, corresponding to the Z error Z(c1) and X error X(c1). Excitations appear
at the boundaries of the error chains ∂c1 and ∂ c̄1, because the local energy changed
from −J to +J there. Such excitations, i.e., at the end points of the error chains, are
always created as pairs, can be viewed as a pair creation process on the ground state.

Suppose these two types of the excitations were created on the system and moved
as shown in Fig. 3.18 (left top). This process can be described by

Z(c(2)
1 )X(c̄(2)

1 )Z(c(1)
1 )X(c̄(1)

1 )|Ψ 〉 = −|Ψ 〉. (3.65)

On the other hand, by continuously changing the trajectory of the particles, as shown
in Fig. 3.18, this process can also be regarded as a braiding process of an X-type
excitation around a Z-type excitation. After the braiding operations, a phase factor
is applied to the state as shown in the r.h.s. of Eq. (3.65). Thus, the excitations are
neither bosonic nor fermionic, which are invariant under the braiding operation, i.e.,
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Fig. 3.18 (left top) (1) A pair of X-type excitations are created, moved around the torus, and
annihilated. (2) A pair of Z-type excitations are created, moved around the torus, and annihilated.
(3) Do the process (1) again. (4) Do the process (2) again. (middle) The creation, movement, and
annihilation process is continuously deformed. (right bottom) A braiding operation of an X-type
excitation around a Z-type excitation

the swapping operation twice. In this sense, the excitations on the surface code are
referred to as anyons. Specifically, since the phase factors is Z2, they are called Z2

Abelian anyons. By using the generalized Pauli operators on for a qudit, we can also
define Zd Kitaev’s toric code [110], on which excitations are Zd Abelian anyons. The
renormalization decoders are also applied for topological quantum error correction
on the Zd Kitaev’s toric codes [177, 178].

More generally, using a finite group G, we can define a quantum state |g〉 (g ∈
G) in a |G|-dimensional Hilbert space. Then we define four types of operators for
each g ∈ G:

Lg
+ =

∑
h∈G

|gh〉〈h|, Lg
− =

∑
h∈G

|hg−1〉〈h|, Th
+ = |h〉〈h|, Th

− = |h−1〉〈h−1|. (3.66)

The non-Abelian Kitaev’s toric code model, which is called the quantum double
model [110], is defined as

H = −J
∑

m

A( fm) − J
∑

k

B(vk), (3.67)

in terms of the following plaquette and star operators

A( fm) =
∑

g1g2g3g4=I

Tg1−
(
em

l1

)
Tg2−

(
em

l2

)
Tg3+

(
em

l3

)
Tg4+

(
em

l4

)
(3.68)

B(vk) = 1

|G|
∑
g∈G

Lg
+

(
ēk

l1

)
Lg

+
(
ēk

l2

)
Lg

−
(
ēk

l3

)
Lg

−
(
ēk

l4

)
(3.69)
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where the four edges em
l1,2,3,4

∈ ∂ fm and ēk
l1,2,3,4

∈ δvk = ∂ f̄k are labeled clock wise. The
quantum double model supports non-Abelian anyonic excitations [38, 110], which
allows us to implement universal quantum computation solely by braiding them.

Let us return to the Z2 Kitaev’s toric code Hamiltonian. The code distance of the
surface code on the n × n torus is n. Thus, neither X-type (transverse) nor Z-type
(longitudinal) fields can lift the ground state degeneracy up to the (n − 1)th order of
perturbation. More generally, no local perturbation can lift the ground state degener-
acy in the large n limit. Thus, the ground state of the Kitaev’s toric code Hamiltonian
is topologically ordered. For any properly defined stabilizer code, we can define a
stabilizer Hamiltonian, whose ground state is topologically ordered. However, in
condensed matter physics, the local interactions are of central importance. Thus, it
is natural to restrict the stabilizer generators to be spatially local, i.e., topological
stabilizer codes.

Only the nearest-neighbor two-body interactions are attained in physically natural
systems. It has been known that the Kitaev’s toric code Hamiltonian is obtained as an
effective low energy model of another model consisting only of two-body nearest-
neighbor interactions [179]. Let us consider the following two-body nearest-neighbor
model, called Kitaev’s compass model:

Hcomp = −Jx

∑
(i,j)∈Ex

XiXj − Jy

∑
(i,j)∈Ey

YiYj − Jz

∑
(i,j)∈EZ

ZiZj, (3.70)

where Ex, Ey, and Ez are sets of right-up, left-up, and vertical bonds, respectively, of a
hexagonal lattice (see Fig. 3.19 (left)). If we take the large Jz limit, each vertical bond
favors the two-dimensional subspace spanned by {|00〉, |11〉}, because it is stabilized
by ZiZj. Thus, in the large Jz limit, we can derive an effective low energy Hamiltonian,
which commutes with the ZiZj interactions, by using perturbation theory:

Heff = − J2
x J2

y

16|Jz|3
∑

f

X̃e f
1
X̃e f

2
Ỹe f

3
Ỹe f

4
− JZ

∑
e∈EZ

Z̃e, (3.71)

Fig. 3.19 A hexagonal lattice on which Kitaev’s compass model is defined. In the large Jz limit,
the two spins on each vertical edge are confined into a 2D subspace forming a dimmer. The dimmer
is located on each edge of a square lattice shown by the dotted lines



84 3 Topological Stabilizer Codes

where Ãe = AiAj with e = (i, j) and A = X, Y , Z , depending on e ∈ Ex, Ey, Ez. The
edges {e f

i } are left-up and right-up edges on a hexagonal face f and the summation∑
f is taken over all faces.

Let us define a qubit {|0̄〉 = |00〉, |1̄〉 = |11〉} for each dimerized edge and Pauli
operators X̄ = XX or = ȲY and Z̄ = Z ⊗ I or = I ⊗ Z . Now a qubit is assigned
to each edge of a square lattice, which is an vertical edge in the hexagonal lattice
as shown in Fig. 3.19 (right). Using this definition, the effective Hamiltonian can be
reformulated as

H̄eff = − J2
x J2

y

16|Jz|3
∑

f

X̄e f
l
X̄e f

r
Z̄e f

t
Z̄e f

b
, (3.72)

where {e f
l , e f

r , e f
t , e f

b } are the left, right, top, and bottom edges, respectively, on a
square face f . If we apply the Hadamard transformation on all horizontal edges, we
obtain the Kitaev’s toric code Hamiltonian. In this way, the stabilizer Hamiltonian
can be obtained as a low-energy effective model of a two-body nearest-neighbor
system [179]. This shows the validity of employing topological stabilizer codes and
quantum coding theory to understand the quantum phase of matter in condensed
matter physics. The readers, who are interested in more about the Kitaev’s compass
and related models, should see the comprehensive review on this fields [180, 181].

3.8 Summary and Discussion

In this chapter, we have introduced the topological stabilizer codes and seen how
errors are detected and corrected on them. We have also seen the connection between
spin glass models and topological quantum error correction. Since there has been
well-established knowledge on the phase diagram of the spin glass models [170,
182, 183], it will help to understand the parameter regions in which topological
quantum error correction faithfully works [133, 171, 184] and also help to develop
an efficient decoding method [111, 185, 186]. On the experimental side, proof of
principle experiments of topologically encoded qubits were conducted with photonic
qubits [187] and trapped ion qubits [188].

We have only mentioned topological stabilizer codes on simple 2D manifolds, but
as we have seen in Sects. 3.1 and 3.3, we can define the surface codes on general tilings
of the 2D manifolds [124] even with negative curvature [189], which allows us to
achieve higher encoding rates. We can also define topological stabilizer codes in 3D
or higher manifolds, such as the Kitaev’s toric codes in arbitrary dimensions [111],
the 3D cubic code [190], and the fractal code [191].

A complete classification of the topological stabilizer codes has been obtained in
2D [140, 192]. It has been shown that any topological stabilizer code is equivalent to
multiple copies of the toric codes up to local (finite-qubit) unitary operations. More-
over, in arbitrary d dimensions, the color codes have been shown to equal to multiple
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copies of d-dimensional toric codes up to local unitary operations and adding and
removal of ancilla qubits [193]. The thermal stability of topological order in 2D and
3D Kitaev’s toric code Hamiltonians have been analyzed by Nussinov and Oritz [194]
in detail, which showed that the lifetime of the logical information is finite even in
the thermodynamic (large system size) limit. Moreover, a general condition for exis-
tence of the thermal stability has been argued systematically in terms of symmetries
of entanglement at both zero and finite temperatures [195, 196]. The thermal stability
of the general topological stabilizer Hamiltonians has been investigated via quan-
tum coding theory by Bravyi and Terhal [122] for 2D, and Yoshida for 3D [123].
They showed that topological order in stabilizer Hamiltonian systems does not have
thermal stability in 3D or lower dimensions under quite general assumptions such as
locality, translation invariance, and scale invariance of the systems.

If there is a thermally stable topological order, we can store quantum information
reliably even at a finite temperature without any active error correction, i.e., a self-
correcting quantum memory. Of course, if a fault-tolerant quantum computer were
realized, we could store quantum information reliably with a repetitively performing
quantum error correction, which, however, requires selective addressing of each
individual qubits. There are also several intermediate approaches for a reliable quan-
tum storage without selective addressing using global dissipative dynamics [197], an
interaction with an engineered environment [198, 199, 200], and decoding by cellu-
lar automata with local update rules [201, 202]. However, a genuine topologically
ordered self-correcting quantum memory in 3D or lower dimensions seems to be
hardly achieved even in the presence of effective long-range interactions [203].



Chapter 4
Topological Quantum Computation
with Surface Codes

In this chapter, we explain how to perform topological fault-tolerant quantum
computation on the surface code. All operations employed are nearest-neighbor (at
most) two-qubit gates and single-qubit measurements on a 2D array of qubits. This
property is quite favorable for the fabrication of qubits and their control lines on a
chip. Fault-tolerance ensures that no local noise during any sort of operations ever
spoil the quantumcomputation, if the noise strength is smaller than a certain threshold
value, as seen below.

We first introduce the defect pair qubit, a logical qubit using a pair of defects on
the surface, which allows us to encode many logical qubits on the surface. Then, we
explain the elementary operations of defects by local quantum information process-
ing.A braiding operation, based on the elementary operations, of the defects is further
utilized to implement the logical CNOT gate between the defect pair qubits. Com-
bining with the topologically protected operations, the magic states are injected and
distilled for fault-tolerant universal quantum computation. Based on these under-
standings, we introduce a topological diagram and the topological calculus on it, as a
set of the transformations that preserve the logical actions on the code space. These
provide us with a deep understanding of topological quantum computation on the
surface. Finally, we return to the microscopic viewpoint to explain how topological
quantum error correction is executed and analyzed.

4.1 Defect Pair Qubits

In order to perform quantum computation of N qubits, we have to arrange N logical
qubits in the code subspace while keeping their code distance long enough. A way
of doing this is to use a surface of higher genus. Specifically, we use a large planar
surface and punch holes on it, which we call defects on the surface.

In Sect. 3.3.2, we have seen that we can define a logical qubit by introducing a
defect on a planar surface, where the stabilizer generators inside the defect region are
removed from the stabilizer group. The logical operators are defined by a nontrivial
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cycle surrounding the defect and a chain connecting the defect to the boundary. If we
introduced many degrees of freedom, i.e., many defects based on this strategy, the
logical operators defined by chains connecting each defect to the boundary would
become complicated. To avoid this, we use a pair of defects to define a logical qubit,
which we call a defect pair qubit .

