
Chapter 17
Application of Wavelets in Numerical
Evaluation of Hankel Transform Arising
in Seismology

Nagma Irfan and A.H. Siddiqi

Abstract The computation of electromagnetic (EM) fields for 1-D layered earth
model requires evaluation of Hankel transform. In this paper we propose a stable
algorithm for the first time that is quite accurate and fast for numerical evaluation of
the Hankel transform using wavelets arising in seismology. We have projected an
approach depending on separating the integrand tf(t)Jν(pt) into two components; the
slowly varying components tf(t) and the rapidly oscillating component Jν (pt). Then
either tf(t) is expanded into wavelet series using wavelets orthonormal basis and
truncating the series at an optimal level or approximating tf(t) by a quadratic over
the subinterval using the Filon quadrature philosophy. The solutions obtained by
proposed wavelet method applied on three test functions indicate that the approach
is easy to implement and computationally very attractive. We have supported a new
efficient and stable technique based on compactly supported orthonormal wavelet
bases.

Keywords Hankel transform wavelets � Bessel functions � Fourier Bessel series �
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Mathematics Subject Classifications 44A15 65R10 65T60

17.1 Introduction

Electromagnetic (EM) depth sounding is, under favorable conditions, extremely
useful in petroleum exploration, groundwater exploration, permafrost thickness
determination exploration of geothermal resources, and foundation engineering
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problems. However, for data interpretation one needs fast and efficient computa-
tions of geoelectromagnetic anomaly equations. These equations appear as Hankel
Transform (HT) (also known as Bessel Transform).

17.1.1 Hankel Transform

The efficient and accurate evaluation of the Hankel transform is required in a
number of applications. This paper reviews a number of algorithms that have only
recently been exposed in the literature. It is found that the performance of all
algorithms depends on the type of function to be transformed. The wavelet based
methods provide acceptable accuracy with better efficiency than numerical
quadrature.

17.1.2 Mathematical Background

The general Hankel transform pair with the kernel being Jν is defined as [1]

FmðpÞ ¼
Z1
0

tf ðtÞJmðptÞdt; ð17:1Þ

and Hankel transform being self reciprocal, its inverse is given by

f ðtÞ ¼
Z1
0

pFmðpÞJmðptÞdp; ð17:2Þ

where Jm is the νth-order Bessel function of first kind. Due to oscillatory behaviour
of Jν(pt), standard quadrature methods applied to these integrals can be slow to
convergence or may fail if the integral is divergent. It is only recently, mainly in the
last 20 years, that attention has been turned to discovering algorithms useful for
numerical evaluation of the Hankel transform. In this time a variety of algorithms of
various strengths, weakness, and applicability’s have been reported. As sometimes
happens, the relevant literature is distributed through a number of journals, some of
it in apparent ignorance of other research.

We believe it is now timely to bring this literature together, giving a review of
the main methods available and providing pointers to some of the less efficient, but
nevertheless elegant, methods.
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17.1.3 Historical Background of Numerical Transforms
Techniques

The literature concerning numerical Hankel transform techniques is very sparse
from Longman until the late seventies when a flurry of papers were published on
the topic. The various algorithms that have been published during and since the
seventies can be filled into a few general categories. They are:

(1) Numerical quadrature
(2) Logarithmic change of variables
(3) Asymptotic expansion of the Bessel function
(4) Projection-slice/back projection method

Numerical evaluation of Hankel transforms is ubiquitous in the mathematical
treatment of physical problems involving cylindrical symmetry, optics, electro-
magnetism and seismology. Many different types of algorithms and software have
been developed to evaluate numerically hankel transform integrals in Geophysics
[2, 3]. The ubiquity of these integrals in EM geophysics motivates the need for
accurate and efficient numerical integral techniques.

17.1.4 Motivation of Present Work

(A) The Hankel transform arises naturally in the discussion of problems posed in
cylindrical coordinates (with axial symmetry) and hence, as a result of sepa-
ration of variables involving Bessel functions.

(B) Analytical evaluations are rare and hence numerical methods become
important. The usual classical methods like Trapezoidal rule, cotes rule etc.
connected with replacing the integrand by sequence of polynomials have high
accuracy if integrand is smooth. But tf(t) Jν(pt) and pFν(p) Jν(pt) are rapidly
oscillating functions for large t and p, respectively.

To overcome these difficulties, various different techniques are available in the
literature.