We define two defect regions D ∈ C2 and D′ ∈ C2, as shown in Fig. 4.1. We
remove all Z-type stabilizer generators inside these regions, i.e., {Am}fm∈D∪D′ . Thus,
the operators Z(∂D) and Z(∂D̄′) are not stabilizer operators. Instead, we append a
Z-type stabilizer operator Z(∂D + ∂D̄) as a stabilizer generator. Moreover, we also
append the PauliX operator on all edge qubits inside (not including the boundary) the
regionsD∪D′, i.e., {Xl}el∈(D∪D′)\(∂D∪∂D′). By this definition, the star (X-type) stabilizer
generators in the defect region are still in the stabilizer group. We choose Z(∂D) as
a logical operator, because it commutes with all stabilizer operators, but does not
belong to the stabilizer group. Because Z(∂D + ∂D̄) is a stabilizer operator, Z(∂D′)
also acts the same way, i.e., Z(∂D) ∼ Z(∂D′). Moreover, the actions of operators
represented by the homologically equivalent cycles are the same. The logical X
operator is given by X(c̄1), with a dual 1-chain c̄1 connecting two defects, as shown
in Fig. 4.1. The actions of the operators represented by any homologically equivalent
chains in the sense of relative homology are the same. That is, we may choose any
dual 1-chain c̄1 which connects two defect regions D and D′. The code distance is
given by the circumference of the defect or the distance between two defects. Because
the plaquette operators on the primal lattice are removed, we call these defects and
the logical qubit primal defects and primal defect pair qubit, respectively.

Similarly, we can also define a logical qubit by removing the star (X-type) sta-
bilizer operators on the dual defect regions D̄ and D̄′ defined on the dual lattice as
shown in Fig. 4.2. We call such defects and the logical qubit dual defects and dual
defect pair qubit, respectively. Hereafter, the planar surface code state, on which the
defects are introduced, is referred to as vacuum. Below we will explain how defect
qubits are created, deformed, and moved in the vacuum.

D

D

Z(∂D)

X(c̄1)

D̄

D̄

Z(c1)

X(∂D̄)

Fig. 4.1 Primal (left) and dual (right) defect pair qubits. The primal defect pair qubit is defined by
removing the plaquette operators inside the defect regions D and D′. Then the cycle ∂D around the
defect becomes a nontrivial cycle, by which the logical Z operator Z(∂D) is defined. The logical X
operatorX(c̄1) is defined as a dual 1-chain c̄1 connecting two defects. Any homologically equivalent
logical operators acts the same way on the code space. The dual defect pair is defined similarly, but
the basis is changed by the Hadamard transformation
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D D

Z(∂D)

D

D

Z(∂D) ∼ Z(∂D )

X(c̄1) ∼ X(c̄1)

c̄1

c̄1

D

DD

Z(∂D ) ∼ (−1)mZ(∂D )

(a) (c)

(b)

Fig. 4.2 a A defect creation. The qubits inside the defect regions (excluding the qubits on the
boundary), denoted by circles, are measured in the X-basis. b The defect region D is expanded
into D′ by measuring the qubits inside the region D′ in the X-basis, where the encoded quantum
information is preserved. c A defect region D′ is contracted into D by measuring the plaquette
operators in D′′ = D′\D. The logical operator Z after the contraction is defined depending on the
measurement outcome m

4.2 Defect Creation, Annihilation, and Movement

The defect creation is accomplished by measuring the qubits inside the defect region
D, not including the qubits on its boundary, in the X-basis (see Fig. 4.2a). These
measurements remove the plaquette operators inside D from the stabilizer group,
because these X-basis measurements do not commute with them. On the other hand,
the measurements do commute with the star operators, and hence a parity of four
measurement outcomes corresponding to a star operator is always even (if there is no
measurement error). While the measurement outcomes are random, we can prepare
all measured qubits to be in the |+〉 state by applying Z operators according to the
measurement outcomes. (In practice, there is no need to apply the Z operations. It
is enough to keep the information of the byproduct Pauli operator dependent on the
measurement outcomes.)

As the qubits on the boundary are not measured, the post-measurement state is
stabilized by Z(∂D). In order to create a pair of defects, we do the same thing for
another defect D′. Apparently, the resultant state is stabilized by Z(∂D + ∂D′) and
satisfies the definition of the defect pair qubit.Moreover, the logical qubit is stabilized
by Z(∂D) and hence a logical Z-basis state is prepared.

The defect region can be expanded by creating a larger defect D′, which includes
the original defect region D, i.e., D ⊂ D′, as shown in Fig. 4.2b. We can choose
Z(∂D′) as a logical Z operator of the defect pair qubit, so that the information with
respect to Z(∂D′) is preserved during this operation. (Recall that logical operators
act the same if the corresponding cycles are homologically equivalent. Thus we can
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choose a large enough cycle surrounding the defect in advance.) We can expand the
defect region step-by-step such that, at each step, a logical X operator is untouched
as shown in Fig. 4.2b. (Or equivalently, we can compensate for the difference in the
logical X operator according the X-basis measurement outcomes inside the defect
region.) Thus, the informationwith respect to the logicalX operator is also preserved.
Accordingly, the logical information of the defect pair qubit is stored, but now the
defect region D is expanded into D + D′.

The defect annihilation is executed by measuring the plaquette operators inside
the region D to restore them to the stabilizer group. The surface with a defect D is
rewritten by

|D〉 ∝
∏
el∈D

(
I + Xl

2

)
|v〉, (4.1)

where |v〉 indicates the surface code state without defect, i.e., vacuum. Thus, |D〉 is
a superposition of all possible applications of X operators on the vacuum |v〉. The
measurements of the plaquette operators collapse the superposition. By applying a
recovery operation inside the region D such that all eigenvalues becomes +1, the
defect is annihilated. (Note that there is no need to actually apply the recovery opera-
tion. It is enough to keep the record of the eigenvalues.) The parity of all measurement
outcomes of the plaquette operators insideD corresponds to the eigenvalue of Z(∂D),
because we have

Z(∂D) =
∏
fm∈D

Z(∂fm) =
∏
fm∈D

Am. (4.2)

This indicates that a logical Z-basis measurement can be done by annihilating the
defect completely.

Suppose a defect region D inside the defect region D′ (i.e., D ∈ D′) is annihilated
by measuring the qubits inside D, as shown in Fig. 4.2c. We can then obtain the
eigenvalue (−1)m (m = 0, 1) of Z(∂D). Let D′′ be the complement of D in D′.
Because we have

Z(∂D′) = Z(∂D′′)Z(∂D), (4.3)

depending on the eigenvalue (−1)m, the operator (−1)mZ(∂D′′) acts as the logical
operator of the defect D′′. Thus, the defect D′, consisting of the defect pair qubit,
is contracted into D′′ without changing the stored quantum information (up to the
logical Pauli X flip).

The defect movement on the surface is implemented by combining the defect
expansion and contraction, as shown in Fig. 4.3. At first, we expand a defect D into
D′ (D ∈ D′) by the previously mentioned procedure. Second, the defect region D is
annihilated, and we obtain the eigenvalue (−1)m of Z(∂D). As we already pointed
out, the stored logical information is unchanged under these procedures up to the
logical Pauli X operator depending on the measurement outcome m.
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Fig. 4.3 A defect movement
by expansion and contraction

expansion

contraction

D

D

D

Z(∂D) ∼ Z(∂D ) ∼ (−1)mZ(∂D )

The logical X-basis state preparation is executed by combining the defect creation
and annihilation, as shown in Fig. 4.4. We first create a defect region D0 = D1 +
D2 + D3, which consists of three adjacent defect regions D1, D2, and D3. The two
defects D1 and D3 are utilized as a defect pair. We can define a logical X operator
by employing the qubits inside the defect region D2. Because all qubits inside the
defect region are in the |+〉 state, the eigenvalue of the logical X operator at this time
is +1. Then the defect region D2 in-between D1 and D3 is annihilated by measuring
the star operators. These measurements commute with the logical X operator, and
hence its eigenvalue is still +1 after the annihilation. Now we have a defect pair
qubit, which is the eigenstate of the logical X operator. A measurement in the logical
X basis can be implemented by doing the X-basis state preparation in an inverse
way. More precisely, two defects D1 and D3 are connected by making a larger defect
D0 = D1 + D2 + D3. We can choose a logical X operator such that all constituent
qubits belong to the defect region D0. Then, we obtain the eigenvalue of the logical
X operator.

The dual defect creation, annihilation, expansion, contraction, and propagation
can be done in the same way on the dual lattice with the Hadamard transformation.
In Sect. 4.5, these elementary operations of the primal and dual defects are depicted
by a topological diagram.

Fig. 4.4 A preparation of
the logical X-basis state by
creation of a defect region
D0 and annihilation of a
defect region D2 between
two defect regions D1 and
D3. Note that after the first
defect creation, the state is
stabilized by the logical X
operator X(c̄1), which is
untouched during the
following defect annihilation

D1

D2

D3

D0

X(c̄1)
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4.3 Logical Controlled-NOT Gate by Braiding

Using the elementary operations explained in the previous section, we can perform
logical gate operations on the defect pair qubits. Indeed, the defects created from the
vacuum behave like anyonic particles, i.e., braiding a defect around another defect
results in a nontrivial operation. (It is better to say that we change the manifold
continuously to deform the ground state, in contrast to the anyons appeared as an
excitation on the toric code Hamiltonian.) All operations employed in the elementary
operations are single-qubit or local stabilizer measurements, which can be done by
nearest-neighbor two-qubit gates and single-qubit measurements. This contrasts with
concatenated quantum computation, where the logical operations are implemented as
transversal operations andhence, essentially, non-local two-qubit gates are employed.

We first consider the CNOT gate between primal (control) and dual (target) defect
pair qubits. Suppose there are primal and dual qubits on the surface code as shown in
Fig. 4.5a,where logical operators are specified by the chains {∂D, c̄1} and {∂D̄, c1} for
the primal and dual qubits, respectively. We can freely move the defect everywhere
we want by the defect expansion and contraction. Let us braid the primal defect
around the dual defect, as shown in Fig. 4.5a–d. After the braiding operation, the
operator X(c̄′

1) in Fig. 4.5d has the same information as the operator X(c̄1) before the
braiding. Using the equivalence relation,

Z(∂D)

X(c̄1) X(∂D̄)

Z(c1)

X(c̄1) ∼ X(c̄1)X(∂D̄)

c̄1

∂D̄

c̄1

(a)

(b)

(c)

(d)

Fig. 4.5 A logical CNOT gate implemented by braiding. a A primal defect is braided around a dual
defect. b, c The logical X operator is deformed continuously during the braiding operations. d After
the braiding, the logical X operator is represented by the dual chain c̄′

1 winding around the dual
defect. By applying star operators inside the rectangle denoted by dotted lines, c̄′

1 is decoupled into
a chain connecting two primal defects and a chain surrounding the dual defect. The corresponding
operators are equivalent to the products of the logical X operators on the primal and dual qubits
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c1

c1

∂D

Z(c1) ∼ Z(∂D)Z(c1)

Fig. 4.6 The time evolution of the logical Z operator caused by braiding. The logical Z operator
on the dual qubit is transformed into the product of the logical Z operators on the primal and dual
qubits

X(c̄′
1) ∼ X(c̄1)X(∂D̄), (4.4)

we understand that a correlation is made by the braiding operation between the
logical X operators X(c̄1) and X(∂D̄) of the primal and dual defect pair qubits.
A similar observation holds for the logical operator Z(c1), which is transformed
into Z(c′

1) ∼ Z(c1)Z(∂D) (see Fig. 4.6). On the other hand, Z(∂D) and X(∂D̄) are
invariant under this operation. In short, the braiding operation transforms the logical
Pauli operators as follows:

Z(∂D) → Z(∂D), (4.5)

Z(c1) → Z(c1)Z(∂D), (4.6)

X(∂D̄) → X(∂D̄), (4.7)

X(c̄1) → X(c̄1)X(∂D̄). (4.8)

This transformation is equivalent to that for the CNOTgate, Eqs. (2.14)–(2.17). Thus,
braiding the primal defect around the dual defect results in a logical CNOT gate
between the primal and dual defect pair qubits.

Unfortunately, in the aboveCNOTgate, the primal (dual) defect is always a control
(target) qubit. Such CNOT gates always commute with each other, which is a natural
consequence of the fact that the defect qubits on the surface code are Abelian. In
order to realize a genuine CNOT gate between the same type of qubits (and hence
noncommuting gates), we utilize a teleportation-based gate [68], as shown in Fig. 4.7.
Only CNOT gates between primal (control) and dual (target) qubits are employed.
The Pauli basis measurements are also done as mentioned in the previous section.
Accordingly, the CNOT gate between primal qubits is realized by braiding the primal
defects around virtual dual defects, which are created and annihilated as ancillae.

The above braiding operations are implemented with topological quantum error
correction at each elementary step, which will be explained later in detail. All oper-
ations considered so far can be executed keeping the defect size (circumference) and

http://dx.doi.org/10.1007/978-981-287-996-7_2
http://dx.doi.org/10.1007/978-981-287-996-7_2
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|+ p
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target in

control in

target out

control out

Z

X
p

d

time

Fig. 4.7 The circuit diagram of the teleportation-based CNOT gate between primal qubits using a
dual qubit as ancilla (left). The control and target qubits of the CNOT gates are always primal and
dual qubits, respectively. The corresponding braiding operation (right)

defect distance larger than a length d, which provides a code distance of the logi-
cal qubits. Thus, the logical error probability for the logical CNOT gates decreases
exponentially by increasing the characteristic length d of the system. In other words,
the CNOT gates are topologically protected.

We should mention that the braiding operations explained above are not the only
way to perform fault-tolerant operations on the surface code. There are another
approaches to perform logical operations fault-tolerantly for the encoded degrees
of freedom of the surface code. One is the lattice surgery scheme [204], where the
boundary conditions of two planar surface codes are engineered to perform a logical
operation. Another is to employ twists, which are topological defects introduced by
point defects on lattices [205, 206]. All Clifford gates can be implemented by the
twist creation, braiding, and annihilation similarly to the defect pair qubits explained
above. All these different approaches can be view as the logical operations by the
code deformations [4, 111, 207] and seem to be a unique feature for the topological
codes contrasting to the transversal logical gate for the concatenated codes.

4.4 Magic State Injections and Distillation

Unfortunately, the topologically protected CNOT gates do not allow universal quan-
tum computation, because Clifford circuits can efficiently be simulated classically
due to the Gottesman–Knill theorem [208]. Here, we explain how to perform single-
qubit rotations on the defect pair qubit, while, unfortunately, they are not topologi-
cally protected.

Suppose we have a defect pair qubit, whose logical operators are given by Z(∂D)

and X(c1). We first consider a logical Z rotation e−i(θ/2)Z(∂D) on the defect pair
qubit. To this end, the defect region D is contracted to a single face fl by using
the annihilation process, as shown in Fig. 4.8a. Now the logical operator Z(fl) is a
four-body operator. (This implies that the code distance becomes 4 at this stage.) A
rotation with respect to the logical operator Z(fl), e−i(θ/2)Z(fl), can be implemented
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Z
|+ Rx(θ)

(a) (b)

Fig. 4.8 a A magic state injection by contracting the defect into an elementary cell. b A circuit
diagram for the logical Z rotation on the defect of an elementary cell

Fig. 4.9 A magic state
injection by connecting two
defects. If two defects
regions are adjacent, the
logical X operator is a
physical Pauli X operator
between two defects

indirectly by using an ancilla qubit located at the center of the face shown in Fig. 4.8b.
First, the four CZ gates are applied between the ancilla and the four edge qubits on
the face. Second, after applying a X-rotation Rx(θ) = e−i(θ/2)X , the ancilla qubit is
measured in the Z-basis. According to the measurement outcome m = 0, 1, a logical
rotation e−i(−1)m(θ/2)Z(fl) is implemented. After the above procedure, the defect, as a
single face fl, is expanded again into the defect region D to restore the code distance
of the defect pair qubit.

Next we consider a logical X rotation, e−i(θ/2)X(c1). In this case, the two defects are
moved and deformed near each other such that X(c′

1) becomes a one-body operator
as shown in Fig. 4.9. The rotation e−i(θ/2)X(c′

1) is now easily implemented by a single-
qubit gate. After that, the distance between two defects is restored.

In this way, we can perform an arbitrary single-qubit unitary operation on the
defect pair qubit by continuously deforming the defect pair qubit. These deformations
and the operations for the logical rotations are depicted in Fig. 4.10. Unfortunately,
during the deformation, the code distance inevitably becomes relatively small, so that
we can perform logical rotations directly with nearest-neighbor operations. Thus,
these processes are not topologically protected.



4.4 Magic State Injections and Distillation 95

time

(a) (b) (c)

Fig. 4.10 aThe logicalZ rotation.bThe logicalX rotation. cThe logical e−i(θ/2)Z |+〉 state injection

Fig. 4.11 a, b Single-qubit
rotations by one-bit
teleportations [209]

|ψ
Z

ZmXme−i(π/4)X |ψ
|ψ

Z

Zm e−i(π/4)X
m

e−i(π/8)X |ψ

|Y

|X + Y

(a)

(b)

These non-topological operations can be utilized to inject noisy magic states
on the surface. Specifically, the logical e−i(θ/2)Z |+〉 state is injected as shown in
Fig. 4.10c. Then, these noisy magic states are distilled by topologically protected
operations to clean magic states, which have a fidelity high enough for reliable
quantumcomputation.Note thatwe are allowed to use only theCNOTgates, and there
is no topologically protected single-qubit Clifford gate. Tomanage this, we distill two
types of magic states. One is the eigenstate of the Pauli-Y operator, which is used to
implement the S gate via gate teleportation [68, 209], as shown in Fig. 4.11a. Another
is the eigenstate of the (X + Y)/

√
2 operator, which is used to implement the π/8

gate, a non-Clifford gate necessary for universal quantum computation. The magic
state distillation for the Y -basis state is executed solely by the topologically protected
CNOT gates using the Steane 7-qubit code, similarly to the method introduced in
Sect. 2.8. The topologically protected CNOT gates and the S gates with the distilled
Y -basis states are further employed to distill the (X + Y)/

√
2-states through the

Reed–Muller 15-qubit code, as explained in Sect. 2.8.
Using these distilled magic states and the CNOT gates, we can implement the

single-qubit gates shown in Fig. 4.11a, b, which together with the CNOT gate con-
stitute a universal set of gates. Accordingly, universal quantum computation is per-
formed reliably on the surface code. Note that all operations employed are single-
qubit gates, two-qubit nearest-neighbor gates, and single-qubit measurements on the
2D array of qubits.

http://dx.doi.org/10.1007/978-981-287-996-7_2
http://dx.doi.org/10.1007/978-981-287-996-7_2
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4.5 Topological Calculus

Based on the microscopic understanding of the topological operations, we can intro-
duce a topological diagram and a topological calculus, which allows us a diagram-
matic description of topological quantum computation on the surface codes.

In this diagram, the 3D space-time trajectory of the defects is depicted by project-
ing it onto a 2D plane like link diagrams mentioned in Sect. 1.5.3. The trajectory of
the primal and dual defects as tubes in 3D space-time are denoted by pairs of solid
and gray-colored lines:

primal defect pairs dual defect pairs

The braiding operation is denoted by a double crossing as follows:

The logical X state preparation and X-basis measurement of the primal defect are
denoted by closures:

The logical Z state preparation and Z-basis measurement of the primal defect are
denoted by endpoints of the tubes:

The state preparations andmeasurements for the dual defect pair qubit are depicted in
a similar way with gray (curved) lines, except for the basis change by the Hadamard
transformation.

The trajectories of the logical operators are represented by surfaces in 3D space-
time like a Seifert surface,whichwe call correlation surfaces. Specifically, the logical
Z operator for the primal defect corresponds to a surface wrapping around the primal
defect. The logical X operator for the primal defect corresponds to a surface whose

http://dx.doi.org/10.1007/978-981-287-996-7_1
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boundary is the primal defect tubes. (This is also the case for the dual defect, except
for the Hadamard transformation.) For example, the time evolution of the logical
X and Z operators by the braiding operation can be represented by the following
surfaces

The logical operators before and after the operation correspond to the left and right
boundaries of these surfaces, respectively. We can confirm Eqs. (4.5)–(4.8) from the
left and right boundaries the correlation surfaces of the above diagrams.

The CNOT gate between the primal defect pair qubits is depicted as follows:

In this diagram, we can easily confirm that the braiding operations transform the
logical operators according to the rule for the CNOT gate, i.e., X ⊗ I → X ⊗ X and
I ⊗ Z → Z ⊗ Z:

As seen above, the action on the code space is defined by the left and right
boundaries of the correlation surfaces. Thus, the logical action of the topological
operation is invariant under transformations that do not change the topology of the
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left and right boundaries of the correlation surfaces. Similarly to link diagrams, the
boundary topology is invariant under the Reidemeister moves:

= = == =

In the present case, we have further transformations under which the logical action
on the code space is invariant due to the properties of the defect pair qubits. At first,
the following two crossings of tubes of the same type are equivalent:

=

(4.9)

Second, if two defect tubes are a defect pair qubit, a dual loop wrapping around a
defect pair can be removed:

=

(4.10)

This is because the primal defect pair qubit is stabilized by a Z-type loop operator
surrounding the defect pair, and hence the dual loop is nothing but a trivial measure-
ment of the stabilizer operator. Third, because the defect pair qubit is a Z2 Abelian
anyon, if we braid a primal defect around a dual defect twice, it results in an identity
operation:

=

(4.11)

Fourth, and most importantly, two tubes can be connected or disconnected by the
following procedure, which we call a Φ-transformation:
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=

(4.12)

We can easily confirm that the logical operators are invariant under the Φ-transf-
ormation:

= =

where we note that the dual ring in the middle serves to stop the Z-type correlation
surface from propagating toward the bottom and also serves to mediate the X-type
correlation surface toward the right. Specifically, if two defect pair qubits are con-
nected by the Φ-transformation between their closures, we can remove the dual ring
by using the rule (4.11):

= = = =

By using the Φ-transformation and rules (4.11) and (4.10), we can transform the
defect pair qubit as follows:

= = =

We can also easily confirm that the logical operators are invariant under this trans-
formation as follows:
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The Φ-transformation is very useful to simplify a complicated topological oper-
ation on the surface by joining the tubes as follows:

= =

= == = =
=

=
= == = =

where we frequently used theΦ-transformation and rule (4.10). Here, the dual triple-
ring wrapping around each of the two defect tubes serves to reflect the logical Z
operator from the upper to the lower tubes as follows:

For example, if we apply this transformation to the CNOT gate between the primal
defect pair qubits, we obtain a much simpler diagram as follows:
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where the dual ring in themiddle serves to keep the code space of the defect pair qubit
as shown in the left above. It is straightforward to check the transformations of the
logical operators. In general, by joining the defect tubes directly, we can transform
the logical operators under multiple CNOT gates. However, if two tubes are joined,
the definition of the defect pair is broken. In order to keep the defect pair qubit
encoding, we need the dual ring wrapping around the two tubes at the joint.