(1) Fast Hankel Transform Here, by substitution and scaling, the problem is
transformed in the space of the logarithmic co-ordinates and the fast Fourier
transform in that space.

(2) Filon quadrature philosophy In Filon quadrature philosophy, the integrand is
separated into the product of an (assumed) slowly varying component and a
rapidly oscillating component. In the context of the Hankel transform, the
former is tf(t) and the latter is Jν(pt). This method works quite well for
computing F0(p), for p ≥ 1, but the calculation of inverse Hankel transform is
more difficult, as F0(p) is no longer a smooth function but a rapidly oscillating
one. Moreover the error is appreciable between 0 < p < 1.
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Several papers have been written to the numerical evaluation of the HT in
general and the zeroth-order in particular [4–12]. There are two general methods of
the effective calculation in this area. The first is the fast Hankel transform [13, 14].
The specification of that method is transforming the function to the logarithmical
space and fast Fourier transform in that space. This method needs a smoothing of
the function in log space. The second method is based on the separation of the
integrand into product of slowly varying component and a rapidly oscillating Bessel
function [15]. But it needs the smoothness of the slow component for its approx-
imation by lower-order polynomials.

17.2 Preliminaries

17.2.1 Wavelets

Wavelets are a class of function constructed from dilation and translation of a single
function called the mother wavelet. When the dilation and translation parameters
a and b vary continuously, the following family of continuous wavelets are
obtained

wa;bðtÞ ¼ aj j�1
2

t � b
a

� �
; a; b 2 R; a 6¼ 0:

When the parameters a and b are restricted to discreet values as a ¼ 2�k;

b ¼ n2�k ,
Then, we have the following family of discrete wavelets

wknðtÞ ¼ 2
k
2w 2kt � n
� �

; k; n 2 Z;

where the function w, the mother wavelet, satisfies
R

RwðtÞdt ¼ 0:
We are interested in the case where wkn constitutes and orthonormal basis of

L2(R). A systematic way to do this is by means of multiresolution analysis (MRA).
In 1910, Haar [16] constructed the first orthonormal basis of compactly sup-

ported wavelets for L2(R). It has the form f2 j
2wð2 jt � kÞ : j; k 2 Zg where the

fundamental wavelet w is constructed as follows:
Construct a compactly supported scaling function ϕ by the two-scale scaling

relation /ðtÞ ¼ /ð2tÞþ/ð2t � 1Þ together with the normalization constraintR
uðtÞdt ¼ 1. A solution of this recursion that represents φ in L2(R) is v½0; 1Þ.
Then wðtÞ ¼ uð2tÞ � uð2t � 1Þ. The Haar wavelets are piecewise continuous

and have discontinuities at certain dyadic rational numbers.
In seminal papers; Daubechies [17, 18], constructed the first orthonormal basis

of continuous compactly supported wavelets for L2(R). They have led to a sig-
nificant literature and development, both in theoretical and applied arenas.
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Later in 1989, Mallat [19] studied the properties of multiresolution approxi-
mation and proved that it is characterized by a 2π-periodic function. From any
MRA, one can derive a function w(t) called a wavelet such that

2
j
2w 2 jt � kð Þ : j; k 2 Z

n o
is an orthonormal basis of L2(R). The MRA showed the

full computational power that this new basis for L2(R) possessed. In the same year,
Mallat [20] applied MRA for analysing the information content of the images.

Note that a system uk : k 2 Zf g is called a Riesz basis if it is obtained from an
orthonormal basis by means of a bounded invertible operator.

Definition The increasing sequence Vkf gk2Z of closed subspaces of L2(R) with
scaling function u 2 V0 is called MRA if

(i)
S

k Vk is dense in L2(R) and
T

k Vk ¼ 0f g,
(ii) f ðtÞ 2 Vk iff f ð2�ktÞ 2 V0,
(iii) u t � nð Þf gn2Z is a Riesz basis for V0.

Note that (iii) implies that the sequence {2k/2φ(2kt − n)}n∊Z is an orthonormal
basis for Vk. Let w(t) be the mother wavelet, then wðtÞ ¼ P

n2Z
anu 2t � nð Þ and

2k=2w 2kt � n
� �� �

k;n2Z forms an orthonormal basis for L2(R) under suitable con-

ditions [21–24].
CAS Wavelets wnmðtÞ ¼ wðk; n;m; tÞ involve four arguments n, k, m and t,

where n ¼ 0; 1; . . .; 2k � 1; k is assumed any nonnegative integer, m is any integer
and t is normalized time. CAS wavelets are defined as [25]

wnmðtÞ ¼ 2
1
2CASmð2kt � nÞ; for n

2 � t \ nþ 1
2k ;

0; otherwise;

�
ð17:3Þ

where

CASmðtÞ ¼ cosð2mptÞ þ sinð2mptÞ: ð17:4Þ

It is clear that the set of CAS wavelets also forms and orthonormal basis for
L2([0, 1]).

17.3 Function Approximation

The function f(t) representing physical fields are either zero or have an infinitely
long decaying tail outside a disk of finite radius R. Hence, in most practical
applications either the signal f(t) has a compact support or for a given ɛ > 0 there
exists a R > 0 such that

R1
R tf ðtÞJmðptÞ dt

		 		\e:
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Therefore, in either case,

F̂mðpÞ ¼
ZR
0

tf ðtÞ JmðptÞ dt

¼
Z1

0

tf ðtÞ JmðptÞ dt; ðby scalingÞ ð17:5Þ

known as the finite Hankel transform (FHT) is a good approximation of the HT as
given by (17.1). Writing tf(t) = g(t) in Eq. (17.5), we get

F̂mðpÞ ¼
Z1

0

gðtÞJmðptÞdt: ð17:6Þ

We may expand g(t) as follows

gðtÞ ¼
X1
m¼0

X2k�1

n¼0

cnmwnmðtÞ; ð17:7Þ

where cnm ¼ gðtÞ; wnm tð Þh i.
with (.,.) denoting the inner product.
By truncating the infinite series (17.7) at levels m = 2L and n ¼ 2k � 1, we

obtain an approximate representation for g(t) as

gðtÞ �
X2L
m¼0

X2k�1

n¼0

cnmwnmðtÞ ¼ CTwðtÞ; ð17:8Þ

where the matrices C and w(t) are 2kð2Lþ 1Þ � 1 matrices given by

C ¼ ½c0;0; c0;1; ; . . .; c0;2L�1; c10; . . .; c1;2L; . . .; c2k�1;0; . . .; c2k�1;2L�T ð17:9Þ

and

wðtÞ ¼ ½w0;0ðtÞ;w0;1ðtÞ; . . .;w0;2LðtÞ;w1;0ðtÞ; . . .;w1;2LðtÞ;w2k�1;0ðtÞ; . . .;w2k�1;2LðtÞ�T :
ð17:10Þ

Substituting (17.8) in (17.6), we get

F̂mðpÞ � CT
Z1

0

wðrÞJmðprÞdr: ð17:11Þ
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Now (17.11) reduces to

F
_

mðpÞ � CT

R1
0
w0;0ðrÞJmðprÞdr;

R1
0
w0;1ðrÞJmðprÞdr;

R1
0
w0;2ðrÞJmðprÞdr; . . .;

R1
0
w1:0ðrÞJmðprÞdr; . . .;

R1
0
w1;4ðrÞJmðprÞdr

2
6664

3
7775
T

ð17:12Þ

where w0;0;w0;1. . .. . .. . .w1;4 are defined through Eq. (17.3). We re-label and write
(17.12) as

F
_

mðpÞ � ½c0;0; c0;1; . . .; c1;4�½I0n ; I1n ; . . .; I10n �T; ð17:13Þ

where Iν
l ’s are the lth place integral in Eq. (17.12).

The integrals arising in Eq. (17.12) are evaluated by using the following for-
mulae [26].

Za

0

JmðtÞdt ¼ 2 lim
N!1

XN
z¼0

Jmþ 2zþ 1ðaÞ;Rem[�1 ð17:14Þ

and is calculated with the help of Simpson’s one third rule, Simpson’s three eight
rule.

17.4 Numerical Implementation

Since it is always desirable to test the behaviour of a numerical scheme using
simulated data, for which the exact results are known and thus making a comparison
between the chosen well known test functions which are widely used by researchers
in the area to validate the reliability of proposed method. Here we consider three
examples for the numerical solutions on the prescribed method, in order to check the
accuracy of our scheme. The simplicity and accuracy of sine-cosine wavelet method
is illustrated by computing the absolute error graphically.