The magic state injection is denoted by the following diagram:

which can be viewed as a superposition of two correlation surfaces for the two anti-
commuting logical operators. The non-Clifford gate by one-bit teleportation can be
described in the topological diagram as follows:

=

The right diagram, which is topologically equivalent to the left one, indicates that the
non-Clifford gate by one-bit teleportation with the magic state injection is equivalent
to simply performing the non-Clifford gate by the method mentioned in the previous
section.

The present diagrammatic description of the topological operations and corre-
lation surfaces on them provide us an intuitive understanding of how topological
quantum computation on the surface code is performed. These transformation rules
will be useful to optimize the complexity (space-time volume required) of the braid-
ing operations.
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4.6 Faulty Syndrome Measurements and Noise Thresholds

We have seen how universal quantum computation is executed on the surface code.
At each step, we have to perform topological quantum error correction to protect the
quantum information encoded by the defects. In Sect. 3.4, we analyzed topological
quantum error correction on the surface code. However, at that time, we assumed
ideal syndromemeasurements.However, in a fault-tolerant quantumcomputation,we
have to take into account all reasonable sources of noise, including faulty syndrome
measurements, and the quantum computation has to tolerate them as well. Here, we
explain how faulty syndromemeasurements are handled during topological quantum
computation, which completes the big picture of fault-tolerant topological quantum
computation.

During the topological operations, the star and plaquette operators are measured
in the vacuum region to obtain the error syndrome. These measurements are imple-
mented using ancillae located on each vertex and face center for the star and plaquette
operators, respectively (see Fig. 4.12). The ancilla state is prepared to be |+〉 and the
Λ(X) or Λ(Z) gates are performed from the ancilla qubit as a control to the four
qubits on ∂fl or δvk . By measuring the ancilla qubit in the X-basis, we obtain the
eigenvalue of the star or plaquette operator. If an error is introduced during the mea-
surement, we obtain an incorrect syndrome value, which has to be dealt with in the
topological quantum error correction.

Again, we assume that the error is given as a Pauli error for simplicity. We also
assume that the X and Z errors, which might be correlated in general, are corrected
independently. The former assumption could be justified as follows. Any Kraus
operator of the noise map can be decomposed into a superposition of Pauli operators.
Such a superposition is collapsed into Pauli errors by the syndrome measurements,
which map different Pauli errors (of low weight) into orthogonal subspaces. Note
that, in this case, we have to model the error per gate carefully. The latter assumption
makes the analysis very simple, but only results in an underestimation of the noise
threshold. Below we only consider correction of the Z errors, but it can be applied
straightforwardly to the X errors.

Let ce
1(t) = ∑

l ze
l (t)el be a 1-chain specifying the space-time Z error location,

where if zl(t) = 1, an Z error occurs on qubit el at time step t. The Z operators on
the code state at time t are denoted by c1(t) = ∑

l zl(t)el (i.e., Z[c1(t)]). The state at

Fig. 4.12 Syndrome
measurements for plaquette
(left) and star (right)
operators, where qubits on a
face center and on a vertex
are employed as ancillae.
The alternative syndrome
measurements for the
plaquette and star operators
are done repeatedly

|+

X

|+

X
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time t satisfies the following equation of the motion:

c1(t + 1) = c1(t) + ce
1(t + 1). (4.13)

At each time step t, we measure the star operator Bk(t) and obtain the measurement
outcome

mk(t) =
( ⊕

el∈δvk

zl(t)

)
⊕ ze

k(t), (4.14)

where the bit ze
k(t) ∈ {0, 1} indicates an error on the measured syndrome, which

we call a measurement error. To obtain an equation consisting only of errors, we
calculate the parity of the syndrome at time steps t and t − 1,

sk(t) = mk(t) ⊕ mk(t − 1) =
( ⊕

el∈δvk

ze
l (t)

)
⊕ ze

k(t) ⊕ ze
k(t − 1). (4.15)

Hence, errors on the measured syndrome can be detected by the parity (difference)
of the syndrome values at time t and t − 1. We redefine {sk(t)} as an error syndrome
of the space-time errors including the measurement error.

In the case of the perfect syndrome measurement, the error syndrome is given
by the boundary of errors ∂ce

1, which allows us to use the MWPM algorithm for the
error correction.What about the casewith the faulty syndromemeasurement?Using a
chain complex in a 3Dmanifold, we can again reformulate the error syndrome {sk(t)}
as the boundary of a space-time error chain as shown in Fig. 4.13.We consider a chain
complex {C0, C1, C2, C3} on a cubic lattice. The basis for the 3-chain is given by a set
of cubes {qr}. The 3-chain c3 = ∑

r zrqr ∈ C3 (zr ∈ {0, 1}) is a linear combination
over Z2. The dual chain complex {C̄0, C̄1, C̄2, C̄3} is also defined. Specifically, Ci

and C3−i are identified via the duality transformation.

Fig. 4.13 A mapping from
the chain complex in 2D
with time evolution to
another chain complex in 3D

el(t)

fm

fm (measurement error)

(code error)

ze
k(t)

ze
k(t − 1)

ze
l (t)

sk(t) sr
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Let us explain how to embed the space-time error location to a 1-chain in the
chain complex in 3D. The edge el(t) and its coefficient ze

l (t) at time t are mapped
into a vertical face fm and its coefficient ze

m in the 3D chain complex, respectively.
The measurement error ze(t) is mapped to the coefficient ze

m′ of a horizontal face fm′ .
Then, the space-time error location including the measurement errors is described
by a 2-chain or a dual 1-chain in the 3D chain complex:

ce
2 =

∑
m

ze
mfm, ↔ c̄e

1 =
∑

m

ze
mēm. (4.16)

A syndrome sk(t) is assigned on each cube qr , or equivalently each dual vertex v̄r ,
in the 3D chain complex, and denoted by sr . Now we realize that

sr =
⊕
fm∈qr

ze
m. (4.17)

By using the same argument for the 2D case, sr = 1 iff v̄r belongs to the boundary
∂ c̄e

1 of the dual 1-chain c̄e
1, specifying the space-time error location. Thus, we can

apply the MWPM algorithm on the cubic lattice to perform topological quantum
error correction in space-time.

To calculate the noise thresholds, we have to model the noise distribution P(c̄e
1).

First, we consider the simplest case, where the errors are located on each dual edge
ēl of the dual cubic lattice with probability p. This means that Z errors occur on each
qubit independently with probability p at each time step. Moreover, the measured
syndrome is flipped with probability p. Such a noise model is called a phenom-
enological noise model. Using the MWPM algorithm, the noise threshold has been
estimated to be 2.93% [133]. The error correction problem under the phenomeno-
logical noise model can be mapped into a phase transition of the random-plaquette
Z2 gauge model by using the same argument as in Sect. 3.5. Specifically, the loop
condition for the dual 1-chain (primal 2-chain) in the 3D model can be solved by
introducing a gauge spin on each primal edge σl and defining the dual trivial 1-cycle
c̄1 = ∑

m zmēm ∈ Img(∂̄2) via (−1)zm = ∏
el∈∂fm

σl, where ēm and fm are related
through the duality relation. In this way, the variable on the face center is provided
as a product of the gauge spins on the boundary of the face, which leads to the
random-plaquette Z2 gauge model. The ordered Higgs and disordered confinement
phases correspond to fault-tolerant and non-fault-tolerant regions, respectively [111].
The threshold value 2.93% corresponds to the critical point at zero temperature. The
optimal threshold is provided on the Nishimori line and has been estimated to be
3.3% using the Monte Carlo simulation [210].

In fault-tolerant quantum computation, we have to consider any source of noise,
including the gate operations, during the syndrome measurement. As a standard way
to model a realistic situation, suppose that each elementary gate is followed by a
depolarizing channel. This is called a circuit-based noise model. More precisely, an
ideal single-qubit gate is followed by single-qubit depolarizing noise,

http://dx.doi.org/10.1007/978-981-287-996-7_3
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(1 − p1)ρ +
∑

A∈{X,Y ,Z}

p1
3

AρA. (4.18)

An ideal two-qubit gate is followed by two-qubit depolarizing noise,

(1 − p2)ρ +
∑

A,B∈{I,X,Y ,Z}\I⊗I

p2
15

(A ⊗ B)ρ(A ⊗ B). (4.19)

A faulty Pauli-basis state preparation is modeled by the state

P+
A (pp) = (1 − pp)

I + A

2
+ pp

I − A

2
, (4.20)

where A = X, Y , Z . A faulty Pauli-basis measurement is modeled by a POVM
measurement with POVM elements

{P+
A (pm), P−

A (pm)}, (4.21)

where

P−
A (pm) = (1 − pm)

I − A

2
+ pm

I + A

2
. (4.22)

Thus, the measurement outcome is flipped with probability pm.
In Refs. [4–6], the error probabilities were parameterized as p1 = p2 = (3/2)pp =

(3/2)pm. The noise threshold with the MWPM algorithm was obtained by numer-
ical simulations to be p2 = 0.75%. In Ref. [112], the threshold value was further
improved to ∼ 1% by assigning a weight for each edge in MWPM appropriately,
according to the amount of possible errors. Roughly speaking, the threshold is located
where the expectation value of each syndrome becomes 0.7:

〈(−1)sr 〉 = 0.7. (4.23)

In the phenomenological noise model, the expectation value is provided by

〈(−1)sr 〉 = (1 − 2p)6, (4.24)

which hits 0.7 for p = 2.89%; thus being in good agreement with 2.93%.Moreover,
in the case of the circuit-based noise model, p is roughly given by pp + pm + 4p2 for
the measurement error, which means that one state preparation, one measurement,
and four two-qubit gates are employed. The error probability p for the code state
is given by 4p2, meaning that four two-qubit gates are employed in the syndrome
measurements of the star and plaquette operators. This yields

〈(−1)sr 〉 = (1 − 2pp − 2pm − 8p2)
2(1 − 8p2)

4, (4.25)
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which hits 0.70 for p2 = 0.63%with p1 = p2 = (3/2)pp = (3/2)pm. This is again in
a good agreement with the numerical result 0.75%. This simple calculation provides
rough estimates of the threshold values, but there is no validity. If we need a more
accurate threshold value, we should perform a numerical simulation by taking noise
propagation and correlation into account [5, 112].

4.7 Summary and Discussion

In this chapter, we have seen how fault-tolerant quantum computation is implemented
on the surface code by brading the defects. Specifically, all necessary operations
including syndrome measurements are done with nearest-neighbor two-qubit oper-
ations and single-qubit operations in 2D, which is favorable for integrating huge
number of qubits on a chip. Indeed, topologically protected quantum computation
in 2D has been utilized as a platform to design fault-tolerant architectures for quan-
tum computation. One promising approach is on-chip monolithic architectures, such
as quantum dots [92, 93], silicon-based nuclear spins [211], and superconducting
qubits [116, 117, 119, 121, 212–214], where huge number of qubits are integrated
on a single chip, and each individual qubit and the interaction between the qubits
are manipulated by multiple lasers or electrodes. Among them, the superconducting
qubits system is one of the most promising candidates for implementing topolog-
ical quantum computation on the surface code, because they can be fabricated on
a 2D chip, and all elementary operations have already been demonstrated experi-
mentally [215–218]. The coherence time and gate fidelity of the superconducting
systems have improved rapidly. An important breakthrough was made by Martinis’s
group at University of California Santa Barbara in 2014, where single-qubit gates
with a fidelity of 99.92% and two-qubit gates with a fidelity of 99.4% were demon-
strated on a 1D array of five superconducting transmon qubits [212]. In addition,
repetitive quantum non-demolition measurements were demonstrated on a 1D array
of 9 qubits, which improved the fidelity of the stored quantum state by a factor of
8.5, even when using 9 qubits and faulty two-qubit gates and measurements [214].
On the other hand, IBM T. J. Watson Research Center has demonstrated both bit and
phase error detections on an integrated superconducting quantum circuits [121, 219].
These are important building blocks of the fault-tolerant quantum computation on
the surface code. The readers who are interested in the recent experimental attempts
toward fault-tolerant quantum computation should read Refs. [220, 221].

Another approach is the distributed modular architecture, where few-qubit local
modules are connected with quantum channels mediating interactions between sep-
arate modules [75, 76, 113–115, 222]. The few-qubit quantum module has already
been experimentally realized in various physical systems, such as nitrogen-vacancy
centers in diamond and trapped ions. Furthermore, entangling operations between
separate local modules have been experimentally demonstrated. This experimental
and theoretical progress will gradually lead us to large-scale quantum computation.



Chapter 5
Topologically Protected Measurement-Based
Quantum Computation

In this chapter, we reformulate topological fault-tolerant quantum computation
explained in the previous chapter in terms of meausrement-based quantum com-
putation.

5.1 Topological Cluster State in Three Dimensions

Consider a (primal) cubic lattice L and Z2 chain complex on it, {C0, C1, C2, C3},
where

c0 =
∑

k

zkvk ∈ C0, c1 =
∑

l

zlel ∈ C1, (5.1)

c2 =
∑

m

zmfm ∈ C2, c3 =
∑

n

znqn ∈ C3, (5.2)

with zk, zl, zm, zn ∈ Z2. We also consider a dual cubic lattice L̄ through the relations
vk ↔ q̄k , el ↔ f̄l, fm ↔ ēm, and qn ↔ v̄n.

Qubits are defined on the edges and faces of the primal latticeL (or equivalently
primal and dual edges), as shown in Fig. 5.1. We define an operator A(ci) (i = 1, 2)
in terms of a 1-chain c1 = ∑

j zjej or a 2-chain c2 = ∑
j zjfj as

A(ci) =
∏

j

Azj . (5.3)

The stabilizer generators of a 3D cluster state for topologically protected MBQC are
defined on the primal and dual elementary faces fm, f̄m′ (see Fig. 5.2a):

Kfm = Xfm Z(∂fm), (5.4)

Kf̄m′ = Xf̄m′ Z(∂ f̄m′). (5.5)
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Fig. 5.1 A unit cell of the
cluster state for topological
MBQC. The primal and dual
cubes, faces, and edges are
also shown

primal cubic lattice

primal edge

primal face

dual cubic lattice

dual edge 

dual face

Fig. 5.2 a A stabilizer
operator defined on a primal
face. b Kfm Kfm′ =
X(fm + fm′ )Z(∂(fm + fm′ )). c
K(c2) ≡ ∏

m Kzm
fm

=
X(c2)Z(∂c2)

(a)

(c)

(b)

Aunit cell of the 3D cluster state is shown in Fig. 5.1. This notion of stabilizer genera-
tors of the cluster state is quite useful; it provides a connection between the operators
and the chain complex as follows. By multiplying the two stabilizer operators Kfm
and Kfm′ , we have

Kfm Kfm′ = X(fm + fm′)Z(∂(fm + fm′)), (5.6)

(see also Fig. 5.2b). By using this property, we can define a stabilizer operator on a
2-chain c2,

K(c2) ≡
∏

m

Kzm
fm

= X(c2)Z(∂c2), (5.7)
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(see also Fig. 5.2c). Furthermore, for the two 2-chains, c2 and c′
2, we have

K(c2 + c′
2) = K(c2)K(c′

2). (5.8)

Let us see how the 3D cluster state is related to topological quantum computation
on the surface code explained inChap.4. Recall the circuit diagrams for the syndrome
measurements of the plaquette and star operators in Fig. 4.12. The measurement for
the plaquette operator is done by applying the CZ gates between the ancilla qubit
on the face center and the four qubits on the edges. This operation is the same as
generation of the cluster state stabilized by K(fm) with a horizontal face fm. The
syndrome measurement for the star operator can be done by the CZ gates with the
basis change by the Hadamard gates. This corresponds to generation of the cluster
state stabilized by K(f̄l) with a horizontal dual face f̄l. Moreover, the horizontal edge
qubits, which constitute the surface code, are connected by applying the CZ gates
vertically in order to perform theHadamard gates for the basis change. In this way,we
recover the 3D cluster state stabilized byK(fm) andK(f̄l) for all primal and dual faces
fm and f̄l. Two of three dimensions are employed for the spatial degrees of freedom,
constituting the surface code. One is for the time evolution of measurement-based
quantum computation. The measurements are done along the time-like axis, where
even and odd layers, corresponding to the syndrome measurements of the plaquette
and star operators respectively, togetherwith constitute an elementary time step of the
topologically protected MBQC. Below we will see how the topological operations
on the surface code are translated into a measurement pattern of the MBQC on the
3D cluster state.

5.2 Vacuum, Defect, and Singular Qubit Regions

The cubic lattice is divided into three regions: the vacuum V , defect D , and singu-
lar qubits S (the detailed definitions are provided later). In the vacuum region, the
topological quantum computation is protected through topological quantum error
correction. The defect regions are utilized to implement topological quantum com-
putation by braiding defects. We have two types of defects: the primal (D) and dual
(D̄) defects. For simplicity, we only consider the primal defect. The extension to the
dual case is straightforward by replacing primal by dual in the derivation. The primal
defect D is defined as a set of primal cubes. The primal face qubits inside the primal
defect (except for those on the boundary ∂D) are measured in the Z-basis to remove
the corresponding bonds of the cluster state (or, equivalently, we can prepare the
cluster state without those bonds from the beginning). On the boundary ∂D, the pri-
mal face qubits are measured in the X-basis. The primal edge qubits belonging to the
primal defect (including its boundary) aremeasured in theX-basis. Themeasurement
pattern for the dual defect is defined similarly.

Unfortunately, only Clifford circuits such as Pauli-basis preparations, measure-
ments, and CNOT gates, are implemented in a topologically protected way. For
universal quantum computation, magic states for the non-Clifford gates are injected

http://dx.doi.org/10.1007/978-981-287-996-7_4
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on the singular qubits, which are always located in-between two defects. The injec-
tions are executed by measuring the singular qubits in the Y - and (X + Y)/

√
2-

bases. These measurements correspond to injections of (|0〉 + e−iπ/2|1〉)/√2 and
(|0〉 + e−iπ/4|1〉)/√2 (up to global phases), which are utilized to implement the
S = e−i(π/4)Z and T = e−i(π/8)Z gates via gate teleportation, respectively. The sin-
gular qubits are not topologically protected, because two defects are made close to
each other resulting in shortening the code distance. However, we can obtain clean
magic states with topologically protected Clifford gates through the magic state dis-
tillation protocols [60]. In this way, an arbitrary quantum computation is executed
fault-tolerantly. Below, we will define these three regions more precisely and see
how topological quantum computation is executed in a measurement-based way.

5.3 Elementary Operations in Topological
Measurement-Based Quantum Computation

Definition of a Logical Qubit

The logical information is encodedbyusing apair of twodefects as shown inFig. 5.3a,
b, where the measurements are done from left to right. The logical degree of infor-
mation at time step t is described a primal 1-chain c1surrounding the defect and a
dual 1-chain c̄1 connecting the two defects, as shown in Fig. 5.3a. After measuring
qubits up to the (t −1)th even and odd layers, according to the measurement patterns
presented before, the following two operators may become logical operators, which
commute with the stabilizer group of the remaining cluster state and are independent
of it:

L(t)
Z = Z(c1), L(t)

X = X(
←−̄
c1 )Z(c̄1), (5.9)

where
←−̄
c1 indicates the dual face qubits on the even layer at time step t that are the left

neighbor of c̄1, as shown in Fig. 5.3b. These two operators anticommute with each
other and represent a logical qubit. (If the cluster state ends at the even layer at the
time step t, then the two logical operators are equivalent to the logical operators of
the surface code. Because there are the time-like CZ gates for the Hadamard gates,
the logical X operator in Eq. (5.9) accompanied by the Z operators.)

Identity Gate

Next, we will see how these logical operators evolve with the measurements. We
consider a correlation surface defined by a primal 2-chain c2 and a dual 2-chain
c̄2 as shown in Fig. 5.4. A stabilizer operator K(c2) on the correlation surface c2
surrounding the defect is obtained by multiplying the stabilizer generators Kfm on the
primal 2-chain c2:

K(c2) ≡
∏

m

Kzm
fm

= Z(∂c2)X(c2). (5.10)
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Fig. 5.3 a A defect pair
logical qubit. b The logical
operators L(t)

Z and L(t)
X at

time step t

(a) (b)

Fig. 5.4 A logical identity
gate. The logical operators at
time steps t and t′ are related
by the correlation surfaces
K(c2) and K(c̄2) via the
measurements

Similarly, a stabilizer operator on the dual correlation surface c̄2 is defined by mul-
tiplying Kf̄m on the dual 2-chain c̄2:

K(c̄2) ≡
∏

m

Kzm

f̄m
= Z(∂ c̄2)X(c̄2). (5.11)

Suppose measurements are done from the left to the right, except for those qubits on
the final even layer. Using the correlation surface, we obtain equivalence relations
between the logical operators at time t and t′:

L(t)
Z ∼ Z(c(t)

1 )K(c2) = Z(c(t′)
1 )X(c2). (5.12)

L(t)
X ∼ X(

←−
c̄(t)
1 )Z(c̄(t)

1 )K(c̄2) = X(
←−̄
c1 )X(c̄2)Z(c̄(t′)

1 ) (5.13)

Here, A ∼ B means that A and B are equivalent up to a multiplication of the stabilizer
operator of the cluster state, meaning that both A and B act the same on the cluster
state. When the qubits on c2 have been measured in the X-basis, we obtain
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L(t)
Z ∼ L(t+1)

Z , (5.14)

L(t)
X ∼ L(t+1)

X , (5.15)

wherewe assumed that allmeasurement outcomes are+1 for simplicity. This relation
indicates that the logical information at time step t is propagated to time step t′ without
any operation, i.e., a logical identity operation.

State Preparation and Measurement

Next, we consider how the logical qubit is prepared from the vacuum. To prepare
the eigenstate of L(t)

Z , we utilize the defect shown in Fig. 5.5a. By considering the
correlation surface c2, we obtain

K(c2) = X(c2)L
(t)
Z . (5.16)

Because X(c2) commutes with the measurements, the state at time step t is stabilized
by L(t)

Z , and hence a logical Z-basis state is prepared. Considering another surface
c′
2, shown in Fig. 5.5b, the state at time step t is also stabilized by Z(∂c′

2) = L(t)
Z L′

Z
(t).

Thus the pair of the defects is appropriately encoded into the code space. Both L(t)
Z

and L′
Z

(t) act equivalently as logical Z operators.
Next, we consider the defect shown in Fig. 5.6. Considering a correlation surface

c̄2, we obtain

K(c̄2) = Z(∂ c̄2)X(c̄2). (5.17)

Fig. 5.5 a A logical Z-basis
state preparation. b
K(c′

2) = X(c′
2)L

(t)
Z L′

Z
(t)

(a) (b)

Fig. 5.6 A logical X-basis
state preparation
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After the measurements, the state at time step t is stabilized by L(t)
X = X(

←−̄
c1 )Z(c1),

where c1 is a 1-chain on the tth even layer connecting the two defects. Thus, a logical
X-basis state is prepared. Again, the logical state is stabilized by Z(c1)Z(c′

1), with
c1 and c′

1 being a cycle surrounding each defect. Hence, we can choose either L(t)
Z =

Z(c1) or L(t′)
Z = Z(c′

1) to serve as the logical operator. The logical measurements of
the defect pair qubits can be done with the same defects as the state preparations, but
by reversing the time-like direction.