EF̂mðpÞ ¼ FmðpÞ � F̂mðpÞ

In this section, we test the proposed algorithm (17.13) by evaluating the approx-
imate Hankel transforms of 2 well known test function with known analytical Hankel
transforms. Note that in all the examples the truncation is done at level m = 2L and
L = 2, we observed that the accuracy of the method is very high even at such a low
level of truncation. Note that the various graphs in the examples are plotted and
sample points are chosen as p = 0.01(0.01)N, where N = 60 in all the figures.
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Example 1 Let f ðrÞ ¼ rm sinðpr24 Þ; 0� r\1; then

FmðpÞ ¼ 1ffiffiffi
2

p p
2

� ��m�1
pm Umþ 1

p
2
; p

� �
� Umþ 2

p
2
; p

� �h i

(obtained from (p. 34, (16), [26] by putting a ¼ p
4 ; b ¼ 1),

where Umðw; pÞ is a Lommel’s function of two variables,

¼ 1ffiffiffi
2

p
p

XL
g¼0

ð�1Þg p
2p

� �2 g

Jmþ 2g þ 1ðpÞ � p
2p

Jmþ 2gþ 2ðpÞ
� �" #" #

as L ! 1

ð17:15Þ

The comparison of the approximation Hν(p) (dotted line) with the exact Hankel
transform Fν(p) (solid line) is shown in Figs. 17.1 and 17.3 and the error EðpÞ ¼
HmðpÞ � FmðpÞ in Figs. 17.2 and 17.4.

Simpson’s one third rule
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Fig. 17.2 Comparison of the errors
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Fig. 17.1 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line) where ν = 0
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Simpson’s three eight rule

Example 2 In this example, we choose as a test function the generalized version of
the top-hat function, given as

f ðrÞ ¼ rm ½HðrÞ � Hðr � aÞ�; a[ 0 and H(r) is the step function given by

HðrÞ ¼ 1; r� 0
0; r\0

�
:

Then,

FmðpÞ ¼ Jmþ 1ðpÞ
p

: ð17:16Þ

Guizar-Sicairos [27], took a = 1 and ν = 4 for numerical calculations. We take
a = 1, ν = 0, and observe that the error is quite small as shown in Fig. 17.5 and 17.7.
The comparison of the approximate with exact transform is shown in Figs. 17.6 and
17.8.
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Fig. 17.3 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line) where ν = 0
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Fig. 17.4 Comparison of the errors
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Simpson’s one third rule

Simpson’s three eight rule
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Fig. 17.5 The exact transform, Fν(p) (solid line) and the approximate transform,
Hν(p) (dotted-line)
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Fig. 17.7 The exact transform, Fv(p) (solid line) and the approximate transform, Hv
(p) (dotted-line)
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Example 3 Let f ðrÞ ¼ ð1� r2Þ1=2, 0 ≤ r ≤ 1, then,

F1ðpÞ ¼ p
J21 ðp=2Þ

2p ; 0\p\1
0; p ¼ 0

�
: ð17:17Þ

Barakat et al., evaluated F1(p) numerically using Filon quadrature philosophy
but again the associated error is appreciable for p < 1; whereas our method give
almost zero error in that range. The comparison of the approximation F(p) (dotted
line) with the exact Hankel transform F1(p) (solid line) is shown in Figs. 17.9 and
17.11 and the error E(p) = F(p) − F1(p) in Figs. 17.10 and 17.12.

Simpson’s one third rule
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Fig. 17.9 The exact transform, F1(p) (solid line) and the approximate transform, F
(p) (dotted-line)
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Simpson’s three eight rule
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Fig. 17.11 The exact transform, F1(p) (solid line) and the approximate transform, F
(p) (dotted-line)
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17.5 Summary and Conclusion

Since the basis functions used to construct the wavelets are orthogonal and have
compact support, it makes them more useful and simple in actual computations.
Also, since the numbers of mother wavelet’s components are restricted to one, so
they do not lead to the growth of complexity of calculations.

Wavelet method is very simple and attractive [27]. The implementation of
current approach in analogy to existed methods is more convenient and the accu-
racy is high. The numerical example and the compared results support our claim.
The difference between the exact and approximate solutions for each example
plotted graphically to determine the accuracy of numerical solutions.

17.5.1 Future Work

Since computational work is fully supportive of compatibility of proposed algo-
rithm and hence the same may be extended to other physical problems also. A very
high level of accuracy explicitly reflects the reliability of this scheme for such
problems. We would like to stress that the approximate solution includes not only
time information but also frequency information due to the localization property of
wavelet basis; with some change we can apply this method with the help of other
wavelet basis.
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