CNOT Gate by Braiding

Let us consider primal defects braiding around a dual defect as shown in Fig. 5.7a.
Similarly to the previous case, we calculate the time evolution of logical operators by
themeasurements. The state at time step t is described by {L(t)

Z , L(t)
X } and {L′

Z
(t)

, L′
X

(t)}
corresponding to {c(t)

1 , c̄(t)
1 } and {c′

1
(t)

, c̄′
1
(t)}, respectively. We first consider a corre-

lation surface c2 with respect to c(t)
1 , as depicted in Fig. 5.7b. Similarly to the identity

gate, L(t)
Z is transformed into L′(t)

Z . An interesting thing happens when we consider
the correlation surface c′

2 with respect to c′
1
(t), as shown in Fig. 5.7c. The stabilizer

operator on c′
2 is given by

K(c′
2) = Z(∂c′

2)X(c′
2)

= Z(c′
1
(t)

)Z(c1
(t′))Z(c′

1
(t′)

)Z(c′′
1)X(c′

2), (5.18)

where c′′
1 is a cycle in the dual defect of a loop as shown in Fig. 5.7c. Then after the

measurements, we obtain an equivalence relation,

L(t)
Z ∼ L(t′)

Z L′(t′)
Z . (5.19)

(a) (b)

(d) (e)

(c)

Fig. 5.7 a A diagram for defect braiding for a logical CNOT gate. b–e Time evolutions of the
logical operators and the corresponding correlation surfaces
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Note that inside the dual defect region, the dual face (primal edge) qubits aremeasured
in the Z-basis, and hence we can obtain the eigenvalue of Z(c′′

1). After a similar
argument using a defect surface c̄2 and c̄′

2 with respect to the dual 1-chain c̄1 and c̄′
1,

shown in Fig. 5.7d and e, respectively, we obtain

L(t)
X ∼ L(t)

X , (5.20)

L(t′)
X ∼ L(t′)

X L′(t′)
X . (5.21)

These relations between the logical operators at time steps t and t′ are equivalent
to those for the CNOT gate. Thus, the defect braiding in Fig. 5.7 results in a logical
CNOT gate. Now we realize that the correlation surface introduced in Chap. 4 as a
trajectory of the logical operator corresponds to the correlation surface defined by
the stabilizer operator of the cluster state.

A Singular Qubit Injection for Magic State Distillation

So far, we have shown that the Clifford circuits, Pauli-basis preparation, measure-
ments, and CNOT gate, can all be implemented in a topological way. Unfortunately,
these operations are not enough to generate universal quantum computation. To
implement universal quantum computation, we inject Y - and (X + Y)/

√
2-basis

states by measuring singular qubits in the Y - and (X +Y)/
√
2-bases, respectively, as

shown in Fig. 5.8. Let us see how this measurement works. Similarly to the previous
case, we have two correlation surfaces c2 and c̄2:

K(c2) = Z(∂c2)X(c2) = Z(∂c2)X(c2\s)Xs, (5.22)

K(c̄2) = Z(∂ c̄2)X(c̄2) = ZsZ(∂ c̄2\s)X(c̄2), (5.23)

where As is a Pauli operator on the singular qubit and [·]\s indicates a chain with
a removal of an element corresponding to the singular qubit. Suppose the singular
qubit is measured in the Y -basis. After the measurements, the state at time step t is
stabilized by

Fig. 5.8 A state injection on
the singular qubit

http://dx.doi.org/10.1007/978-981-287-996-7_4
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K(c2)K(c̄2) 
 L(t)
X L(t)

Z ≡ L(t)
Y . (5.24)

Thus, a logical Y -basis state is prepared. When the singular qubit is measured in the
(X + Y)/

√
2-basis, the state at time step t is stabilized by

[K(c̄2) + K(c2)K(c̄2)]/
√
2 
 (L(t)

X + L(t)
Y )/

√
2, (5.25)

which means that a logical (X + Y)/
√
2-basis state is prepared.

These states are utilized to implement S, T , HSH, and HTH gates using gate
teleportation with the CNOT gate. These gates form a universal set of gates.

5.4 Topological Quantum Error Correction
in Three Dimensions

Next, we will see how topological quantum error correction is done in 3D. Indeed,
in the 3D case, the argument for the noisy syndrome measurements made in Chap.4
becomes more simple as follows. All measurements in the vacuum region are done
in the X-basis. We consider a stabilizer operator on a unit primal cube q,

K(∂qn) =
∏

fm∈∂qn

Xfm , (5.26)

where there is no Z operator due to ∂ ◦∂qn = 0. This implies that, if there is no error,
the parity of each six X-basis measurement outcomes on the primal cube is always
even. The errors are described by using a dual 1-chain E = Z(c̄1). At a unit cube
qn belonging to ∂ c̄1, we have |qn ∩ ∂ c̄1| = odd. (Recall that the primal 3-chain and
the dual 0-chain are identified.) From a set of odd parity cubes ∂ c̄1, we estimate the
actual location of errors E′ = Z(c̄′

1) such that ∂ c̄1 = ∂ c̄′
1. If the total of the actual and

estimated error chains c̄1+ c̄′
1 results in a trivial cycle, meaning that there is no defect

inside the cycle, it can be contracted and removed by a continuous deformation. If the
total of the actual and estimated error chains c̄1+c̄′

1 results in a nontrivial cycle,mean-
ing a cyclewinding around a defect,EE′ = Z(c̄1+c̄′

1)may result in a logical operator.
In such a case, the topological error correction has failed. This property is completely
the same as the topological quantum error correction under faulty syndrome mea-
surements argued in Sect. 4.6. If the error probability is smaller than a constant value
(the threshold), the failure probability of the topological quantum error correction
decreases exponentially in the characteristic size and distance of the defects.

Inside the defect region, the face qubits aremeasured in theZ-basis. Especially, the
Z-basis measurement outcomes near the defect boundary are employed to evaluate
the correlation surface. Note that these Z-basis measurements and the removal of the
corresponding bonds of the cluster state can instead be done by generating a cluster
without connecting the corresponding bonds in advance. In such a case, the errors
on the Z-basis measurements do not appear. We can obtain an additional parity Kfm

http://dx.doi.org/10.1007/978-981-287-996-7_4
http://dx.doi.org/10.1007/978-981-287-996-7_4
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and Kf̄m′ at the primal and dual faces on the boundary of the defects, respectively. If

the errors on the face qubits fm and f̄m′ are suppressed, the errors on the boundary are
reduced into errors on a toric code on a 2D surface, ∂D or ∂D̄. Again, if the error
probability is sufficiently smaller than a constant threshold value, we can correct it
faithfully.

The X- and Z-basis state preparations and measurements, and the CNOT gate
obtained by braiding, are topologically protected because we can execute these topo-
logical operations by keeping the defect size and distance larger than an arbitrarily
large constant length. Unfortunately, through the state injection, we shrink the defect
size into an elementary unit cell, where the defect size and distance become very
small. Thus, the topological protection is broken down around the singular qubit
(see Fig. 5.8a). There will also be lower weight errors, which effectively increase the
logical error probability on the injected logical states. However, noisy injected states
can be purified by using the topologically protected Clifford gates, the so-called
magic state distillation. The Y - and (X + Y)/

√
2-basis states are distilled by using

the 7-qubit Steane and 15-qubit Reed-Muller codes, respectively as explained. The
distilled states are utilized to implement non-Clifford gates via gate teleportation, as
seen before. In this way, universal quantum computation is executed with arbitrary
accuracy.

5.5 Applications for Measurement-Based Quantum
Computation on Thermal States

Topologically protected MBQC in 3D is useful to study the quantum computational
capacity of quantum many-body states at finite temperature. Consider the stabilizer
Hamiltonian of the 3D cluster state for topological MBQC [65, 223, 224]:

Hfc = −J

⎡
⎣∑

f

K(f ) +
∑

f̄

K(f̄ )

⎤
⎦ . (5.27)

The thermal state at temperature T = 1/(βJ) is given by

ρfc = e−βHfc/Tr[e−βHfc ]. (5.28)

Using a unitary operator UCZ = ∏
(fm,f̄l)

Λfm,f̄l (Z), consisting of CZ gates on all
nearest-neighbor two qubits, the thermal state can be mapped into the thermal state
of an interaction-free spin model:

UCZρfcU
†
CZ = e−βHf /Tr[e−βHf ], (5.29)
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where

Hf ≡ −J
∑

i

Xi = UCZ HfcU
†
CZ . (5.30)

Because Hf is an interaction-free Hamiltonian, the stabilizer Hamiltonian, which we
will call the free cluster Hamiltonian, does not undergo any thermodynamic phase
transition.

The thermal state of the free cluster Hamiltonian is given as a product state of the
single-spin density matrix:

ρf = e−βHf/Tr[e−βHf ] =
∏

i

eβJXi/Tr[eβJXi ] (5.31)

=
∏

i

Ei(pβJ)(|+〉〈+|)⊗n, (5.32)

where

Ei(p) = (1 − p)ρ + pZiρZi, (5.33)

and pβJ = e−2βJ/(1 + e−2βJ). Because Ei and UCZ commute, the thermal state of
Hfc is rewritten as

ρfc = UCZρfU
†
CZ =

[∏
i

Ei(pβJ)

]
UCZ(|+〉〈+|)⊗nU†

CZ

=
[∏

i

Ei(pβJ)

]
|Ψ3D〉〈Ψ3D|, (5.34)

where |Ψ3D〉 is the ground state of Hfc, i.e., the 3D cluster state. This means that the
thermal state is given as an ideal 3D cluster state, followed by an independent dephas-
ing for each qubitwith probability pβJ = e−2βJ/(1+e−2βJ). From the argumentmade
in the previous section, if p ≤ 2.9 − 3.3% and hence T = 1/(βJ) ≤ 0.57 − 0.59,
we can then perform universal quantum computation reliably on the thermal state
at a finite temperature, where the errors originating from the thermal excitations are
corrected by the topological quantum error correction. On the other hand, in the high
temperature limit T = 1/(βJ) → ∞, the thermal state is given by a completely
mixed state, and hence MBQC on it can be simulated classically.

A projected-entangled-pair state (PEPS)picture [223–225] allows us to obtain a
lower bound for the possibility of a classical simulation. In the PEPS picture, the
3D cluster state is described as follows (see Fig. 5.9). A maximally entangled pair
|ψMES〉 ≡ (|0〉|+〉 + |1〉|−〉)/√2 is shared on each bond. On each site consisting of
halves of the entangled pair, a projection
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Fig. 5.9 A PEPS picture of the cluster state

|0〉〈00 . . . 0| + |1〉〈11 . . . 1| (5.35)

is performed with an appropriate normalization. The resultant state is the 3D cluster
state. Because the projection and the Z error Ei commute, the effect of the thermal
excitations on the shared entangled state can be determined beforehand:

ρbond = Ea(p)Eb(p)|ψMES〉〈ψMES| (5.36)

If p ≥ (2− √
2)/2, the decohered entangled pair ρbond becomes a separable state. If

two bonds per site are made separable, the 3D cluster state becomes a separable state.
A sampling on such a resource state can be simulated efficiently classically [101,
224]. In this case, the Z error probability per site has to be pβJ ≥ √

2 − 1, i.e., T =
1/(β) = 5.77J . The true critical temperature Tc between the classically simulatable
and universal quantum computational phases is located in the range 0.59J < Tc <

5.77J . Note that this model exhibits a transition of the computational capability,
while there is no thermodynamic phase transition in the physical system [223, 224].

In classical information processing, a thermodynamic phase transition, or, more
precisely, an ordered phase below a critical temperature is utilized for robust infor-
mation storage in magnetic storage devises. While there is no such long range order
in the previous model, it is natural to ask whether or not a long range ordered phase
is useful to enhance the measurement-based quantum computation on many-body
thermal states for quantum information processing. To address this issue, Fujii et al.
proposed an interacting cluster Hamiltonian [184],

Hic = −J
∑
〈f ,f̄ 〉

K(f )K(f̄ ).

Because interactions are introduced between the cluster stabilizers, this model is
mapped by UCZ into an Ising model on a 3D lattice:

HIsing = UCZ HicU
†
CZ = −J

∑
〈f ,f̄ 〉

Xf Xf̄ .
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Thus, it undergoes a thermodynamic phase transition at a finite temperature. The
degenerate ground states

UCZ |+〉⊗n and UCZ |−〉⊗n (5.37)

are also the 3D cluster states, up to the simultaneous spin flipping due to the global
symmetry. Because the eigenvalues of the cluster stabilizer have a long range order
(they are likely to be aligned in the same direction) in a ferromagnetic ordered phase,
the topologically protected MBQC on the symmetry-breaking thermal state has a
special robustness against the thermal excitations. In Ref. [184], topological quantum
error correction of this model is mapped to a correlated random plaquette Z2-gauge
model in 3D, where the disorder in the signs of the plaquettes has an Ising-type
correlation. By using this property and the gauge transformation on the Nishimori
line [182], Fujii et al. showed that the critical temperature of thismodel, and hence the
threshold temperature for topological protection, is equal to the critical temperature
of the 3D Isingmodel, which is the unitary equivalent model of the interacting cluster
Hamiltonian. This means that the critical temperatures for the topological protection
and the thermodynamic phase transition of the underlying physical system coincides
exactly. Due to this fact, we can improve the threshold temperature for topological
protection by one order of magnitude.

While the above Hamiltonian employs multi-body interactions, the 3D cluster
state can be generated from the thermal states of a nearest-neighbor two-bodyHamil-
tonian for spin-3/2 and composite spin-1/2 particles via local filtering operations
[226, 227]. Let us consider a system consisting of a spin-3/2 particle located at site
r and a composite particle of two spin-1/2 particles located at the nearest-neighbor
site r + i, with i = 1, 2, 3, as shown in Fig. 5.10a. The Hamiltonian is given by

H = Δ
∑

r

Sr · (Ir+1 + Ir+2 + Ir+3)

where Sr ≡ (Sx
r , Sy

r, Sz
r) is the spin-3/2 operator of the center particle at the position

r and Ir+a = Ar+a or Br+a depending on the interaction types (line or dash). Here,
Ar+a ≡ (Ax

r+a, Ay
r+a, Az

r+a) and Br+a ≡ (Bx
r+a, By

r+a, Bz
r+a) are two independent

spin-1/2 operators on the composite particle at the position r + a (a = 1, 2, 3). The
above Hamiltonian H can be reformulated as

H =
∑

r

Hr = Δ/2
∑

r

(T2
r − S2

r − I2r)

where Ir ≡ Ir+1 + Ir+2 + Ir+3 and Tr ≡ Sr + Ir. The ground state |G〉 = ⊗
r |gr〉

is given by Tr = 0, Sr = 3/2, and Ir = 3/2, where Lr(Lr + 1) (L = T , S, I) is the
eigenvalue of the operator L2

r . Each center particle in the ground state |G〉 is filtered
by using the POVM measurement:

{Fα = (Sα
r
2 − 1/4)/

√
6} (α = x, y, z). (5.38)
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(a) (b)

(c)

Fig. 5.10 a A system consisting of spin-3/2 particles and composite particles of two spin-1/2. After
the filtering operation on the ground state, we obtain cluster states. b A system consisting of spin-2
particles and composite particles of two spin-1/2 for the 3D cluster state. c A system consisting of
spin-3/2 particles and composite particles of two spin-1/2 for the 3D cluster state

If the measurement outcome is α = z, we obtain a four-qubit GHZ (Greenberger-
Horne-Zeilinger) state [228] as the post-POVM measurement state:

|GHZ4
r〉 ≡ 1√

2
(|0̃ + ++〉 + |1̃ − −−〉),

where |1̃〉 and |0̃〉 are eigenstates of Sz with eigenvalues+3/2 and−3/2, respectively,
and |±〉 are the eigenstates of Az or Bz with eigenvalues ±1, respectively. Even if
we obtain other outcomes, we can transform the post-POVM measurement state
to |GHZ4

r〉 by local operations. The four-qubit GHZ state is subsequently used to
construct the 2D honeycomb cluster state, which is a universal resource for MBQC,
by measuring the operators Az ⊗ Bx and Ax ⊗ Bz on the bond particle as shown in
Fig. 5.10a.

In the case of finite temperature, we have the thermal state
⊗

r ρr with ρr ≡
e−βHr/Z instead of the ground state, where Z indicates the partition function and
β = T−1 for a temperature T . Then, the GHZ state becomes a noisy, say thermal,
GHZ state, σr ≡ FαρrFα†/Tr[FαρrFα†]. In the low temperature case, the thermal
GHZ state is calculated, in the leading order, to be E4(|GHZ4

r〉〈GHZ4
r |) with

E4 = (1 − q1 − 3q2 − 3q3)[I] + q1[Zr]
+ q2

∑
a=1,2,3

[Zr+a] + q3
∑

a=1,2,3

[ZrZr+a], (5.39)
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where q1, q2, and q3 are the error probabilities as functions of the temperature T , the
Pauli Z operator Zb on the qubit at the position b, and [C]ρ ≡ CρC†, respectively.
The probability of other errors such as ZrZr+aZr+a′ is several orders of magnitude
smaller than q1,2,3.

To obtain the 3D cluster state for topological MBQC, as done in Ref. [226], the
five-qubit GHZ state |GHZ5

r〉 is generated in a similar way by using spin-2 particles
and composite particles of spin-1/2, as shown in Fig. 5.10b. Instead of the spin-2
particles, spin-3/2 particles were employed in Ref. [227] to obtain the 3D cluster
state shown in Fig. 5.10c. After the filtering operation and local operations, the two
four-qubit GHZ states are connected to obtain the five-qubit GHZ state for building
the 3D cluster state.

By using the threshold for topologically protected MBQC, we can calculate
the threshold temperatures T = 0.21Δ and T = 0.18Δ for the cases of spin-2
and spin-3/2 center particles, respectively [226, 227]. Accordingly, we can perform
fault-tolerant universal measurement-based quantum computation even on the ther-
mal states of local two-body Hamiltonians at finite temperature.

5.6 Summary and Discussion

In this chapter, we have reformulated topological quantum computation with the
surface code in measurement-based quantum computation. In this formulation, the
space-time trajectory of the errors with imperfect syndromemeasurements discussed
in Sect. 4.6 becomes much clearer because they are already mapped into a spatial
degree of the 3D cluster state. For certain physical systems, the measurement-based
model is more feasible than the circuit model. For example, even if the entangling
gates are non-deterministic, we can generate the resource state efficiently [71–76],
and universal quantum computation can be executed scalably in the measurement-
based model. There have been several proposals of optically connected distrib-
uted systems for large scale fault-tolerant quantum computation with the surface
code [113, 115, 229, 230].

http://dx.doi.org/10.1007/978-981-287-996-7_4


Appendix A
Fault-Tolerant Quantum Computation

A.1 Fault-Tolerant Syndrome Measurements

In the case of the stabilizer code, the syndrome measurements are done by simply
measuring the stabilizer operators. Several QEC gadgets have been proposed to
implement the stabilizer measurement fault-tolerantly [104, 106, 231].

DiVincenzo-Shor’s gadget—The first QEC gadget was proposed by David
DiVincenzo and Peter Shor, who used cat states as ancillae for the syndrome mea-
surement [104]. It is based on an indirect measurement of the observable A with the
eigenvalues ±1:

|+

|ψ
X

A
I ± A

2
|ψ

(A.1)

For example, the stabilizer S1 of the seven-qubit code can bemeasured as the transver-
sal X measurements of the corresponding physical qubits in the code block:

|+ X

code block

Xerror

X errorstwo

(A.2)

Unfortunately, this measurement is not fault tolerant, because the errors in the CNOT
gates [A = X in Eq. (A.1)] are spread by the following CNOT gates, as shown

© The Author(s) 2015
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in the above circuit. To make it fault-tolerant, a cat state |cat〉 = (|000 · · · 0〉 +
|111 · · · 1〉)/√2 is used as an ancilla for the measurement as follows:

code block

|+
X|0

|0
|0

cat state
|+

X

verification

X

X

X

(A.3)

where the cat state is verified before connecting with the code state. Because the
qubits in the code block interact with different ancilla qubits, this measurement does
not spread the errors in the CNOT gates. Similarly, other stabilizers S2, . . . , S6 are
measured fault-tolerantly to obtain the error syndrome. Instead of the verification,
one can perform a suitable recovery operation by postprocessing the ancilla state
after its interaction with the code state [232]:

code block

|+
|0

|0
|0

cat state

X

Z

Z

Z

(A.4)

The DiVincenzo-Shor’s QEC gadget and its improved version both require a lot of
physical gate operations, which results in deterioration of the performance.

Steane’s gadget—Subsequently, a relatively simple QEC gadget was proposed by
Andrew Steane [231], where encoded ancilla states are used to extract the syndrome
with transversal operations. In particular, for the case of the CSS code, the logical
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code states can be used as ancilla states. The following circuit executes the Z and X
error syndrome extractions by using the ancilla |0L〉 states,

|ψL

|0L
|0L

|0L
|0L

XL

XL

X error detection Z error detection

XL

XL

(A.5)

Because the ancilla states are the logical code states, one can obtain the error syn-
drome by simply measuring the ancilla states. The syndrome extraction is repeated a
couple of times to extract reliable error information. An optimized way to extract the
syndrome information was proposed in Ref. [233], where the subsequent syndrome
extraction is performed conditionally according to the preceding syndrome infor-
mation. For these schemes to work fault-tolerantly, the encoded ancilla |0L〉 states
have to be prepared with high fidelity. This is achieved by using either verification
or entanglement purification [106, 231, 234, 235].

Knill’s gadget—Another interesting QEC gadget was proposed by Emanuel Knill
[106]. It is based on quantum teleportation as illustrated in the following circuit:

|ψL

logical Bell 
state

|+L

|0L
XL

ZL logical Bell 
measurement

(A.6)

Here, the encoded data qubit |ψL〉 is teleported to the fresh encoded qubit of the ancilla
Bell state. Thus, the encoded ancilla Bell state has to be prepared with high fidelity
by using verification or entanglement purification, similarly to the Steane’s gadget.
The logical Bell measurement completes the teleportation, namely error-correcting
teleportation. There is no need to identify the error syndrome, but it is sufficient to
find the logical measurement outcomes of the logical Bell measurement. Thus, it is
not necessary to repeat the syndrome extraction in this QEC gadget. The outcome of
the Bell measurement is properly propagated to the subsequent computation as the
Pauli frame [106, 236, 237].

A.2 Fault-Tolerant Gate Operations

Fault-tolerant computation is now executed by the logical gate operations that are
followed by the QEC gadgets. This is illustrated for the fault-tolerant CNOT gate as
follows:
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QEC gadget

QEC gadget

(A.7)

where the code block is depicted as though it is a three-qubit code. A QEC gadget
is attached to each logical output of the transversal CNOT gate. Because a single
error never will be propagated as multiple errors in a fault-tolerant gate, a logical
error is caused by two (or more) simultaneous physical errors. Denoting the number
of such faulty pairs of error locations as C, the logical error probability is given by
Cp2, with p being the physical error probability. If the physical error probability is
sufficiently small, p < 1/C, one can improve the accuracy of the gate and achieve a
fault-tolerant computation.

A.3 Concatenated Quantum Computation

For a reliable computation of a large size, the logical error probability should be
reduced arbitrarily. This is done by a concatenated fault-tolerant computation [39, 40,
86, 87]. In the concatenated computation, each physical gate operation is repeatedly
replaced by a logical gate operation followed by QEC gadgets.

Suppose A is a quantum computation, which consists of some physical gate oper-
ations. Then the first level concatenated computation is defined by C (A), where the
operation C indicates replacing each physical gate with a logical one, followed by
QEC gadgets. For example,C (CNOT) is described in the diagram (A.7). The second
level concatenated CNOT gate C ◦ C (CNOT) is also described as follows:

QEC gadget

QEC gadget

QEC

QECC

QEC

QEC

QEC

QEC

QEC gadget

QEC gadget

QEC

QEC

QEC

QEC

(A.8)

where each physical gate in the QEC gadgets is replaced by the logical one, fol-
lowed by the QEC gadgets. By repeating this procedure, the lth level concatenated
computation of A is given by C l(A). Specifically, for a physical gate operation G
(e.g., Hadamard, CNOT gate, etc.), C l(G) is called the level-l G gate. The lth level
concatenated code state is called the level-l qubit, denoted by |0(l)〉, |+(l)〉.
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As mentioned previously, the logical error probability p(1)
g of the level-1 gate is

given by
p(1) = C(p(0))2, (A.9)

where p(0) = p and C denotes the number of all faulty pairs of error locations. The
constant C differs between the logical gates. It is, however, sufficient to choose the
maximum value. Due to the self-similarity of the concatenation, the logical error
probability of the level-2 gate is given in terms of p(1) by

p(2) = C(p(1))2. (A.10)

Similarly, the logical error probability p(l) of the level-l gate is obtained recursively as

p(l) = C(p(l−1))2

= (Cp(0))2
l
/C. (A.11)

We conclude that if p(0) < pth ≡ 1/C, the logical error probability can be reduced
super-exponentially with the concatenation level l. This is the so-called threshold
condition.

On the other hand, the resources usage, R(l), consumed for the level-l gate is
estimated roughly as

R(l) = Nl, (A.12)

where N indicates the total number of physical gates in the level-1 gate. Suppose
that the size of the computation is 10n−1 = M. Then an accuracy of p(l) < 10−n is
required for each logical gate at the highest level. The total resources to perform a
reliable quantum computation of size M amount to

Rtot = Nl̄M =
(

n

log10(Cp(0))−1

)log2 N

M = poly(log(M))M, (A.13)

where l̄ � log2
[
n/ log10(Cp(0))

]
is the number of levels necessary to achieve the

required accuracy. This result clearly shows that if the physical error probability p(0)

is smaller than pth, one can execute quantum computation to an arbitrary accuracy
with only polylogarithmic overhead. This is the celebrated threshold theorem and the
critical value pth is called the noise threshold [9, 39, 86, 87, 105]. The noise thresholds
have been calculated to be about 10−4–10−2 for several fault-tolerant schemes under
varying degrees of assumption and rigor [39–43, 86, 87, 106, 238–241].



Appendix B
Decoding Stabilizer Codes

Consider an n-qubit stabilizer code, whose stabilizer group is given by G = {Gi}.
The group consisting of the logical operators is denoted by L = {Li}. Suppose a
Pauli product E ∈ {I, X, Y , Z}⊗n acts as an error on the stabilizer code state. The
error syndrome, a set of eigenvalues of the stabilizer generators, of an error E is
denoted by S = S (E). For each error syndrome S, we define a pure error operator
R(S) ∈ {I, X, Y , Z}⊗n such that S = S [R(S)]. The pure error operator R(S) is
chosen arbitrarily as long as S = S [R(S)]. The error E is decomposed uniquely into
logical, stabilizer, and pure error operators:

E = LiGjR[S (E)]. (B.1)

We define a decoding mapD , which computes the logical operator Li from the error
E, i.e., Li = D(E).

The decoding problem consists of finding an optimal logical operator Li that
maximizes the posterior probability P(L|S):

arg max
Li∈L

P(Li|S). (B.2)

The posterior probability is given by

P(Li|S) = 1

N

∑
E

P(E)δ[Li = D(E)]δ[S = S (E)] (B.3)

= 1

N

∑
Gj∈G

P[LiGjR(S)]. (B.4)

where 1/N is a normalization factor, δ(· · · ) is an indicator function, and P(E) is
the probability of the error E. In general, computing P(L|S) is hard because the
summation over all stabilizer operators,

∑
Gj
, takes an exponential time. However,
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if the code has a good structure, such as a concatenated code, we can manage it
efficiently.

A concatenated code is defined recursively using the logical qubits at the lower
level as physical qubits at the higher level. Using the logical Pauli operators L(k)

i ∈
L (k) at the kth level (k = 1, 2, . . .), we define a stabilizer group G (k+1) = {G(k+1)

j }
and logical operators L (k+1) = {L(k+1)

i } at the (k + 1)th level. The whole stabi-
lizer group of the concatenated code is given by the union of all stabilizer groups
∪l

k=1G
(k), where we consider the lth concatenated code. A logical operator of the

lth concatenated code is given by a logical operator at the highest level, L(l)
i ∈ L (l).

At each level, we define a level-k error E(k). In the case of k = 0, the level-0 error
E(0) ∈ {I, X, Y , Z}⊗n is a physical error. At a higher level, the level-k error E(k) is
a level-k logical operator, which will be defined later. At each level, we define an
error syndrome S(k) = S (k)(E(k−1)), i.e., a set of eigenvalues of the level-k stabilizer
operators {G(k)

j } under the level-(k − 1) error E(k−1). The level-k pure error operator
R(k)(S(k)) is defined arbitrarily such that S (k)[R(k)(S(k))] = S(k).

The level-k error E(k) is now defined recursively as follows. Any physical error
E(0) can be decomposed into the stabilizer, logical, and pure error operators of
level-1:

E(0) = G(1)
j L(1)

i R(1)(S(1)). (B.5)

The obtained level-1 logical operator L(1)
i = E(0)G(1)

j R(1)(S(1)) is further regarded as

the level-1 error E(1) ≡ L(1)
i . Recursively, the level-k error E(k) is decomposed into

the stabilizer, logical, and pure error operators of level-(k + 1):

E(k) = G(k+1)
j L(k+1)

i R(k+1)(S(k+1)). (B.6)

Then, we define the level-(k + 1) error E(k+1) = L(k+1)
i = E(k)G(k+1)

j R(k+1)

(S(k+1)). Let D (k) be such a level-k decoding map L(k)
i = D (k)(E(k−1)), which com-

putes the level-k logical operator from the level-(k − 1) error E(k−1). At the highest
level, we have a decomposition

E(0) = L(l)
i

l∏
k=1

G(k)
jk

R(k)[S (k)(E(k−1))], (B.7)

where E(k) is defined by Eq. (B.6).
The decoding is performed by maximizing the posterior probability of the logical

operator L(l)
i , conditioned on the union of the error syndrome S̄(l) = ∪l

k=1S(k) up to
the lth concatenation level,
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P
(

L(l)
i |S̄(l)

)
= 1

N

∑
G(l)

jl
,G(l−1)

jl−1
,...,G(1)

j1

P(E(0)), (B.8)

where E(0) is given by Eq. (B.7). Using the hierarchal structure, Eq. (B.8), can be
rewritten as

P
(

L(l)
i |S̄(l)

)
(B.9)

=
∑

L(l−1)
il−1

∈L (l−1)

P
(

L(l)
i |S̄(l), L(l−1)

il−1

)
P

(
L(l−1)

il−1
|S̄(l)

)

=
∑

L(l−1)
il−1

∈L (l−1)

δ
[
L(l)

il
= D(l)

(
L(l−1)

il−1

)] P
(

L(l−1)
il−1

, S̄(l)
)

P
(
S̄(l)

)

=
∑

L(l−1)
il−1

∈L (l−1)

δ
[
L(l)

il
= D(l)

(
L(l−1)

il−1

)]
δ
[
S(l) = S (l)

(
L(l−1)

il−1

)] P
(

L(l−1)
il−1

, S̄(l−1)
)

P(S̄(l))

=
∑

L(l−1)
il−1

∈L (l−1)

δ
[
L(l)

il
= D(l)

(
L(l−1)

il−1

)]
δ
[
S(l) = S (l)

(
L(l−1)

il−1

)]
P(S̄(l)|S̄(l−1))

P
(

L(l−1)
il−1

|S̄(l−1)
)

(B.10)

If the physical errors occur independently for each qubit, we can factorize the pos-
terior probability of the (l − 1)th level into posterior probabilities for level-(l − 1)
code blocks

P
(

L(l−1)
il−1

|S̄(l−1)
)

=
∏

j

P
(

L(l−1,j)
il−1

|S̄(l−1,j)
)

, (B.11)

where L(l−1,j)
il−1

is a level-(l − 1) logical operator acting on the jth code block, and

S̄(l−1,j) is a level-(l − 1) syndrome with respect to the stabilizer operator on the jth
code block. By repeating this procedure, we can rewrite the posterior probability
Eq. (B.8) as a summation over logical operators defined at each concatenation level
L(k,j)

ik
∈ L (k,j), where we have defined the group of the level-k logical operators on

the jth code block, L (k,j).
The summation can be reformulated as a marginalization problem on a factor

graph, which is a bipartite graph consisting of two types of nodes, circles, and
boxes [139]. The variable xc and a function fb(∂b) are assigned on each circle c
and box b. Here, ∂b is a set of circles neighboring b. Specifically, in the present
case, the factor graph is a tree graph. The marginal distribution on a tree factor graph
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can be computed efficiently by using the brief-propagation method as follows. From
circles to boxes, we pass a message,

μc→b(xc) =
∏

b′∈δc\b

νb′→c(xc). (B.12)

Then from boxes to circles, we pass another message

νb→c(xc) =
∑
δb\xc

∏
b

fb(δb)
∏

c′∈δb\c

μc′→b(x
′
c). (B.13)

By repeating these procedures alternatively, we can obtain P(L(l)
i |S̄(l)) as a message

νb→c(xc), where the μc→b(xc) and νb→c(xc) are updated from the bottom leaf nodes
to the top root node, while using marginal distributions. By replacing μc→b(xc)

and fb(δb) with P(L(k−1,j)
ik−1

|S̄(k−1,j)) and δ[L(k)
ik

= D (k)(L(k−1)
ik−1

)]δ[S(k) = S (k)

(L(k−1)
ik−1

)], we obtain the posterior probability P(L(l)
i |S̄(l)) as νb→c(xc) at the top root

node. In this way, decoding by maximizing the posterior probability can be executed
efficiently for the concatenated stabilizer codes [139].
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